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A vast class of disordered conducting-insulating compounds close to the percolation threshold is character-
ized by nonuniversal values of transport critical exponentt, in disagreement with the standard theory of
percolation which predictst.2.0 for all three-dimensional systems. Various models have been proposed in
order to explain the origin of such universality breakdown. Among them, the tunneling-percolation model calls
into play tunneling processes between conducting particles which, under some general circumstances, could
lead to transport exponents dependent of the mean tunneling distancea. The validity of such theory could be
tested by changing the parametera by means of an applied mechanical strain. We have applied this idea to
universal and nonuniversal RuO2-glass composites. We show that whent.2 the measured piezoresistive
responseG, i.e., the relative change of resistivity under applied strain, diverges logarithmically at the perco-
lation threshold, while fort.2, G does not show an appreciable dependence upon the RuO2 volume fraction.
These results are consistent with a mean tunneling dependence of the nonuniversal transport exponent as
predicted by the tunneling-percolation model. The experimental results are compared with analytical and
numerical calculations on a random-resistor network model of tunneling percolation.
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I. INTRODUCTION

Despite the fact that transport properties of disordered
insulator-conductor composites have been studied for more
than thirty years, some phenomena still remain incompletely
understood. One such phenomenon is certainly the origin of
nonuniversality of the dc transport near the conductor-
insulator critical transition. According to the standard theory
of transport in isotropic percolating materials, the bulk con-
ductivity s of a composite with volume concentrationx of
the conducting phase behaves as a power law of the form1,2

s . s0sx − xcdt, s1d

wheres0 is a proportionality constant,xc is the critical con-
centration below which the composite has zero conductivity
sor more precisely the conductivity of the insulating phased,
andt is the dc transport critical exponent. The above expres-
sion holds true in the critical regionx−xc!1 in which criti-
cal fluctuations extend over distances much larger than the
characteristic size of the constituents. As a consequence, con-
trary to s0 andxc which depend on microscopic details such
as the microstructure and the mean intergrain junction con-
ductance, the exponentt is expected to be material
independent.1,2 The universality oft is indeed confirmed by
various numerical calculations of random-resistor network
models which have established thatt= t0.2.0 for three-
dimensional lattices to a rather high accuracy.3–5

Confirmations to the standard percolation theory of trans-
port universality are found only in a limited number of ex-
periments on real disordered composites. This is illustrated
in Fig. 1, where we have collected 99 different values of the
critical exponentt and the critical thresholdxc measured in
various composites including carbon-black-polymer
systems,6–26 oxide-based thick film resistorssTFRsd,27–38

and other metal-inorganic and -organic insulator
composites.26,39–48 It is clear that, despite that many of the

t-values reported in Fig. 1 are close tot0.2.0, almost 50%
of the measured critical exponents deviate from universality
by displayingtÞ t0.

Examining all the data reported in Fig. 1, one observes
that the lack of universality is not limited to a particular class
of materials, although the granular metalssempty diamonds
in Fig. 1d have somewhat less spread values oft compared to
the carbon-black and TFRs composites. Another important

FIG. 1. Collection of critical exponent valuest and correspond-
ing critical threshold concentrationxc for various disordered
conductor-insulator composites. Carbon-black-polymer systems are
from Refs. 6–26, oxide-based thick film resistors are from Refs.
27–38, metal-inorganic and -organic insulator granular metals are
from Refs. 26 and 39–48. The dashed line denotes the universal
value t0.2.0.
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observation is that for the vast majority of the cases, the
nonuniversal critical exponent islarger thant0, and only few
data displayt, t0. Finally, there is no clear correlation be-
tweent and the critical concentration valuexc.

With the accumulation of experimental reports of nonuni-
versality, various theories have been proposed in order to
find an origin to this phenomenon.9,49–52 In Ref. 9 it was
argued that, in carbon-black-polymer composites, long-range
interactions could drive the system towards the mean-field
regime for which t= tMF=3.0. This interpretation cannot,
however, explain the observation of critical exponents much
larger thantMF, such as those of carbon-based composites or
TFRs which display values oft as high ast.5−10. The
authors of Ref. 50 introduced the random-voidsRVd model
of continuum percolation where current flows through a con-
ducting medium embedding insulating spheres placed at ran-
dom. By using an earlier result,49 they were able to show that
for this model dc transport is described by a universality
class different from that of standard percolation model on a
lattice. The resulting critical exponent was found to bet
.2.4 for three-dimensional systems. More recently, Balberg
generalized the RV model in an attempt to explain highert
values.52 The same author also proposed a model of transport
nonuniversality based on an inverted RV model in which
current flows through tunneling processes between conduct-
ing spheres immersed in an insulating medium.51 Within this
picture, if the distribution function of the tunneling distances
decays much slower than the tunneling decay, then the criti-
cal exponent becomes dependent on the mean tunneling dis-
tancea and, in principle, has no upper bound.

In addition to the above models, there were also explica-
tions pointing out that when Eq.s1d is used to fit experimen-
tal data not restricted to the critical region, “apparent critical
exponents,” usually larger thant0, could be misinterpreted as
real critical exponents.37,53 Although this possibility cannot
be excluded for some of the data reported in Fig. 1, it is
however, quite unrealistic to identify the whole set of re-
ported nonuniversal exponents as merely apparent.

The mean-field interpretation,9 the RV model and its
generalization,50,52 and the tunneling inverted RV model
salso known as the tunneling-percolation modeld,51 have
been devised to describe nonuniversality for various classes
of materials. For example, the RV model applies in principle
to composites where the linear size of the conducting par-
ticles is much smaller than that of the insulating grains so
that the conducting phase can be approximated by a con-
tinuum. The tunneling-percolation model has been instead
conceived to apply to those composites for which intergrain
tunneling is the main microscopic mechanism of transport,
such as in carbon-black-polymer composites,54 or in oxide-
based TRFs.55–57 In principle, the two models could even
coexist together if the continuum phase of a RV system is
made of nonsintered conducting particles interacting through
tunneling processes.

In this situation, the different proposed theories could ac-
count for the variety of nonuniversal exponents shown in
Fig. 1. However, it is also true that, in order to identify a
given mechanism of nonuniversality for specific composites,
little has been done beyond a mere fit to Eq.s1d. For ex-
ample, in Ref. 52 the dc critical exponents have been exam-

ined together with the relative resistance noise exponent, and
in Ref. 39 a study on ac and magnetoresistive exponents for
various composites has been presented. As a matter of fact,
no conclusive answers have been reached and the different
models of nonuniversality listed above have not proven to
really apply to real composites.

In this paper we present our contribution to the under-
standing of the origin of transport nonuniversality by attack-
ing the problem from a different point of view. In contrast
with the mean-field hypothesis,9 the RV model,50 and its
extension,52 the tunneling-percolation model of Balberg pre-
dicts that the critical exponentt acquires an explicit depen-
dence upon a microscopic variablesthe mean-tunneling dis-
tance ad which could be altered by a suitable external
perturbation. So, if transport nonuniversality is driven by
tunneling, it would be possible to change the value of the
transport critical exponentt by applying a pressure or a strain
to the composite. Conversely, when a material belongs to
some universality classsstandard percolation theory, mean-
field universality class, or the RV modeld its exponent is
expected to be independent of microscopic details and an
applied strain would not changet.

We have applied this idea to RuO2-based TFRs whose
transport properties are known to be governed by intergrain
tunneling processes.55–57 In the following of this paper we
show that the behavior of the piezoresistive response, i.e., the
change of resistivity upon applied mechanical strain,54 as a
function of concentrationx of RuO2, can be interpreted as
due to a tunneling distance dependence of the dc critical
exponentt, as originally proposed in Ref. 51. The paper is
organized as follows. In the next section we briefly review
the tunneling-percolation theory and the RV model and its
extension. In Sec. III we describe the theory of piezoresistiv-
ity for percolating composites and in Sec. IV we present our
experimental results. The last section is devoted to a discus-
sion and to the conclusions.

II. MODELS OF NONUNIVERSALITY

The RV models,50,52 and the tunneling-percolation
theory,51 have one point in common. They all rely on the
work of Kogut and Straley who first developed a theoretical
model of nonuniversality based on random-resistor
networks.49 In this model, to each neighboring couple of
sites on a regular lattice it is assigned with probabilityp a
bond with conductancegÞ0 and bond withg=0 with prob-
ability 1−p. The resulting bond conductance distribution
function is then

rsgd = phsgd + s1 − pddsgd, s2d

wheredsgd is the Dirac delta function andhsgd is the distri-
bution function of the finite bond conductances. Close to the
bond percolation thresholdpc, the conductivityS of the net-
work behaves as

S = S0sp − pcdt, s3d

whereS0 is a prefactor. In this and in the subsequent section
we distinguish the conductivityS of a random-resistor net-
work from that of real compositesfEq. s1dg. When hsgd
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=dsg−g0d whereg0 is some nonzero value, Eq.s2d reduces
to the standard bimodal model for which, close to the perco-
lation threshold, the network conductivityS follows Eq. s3d
with t= t0.2.0 for all three-dimensional lattices. Instead, if
hsgd has a power law divergence for smallg of the form

lim
g→0

hsgd ~ g−a, s4d

where aø1, then universality is lost for sufficiently large
values of the exponenta.49 For lattices of dimensionD, the
resulting conductivity critical exponent is58–60

t =5t0 if sD − 2dn +
1

1 − a
, t0,

sD − 2dn +
1

1 − a
if sD − 2dn +

1

1 − a
. t0,

s5d

wheret0 is the universal value andn is the correlation-length
exponentsn=4/3 for D=2 and n.0.88 for D=3d. For D
=3 and by usingt0.2.0 andn.0.88 the value ofa beyond
which universility is lost isac=1−1/st0−nd.0.107. Only
recently Eq.s5d has been demonstrated to be valid to all
orders of ae=6−D expansion in a renormalization group
analysis.59

In the original work of Ref. 49,a was considered as no
more than a parameter of the theory without a justification on
microscopic basis. This came later with the RV models and
the tunneling-percolation theories.50–52 However, before dis-
cussing the microscopic aspect, we find it interesting to point
out that Eq.s5d predicts thatt cannot be lower thant0 and it
is in principle not bounded above. This is in qualitative
agreement with the experimental values oft reported in Fig.
1. Furthermore, Eq.s5d can give us some information on the
distribution oft values expected by the theory. In fact, given
some normalized distribution functionfsad for the parameter
a and forD=3, the distributionNstd of the t values is

Nstd =E
−`

1

dafsaddft − tsadg = dst − t0dE
−`

ac

dafsad

+E
ac

1

dafsaddFt − n −
1

1 − a
G . s6d

If we assume thatfsad can be approximated by a constantf
for acøaø1, then the above expression reduces to

Nstd = S1 −
f

t0 − n
Ddst − t0d + fS 1

t − n
D2

ust − t0d, s7d

which predicts a rapid decayNstd~ st−nd−2 for t. t0. Equa-
tion s7d is plotted in Fig. 2 together with the distribution oft
values reported in Fig. 1. The distributionNstd has been
renormalized to the number oft values and the constantf has
been fixed to reproduce the number of data withtù3.0.
There is an overall qualitative agreement between the distri-
bution of the experimentalt values andNstd. In particular,
the asymmetry of the distribution and its tail fort. t0.2.0
are well reproduced. Fitting to a power law leads to a decay
proportional tost−nd−2.5±0.4 ssee inset of Fig. 2d which is in
fair agreement with the predicted behaviorst−nd−2. Due to

the limited number oft values available to us, the agreement
with Eq. s7d could be fortuitous. However, the point here is
that the gradual decrease of the number of times high values
of t are reported is not necessarily due to “bad fits” to Eq.
s1d,37,53 but it can be, at least qualitatively, explained by the
form of Eq. s5d.

Let us now discuss the microscopic origin of the exponent
a. According to the original RV model,50 the crucial param-
eter is the conducting channel widthd left over from neigh-
boring insulating spheres. ForD=3, the cross section of the
conducting channel has roughly the shape of a triangle and
the resulting channel conductanceg scales asg~d3/2.50

Hence, if psdd is the distribution function of the channel
width d, the distributionhsgd of the conductances reduces to

hsgd =E ddpsdddsg − g0d3/2d, s8d

whereg0 is a proportionality constant. For random distribu-
tion of equally sized spheres,psdd is a constant ford→0 and
Eq. s8d giveshsgd~g−1/3 for g→0.50 hsgd is therefore of the
same form of Eq.s4d with a=1/3.ac which, according to
Eq. s5d, predicts a critical exponentt=n+ 3/2 .2.38. De-
spite the fact that this value is only slightly larger than the
universal exponentt0.2.0, the RV model has the merit of
being a fully microscopic justification of Eq.s4d. In order to
allow for higher values oft, in Ref. 52 it has been proposed
to relax the condition thatpsdd is a constant ford→0 by
introducing the more general conditionp~d−v wherev,1.
By using Eq.s8d one readily finds thathsgd is again given by
Eq. s4d but with a= 1

3 + 2
3v.52 Hence, the critical exponent is

t= t0 for v,vc= 3
2ac+ 1

3 .0.4 or t=n+ 3
2 / s1−vd for v.vc,

i.e., t is not bounded above. The use ofp~d−v has been
justified to be a simple ansatz to describe real composites in
which correlations between the conducting and insulating
phases may yield to deviations from the ideal RV system.

It is important to stress that the RV model of Ref. 50 does
not give a breakdown of universality, but rather to a univer-
sality class different from that of the standard dc transport
percolation on a lattice. In particular, the exponentt=n+ 3

2

FIG. 2. Distribution of thet values reported in Fig. 1. The solid
line is Eq.s7d renormalized in order to reproduce the total number
of data. Inset: log-log plot of the distribution with a fit to the power
law ast−nd−b with a=192±62 andb=2.5±0.4.
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does not depend on the conductivity of the continuum and an
applied isotropic strain or pressure, albeit affecting the chan-
nel widthd, does not change the relationg~d3/2. This should
remain true also for the generalized RV theory of Ref. 52.

Contrary to the RV models, the tunneling-percolation
theory of nonuniversality allows for a transport critical ex-
ponent dependent of the microscopic conductivites.51 In this
model, current flows through tunneling processes between
neighboring conducting spheres dispersed in an insulating
medium and, for sufficiently low concentrations of the con-
ducting spheres, the ensemble of tunneling bonds form a
percolating network. The coexistence of tunneling and per-
colation has been recently settled by experiments probing the
local electrical connectivity of various disordered systems,
and a recent review on this issue can be found in Ref. 61. In
what follows, we consider the situation in which grain charg-
ing effects can be neglected with respect to the tunneling
processes, as encountered in systems with sufficiently large
conducting grains and/or high temperatures. Let us consider
then the interparticle tunneling conductance

g = g0e
−2sr−Fd/j, s9d

whereg0 is a constant,j is the tunneling factor which is of
the order of few nm,r is the distance between the centers of
two neighboring spheres of diameterF sr ùF for impen-
etrable particlesd. If we denote withPsrd the distribution
function of adjacent intersphere distancesr, the bond con-
ductances are then distributed according to

hsgd =E
F

`

drPsrddfg − g0e
−2sr−Fd/jg. s10d

Balberg notices that ifPsrd had a slower decay than Eq.s9d
for r →`, thenhsgd would develop a divergence forg→0.
For example, by assuming that

Psrd =
e−sr−Fd/sa−Fd

a − F
, s11d

is a good approximation for thesnormalizedd distribution of
interparticle distances, then Eq.s10d would reduce to

hsgd =
1 − a

g0
S g

g0
D−a

s12d

with a=1−j /2 /sa−Fd, where a is the mean distance be-
tween neighboring particles. Forj /2 /sa−Fdø1−ac.0.9,
transport becomes nonuniversal witht=n+2fsa−Fd /jg.51 It
is important to stress that here nonuniversality is not driven
by geometrical factors as in the RV model, but rather by
physical parameters such asj anda. These can be different
depending on the composite and can be modified by a suit-
able external perturbation. In fact, in the case of an applied
pressure or strain, the mean tunneling distancea would
change leading to a modification of the critical exponentt.
As already pointed out in the introduction, the detection of
such an effect would be a direct signature of a tunneling-
percolation-like mechanism of transport nonuniversality.

The tunneling-percolation theory in its original formula-
tion relies on Eq.s11d which should be regarded as a phe-
nomenological model of the distribution function of interpar-
ticle distances. Recently, however, a microscopic derivation
of Eq. s11d has been formulated for a bond-percolation regu-
lar network in which the bonds have probabilityp of being
occupied by a string ofn nonoverlapping spheres.62 In this
case, in fact, Eq.s11d is the exact distribution function for
spheres placed in a one-dimensional channel,63 and the re-
sulting bond conductance distribution is proportional tog−an

wherean=1−j /2 /san−Fd and an is the mean interparticle
distance for a bond occupied byn spheres. Despite its over-
simplification, this construction shows, however, that the
tunneling-percolation mechanism of nonuniversality can be
justified by a fully defined model, without need of phenom-
enological forms ofPsrd.

III. THEORY OF PIEZORESISTIVITY

The sensitivity of the tunneling-percolation mechanism of
nonuniversality to variations of the mean tunneling distance
can be exploited by imposing a volume compression or ex-
pansion to the system. As we discuss below, under these
circumstances the relative change of resistivity, i.e., the pi-
ezoresistive response, changes dramatically depending on
whether the dc exponent is universalst= t0d or instead it is
driven away from universality by the tunneling-percolation
mechanism.

Let us consider the rather general situation in which a
parallelepiped with dimensionsLx, Ly, andLz is subjected to
a deformation along its main axesx, y, and z. The initial
volumeV=LxLyLz changes toVs1+fd, wheref=«x+«y+«z

is the volume dilatation and«i =dLi /Li are the principal
strains along«i with i =x,y,z. In the absence of strain, we
assume that the conductivityS of the parallelepiped is iso-
tropic, so that the conductanceGi measured along thei axis
is Gi =SLjLk/Li. For small«i Þ0 si =x,y,zd, the conductance
variationdGi is therefore

dGi

Gi
=

dSi

S
− «i + « j + «k, s13d

where

dSi

S
= − Gi«i − G's« j + «kd s14d

are the relative variation of the conductivity along thei
=x,y,z directions. The coefficientsGi andG' are the longi-
tudinal and transverse piezoresistive factors defined as

Gi = −
d lnsSid

d«i
=

d lnsrid
d«i

, s15d

G' = −
d lnsS jd

d«i
=

d lnsr jd
d«i

si Þ jd, s16d

whereri =Si
−1 is the resistivity along thei axis and ln is the

natural logarithm. The distinction between longitudinalGi

and transverseG' piezoresistive responses is important
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whenever the values of the strains«i depend on the direction,
as it is encountered when the sample is subjected to uniaxial
distortions as those induced in cantilever beam experiments
ssee next sectiond.

In what follows, we are mainly interested in the isotropic
sor hydrostaticd piezoresistive factorG defined as the resis-
tivity change induced by the isotropic strain field«i =« for all
i =x,y,z:

G = −
d lnsSd

d«
=

d lnsrd
d«

, s17d

which can be obtained by applying a hydrostatic pressure to
the parallelepiped. However,G can also be obtained by set-
ting «i =« in Eq. s14d yielding

G = Gi + 2G', s18d

which is a useful relation when the experimental setup does
not permit to apply an isotropic strain field.

Let us now study how the tunneling-percolation theory of
nonuniversality affect the piezoresistive factorG. To this end,
we assume that a cubic bond-percolation network is embed-
ded in a homogeneous elastic medium and that the elastic
coefficients of the network and the medium are equal. Under
an isotropic strain field«i =« si =x,y,zd the mean tunneling
distancea changes toas1+«d independently of the bond ori-
entation. Hence, by assuming for simplicity thatF→Fs1
+«d, the tunneling parametera=1−j /2 /sa−Fd entering Eq.
s5d becomesa→a+s1−ad« for «!1. According to the dis-
cussion of Sec. II and to Eqs.s3d, s5d, ands17d close to the
percolation thresholdpc, the piezoresistive factor behaves
therefore as

G = 5G0, a ø ac,

G0 −
dt

d«
lnsp − pcd, a . ac,

s19d

where

G0 = −
d lnsS0d

d«
= − s1 − ad

d lnsS0d
da

, s20d

dt

d«
=

1

1 − a
= 2sa − Fd/j, s21d

where we have usedda /d«=s1−ad. The tunneling distance
dependence of the dc transport exponent is therefore re-
flected in alogarithmic divergence ofG as p→pc. Instead,
whenaøac, the dc exponent remains equal tot0 also when
«Þ0 and the resulting piezoresistive factor is simply equal
to G=G0, independently of the bond probabilityp.

It is worth to note that, as shown in Ref. 64, contrary toG,
the breakdown of universality has no effect on the piezore-
sistive anisotropy defined asx=sGi−G'd /Gi which behaves
asx~ sp−pcdl where the critical exponentl is independent
of a also whena.ac.

64 Equations19d is an exact result as
long as we are concerned with thep−pc dependence close to
the percolation threshold. However, in addition to the pref-
actor of the logarithm,G depends also on the tunneling pa-
rametera through the termG0. This dependence is far from

trivial. In fact, consider a tensile strains«.0d which en-
hances the bond tunneling resistances leading to an overall
enhancement of the sample resistivity. In this case,G
=d lnsrd /d« must be strictly positive. This means thatG0

.0 whenaøac while, from Eq.s19d, whena.ac G0 does
not need to be positive to ensureG.0 because of the pres-
ence of the logarithmic divergence. In the next subsections
we provide evidence that indeedG0 changes sign in passing
from aøac to a.ac by showing that both the effective
medium approximation and numerical calculations on cubic
lattices give negative values ofG0 for nonuniversal dc trans-
port. Together with the logarithmic divergence ofG for p
→pc, a negative value ofG0 would be an additional signature
of a tunneling-percolation mechanism of nonuniversality.

A. Effective medium approximation

In the effective medium approximationsEMAd the con-
ductivity S=g/, of a bond percolation cubic latticeswith
bond length,d is obtained by the solution of the following
integral equationssee, for example, Ref. 2d:

E
0

`

dgrsgd
g − g

g + 2g
= 0, s22d

wherersgd is the distribution function of the bond conduc-
tancesg given in Eq.s2d. Close to the percolation threshold
pc spc=1/3 in EMAd and by using the tunneling-percolation
distribution of Eq.s12d with g0=1, the above expression re-
duces to

s1 − adgE
0

1

dg
g−a

g + 2g
=

3

2
sp − pcd. s23d

It is clear that forg→0 the integral in Eq.s23d remains finite
as long asa,0, while for a.0 it diverges asg−a. Hence,
for p→pc the conductivityS follows the power-law behav-
ior of Eq. s3d with t=1 for a,0 andt=1/s1−ad for a.0.
The corresponding prefactorS0 can be evaluated explicitly:

S0sa , 0d =
3

2

a

1 − a
, s24d

S0sa . 0d = F 3

21−agsadgs2 − adG1/s1−ad

, s25d

whereg is the Euler gamma function. Note that the above
expressions giveS0sa→0d=0, which is a result due to en-
forcing S to behave as Eq.s3d. Actually, at a=0 and forg
!1 Eq. s23d reduces to −g lns2gd= 3

2sp−pcd which leads to
logarithmic corrections in thep−pc dependence ofg. For
aÞ0, the logarithmic corrections are not important only in a
region aroundp=pc which shrinks to zero asa→0.

S0sad is plotted in Fig. 3 as a function ofa. For a,0
sa.0d, S0sad is a decreasingsincreasingd function of a.
Hence, according to the second equality of Eq.s20d, G0 is
expected to be positive fora,0 and negative fora.0. This
is confirmed in the inset of Fig. 3 whereG0 is plotted as a
function of a. Note that asa→1, G0 goes to −̀ . In fact,
from Eq. s25d, in this regimeS0sad. 1

231/s1−ad= 1
23t which

implies that
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G0 . − lns3d
dt

d«
. s26d

B. Monte Carlo calculations on cubic lattices

To evaluate thea dependence of the prefactorS0 of Eq.
s3d we have used the transfer-matrix method applied to a
cubic lattice onN−1 sites in thez direction,N sites alongy,
andL along thex direction.65 Periodic boundary conditions
are used in they direction while a unitary voltage is applied
to the top plane, and the bottom plane is grounded to zero.
For sufficiently largeLsL@Nd this method permits to calcu-
late the conductivitySN per unit length of a cubic lattice of
linear sizeN. The transfer matrix algorithm is particularly
efficient at the bond percolation thresholdpc.0.2488126,
and it is usually used in connection with finite size scaling
analysis ofSN to extract highly accurate values of the dc
exponentt.4

In performing the calculations we have considered the
following geometries:N=6sL=53107d, N=8sL=23107d,
N=10sL=13107d, N=12sL=83106d, N=14sL=43106d,
andN=16sL=23106d. From Eq.s3d, the resulting conduc-
tivity SN for finite N at p=pc can be written as

SN = S0sadfpc − pcsNdgtsad, s27d

where we have explicitly written thea dependence of the
prefactor and of the exponent. In the above expression,pcsNd
is the percolation threshold of a finite system of linear sizeN.
Only at N→`, pcsNd coincides with the percolation thresh-
old pc of an infinite system, while for finite values ofN the
two quantities are related via a finite size scaling relation of
the type66

pc − pcsNd . AN−1/ns1 + BN−vd, s28d

wheren.0.88 is the correlation length exponent,A and B
are constant, andv is the first scaling correction exponent.

All the constants appearing in Eq.s28d depend solely on the
connectivity of the network, and are therefore independent of
the tunneling factora. By inserting Eq.s28d in Eq. s27d, the
conductivity reduces to

SN . S0sadN−tsad/ns1 + BN−vdtsad, s29d

where

S0sad = S0sadAtsad. s30d

Our strategy to calculateS0sad is the following. We first fit
our numerical data ofSN with Eq. s29d by settingv fixed. In
this way we obtain the exponenttsad and the prefactor
S0sad. We repeat this procedure for various values ofa rang-
ing from a.1 down to a=−` which corresponds to the
Dirac delta distribution functionhs−`d=dsg−1d. In this
limit, S0s−`d is known with a rather good accuracy, permit-
ting us to calculate from Eq.s30d the value of the constantA.
In this way we finally obtainS0sad=S0sad /Atsad by using the
values of the exponent calculated before.

In Fig. 4 we plot the values of the exponentt as a function
of a obtained by settingv=1 in Eq. s29d. We have checked
that this choice forv produced the best overall agreement
with the exact results5d shown in Fig. 4 by the solid line. In
accord with thea independence ofB, we noticed little de-
viations fromB.0.7 in the whole range ofa. The agree-
ment between the calculated exponent and Eq.s5d is very
good far away froma=ac.0.107. In the vicinity ofac the
competition between two different fixed points leads to a less
good agreement, as already noticed in previous works.67

In Fig. 5 we report the calculated values of the prefactor
S0sad of the finite size scaling relations29d. Note that the
overall dependence ofS0sad upona resembles that of Fig. 3,
although the presence ofAtsad certainly affects thea.ac
region. In the inset of Fig. 5 we have plotted the behavior of
S0sad as a→−`. In this regime, the exponent is universal
st= t0.2d and the wholea dependence is contained in the
conductivity prefactorS0sad. From Ref. 5 we know that
S0s−`d.0.4, while we have obtainedS0s−`d.0.96. Hence
from Eq. s30d we haveA.s0.96/0.4d1/2.1.55.

FIG. 3. PrefactorS0 of Eq. s3d as a function of the tunneling
parametera. Note thatS0 is a decreasingsincreasingd function ofa
for a,0 sa.0d. Inset: thep independent contributionG0 to the
piezoresistive factorG. Note thatS0 andG0 are not plotted for small
values ofa because in this region the logarithmic corrections toS
calculated within EMA change the simple power-law behavior of
Eq. s3d.

FIG. 4. dc transport exponentt calculated from the transfer-
matrix method as a function of the parametera. The solid line is the
exact results5d.
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Our final results forS0sad=S0sad /1.55tsad are plotted in
Fig. 6, where thetsad values are those plotted in Fig. 4. As
for the EMA case,S0sad decreases fora sufficiently smaller
thanac.0.107 while it increases fora.ac. Hence, also our
Monte Carlo calculations confirm that thep-independent part
G0 of the piezoresistive response is positive or negative, de-
pending whethera is less than or larger thanac, respectively.
In the inset of Fig. 5 we report a semilogarithmic plot of
S0sad as a function of the dc exponentt. For high values of
t, the data are reasonably well fitted by a relation of the form
S0sad=abt with a=0.018±0.004 andb=1.9±0.1ssolid line
in the inset of Fig. 6. Hence,

G0 = − lnsbd
dt

d«
. − 0.6

dt

d«
, s31d

confirming the asymptotic formulas26d obtained within
EMA.

IV. EXPERIMENT

In this section we describe our experiments aimed to in-
vestigate the piezoresistive response of disordered
conductor-insulator composites made of conducting RuO2
particles embedded in an insulating glass. As shown in Fig.
1, this kind of TFR displays both universalst. t0d and non-
universalst. t0d behaviors of transport, although the factors
responsible for such changes have not yet been identified. In
addition, transport in such kind of materials is known to be
governed by electron tunneling through the glassy film sepa-
rating two neighboring conducting particles.55–57 Hence,
RuO2-based TFRs are ideal systems to test whether a
tunneling-percolation mechanism of transport nonuniversal-
ity sets in.

Our samples were prepared starting with a glass frit with
the following composition: PbOs75% wt.d, B2O3 s10% wt.d,
SiO2 s15% wt.d. In order to avoid crystallisation, 2% wt. of
Al2O3 was added to the glass powder. After milling, the glass
powder presented an average grain size of about 3mm, as
measured from laser diffraction analysis. Thermogravimetric
measurements showed negligible loss in weight, indicating
glass stability and no PbO evaporation during firing up to
800 °C, and differential scanning calorimetry measurements
indicated a softening temperature of about 460 °C. For the
conductive phase we used two different RuO2 powders with
nominal grain sizes of 400 nmsseriesAdand 40 nmsseries
Bd. Transmission electron microscope analysis confirmed
that the finer powder was made of nearly spherical particles
with a diameter of about 40 nm, while the coarser powder
had more dispersed grain sizess100 nm meand with less
regular shape.

TFRs were then prepared by mixing several weight frac-
tions of the two series of RuO2 powder with the glass par-
ticles. An organic vehicle made of terpineol and ethyl cellu-
lose was added in a quantity of about 30% of the total weight
of the RuO2-glass mixture. The so-obtained pastes were
screen printed on 96% alumina substrates on prefired gold
terminations. For the conductance measurements, eight resis-
tors 1.5 mm wide and different lengths ranging from 0.3 up
to 5 mm were printed on the same substrate. The resistors
were then treated with a thermal cycle consisting of a drying
phases10 min at 150 °Cd followed by a plateau, reached at a
rate of 20 °C/min, of 15 min at various firing temperaturesTf
ssee below and Table Id. After firing, the thickness of the
films was about 10mm.

In Figs. 7 and 8 we show scanning electron microscope
sSEMd images of the surfaces ofA andB series, respectively,
with RuO2 volume concentrationx=0.08. The firing tem-
peratureTf is Tf =525 °C andTf =600 °C for theA series
fFigs. 7sad and 7sbd, respectivelyg, while Tf =550 °C andTf
=600 °C for theB seriesfFigs. 8sad and 8sbd, respectivelyg.
In the images, dark areas indicate highly conducting regions
rich of RuO2 clusters, while the white zones are instead
made of insulating glass. The grey regions surrounding the
RuO2 clusters indicate that some conduction is present, al-
though much lower than the dark areas, which we ascribe to
finer RuO2 particles dispersed in the glass.68 At the length
scale shown in the figures the conducting and insulating
phases are not dispersed homogeneously, with the RuO2

FIG. 5. PrefactorS0sad of the finite size scaling relations29d
as a function ofa. Inset: behavior ofS0sad as a function of
logs−ad / f1+logs−adg swhere log is the logarithm to base 10d for
a=−1, 210, 2100, 21000, anda=−`. This latter case corre-
sponds to a Dirac delta distribution functionhsgd=dsg−1d for
which we obtainS0s−`d=0.960±0.007.

FIG. 6. PrefactorS0sad of the conductivity obtained from Eq.
s30d with A=1.55 andt from Fig. 4. Inset: semilogarithmic plot of
S0sad as a function of the dc exponentt. Solid line is a fit with
S0sad=abt with a=0.018±0.004 andb=1.9±0.1.
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clusters segregated between large glassy regions of few mi-
crometers in size. This segregation effect in TFRs is well
known and it is due to the large difference in size between
the fine conducting particles and the much coarser glassy
grains employed in the preparation of the resistors.27 Con-
cerning the effect of the firing temperature, it is interesting to
note that for theB series there is not much qualitative differ-
ence in the microstructure betweenTf =550 °C fFig. 8sadg
andTf =600 °C fFig. 8sbdg, while for theA series it appears
that the conducting phase is more clustered at low firing
temperaturefFig. 7sadg than at highTf fFig. 7sbdg, where the
appearance of grey regions indicate larger RuO2 dispersion
in the glass.

In Fig. 9 we report the room-temperature conductivitys
measured for four different series of TFRsssee Table Id as
functions of the RuO2 volume concentrationx. As shown in

Fig. 9sad, s vanishes at rather small values ofx, as expected
when the mean grain size of the conducting phases40 nm
and ,400 nmd is much smaller than that of the glass
s1–5 mmd.69 The same data are replotted in the ln-ln plot of
Fig. 9sbd together with the corresponding fits to Eq.s1d ssolid
linesd and the best-fit parameterss0, xc, andt are reported in
Table I. As is clearly shown, our conductivity data follow the
power-law behavior of Eq.s1d with exponentt close to the
universal valuet0.2.0 for theA1 seriesst=2.15±0.06d or
markedly nonuniversal as for theA2 case which displayst
=3.84±0.06. TheB1 andB2 series have nearly equal values
of t st.3.16d falling in between those of theA1 and A2
series.

It is tempting to interpret the different transport behaviors
of the A1 andA2 series by referring to the microstructures
reported in Fig. 7. It appears that universal behavior is found

TABLE I. Label legend of the various samples used in this work with fitting parameters of Eqs.s1d and s34d.

Label RuO2 grain size firing temperatureTf xc lnss0 V md t G0 dt/d«

A1 400 nm 525 °C 0.0745 11.1±0.3 2.15±0.06 16.5±4.5 −0.6±1.2

A2 400 nm 600 °C 0.0670 14.2±0.2 3.84±0.06 −26.4±4.8 16.2±1.5

B1 40 nm 550 °C 0.0626 14.3±0.5 3.17±0.16 −45.9±9 26.1±2.7

B2 40 nm 600 °C 0.0525 13.7±0.7 3.15±0.17 −57.9±7.2 33.0±2.1

FIG. 7. SEM images of the surface of theA series with RuO2
volume fractionx=0.08 and nominal RuO2 grain size of 400 nm
ssee textd for different firing temperaturesTf. sad Tf =525 °C; sbd:
Tf =600 °C.

FIG. 8. SEM images of the surface of theB series with RuO2
volume fractionx=0.08 and nominal RuO2 grain size of 40 nmssee
textd for different firing temperaturesTf. sad Tf =550 °C; sbd Tf

=600 °C.
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for the more clustered samplesfFig. 7sadg while the nonuni-
versal behavior is observed when the conducting phase is
more dispersed in the glassfFig. 7sbdg. This interpretation is
coherent with the nonuniversality of bothB1 andB2 series,
which indeed display a large amount of RuO2 dispersion
evidenced by the grey regions in Figs. 8sad and 8sbd. As
discussed in Sec. II, the microstructure has a primary role for
the onset of nonuniversality. This is certainly true for the
tunneling-percolation model in which the microstructure
governs the tunneling distribution function. In this respect,
the SEM images reported in Figs. 7 and 8 may suggest that
for the A1 seriesfFig. 7sadg, since the RuO2 grains are less
dispersed, the tunneling distribution function is much nar-
rower than those of the other series.

To measure the piezoresistive response, four resistors for
each series and with equal RuO2 content were screen printed
in a Wheatstone bridge arrangement on the top of alumina
cantilever bars 51 mm long,b=5 mm large, and h
=0.63 mm thick. The thermal treatment was the same as for
the samples used for the conductivity measurements. The
cantilever was clamped at one end and different weights
were applied at the opposite end. The resulting substrate
strain« along the main cantilever axis can be deduced from
the relation«=6Mgd/ sEbh2d, where d is the distance be-
tween the resistor and the point of applied force,E
=332.6 GPa is the reduced Al2O3 Young modulus,g is the
gravitational acceleration, andM is the value of the applied
weight. By fixing the main cantilever axis parallel to thex
direction, then in plain strain approximation the strain field
transferred to the resistors is«x=«, «y=0, and «z=−n / s1
−nd«, wheren=0.22 is the Poisson ratio of 96% Al2O3. Two
different cantilevers were used for the measurements of the
longitudinal and transverse piezoresistive signals obtained by
recording the conductivity changes along thex andy direc-
tions, respectively. Then, according to Eq.s14d:

dsx

s
= − SGi − G'

n

1 − n
D«, s32d

dsy

s
= − G'

1 − 2n

1 − n
«. s33d

In Figs. 10sad and 10sbd we plot the conductivity variations
along thex and y direction, respectively, as a function of«
for the A2 series. The RuO2 volume fractions arex=0.23,
0.154, 0.11, 0.095, and 0.085 from bottom to top. In the
whole range of applied strains, the signal changes linearly
with «, permitting us to extract from the slopes of the linear
fits of dsi /s vs « the values of the longitudinal and trans-
verse piezoresistive factors through Eqs.s32d and s33d. The
so obtainedGi andG' values of theA2 series are plotted in
Fig. 10scd as a function of RuO2 volume concentrationx. The
main feature displayed in Fig. 10scd is that the longitudinal
and the transverse piezoresistive factors are not much differ-
ent and both seem to diverge asx approaches the percolation
thresholdxc.0.067. The fact thatGi ,G' is consistent with
the vanishing of the piezoresistive anisotropy ratiox=sGi

−G'd /Gi at the percolation threshold, as discussed in the
previous section.

Note instead that the transport exponent for theA2 series
is t.3.84ssee Table Id, that is much larger thant0=2. Hence
the divergence ofGi and G' as x→xc could well be the
signature of a tunneling-percolation mechanism of nonuni-
versality. In order to investigate this possibility we plot in
Fig. 11sad the isotropic piezoresistive factorG=Gi+2G' for
the A1, A2, B1, andB2 series as a function ofx. With the
exception of theA1 series which displays an almost constant
piezoresistive response, the other series clearly diverge at the
same critical concentrationxc at which s goes to zero. Ac-
cording to the tunneling-percolation theory,G should follow
Eq. s19d which predicts a logarithmic divergence at the per-
colation threshold when the exponentt is nonuniversal. By
using the equivalence between Eqs.s17d and s18d our data

FIG. 9. sad Conductivitys as a function of RuO2 volume con-
centrationx for four different series of TFRs.sbd ln-ln plot of the
same data ofsad with fits to Eq. s1d shown by solid lines. The
dashed line has slopet0=2 corresponding to universal behavior of
transport. The prefactorr0, critical concentrationxc and transport
exponentt values obtained by the fits are reported in Table I.

FIG. 10. sad Relative variation of conductivity along thex axis
as a function of applied strain« in cantilever bar measurements of
theA2 series for different contentsx of RuO2. From bottom to top:
x=0.23, 0.154, 0.11, 0.095, and 0.085. Solid lines are linear fits to
the data.sbd The same ofsad for the case in which the conductivity
change is measured along they axis.scd LongitudinalGi, and trans-
verseG', piezoresistive factors obtained by applying Eqs.s32d and
s33d to the data ofsad and sbd, respectively.
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could then be used to verify this hypothesis. This is done in
Fig. 11sbd whereG is plotted as a function of lnsx−xcd with
xc values extracted from the conductivity data. In the entire
range of concentrations, and for all the seriesA1,… ,B2, G is
rather well fitted by the expression

G = 5G0, t = t0,

G0 −
dt

d«
lnsx − xcd, t . t0

s34d

which is Eq.s19d rewritten in terms of RuO2 volume con-
centration x. The A1 series, which has dc exponentt
=2.15±0.06 close to the universal value, has nox depen-
dence ofG, while the other seriesA2, B1, andB2, character-
ized by nonuniversal exponents, display a logarithmic diver-
gence of G as x→xc. This is in agreement with the
expectations of the tunneling-percolation theory. Further-
more, as shown in Table I and in the inset of Fig. 11sbd, the
factor G0 is positive for theA1 series and negative forA2,
B1, andB2, in agreement with the results of the last section.
For the latter series,G0 behaves asG0=−s1.9±0.5ddt/d« fsee
inset of Fig. 11sbdg in accord with the asymptotic relations
obtained by EMA, Eq.s26d, and by our numerical calcula-
tions s31d.

The logarithmic divergence ofG for the series having
nonuniversal values oft and the corresponding negative val-
ues ofG0 are features which can be coherently explained by
the tunneling-percolation model of nonuniversality. How-
ever, in previous studies, this possibility was neglected, and
the divergence ofG, already reported in Ref. 37 for TFRS
and in Ref. 16 for carbon-black-polymer composites, was
attributed to a different mechanism independent of the uni-
versality breakdown oft. This called into play the possibility
of having nonzero derivative of the volume concentrationx
with respect to the applied strain when the elastic properties
of the conducting and insulating phases are different. For the
particular case of RuO2-based TFRs, one finds thatdx/d«

.−Ax for small values of the RuO2 concentrationx. It is
easy to show that in this limitA~1−Bglass/BRuO2

, where
Bglass and BRuO2

are the bulk moduli of the glass and the
conducting particles, respectively. SinceBRuO2

.270 GPa
and Bglass.40−80 GPa,A is expected to be different from
zero and positive. If this reasoning held true, by differentiat-
ing Eq. s1d with respect to«, and by keepingt constant,G
=−d lnssd /d« would reduce to37

G = G0 + At
x

x − xc
= K1 +

K2

x − xc
, s35d

where we have definedK1=G0+At andK2=Atxc. In Fig. 12
we have replotted theG values of Fig. 11sad as a function of
1/sx−xcd with the same values of the critical concentrations
xc extracted from the resistivity data. According to Eq.s35d,
G should follow a straight line as a function of 1/sx−xcd
which, although being rather correct for theA2 series, is
manifestly not true for theB1 andB2 series. In addition, the
A1 series remains almost constant, implying thatA=0 for
this case, contrary to the premises of Ref. 37.

In addition to the bad fit with our data, the reasoning of
Ref. 37 is based on a misunderstanding of the actual physical
meaning ofx appearing in Eq.s1d. In fact, x should be con-
sidered just as an operative estimate of the concentrationp of
intergrain junctions with finite resistances present in the
sample.1,2 Current can flow from one end to another of the
composite as long as a macroscopic cluster of junctions
spans the entire sample. Instead ofx, an equally valid vari-
able describing the integrain junction probabilityp would
have been the concentrationin weight of RuO2, which is
manifestly independent of applied strainsand of the elastic
properties of the materiald.

The reasoning of Refs. 16 and 37 is therefore nonconsis-
tent with the physics of percolation. However, one could
tentatively argue that the applied strain actually changes the
concentrationp of junctions by breaking some of the bonds.
This situation could be parametrized by allowing ap depen-
dence ofx so thatdx/d«.sdx/dpdsdp/d«d. Also in this case,

FIG. 11. sad Piezoresistive factorG=Gi+2G' plotted as a func-
tion of RuO2 volume concentrationx. sbd G as a function of lnsx
−xcd and fitsssolid linesd to Eq. s34d. The fit parametersdt/d« and
G0 are reported in Table I and in the inset, together withG=
−1.9dt/d« ssolid lined.

FIG. 12. sad Piezoresistive factorG plotted as a function of
1/sx−xcd ssymbolsd with tentative fits to Eq.s35d ssolid linesd. The
data related to different series have been shifted vertically by130
for clarity.
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however, one would end with a 1/sx−xcd divergence ofG
which we have seen to lead to poor fits for our datasFig. 12d.
In addition, the values of the applied strains in our measure-
ments are so smalls«,10−4d that their effect is that of
changing the value of the tunneling junction resistances
without affecting their concentrationp, so that one realisti-
cally expects thatdp/d«=0. This is confirmed by the results
of Fig. 10sad which show no deviation from linearity for the
entire range of« values.

In a previous publication,70 we have reanalyzed the pi-
ezoresitive data reported in Ref. 37 by assuming a logarith-
mic divergence ofG rather than the 1/sx−xcd behavior of Eq.
s35d. The agreement with Eq.s34d was satisfactory and, fur-
thermore, also in this case we obtained negative values ofG0.
However, contrary to the present data, all the TFRs used in
Ref. 37 were nonuniversal, so it was not possible to establish
the disappearance of the logarithmic divergence ofG when
t= t0.

V. CONCLUSIONS

In this paper we have presented conductivity and piezore-
sistivity measurements in disordered RuO2-glass composites
close to the percolation threshold. We have fabricated
samples displaying both universal and nonuniversal behavior
of transport with conductivity exponents ranging fromt.2
for the universal samples up tot.3.8 for the nonuniversal
ones. The corresponding piezoresistive responses changed
dramatically depending on whether the composites were uni-
versal or not. For the composites witht.2, the piezoresis-
tive factorG showed little or no dependence upon the RuO2
volume fractionx, whereas the nonuniversal composites dis-
played a logarithmic divergence ofG asx−xc→0, wherexc
is the percolation threshold. We have interpreted the piezore-
sistivity results as being due to a strain dependence of the
conductivity exponent when this was nonuniversal. As dis-
cussed in Sec. III, a logarithmic divergence ofG is fully
consistent with the tunneling-percolation model of nonuni-
versality proposed by Balberg a few years ago. According to
this theory, when the tunneling distance between adjacent
conducting grains has sufficiently strong fluctuations, the dc
exponent acquires a dependence upon the mean tunneling
distancea. An applied strain« changesa to as1+«d which is
reflected in a« modulation of the exponentt, and eventually
to a logarithmic divergence ofG=−d lnssd /d« at xc. By
studying an effective medium approximation of the
tunneling-percolation model, and by extensive Monte Carlo
calculations, we have shown that whenG diverges, the
x-independent contributionG0 of G becomes negative, in

agreement with what we observed in the experiments.
In view of such agreement between theory and experi-

ments, and given the fact that an alternative explanation
based on a strain dependence of the integrain junction con-
centration is nonphysical and leads to poor fits to our data,
we conclude that the origin of nonuniversality in RuO2-glass
composites is most probably due to a tunneling-percolation
mechanism of nonuniversality. This conclusion is also coher-
ent with the observed correlation between the onset of non-
universality and the microstructure of our samples, which
showed a highly clustered arrangement of the conducting
phase whent= t0 or a more dispersed configuration whent
. t0. Although being only qualitative, this picture suggests a
possible route for more quantitative analysis on the interplay
between criticality and microstructure.

The tunneling-percolation mechanism of universality
breakdown could also apply to other materials for which
transport is governed by tunneling such as carbon-black-
polymer composites, and experiments on their piezoresistive
response could confirm such conjecture. Some earlier data
showing diverging piezoresistivity response at the conductor-
insulator transition already exist,16,71 but their interpretation
is not straightforward due to nonlinear conductivity varia-
tions as a function of strain or pressure, or even to hysteresis
effects.

An interesting issue we have not addressed in the present
work is the possible effect of temperatureT on the piezore-
sistivity of disordered composites. As shown in Ref. 54, at
fixed concentration of the conducting phase, carbon polyvi-
nylchloride composites display a rather strong enhancement
of G at low T. This was interpreted in terms of thermally
activated voltage fluctuations across the tunneling barriers.72

A qualitatively similar enhancement ofG as the temperature
drops is expected also in models based on variable-range
hopping mechanism of transport.73 It should be pointed out,
however, that in these works the problem of connectivity is
not included so that the tunneling current flows on a network
without percolation characteristics. Nevertheless, the perco-
lation picture swith its corresponding critical exponentsd
seems to survive well also in the low-temperature tunneling
regime.61 Hence, a tunneling-percolation theory of piezore-
sistivity at low temperatures should be formulated by consid-
ering percolation networks where the simple tunneling pro-
cesss9d are combined with additional terms describing, e.g.,
grain charging effects and/or Coulomb interactions.
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