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Tunneling-percolation origin of nonuniversality: Theory and experiments
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A vast class of disordered conducting-insulating compounds close to the percolation threshold is character-
ized by nonuniversal values of transport critical expongnn disagreement with the standard theory of
percolation which predicts=2.0 for all three-dimensional systems. Various models have been proposed in
order to explain the origin of such universality breakdown. Among them, the tunneling-percolation model calls
into play tunneling processes between conducting particles which, under some general circumstances, could
lead to transport exponents dependent of the mean tunneling distambe validity of such theory could be
tested by changing the parameteby means of an applied mechanical strain. We have applied this idea to
universal and nonuniversal Ry@lass composites. We show that when2 the measured piezoresistive
responsd’, i.e., the relative change of resistivity under applied strain, diverges logarithmically at the perco-
lation threshold, while fot=2, I" does not show an appreciable dependence upon the Rul@me fraction.

These results are consistent with a mean tunneling dependence of the nonuniversal transport exponent as
predicted by the tunneling-percolation model. The experimental results are compared with analytical and
numerical calculations on a random-resistor network model of tunneling percolation.
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I. INTRODUCTION t-values reported in Fig. 1 are closettp=2.0, almost 50%

. . . f the measured critical exponents deviate from universality
Despite the fact that transport properties of dlsorderecgy displayingt # t,.

insulator-conductor composites have been studied for more Examining all the data reported in Fig. 1, one observes

than thirty years, some phenomena still remain incompletelynat the |ack of universality is not limited to a particular class
understood. One such phenomenon is certainly the origin ot materials, although the granular meté&ésnpty diamonds
nonuniversality of the dc transport near the conductorin Fig. 1) have somewhat less spread values @dmpared to

insulator critical transition. According to the standard theorythe carbon-black and TFRs composites. Another important
of transport in isotropic percolating materials, the bulk con-

ductivity o of a composite with volume concentrationof 22— T
the conducting phase behaves as a power law of thelform

= & Carbon-based + organics
L ® Metal-oxide TFRs

~ — t B
o = op(X = X%o)", (1) 10 © Granular metals

whereay is a proportionality constank, is the critical con-
centration below which the composite has zero conductivity 8- -
(or more precisely the conductivity of the insulating phase
andt is the dc transport critical exponent. The above expres- t [® .
sion holds true in the critical regiox—x.<<1 in which criti- 6
cal fluctuations extend over distances much larger than the ° o}
characteristic size of the constituents. As a consequence, con- %ee "
trary to og andx. which depend on microscopic details such 4
as the microstructure and the mean intergrain junction con- u
ductance, the exponent is expected to be material s =2 %
independent? The universality oft is indeed confirmed by 2 [g. -
various numerical calculations of random-resistor network ] 'y *
models which have established thiatt;=2.0 for three- [
dimensional lattices to a rather high accurddy. ob—— o+ 0
Confirmations to the standard percolation theory of trans- 0.0 01 0.2 0.3 04 05
port universality are found only in a limited number of ex-
Peri_ments on real disordered CompOSit?s- This is illustrated £ 1. Collection of critical exponent valuésind correspond-
in Fig. 1, where we have collected 99 different values of thgng ciitical threshold concentration, for various disordered

critical exponent and the critical threshold, measured in  conductor-insulator composites. Carbon-black-polymer systems are
various ~composites  including  carbon-black-polymerfrom Refs. 6-26, oxide-based thick film resistors are from Refs.

systems$26 oxide-based thick film resistor§TFR9,2’3®  27_38 metal-inorganic and -organic insulator granular metals are
and other metal-inorganic and -organic insulatorfrom Refs. 26 and 39-48. The dashed line denotes the universal
compositeg®39-48|t is clear that, despite that many of the valuety,=2.0.
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observation is that for the vast majority of the cases, theéned together with the relative resistance noise exponent, and
nonuniversal critical exponent iarger thant,, and only few  in Ref. 39 a study on ac and magnetoresistive exponents for
data displayt<t,. Finally, there is no clear correlation be- various composites has been presented. As a matter of fact,
tweent and the critical concentration valug. no conclusive answers have been reached and the different
With the accumulation of experimental reports of nonuni-models of nonuniversality listed above have not proven to
versality, various theories have been proposed in order tgeally apply to real composites.
find an origin to this phenomendrt?*?In Ref. 9 it was In this paper we present our contribution to the under-
argued that, in carbon-black-polymer composites, long-ranggianding of the origin of transport nonuniversality by attack-
interactions could drive the system towards the mean-flel%g the problem from a different point of view. In contrast
regime for whicht=ty:=3.0. This interpretation cannot, i "ha mean-field hypothesisthe RV modef® and its

however, explain the observation of critical exponents .muc%xtensiorﬁz the tunneling-percolation model of Balberg pre-
larger tharty, such as those of carbon-based composites Yicts that the critical exponentacquires an explicit depen-

TFRs which display values of as high ast=5-10. The dence upon a microscopic varialithe mean-tunneling dis-
authors of Ref. 50 introduced the random-véit/) model tance a) which could be altered by a suitable external

of continuum percolation where current flows through a con . . . Lo ;
ducting medium embedding insulating spheres placed at rar|p_erturk_3at|0_n. So, if transport nonuniversality is driven by
dom. By using an earlier restthey were able to show that tunneling, it would be possible to change the value of the
for this model dc transport is described by a universalitytr@nsport critical exponentby applying a pressure or a strain
class different from that of standard percolation model on 40 the composite. Conversely, when a material belongs to
lattice. The resulting critical exponent was found to the SOMe universality claststandard percolation theory, mean-
~ 2.4 for three-dimensional systems. More recently, Balberdield universality class, or the RV modeits exponent is
generalized the RV model in an attempt to explain higher expe_cted to be independent of microscopic details and an
values® The same author also proposed a model of transpo@PPlied strain would not change
nonuniversality based on an inverted RV model in which \We have applied this idea to Rg®ased TFRs whose
current flows through tunneling processes between conduct{@nSport properties are known to be governed by intergrain
ing spheres immersed in an insulating medithwithin this  tunneling processéS:>"In the following of this paper we
picture, if the distribution function of the tunneling distancesShow that the behavior of the piezoresistive response, i.e., the
decays much slower than the tunneling decay, then the critGhange of resistivity upon applied mechanical stfdias a
cal exponent becomes dependent on the mean tunneling di$inction of concentrationx of RuG,, can be interpreted as
tancea and, in principle, has no upper bound. due to a tunneh_ng distance dependence of the dc crmpal

In addition to the above models, there were also explica®XPonentt, as originally proposed in Ref. 51. The paper is
tions pointing out that when Ed1) is used to fit experimen- ©rganized as follows. In the next section we briefly review
tal data not restricted to the critical region, “apparent criticalth® tunneling-percolation theory and the RV model and its
exponents,” usually larger thag could be misinterpreted as f-:-xtensmn. In Sec. 1 we dgscnbe the theory of piezoresistiv-
real critical exponent® 53 Although this possibility cannot ity for percolating composites and in Sec. IV we present our
be excluded for some of the data reported in Fig. 1, it isexperlmental results. The last section is devoted to a discus-
however, quite unrealistic to identify the whole set of re-Sion and to the conclusions.
ported nonuniversal exponents as merely apparent.

The mean-field interpretatichthe RV model and its II. MODELS OF NONUNIVERSALITY

o £0.52 L
generalizatiort®>? and the tunneling inverted RV model The RV model$952 and the tunneling-percolation

(also known as the tunneling-percolation modél have tgeory’ﬂ have one point in common. They all rely on the

been devised to describe nonuniversality for various classeWork of Kogut and Straley who first developed a theoretical

of materials. For example, the RV model applies in pr|nc:|plemodel of nonuniversality based on  random-resistor

to composites where the linear size of the conducting Par ciworks®® In this model. to each neighboring counle of
ticles is much smaller than that of the insulating grains so_. : SR : gnt 9 1P
ites on a regular lattice it is assigned with probabifity

that the conducting phase can be approximated by a con- . o
tinuum. The tunneling-percolation model has been insteagond with conductancg# 0 and bond withg=0 with prob-

conceived to apply to those composites for which intergrairﬁlbr:!tt)i’onli_spt'hgge resulting bond conductance distribution
tunneling is the main microscopic mechanism of transport,

such as in carbon-black-polymer composftesy in oxide- p(g) = ph(g) + (1 -p)&(g), (2)
based TRF8>° In principle, the two models could even ) ] ] ) o
coexist together if the continuum phase of a RV system i¢vhered(g) is the Dirac delta function anki(g) is the distri-

made of nonsintered conducting particles interacting througRution function of the finite bond conductances. Close to the

tunneling processes. bond percolation thresholgdl, the conductivity> of the net-
In this situation, the different proposed theories could acWork behaves as
count for the variety of nonuniversal exponents shown in 3 =34(p-po, (3)

Fig. 1. However, it is also true that, in order to identify a

given mechanism of nonuniversality for specific compositeswhereX is a prefactor. In this and in the subsequent section
little has been done beyond a mere fit to Ef). For ex- we distinguish the conductivit}. of a random-resistor net-
ample, in Ref. 52 the dc critical exponents have been examwork from that of real compositefEq. (1)]. When h(g)
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=8(g—gy) wheregg is some nonzero value, ER) reduces sol  ~ 0 T ]
to the standard bimodal model for which, close to the perco- I 077 data i
lation threshold, the network conductividy follows Eq.(3) P i
with t=ty=2.0 for all three-dimensional lattices. Instead, if i —N@®) 10g E
h(g) has a power law divergence for smglbf the form 5 %0
2 30|
lim h(g) g™, (4) 2
g—0 2
° 20
where a<1, then universality is lost for sufficiently large A
values of the exponent.*® For lattices of dimensiol, the 10}
resulting conductivity critical exponent®fs° |
. 1 o LI
to |f (D_Z)V+ <t0, 0
l-«a
t= . ) (5) —_ . _
(D-2)p+ if D=2+ >t FIG. 2. Distribution of the values reported in Fig. 1. The solid

l1-a l-a line is Eq.(7) renormalized in order to reproduce the total number

. . ) ) of data. Inset: log-log plot of the distribution with a fit to the power
wherety is the universal value andis the correlation-length  |aw a(t-»)™ with a=192+62 and=2.5+0.4.

exponent(v=4/3 for D=2 and »=0.88 for D=3). For D

=3 and by using,=2.0 andr~0.88 the value ofr beyond 4 jimited number of values available to us, the agreement
which universility is lost isac=1-1/(t,-»)=0.107. Only it Eq (7) could be fortuitous. However, the point here is
recently Eq.(5) has been demonstrated to be valid to alliyat the gradual decrease of the number of times high values
orders of ae=6-D expansion in a renormalization group ¢ ¢ gre reported is not necessarily due to “bad fits” to Eq.

analysis>® o _ (1),2753put it can be, at least qualitatively, explained by the
In the original work of Ref. 49« was considered as N0 tqrm of Eq. (5).

more than a parameter of the theory without a justification on | ot s now discuss the microscopic origin of the exponent
microscopic basis. This came later with the RV models and, According to the original RV modéP the crucial param-
the tunneling-percolation theoriés>?However, before dis- qter is the conducting channel widgheft over from neigh-
cussing the microsc_opic aspect, we find it interesting to_pomboring insulating spheres. F&r=3, the cross section of the
out that Eq.(5) predicts that cannot be lower thaty and it congucting channel has roughly the shape of a triangle and
is in principle not bounded above. This is in qualitative {4 resulting channel conductancg scales asgx 83250
agreement with the experimental valuest oéported in Fig.  ence, if p(6) is the distribution function of the channel

1. Furthermore, Eq(S) can give us some information on the gk 5 the distributionh(g) of the conductances reduces to
distribution oft values expected by the theory. In fact, given

some normalized distribution functidifa) for the parameter ,
« and forD=3, the distributionN(t) of thet values is h(g) = f dop(6)8(g - god™)., (8)
_ ! _ e whereg, is a proportionality constant. For random distribu-
N(®) = J_m daf(a) [t~ t(e)]= &(t - tO)J_x daf(a) tion ofgeoquallypsizrzad sphereyp(é) is a constant fo6— 0 and
L Eq. (8) givesh(g) =g /3 for g—0.5% h(g) is therefore of the
+f daf(a)5[t— v L} (6) sSame form o_f Eq(4) v_vi_th a=1/3> a, which, according to
o l-a Eq. (5), predicts a critical exponent v+ 3/2=2.38. De-

C

) spite the fact that this value is only slightly larger than the
If we assume that(«) can be approximated by a constdnt niversal exponent,=2.0, the RV model has the merit of

for a;=<a=1, then the above expression reduces to being a fully microscopic justification of E@4). In order to
f 1 \2 allow for higher values of, in Ref. 52 it has been proposed
N(t) = (1 ——)6(t—to) + f(—) 0t-t), (7)  to relax the condition thap(d) is a constant for5— 0 by
o= v t=v introducing the more general conditigr: 5 wherew< 1.
which predicts a rapid decayi(t) = (t-»)~2 for t>t,. Equa- By using Eq.(8) one readily finds thal(g) is again given by
tion (7) is plotted in Fig. 2 together with the distribution of Eq. (4) but with a:§+§w.5z Hence, the critical exponent is
values reported in Fig. 1. The distributidd(t) has been t=t, for w<w =3a.+3=0.4 ort=v+3/(1-w) for o> w,
renormalized to the number b¥/alues and the constahhas i.e., t is not bounded above. The use pf 5 “ has been
been fixed to reproduce the number of data wiith3.0. justified to be a simple ansatz to describe real composites in
There is an overall qualitative agreement between the distriwhich correlations between the conducting and insulating
bution of the experimental values andN(t). In particular, phases may yield to deviations from the ideal RV system.
the asymmetry of the distribution and its tail forty=2.0 It is important to stress that the RV model of Ref. 50 does
are well reproduced. Fitting to a power law leads to a decayot give a breakdown of universality, but rather to a univer-
proportional to(t— v) 2504 (see inset of Fig. Pwhich is in  sality class different from that of the standard dc transport
fair agreement with the predicted behavior v)™2. Due to  percolation on a lattice. In particular, the exponemﬁg
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does not depend on the conductivity of the continuum and an The tunneling-percolation theory in its original formula-
applied isotropic strain or pressure, albeit affecting the chantion relies on Eq(11) which should be regarded as a phe-
nel width 5, does not change the relatigne 62, This should  nomenological model of the distribution function of interpar-
remain true also for the generalized RV theory of Ref. 52. ticle distances. Recently, however, a microscopic derivation
Contrary to the RV models, the tunneling-percolationof Eq.(11) has been formulated for a bond-percolation regu-
theory of nonuniversality allows for a transport critical ex- lar network in which the bonds have probabiliyof being
ponent dependent of the microscopic conductivitds. this  occupied by a string of nonoverlapping spheréd.in this
model, current flows through tunneling processes betweeaase, in fact, Eq(11) is the exact distribution function for
neighboring conducting spheres dispersed in an insulatingpheres placed in a one-dimensional chafihahd the re-
medium and, for sufficiently low concentrations of the con-sulting bond conductance distribution is proportionagiér
ducting spheres, the ensemble of tunneling bonds form where o,=1-¢/2/(a,—®) and a, is the mean interparticle
percolating network. The coexistence of tunneling and peredistance for a bond occupied Ioyspheres. Despite its over-
colation has been recently settled by experiments probing theimplification, this construction shows, however, that the
local electrical connectivity of various disordered systemstunneling-percolation mechanism of nonuniversality can be
and a recent review on this issue can be found in Ref. 61. ljustified by a fully defined model, without need of phenom-
what follows, we consider the situation in which grain charg-enological forms ofP(r).
ing effects can be neglected with respect to the tunneling
processes, as encountered in systems with sufficiently large

conducting grains and/or high temperatures. Let us consider lll. THEORY OF PIEZORESISTIVITY

then the interparticle tunneling conductance The sensitivity of the tunneling-percolation mechanism of
o)l nonuniversality to variations of the mean tunneling distance
9=9 ' 9 can be exploited by imposing a volume compression or ex-

pansion to the system. As we discuss below, under these
circumstances the relative change of resistivity, i.e., the pi-
ezoresistive response, changes dramatically depending on
whether the dc exponent is univergékty) or instead it is
driven away from universality by the tunneling-percolation
mechanism.
Let us consider the rather general situation in which a
% parallelepiped with dimensioris,, L, andL, is subjected to
h(g) :J drP(r)8[g — goe 24, (100  a deformation along its main axes y, andz. The initial
® volumeV=L,L,L, changes to/(1+¢), wherep=g,+s,+e,
) ) is the volume dilatation and;=4L;/L; are the principal
Balberg notices that iP(r) had a slower decay than E®)  girains alongs; with i=x,y,z In the absence of strain, we
for r— oo, thenh(g) would develop a divergence fg/—0.  assume that the conductivity of the parallelepiped is iso-

whereg is a constant¢ is the tunneling factor which is of
the order of few nmy is the distance between the centers of
two neighboring spheres of diametédr (r=® for impen-
etrable particles If we denote withP(r) the distribution
function of adjacent intersphere distanagghe bond con-
ductances are then distributed according to

For example, by assuming that tropic, so that the conductan@ measured along thieaxis
-0 (a-) is Qi =.2LJ-Lk/.Li. For smalle; # 0 (i=X,Yy,2), the conductance
P(r)= ——— (11)  Vvariation 6G; is therefore
a-d '
is a good approximation for th@ormalized distribution of G 3 ETET 8K
interparticle distances, then E{.0) would reduce to
where
l-afg >_“
h(g) = — 12 52
© do (go (12 ?:_Fllsi - (g +&y (14)
with a=1-£/2/(a-®), wherea is the mean distance be- are the relative variation of the conductivity along the
tween neighboring particles. Fa@/2/(a-®)<1-a.=0.9, =x,y,zdirections. The coefficients, andI", are the longi-

transport becomes nonuniversal withv+2[(a-®)/£].51 It tudinal and transverse piezoresistive factors defined as
is important to stress that here nonuniversality is not driven

by geometrical factors as in the RV model, but rather by r=- diIn(z) - d'”(Pi)’ (15)
physical parameters such &anda. These can be different de; de;

depending on the composite and can be modified by a suit-

able external perturbation. In fact, in the case of an applied din) din(p) = .

pressure or strain, the mean tunneling distaacevould I, =- de, = de, (i#1J), (16)

change leading to a modification of the critical exponent

As already pointed out in the introduction, the detection of\Nherepi:Ef1 is the resistivity along thé axis and In is the
such an effect would be a direct signature of a tunnelingnatural logarithm. The distinction between longitudidgl
percolation-like mechanism of transport nonuniversality.  and transverse’, piezoresistive responses is important
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whenever the values of the straifgdepend on the direction, trivial. In fact, consider a tensile straife>0) which en-
as it is encountered when the sample is subjected to uniaxi&lances the bond tunneling resistances leading to an overall
distortions as those induced in cantilever beam experimenisnhancement of the sample resistivity. In this cabe,
(see next section =dIn(p)/de must be strictly positive. This means thBg

In what follows, we are mainly interested in the isotropic >0 whena = a, while, from Eq.(19), whena> o, I’y does
(or hydrostati¢ piezoresistive factol” defined as the resis- not need to be positive to ensurfe>0 because of the pres-
tivity change induced by the isotropic strain fiel=e for all  ence of the logarithmic divergence. In the next subsections

i=Xx,y,z we provide evidence that indedt changes sign in passing
from a<a, t0o a>a, by showing that both the effective
din(X) dlIn(p) . S . . .
== (170  medium approximation and numerical calculations on cubic
de de lattices give negative values bf, for nonuniversal dc trans-

which can be obtained by applying a hydrostatic pressure t80rt- Together with the logarithmic divergence Bffor p

the parallelepiped. HoweveF, can also be obtained by set- —Pc: & negative value df ; would be an additional signature
ting &;=¢ in Eq. (14) yielding of a tunneling-percolation mechanism of nonuniversality.

r=ry+ar,, (18 A. Effective medium approximation

In the effective medium approximatiofEMA) the con-
ctivity 3=g/¢ of a bond percolation cubic latticevith
fbond lengthf) is obtained by the solution of the following
integral equatior(see, for example, Ref.)2

which is a useful relation when the experimental setup doegi
not permit to apply an isotropic strain field. u
Let us now study how the tunneling-percolation theory o
nonuniversality affect the piezoresistive factorTo this end,
we assume that a cubic bond-percolation network is embed- g-g
ded in a homogeneous elastic medium and that the elastic f dgp(9) + 70 =0, (22
coefficients of the network and the medium are equal. Under 0 9
an isotropic strain field:;=¢ (i=x,y,z) the mean tunneling wherep(g) is the distribution function of the bond conduc-
distancea changes t@(1 +¢) independently of the bond ori- tancesy given in Eq.(2). Close to the percolation threshold
entation. Hence, by assuming for simplicity that—®(1  p. (p,=1/3 in EMA) and by using the tunneling-percolation
+¢), the tunneling parameter=1-¢/2/(a-®) entering Eq.  distribution of Eq.(12) with go=1, the above expression re-
(5) becomesy— a+(1-a)e for e<1. According to the dis- duces to

cussion of Sec. Il and to Eg&3), (5), and(17) close to the 1 o 3
percolation thresholdy,, the piezoresistive factor behaves (1-a)§J dg 9 —==(p-po). (23
therefore as o 9+2g 2
Iy, a< ag, It is clear that forg— O the integral in Eq(23) remains finite
I'= dt (19) as long ase <0, while for >0 it diverges ag *. Hence,
I'o- de In(p-po), a>a, for p— p. the conductivity?, follows the power-law behav-
€ ior of Eq. (3) with t=1 for «<0 andt=1/(1-a) for a>0.
where The corresponding prefact@y, can be evaluated explicitly:
3 «a
LU LLC ) (20 Soa<0)=o—, (24)
de a 2
dt 1 3 1/(1-a)
e~ —9(a— E(a>0)={_—] , (25)
G 1-a 2@ PN ) ° 2 A2 - a)

where we have useda/ds=(1-a). The tunneling distance Wherey is the Euler gamma function. Note that the above

dependence of the dc transport exponent is therefore r&Xpressions giveo(a—0)=0, which is a result due to en-

flected in alogarithmic divergence of” asp— p,. Instead, forcing X to behave as E¢3). Actgally, ata=0 and forg

whena =< «a, the dc exponent remains equaltiealso when <1 Eq.(23) reduces to §In(29)=5(p—pc) which leads to

e #0 and the resulting piezoresistive factor is simply equalogarithmic corrections in thgp—p, dependence of. For

to I'=T"y, independently of the bond probabilify a# 0, the logarithmic corrections are not important only in a
It is worth to note that, as shown in Ref. 64, contrary’to  region aroundo=p, which shrinks to zero ag— 0.

the breakdown of universality has no effect on the piezore- 2¢(a) is plotted in Fig. 3 as a function af. For <0

sistive anisotropy defined ag=(I',—T',)/T, which behaves (a>0), Zq(a) is a decreasindincreasing function of a.

as y=(p—p.)* where the critical exponerx is independent Hence, according to the second equality of E2), Iy is

of « also whena> a8 Equation(19) is an exact result as expected to be positive far<0 and negative fon>0. This

long as we are concerned with the p, dependence close to is confirmed in the inset of Fig. 3 wheig, is plotted as a

the percolation threshold. However, in addition to the pref-function of @. Note that asa— 1, I'y goes to <c. In fact,

actor of the logarithm]" depends also on the tunneling pa- from Eq. (25), in this regimeEo(a)z%\’-51’(1“")%3t which

rametera through the ternl’y. This dependence is far from implies that
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FIG. 3. PrefactoX, of Eq. (3) as a function of the tunneling FIG. 4. dc transport exponentcalculated from the transfer-

parameter. Note thatd is a decreasingincreasing function of matrix method as a function of the parameteiThe solid line is the

for <0 (a>0). Inset: thep independent contributiol, to the  exact resul(5).

piezoresistive factaF. Note that®,, andT’ are not plotted for small

values ofa because in this region the logarithmic correction&to  A|| the constants appearing in E(28) depend solely on the

calculated within EMA change the simple power-law behavior of connectivity of the network, and are therefore independent of

Eq. (3. the tunneling factow. By inserting Eq.(28) in Eq. (27), the
conductivity reduces to

dt _
Iog=- In(3)£. (26) Sn = So(@NT@/(1 + BN @)@, (29)

where

B. Monte Carlo calculations on cubic lattices =
So(@) = So(a) A, (30
To evaluate ther dependence of the prefactdg of Eq.
(3) we have used the transfer-matrix method applied to @ur strategy to calculat®y(«) is the following. We first fit
cubic lattice onN -1 sites in thez direction,N sites alongy,  our numerical data at with Eq. (29) by settingw fixed. In
and £ along thex direction® Periodic boundary conditions this way we obtain the exponerta) and the prefactor
are used in the direction while a unitary voltage is applied 3 ,(«). We repeat this procedure for various values:aang-
to the top plane, and the bottom plane is grounded to zergng from a=1 down to a=-% which corresponds to the
For sufficiently largeZ(£ > N) this method permits to calcu- Dirac delta distribution functionh(-»)=&g-1). In this
late the conductivityxy per unit length of a cubic lattice of |imit, 3.0(=) is known with a rather good accuracy, permit-
linear sizeN. The transfer matrix algorithm is particularly ting us to calculate from Eq30) the value of the constast
efficient at the bond percolation threshqid=0.2488126, |n this way we finally obtair®o(a)=0(a)/A%@ by using the
and it is usually used in connection with finite size scalingygjues of the exponent calculated before.
analysis of2y to extract highly accurate values of the dc |, Fig. 4 we plot the values of the exponérats a function
exponent.* _ _ of a obtained by settingp=1 in Eq.(29). We have checked
In performing the calculations we have con3|der7ed th&nhat this choice forw produced the best overall agreement
following geometriesN=6(£=5X10), N=8(L=2x10),  jith the exact result5) shown in Fig. 4 by the solid line. In
N=10(£=1X10"), N=12£=8x10°), N=14L=4X10°),  accord with thea independence oB, we noticed little de-
andN=16(£=2x 10°). From Eq.(3), the resulting conduc- viations fromB=0.7 in the whole range of. The agree-
tivity Xy for finite N at p=p. can be written as ment between the calculated exponent and @&y.is very
_ t(a good far away fromu=a,=0.107. In the vicinity ofa, the
2y = Zo(@)lpe = PN, (27) competition between two different fixed points leads to a less
where we have explicitly written ther dependence of the good agreement, as already noticed in previous wofrks.
prefactor and of the exponent. In the above expresgighl) _ In Fig. 5 we report the calculated values of the prefactor
is the percolation threshold of a finite system of linear dize 2o(@) of the finite size scaling relatiof29). Note that the
Only atN—oe, p(N) coincides with the percolation thresh- overall dependence &fy(a) upona resembles that of Fig. 3,
old p, of an infinite system, while for finite values of the  although the presence @@ certainly affects thea> a
two quantities are related via a finite size scaling relation ofegion. In the inset of Fig. 5 we have plotted the behavior of
the typé&® So(a) as a— —=. In this regime, the exponent is universal
i Y (t=to=2) and the wholeax dependence is contained in the
Pe = P(N) = ANT(1+BN™), (28 conductivity prefactors(a). From Ref. 5 we know that

where v=0.88 is the correlation length exponeAtandB  2o(—>)=0.4, while we have obtainel,(—<) =0.96. Hence
are constant, and is the first scaling correction exponent. from Eqg.(30) we haveA=(0.96/0.412~=1 55,
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rTrTTT IV. EXPERIMENT

35 _
a0 1 In this section we desc_ribe our experiments aim_ed to in-
) vestigate the piezoresistive response of disordered
25 . conductor-insulator composites made of conducting RuO
particles embedded in an insulating glass. As shown in Fig.
<5 2 1 1, this kind of TFR displays both universél=t,) and non-
we 15) 00 ;;; ( -:57[13;39(-:)3 10 . universal(t>t,) behaviors of transport, although the factors
ol ] requn&ble for such changes have not yet bgen identified. In
: addition, transport in such kind of materials is known to be
os| *® . 000 440, . governed by electron tunneling through the glassy film sepa-
N rating two neighboring conducting particles>’ Hence,
12 10 -08 06 04 0.2 00 02 04 06 08 10 RuO,-based TFRs are ideal systems to test whether a
o tunneling-percolation mechanism of transport nonuniversal-
FIG. 5. Prefacto2q(a) of the finite size scaling relatiof29) Ity sets in.

as a function ofa. Inset: behavior ofSq(a) as a function of Our samples were Prepared starting with a glass frit with
log(-a)/[1+log-a)] (where log is the logarithm to base)ir  the following composition: Pb@75% wt), B,O5 (10% wt),
a=-1, —10, —100, —1000, anda=-=. This latter case corre- SIO; (15% wt). In order to avoid crystallisation, 2% wt. of
sponds to a Dirac delta distribution functidiig)=8(g-1) for ~ Al203 was added to the glass powder. After milling, the glass
which we obtainSy(-=)=0.960+0.007. powder presented an average grain size of abguh,3as
measured from laser diffraction analysis. Thermogravimetric
our final results forSy(a)=Sy(a)/1.55@ are plotted in measurements showed negligible Ios_s in w_elght_, _|nd|cat|ng
Fig. 6, where the(a) values are those plotted in Fig. 4. As glass stability and no PbO evaporation during firing up to
o - .. 800 °C, and differential scanning calorimetry measurements
for the EMA case2q(a) decreases fox sufficiently smaller indicated a softening temperature of about 460 °C. For the
thana,=0.107 While_it increas_es fax> a. Hence, also our conductive phase we used two different Ru@wders with
Monte Carllo calcu!at_mns confirm t_hat tmﬂdepende”t.pa” nominal grain sizes of 400 nriseriesA)and 40 nm(series
T of_the piezoresistive response s positive or negative, deB). Transmission electron microscope analysis confirmed
pendmg whethea.|s less than or larger th.aﬁb’ rgspeptlvely. that the finer powder was made of nearly spherical particles
In the inset of Fig. 5 we report a semilogarithmic plot of with a diameter of about 40 nm, while the coarser powder
Yo(a) as a function of the dc exponentFor high values of !

had more dispersed grain siz€500 nm meah with less
t, the data are reasonably well fitted by a relation of the for P g €0 4

. 1 IN€ 10Myeqylar shape.
3o(a)=ab with a=0.018+0.004 anh=1.9+0.1(solid line TFRs were then prepared by mixing several weight frac-
in the inset of Fig. 6. Hence,

tions of the two series of RuQpowder with the glass par-
ticles. An organic vehicle made of terpineol and ethyl cellu-

dt dt lose was added in a quantity of about 30% of the total weight
Iyg=- In(b)d— = - O.Gd—, (31 of the RuQ-glass mixture. The so-obtained pastes were
& £

screen printed on 96% alumina substrates on prefired gold
terminations. For the conductance measurements, eight resis-
confirming the asymptotic formuld26) obtained within ~©OrS 1.5 mm wide and different lengths ranging from 0.3 up
EMA. to 5 mm were printed on the same substrate. The resistors
were then treated with a thermal cycle consisting of a drying
phase(10 min at 150 °C followed by a plateau, reached at a

050 y y y y T rate of 20 °C/min, of 15 min at various firing temperatufes
04s| i (see below and Table).l After firing, the thickness of the
films was about 1Qum.
040 | E . . .
In Figs. 7 and 8 we show scanning electron microscope
0351 ] (SEM) images of the surfaces #fandB series, respectively,
Z o030} - with RuO, volume concentratiorx=0.08. The firing tem-
¥ 025 ] peratureT; is T;=525°C andT;=600 °C for theA series
. . [Figs. 1a) and 7b), respectively, while T;=550 °C andT;
0201 ¢ . . . %* ] =600 °C for theB series[Figs. §a) and 8b), respectively.
015} °° .’ ¢ - In the images, dark areas indicate highly conducting regions
P rich of RuG, clusters, while the white zones are instead
<12 -10 08 -06 04 02 00 02 04 06 08 10 made of insulating glass. The grey regions surrounding the

* RuG, clusters indicate that some conduction is present, al-

FIG. 6. Prefactoy(a) of the conductivity obtained from Eq. though much lower than the dark areas, which we ascribe to
(30) with A=1.55 andt from Fig. 4. Inset: semilogarithmic plot of finer RuG, particles dispersed in the gla&sAt the length
So(@) as a function of the dc exponent Solid line is a fit with  scale shown in the figures the conducting and insulating
So(a)=ab' with a=0.018+0.004 andth=1.9+0.1. phases are not dispersed homogeneously, with the,RuO
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TABLE I. Label legend of the various samples used in this work with fitting parameters ofl Bognd (34).

Label RuQ grain size firing temperaturg Xe In(op Q2 M) t Iy dt/de
Al 400 nm 525°C 0.0745 11.1+0.3 2.15+£0.06 16.5+4.5 -0.6+1.2
A2 400 nm 600 °C 0.0670 14.2+0.2 3.84+£0.06 -26.4+4.8 16.2+1.5
Bl 40 nm 550 °C 0.0626 14.3+£0.5 3.17+£0.16 -45.9+9 26.1+£2.7
B2 40 nm 600 °C 0.0525 13.7+0.7 3.15+0.17 -57.9+7.2 33.0+2.1

clusters segregated between large glassy regions of few mikig. 9a), o vanishes at rather small valuesxgfas expected
crometers in size. This segregation effect in TFRs is welwhen the mean grain size of the conducting ph@k®nm
known and it is due to the large difference in size betweerand <400 nm) is much smaller than that of the glass
the fine conducting particles and the much coarser glassf{l—5 um).®°® The same data are replotted in the In-In plot of
grains employed in the preparation of the resistdr€on-  Fig. 9b) together with the corresponding fits to Ed) (solid
cerning the effect of the firing temperature, it is interesting tolines) and the best-fit parametess, x., andt are reported in
note that for theB series there is not much qualitative differ- Table I. As is clearly shown, our conductivity data follow the
ence in the microstructure betwedia=550 °C [Fig. 8@] power-law behavior of Eqg(l) with exponentt close to the
and T;=600 °C[Fig. 8b)], while for theA series it appears universal valuet,=2.0 for the Al series(t=2.15+0.06 or
that the conducting phase is more clustered at low firingnarkedly nonuniversal as for th&2 case which displays
temperaturgFig. 7(a)] than at highT [Fig. 7(b)], where the =3.84+0.06. TheéB1 andB2 series have nearly equal values
appearance of grey regions indicate larger Ra@persion of t (t=3.16 falling in between those of th&l and A2
in the glass. series.

In Fig. 9 we report the room-temperature conductivity It is tempting to interpret the different transport behaviors
measured for four different series of TFReee Table)las  of the A1 andA2 series by referring to the microstructures
functions of the Ru@volume concentration. As shown in  reported in Fig. 7. It appears that universal behavior is found

A A

FIG. 7. SEM images of the surface of theseries with Ru@ FIG. 8. SEM images of the surface of tBeseries with Ru@
volume fractionx=0.08 and nominal RuPgrain size of 400 nm  volume fractiorx=0.08 and nominal Ruggrain size of 40 nnisee
(see texx for different firing temperatures;. (a) T{=525 °C; (b): text) for different firing temperatured;. (a) T;=550°C; (b) T;
T¢=600 °C. =600 °C.
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FIG. 9. (a) Conductivity o as a function of Ru@volume con- FIG. 10. (a) Relative variation of conductivity along theaxis

centrationx for four different series of TFRgb) In-In plot of the  as a function of applied strainin cantilever bar measurements of

same data ofa) with fits to Eq. (1) shown by solid lines. The theA2 series for different contentsof RuGO,. From bottom to top:

dashed line has S|0ﬁ@:2 corresponding to universal behavior of Xx=0.23, 0.154, 0.11, 0.095, and 0.085. Solid lines are linear fits to

transport. The prefactqgs,, critical concentratiorx, and transport  the data(b) The same ofa) for the case in which the conductivity

exponent values obtained by the fits are reported in Table I. change is measured along thexis. (c) Longitudinall’;, and trans-
versel |, piezoresistive factors obtained by applying E@2) and

for the more clustered samplﬁélg 7(a)] while the nonuni- (33) to the data of@ and(b), respectively.

versal behavior is observed when the conducting phase is

more dispersed in the glafBig. 7(b)]. This interpretation is

coherent with the nonuniversality of boBl andB2 series, (25" =-T, 1- 2”8_ (33)
which indeed display a large amount of Ru@ispersion o 1-v

evidenced by the grey regions in FigsaBand 8b). As
discussed in Sec. I, the microstructure has a primary role foln Figs. 1@a) and 1@b) we plot the conductivity variations
the onset of nonuniversality. This is certainly true for thealong thex andy direction, respectively, as a function ef
tunneling-percolation model in which the microstructurefor the A2 series. The RuPvolume fractions arex=0.23,
governs the tunneling distribution function. In this respect,0.154, 0.11, 0.095, and 0.085 from bottom to top. In the
the SEM images reported in Figs. 7 and 8 may suggest thathole range of applied strains, the signal changes linearly
for the Al serie§Fig. 7(a)], since the Ru@grains are less with &, permitting us to extract from the slopes of the linear
dispersed, the tunneling distribution function is much nar<its of so;/o vs ¢ the values of the longitudinal and trans-
rower than those of the other series. verse piezoresistive factors through E(®2) and(33). The

To measure the piezoresistive response, four resistors faf obtained”, andI", values of theA2 series are plotted in
each series and with equal Ru€ontent were screen printed Fig 1q(c) as a function of Ru@volume concentratior. The
in a Wheatstone bridge arrangement on the top of alumingyain feature displayed in Fig. (@ is that the longitudinal
cantilever bars 51 mm longh=5mm large, andh 5.4 the transverse piezoresistive factors are not much differ-

=0.63 mm thick. The thermal treatment was the same as foént and both seem to divergesaapproaches the percolation

the samples used for the conductivity measurements. Tht%resholdxczo.%?. The fact thaf,~T', is consistent with

cantilever was clamped at one end and different weight o : -~ : .
were applied at the opposite end. The resulting substrat%l? V?F'Shtmt?] of the ;l)u:__zorc?[ﬁlstu;e I:nlsotr(;)_py ra;tlgd(l“_” h
straine along the main cantilever axis can be deduced from | +)/I'i @t the percolation threshold, as discussed in the

the relatione=6Mgd/(EbF?), whered is the distance be- Previous section. _
tween the resistor and the point of applied forde, Note instead that the transport exponent for A2eseries

=332.6 GPa is the reduced A; Young modulusg is the  iSt=3.84(see Table), that is much larger thay=2. Hence
gravitational acceleration, arid is the value of the applied the divergence off; andI'; as x—Xx. could well be the
weight. By fixing the main cantilever axis parallel to tke Signature of a tunneling-percolation mechanism of nonuni-
direction, then in plain strain approximation the strain fieldversality. In order to investigate this possibility we plot in
transferred to the resistors is=¢, £,=0, ande,=—»/(1  Fig. 11(a) the isotropic piezoresistive factér=I+2I", for
—v)e, wherer=0.22 is the Poisson ratio of 96% /.. Two  the Al, A2, B1, andB2 series as a function of With the

different cantilevers were used for the measurements of th@Xception of theAl series which displays an almost constant

longitudinal and transverse piezoresistive signals obtained b@iezoresistive response, the other series clearly diverge at the

recording the conductivity changes along thandy direc-  S@me critical concen'tratioxh at Whicho goes to zero. Ac-
tions, respectively. Then, according to Ed): cording to the tunneling-percolation theoty,should follow
’ ’ Eq. (19) which predicts a logarithmic divergence at the per-

90y - _ (F I )8 (32) colation threshold when the expondnis nonuniversal. By
- ’ using the equivalence between E¢s7) and (18) our data
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FIG. 12. (a) Piezoresistive factof’ plotted as a function of
FIG. 11. (a) Piezoresistive factoF =I';+2I"| plotted as a func-  1/(X=Xc) (symbol3 with tentative fits to Eq(35) (solid lines. The
tion of RuO, volume concentratiox. (b) I' as a function of Ifx  data related to different series have been shifted vertically-B9
-x.) and fits(solid lineg to Eq.(34). The fit parameterdt/de and ~ for clarity.
I'y are reported in Table | and in the inset, together with
—1.9dt/de (solid line). =-Ax for small values of the RuQconcentrationx. It is
easy to show that in this IimiAocl—Bg|asJBRuoz, where
could then be used to verify this hypothesis. This is done irByjss and Bruo, are the bulk moduli of the glass and the
Fig. 11(b) whereT is plotted as a function of [x-x;) with  conducting particles, respectively. Sin@,o,=~270 GPa
X, values extracted from the conductivity data. In the entireand By,s<~40-80 GPaA is expected to be different from
range of concentrations, and for all the seAds...,B2,I"is  zero and positive. If this reasoning held true, by differentiat-
rather well fitted by the expression ing Eq. (1) with respect tos, and by keeping constant,I"
=-dIn(o)/de would reduce t&/
].—‘0, t= to,

= X K
r (34) P=To+ A=K+ 2, (35)

- X X = X¢

dt
o= —In(x=-xy), t>t
de

which is Eq.(19) rewritten in terms of Ru@volume con- where we have defineld,=I"g+At andK,=Atx.. In Fig. 12
centration x. The Al series, which has dc exponent we have replotted thE values of Fig. 1(a) as a function of
=2.15+0.06 close to the universal value, hasxdepen- 1/(x—Xx.) with the same values of the critical concentrations
dence ofl", while the other serie82, B1, andB2, character- x. extracted from the resistivity data. According to E85),
ized by nonuniversal exponents, display a logarithmic diverd” should follow a straight line as a function of (k~x.)
gence of I' as x—x.. This is in agreement with the which, although being rather correct for th& series, is
expectations of the tunneling-percolation theory. Furthermanifestly not true for th&1 andB2 series. In addition, the
more, as shown in Table | and in the inset of Fig(dlthe Al series remains almost constant, implying tAatO for
factor I'y is positive for theAl series and negative f&2,  this case, contrary to the premises of Ref. 37.
B1, andB2, in agreement with the results of the last section. In addition to the bad fit with our data, the reasoning of
For the latter seried;o behaves aby=-(1.9+0.5dt/de [see  Ref. 37 is based on a misunderstanding of the actual physical
inset of Fig. 11b)] in accord with the asymptotic relations meaning ofx appearing in Eq(1). In fact, x should be con-
obtained by EMA, Eq(26), and by our numerical calcula- sidered just as an operative estimate of the concentrptain
tions (31). intergrain junctions with finite resistances present in the
The logarithmic divergence of for the series having samplel? Current can flow from one end to another of the
nonuniversal values dfand the corresponding negative val- composite as long as a macroscopic cluster of junctions
ues ofl' are features which can be coherently explained byspans the entire sample. Insteadxpfin equally valid vari-
the tunneling-percolation model of nonuniversality. How- able describing the integrain junction probabilipywould
ever, in previous studies, this possibility was neglected, anttave been the concentration weight of RuO,, which is
the divergence of’, already reported in Ref. 37 for TFRS manifestly independent of applied strdiand of the elastic
and in Ref. 16 for carbon-black-polymer composites, wagroperties of the materigal
attributed to a different mechanism independent of the uni- The reasoning of Refs. 16 and 37 is therefore nonconsis-
versality breakdown of. This called into play the possibility tent with the physics of percolation. However, one could
of having nonzero derivative of the volume concentration tentatively argue that the applied strain actually changes the
with respect to the applied strain when the elastic propertiesoncentratiorp of junctions by breaking some of the bonds.
of the conducting and insulating phases are different. For th&his situation could be parametrized by allowing depen-
particular case of Rugbased TFRs, one finds thdk/de dence of so thatdx/de = (dx/dp)(dp/de). Also in this case,
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however, one would end with a @&-x.) divergence ofl’ agreement with what we observed in the experiments.
which we have seen to lead to poor fits for our dédig. 12). In view of such agreement between theory and experi-
In addition, the values of the applied strains in our measurements, and given the fact that an alternative explanation
ments are so smalle ~10%) that their effect is that of based on a strain dependence of the integrain junction con-
changing the value of the tunneling junction resistancesentration is nonphysical and leads to poor fits to our data,
without affecting their concentratiop, so that one realisti- Wwe conclude that the origin of nonuniversality in Ru@lass
cally expects thatip/ds=0. This is confirmed by the results composites is most probably due to a tunneling-percolation
of Fig. 10@ which show no deviation from linearity for the mechanism of nonuniversality. This conclusion is also coher-
entire range ot values. ent with the observed correlation between the onset of non-
In a previous publicatio®® we have reanalyzed the pi- universality and the microstructure of our samples, which
ezoresitive data reported in Ref. 37 by assuming a logarithshowed a highly clustered arrangement of the conducting
mic divergence of rather than the 1k-x.) behavior of Eq. phase whert=t, or a more dispersed configuration when
(35). The agreement with E¢34) was satisfactory and, fur- >to. Although being only qualitative, this picture suggests a
thermore, also in this case we obtained negative valuEg.of Possible route for more quantitative analysis on the interplay
However, contrary to the present data, all the TFRs used ifetween criticality and microstructure.
Ref. 37 were nonuniversal, so it was not possible to establish The tunneling-percolation mechanism of universality
the disappearance of the logarithmic divergencd affhen  breakdown could also apply to other materials for which
t=t,. transport is governed by tunneling such as carbon-black-
polymer composites, and experiments on their piezoresistive
response could confirm such conjecture. Some earlier data
V. CONCLUSIONS showing diverging piezoresistivity response at the conductor-

In this paper we have presented Conductivity and piezore?.nsulator tr?lnsition already exié‘f‘,?l but their inter[_)r_etation_
sistivity measurements in disordered Ru§lass composites 1S Nnot straightforward due to nonlinear conductivity varia-
close to the percolation threshold. We have fabricatedions as a function of strain or pressure, or even to hysteresis
samples displaying both universal and nonuniversal behavidffects. o _
of transport with conductivity exponents ranging frars 2 An interesting issue we have not addressed in the present
for the universal samples up te=3.8 for the nonuniversal WOrK is the possible effect of temperatuFeon the piezore-
ones. The corresponding piezoresistive responses chang@tivity of disordered composites. As shown in Ref. 54, at
dramatically depending on whether the composites were unfixed concentration of the conducting phase, carbon polyvi-
versal or not. For the composites with: 2, the piezoresis- NYylchloride composites display a rather strong enhancement
tive factorI" showed little or no dependence upon the Ruo of I' at low T. This was interpreted in terms of thermally
volume fractionx, whereas the nonuniversal composites dis-activated voltage fluctuations across the tunneling barffers.
played a logarithmic divergence &fasx-x,—0, wherex, A quali_tatively similar enhancement of as the temperature
is the percolation threshold. We have interpreted the piezorélrops is expected also in models based on variable-range
sistivity results as being due to a strain dependence of thBOPPINg mechanism of transpdttit should be pointed out, |
conductivity exponent when this was nonuniversal. As dishowever, that in these works the problem of connectivity is
cussed in Sec. lll, a logarithmic divergence Bfis fully ~ NOt included so 'ghat the tunne_hn_g current flows on a network
consistent with the tunneling-percolation model of nonuni-Without percolation characteristics. Nevertheless, the perco-
versality proposed by Balberg a few years ago. According tdation picture (with its corresponding critical exponeits
this theory, when the tunneling distance between adjacerfi€ems to survive well also in the low-temperature tunneling
conducting grains has sufficiently strong fluctuations, the dé€gime®* Hence, a tunneling-percolation theory of piezore-
exponent acquires a dependence upon the mean tunne"ﬁtftIVIty at |OW-temperatUres should be fqrmulatEd by.ConS|d'
distancea. An applied straire changes to a(1+¢) whichis ~ €fing percolation networks where the simple tunneling pro-
reflected in & modulation of the exponet and eventually ~€sS(9) are combined with additional terms describing, e.g.,
to a logarithmic divergence of =—-dIn(c)/ds at x.. By  9rain charging effects and/or Coulomb interactions.
studying an effective medium approximation of the
tunneling-percolation model, and by extensive Monte Carlo

calculations, we have shown that whéh diverges, the This work was partially supported by TOPNANO 21
x-independent contributiod’y of I" becomes negative, in (Project NAMESA, No. 55572
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