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Void coalescence and interaction in dynamic fracture of ductile metals have been investigated using three-
dimensional strain-controlled multimillion atom molecular dynamics simulations of copper. The correlated
growth of two voids during the coalescence process leading to fracture is investigated, both in terms of its onset
and the ensuing dynamical interactions. Void interactions are quantified through the rate of reduction of the
distance between the voids, through the correlated directional growth of the voids, and through correlated
shape evolution of the voids. The critical intervoid ligament distance marking the onset of coalescence is
shown to be approximately one void radius based on the quantification measurements used, independent of the
initial separation distance between the voids and the strain rate of the expansion of the system. The interaction
of the voids is not reflected in the volumetric asymptotic growth rate of the voids, as demonstrated here.
Finally, the practice of using a single void and periodic boundary conditions to study coalescence is examined
critically and shown to produce results markedly different than the coalescence of a pair of isolated voids.
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I. INTRODUCTION

The fracture of ductile metals at high strain rates has been
understood at the microscopic level as a process of nucle-
ation, growth, and coalescence of voids.1,2 Initially voids
nucleate at the weak points in the material such as inclusions
and/or grain boundary junctions. Once nucleated, the voids
grow under the tensile stress, driven by the reduction in elas-
tic energy. Eventually, the voids grow sufficiently large that
they interact with each other, in some cases link through
localized shear, coalesce into larger voids, and finally form
the fracture surface.3,4 Considerable experimental and theo-
retical work has gone into the development of our under-
standing of fracture. The fracture process has been modeled
at various levels, but most of the work involving the simu-
lation of the activity of individual voids has concentrated on
the void growth and its relationship to the plastic deforma-
tion of the surrounding material, including effects such as the
localization of this shear deformation. Relatively little work
has gone into the explicit modeling of void coalescence, and
both the understanding of the physics of this process and the
knowledge of how it should be implemented robustly in con-
tinuum fracture codes remain open issues. The point at which
voids begin to coalesce during dynamic fracture is of consid-
erable interest because complete fracture of the material typi-
cally ensues rapidly thereafter. As new experimental tech-
niques have constrained the void growth models ever more
stringently,5 a real need for a well-developed theory of coa-
lescence has arisen.

Computationally void growth has been studied exten-
sively at the continuum level,6–9 also in dynamic, high-
strain-rate, conditions.10,11 Recently we have studied void
growth at the atomistic level under high-strain-rate expan-
sion, motivated by spallation experiments.12–16The atomistic
studies demonstrate that voids grow by emitting dislocations
that carry away the material, platelets of atoms, from the
void and are responsible for the plastic deformations needed

to accommodate significant void growth. There are also
many recent studies of fracture in ductile metals with several
holes or voids.17–21 While these studies model the void
growth explicitly with fairly sophisticated models of plastic-
ity in many cases, they typically simplify the coalescence
process to instantaneous unification of the voids when some
threshold is reached, such as once the voids grow to within
one diameter of each other. There are also studies that inves-
tigate the competition between void by void growth versus
multiple void interaction in crack propagation.22 Several ear-
lier continuum studies23–25 and the one atomistic study
known to us26 of the coalescence process have been typically
conducted in effectively two-dimensional and highly sym-
metric systems.

This article covers in detail a study of the onset of void
coalescence. The first results of this study have been pre-
sented in a Letter.27 Here we provide a more complete pre-
sentation of the results of our study of void coalescence. In
addition to a more detailed description of the results pre-
sented in the Letter, we describe different measures of void
interactions such as shape changes induced by a neighboring
void, additional analysis of the behavior of the system in-
cluding stress-strain curves and void volume curves, and a
new analysis of how the coalescence of isolated pairs of
voids differs from that of voids in highly symmetric periodic
arrays.

In particular the goal of this article is to quantify the point
at which coalescence begins, as measured by a criticalinter-
void ligament distancesILD d, and examine the mechanisms
involved in the transition from independent void growth to
coalescence. There are several ways in which two voids can
interact. In the case of pure impingement, the voids only
interact when they grow to the point that they intersect and
join into a single void. In reality, the voids interact before
they intersect. Their range of interaction is extended due to
their elastic and plastic fields. Each void generates an elastic
strain field of the form generally associated with centers of
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dilatation.28 The shear stress decreases with the distance
from the void like r−3. For voids sufficiently close each
void’s growth rate is altered by the stress field of the proxi-
mal void. The modification of the elastic field can affect the
initiation of plasticity, as well as the subsequent development
of the plastic zone around the voids. The voids may interact
through their plastic fields, too, in which case the fields may
give rise to an increased hardening rate in a localized region
or to thermal softening and shear localization. An argument
due to Brown and Embury for a transition to shear deforma-
tion based on simple geometrical considerations suggests
that the critical intervoid ligament distance ILDc should be
equal to one diameter of a void;29 that is, when the surfaces
of a pair of voids are separated by one void diameter, they
transition from independent void growth to coalescence. It is
at this point, they argue, that the dominant void process
switches from the radial plastic flow around isolated growing
voids to a large-scale shear deformation allowing the rapid
coalescence of the pair of voids. However, more recent two-
dimensional studies suggest that for distances between voids
as large as six diameters the void growth rate is enhanced.30

The use of atomistic techniques permits an analysis of the
contributions of these competing mechanisms to the onset of
void coalescence, as we describe in this article. We demon-
strate the existence of, and compute, the critical intervoid
ligament distance ILDc by starting with two voids well sepa-
rated from each other and detecting the point at which cor-
related growth begins, marked both by the accelerated rate at
which the two void surfaces approach each other and by
biased growth causing the voids to start to extend toward
each other. These changes give an indication of the onset of
the coalescence process, and it tests the argument by Brown
and Embury.29 We also test the setup by Horstemeyeret al.30

by varying the initial distances between the voids and mea-
suring the asymptotic growth-rate of the voids. The initial
void-to-void distance below which the growth rate is en-
hanced should give another candidate for the critical distance
and measure it in a volumetric sense. It should be noted,
however, that the three-dimensionals3Dd void coalescence
studied here with molecular dynamics, as indeed any 3D
coalescence of roughly spherical voids, does not admit the
two-dimensional shear mechanism proposed by Brown and
Embury in its simplest form, and therefore these different
analyses are not fully comparable. Also Horstemeyeret al.
used a more symmetric setup than the simulations covered in
this article.

The article is organized as follows. The simulation
method and the performed computations are introduced in
Sec. II. The basic mechanism, dislocation driven void
growth, is demonstrated and the key reference parameter,
mean linear void size, is introduced in Sec. III. The interac-
tion between voids are studied in Sec. IV: Section IV A uses
two different distance measurements to study the interaction;
Section IV B introduces a shape parameter for the purpose.
Finally the volume effects of the void growth are studied in
Sec. V: two separate voids are studied in Sec. V A and one
void and the interaction with its periodic image are studied in
Sec. V B. The paper ends with conclusions, Sec. VI.

II. METHOD AND SIMULATIONS

We have performed a series of large-scale classical mo-
lecular dynamicssMDd simulations31 in single-crystal face-
centered-cubicsfccd systems using an empirical embedded-
atom model sEAMd potential for copper.32,33 The 3D
simulation box consists of 12031203120 four-atom fcc
cells with periodic boundary conditions for a total of
6 912 000 atoms, in most cases. In Sec. V B where results
from smaller-system-size simulations are presented, the de-
tails of the sizes are introduced. For the nearly 73106 atom
simulations the MD code was parallelized using spatial do-
main decomposition and run in a massively parallel com-
puter using from 64 to 256 processors.

In the simulations the system is initially equilibrated using
a thermostat34 at room temperature,T=300 K, and a constant
volume L3 swith L=43.3 nmd chosen to give ambient pres-
sure,P.0 MPa. Once the system has reached equilibrium,
atoms are removed to create two spherical voids in the sys-
tem with radiusr0=0.05L=2.17 nm: one centered in the box
and the other located a distance ILD0+2r0 away in the direc-
tion û=f0.889 205 4, 0.414 643 27, 0.193 351 35g from the
first void. We refer to these as voidA and voidB, respec-
tively; see Fig. 1. ILD0, the initial intervoid ligament dis-
tance, is the closest surface-to-surface distance between the
voids35 and it is varied here, but the relative orientation of
the voids is kept fixed. For ILD0 we have used the values
1.00, 1.20, 1.50, 1.81, and in some cases 0.50 and 4.62. The
unit for the ILD is the void diameterd=2r. The positions for
the center of the voidB and the distances between the voids
are listed in Table I. Initially, the voids are equal in size, with
approximately 3620 atoms removed for each. This removal
of atoms can be interpreted as an instantaneous debonding of
two infinitely weakly bound inclusions.

Once the voids are formed, the thermostat is turned off,
and dilatational strain is applied uniformly at a constant
strain rate«̇. The strain-controlled simulations12 are carried
out using the scaled coordinate formulation typically em-

FIG. 1. A sketch of the simulation configuration. The simulation
box includes 12031203120 fcc unit cells with periodic boundary
conditions for a total of 6 912 000 atoms initially. From this two
equal-size voids are created by removing approximately 3620 atoms
for each void. The thin arrow shows the intervoid ligament distance
sILD d, the shortest surface-to-surface distance between the voids,
identified asA and B. The initial ILD ranges between 1/2 and 5
times the initial void radius. The bold arrows denote triaxial, hydro-
static, expansion of the box. The strain-controlled expansion is ap-
plied with constant strain-rates of«̇=108/sec and 109/sec.
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ployed in the constant-pressure method due to Parrinello and
Rahman.36 Use of scaled coordinates prevents the spurious
generation of elastic waves at the box boundaries. In this
method the positions of the atoms are stored using rescaled
coordinates betweenf0,1d. When calculating the forces and
new positions of the atoms their coordinates are multiplied
by a diagonal scaling matrixH=hLx,Ly,Lzj. This scaling
matrix is updated each time step, when the expansion is ap-
plied, by multiplying the initial matrixH0=hL ,L ,Lj with the

sum of the unit matrix and the strain matrixE= tĖ, Hstd
=H0sI+ tĖd. Applied strain rates of«̇=108/sec and 109/sec
have been used with perfectly triaxial, or hydrostatic, expan-

sion, Ė=h«̇x, «̇y, «̇zj=h«̇ , «̇ , «̇j. Thus Lxstd=Lystd=Lzstd=Lstd
=V1/3, where V is the volume of the box. A time step of
6.7 fs was used. More details of the simulation method can
be found in Ref. 16, including analysis of growth of a single
void of the same initial radiusr0 in nontriaxial expansion.

III. DISLOCATIONS AND VOID GROWTH

Let us start reviewing the simulation results by looking at
some figures to visualize growth of the voids. While some
void growth takes place through elastic stretching in the ini-
tial phases of the box expansion, significant void growth and
void-void interaction take place only once plastic deforma-
tion has begun. The important role of plasticity leads us to
consider in some detail how dislocations are generated and
the effect of dislocation dynamics on void coalescence,
which are the topics of this section.

In Fig. 2 a three-dimensional snapshot of the voids is
shown from a simulation with the initial intervoid ligament
distance ILD0=1.81 diameters and the strain rate«̇
=109/sec. In the plot only the atoms at crystallographic de-
fects such as void surfaces, dislocation cores, and stacking
faults are shown. The decision of which atoms to plot is
based on a geometrical criterion, a finite-temperature gener-
alization of the centrosymmetry deviation.15,37The power of
this method of selecting atoms based on the centrosymmetry
deviation is that the visualization can be done at finite tem-
perature and on-the-fly, so that the system need not to be
cooled to zero temperature and the atoms to be selected
based on the potential energy, where quenching can influence
the system and prevent seeing the real configuration. The

snapshot in Fig. 2 is when the voids have started to grow by
emitting dislocations, and thus the system has already
evolved somewhat through plastic flow. The broad plates in
the figure are stacking fault ribbons between leading and
trailing partial dislocations. The first generation of disloca-
tion loops have not yet totally formed and separated from the
voids in this snapshot, but are about to do so, as can be seen
as their first halves have already separated from the void
surface.

Figure 3 shows a series of visualizations of the crystal
defects within a slice of width 4.5 Å about a plane including
centers of both voids at six different instants during coales-

TABLE I. The initial position for voidB relative to voidA and
the center-to-center distances for various initial intervoidssurface-
to-surfaced ligament distances ILD0 used in this study.

ILD0

Position of voidB
relative to voidA

Separation between the
centers of voidsA andB

0.50 f0.1334,0.0622,0.0290gL 0.150L=6.510 nm

1.00 f0.1778,0.0829,0.0387gL 0.200L=8.680 nm

1.20 f0.1956,0.0912,0.0426gL 0.220L=9.548 nm

1.50 f0.2223,0.1037,0.0483gL 0.250L=10.85 nm

1.81 f0.2500,0.1166,0.0544gL 0.281L=12.20 nm

4.62 f0.5000,0.2332,0.1087gL 0.562L=24.40 nm
FIG. 2. sGray scaled A three-dimensional snapshot of the two

voids with the prismatic dislocation loops forming from the voids.
Only those atoms belonging to the void surfaces or to dislocation
cores, stacking faults or other defects are shownsand a small num-
ber of extraneous atoms due to thermal fluctuationsd. The stacking
fault ribbons are the broad plates between leading and trailing par-
tial dislocations. The snapshot is from the simulation with the initial
intervoid ligament distance ILD0=1.81 diameters and the strain rate
«̇=109/sec. The strain at the snapshot is«=2.93%.

FIG. 3. Dislocation activity at six instants of time shown on one
particular slice through the system in order to expose the plasticity
near the void surfaces. These snapshots are from the simulation
with «̇=109/sec and again only those atoms in dislocation cores,
stacking faults, void surfaces, or other defects are shownssee text
for more details and Fig. 2 for a full three-dimensional figured. The
dashed loop in panelscd is drawn around a slice of a prismatic
dislocation loop. The plane shown passes through the centers of
both voids with normalf0.145, 0.145, −0.979g. The snapshots show
the initial plasticitysad,sbd, interacting plastic zonesscd,sdd, and the
final coalescencesed,sfd. The frames correspond to the following
values of strain«: 1.72%, 2.42%, 3.47%, 3.89%, 4.52%, and
5.21%, respectively.
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cence. These snapshots are from the same simulation as in
Fig. 2, and the same criterion for showing the atoms is used.
Now only a slice is shown in order to reveal the dislocation
activity near the void surface as the dislocation density in-
creases. Figure 2 is a snapshot from a state of the system
between the panels in Figs. 3sbd and 3scd. From the snap-
shots it is apparent that the deformation mechanism involves
the nucleation and propagation of dislocations, accommodat-
ing the void growth, and the interaction of the dislocations.38

For example, the prismatic dislocation loops punched out by
the voids appear as roughly parallel line tracessdue to the
stacking fault ribbonsd in the slice in Fig. 3scd, as verified in
the full 3D configurationscf. Fig. 2d. Initially the dislocation
activity around each void is essentially symmetricfFigs. 3sad
and 3sbdg, as expected for independent void growth, but as
the plastic fields evolve the void-void interaction is clearly
evident both through interactions between the two plastic
zones and bias due to the elastic fieldsfFig. 3scdg. Once the
dislocation density grows sufficiently high in the ligament
region between the voidsfFig. 3sddg, void B begins to grow
in the direction away from voidA. Next the voids coalesce
fFig. 3sedg, and continue to grow as one until ultimately the
void coalesces with its periodic imagesfsubsequent to Fig.
3sfdg so that the cavity percolates through the periodic sys-
tem. The details of this final stage depend strongly on the
periodic boundary conditions and will not be of interest here.

The dislocation formation is closely related to the volume
evolution of the voids. The voids grow by emitting disloca-
tion loops, driven by the reduction in the elastic energy as the
increase in void volume allows the strained matrix material
to relax. This relaxation can be detected from the saturation
of the increasing stress in the system. All of these phenom-
ena happen simultaneously; see Ref. 16. In Fig. 4sad the
meanshydrostaticd stresssm is plotted with respect to strain
« sthe control parameter in these simulationsd for strain rates
«̇=108/sec and 109/sec with ILD0=1.81. The stress is calcu-
lated with the virial expressionsm=−s1/3VdsoiupW iu2/mi

+oi,j u j.irWi j · fWi jd, where for atomsi and j the rWi j is the relative

position, fWi j is the force,pW i is the momentum, andmi is the
masssfor a recent discussion of atomistic stress calculations
see Ref. 39d. Comparing Fig. 4sad with Fig. 4sbd it is appar-
ent that the start of the accelerated void growth due to plas-
ticity is accompanied by, and indeed causes, the stress to
plateausat the same strain valued as the elastic dilatation is
relieved. The void growth is shown in Fig. 4sbd by plotting
linear void size f1/3, where the single void fraction isf
=Vvoid/V and V is the instantaneous volume of the box at
time t. The technique for calculating the void volumeVvoid is
described in Ref. 16. The void growth, stress saturation, and
even the void coalescence take place at significantly smaller
strains for slower strain rates,16 as can be seen from the
figures, too. Therefore we conclude that a natural way to plot
quantities from different strain-rate simulations in the same
figure is to plot them versus linear void sizef1/3. Plotting
versusf1/3 sa derived quantityd is preferred to plotting versus
the strain because it reduces strain-rate effects. Thus, by
choosing f1/3 from Fig. 4sbd as the reference quantity, the
start of the deviation from the elastic behavior can be syn-
chronized for the different strain rates; see an example for

the mean stress from the inset of Fig. 4sbd, where the mean

stress starts to saturate for both of the strain rates atf̄1/3

.0.09. In the two-void case we have chosen to use the mean

void fraction f̄, which is calculated as the average void frac-
tion of the two voids.

Throughout the remainder of the article we will typically

use the linear mean void sizef̄1/3 as the reference quantity.
The initial linear mean void fraction at ambient pressure in

these simulations isf̄0
1/3.s6.0310−4d1/3=0.084. The initial

mean void sizef̄ =6.0310−4 is somewhat larger than the
value one gets from4

3psr0/Ld3=5.2310−4. This potential
source of confusion arises for two reasons: first, atoms that
have their centers within the radiusr0 from the void center
are removed for creating the void. On the other hand, when
the void volume is calculated the surface of the void is de-
fined based on the centers of theremainingsurface atoms.
Second, the void surface relaxes somewhat after the void is
formed. For more discussion of the void volume calculation,
see Ref. 16. For reference, the mean linear void size in Fig. 2

is f̄1/3=0.111 and in the first four snapshots of Fig. 3 is

f̄1/3=0.089, 0.094, 0.149, and 0.195, respectively. After coa-

lescencef̄ is not measured.

FIG. 4. sad Mean stresssm versus strain« from the simulations
with the initial intervoid ligament distance ILD0=1.81 and the
strain rates«̇=108/sec sdashed lined and 109/sec ssolid lined. sbd
Linear mean void sizef̄1/3 ssee the text for its definitiond versus the
strain from the same simulations as the data insad. The void sizes
are calculated until the coalescence of the voids. The inset shows
the stress fromsad versus linear mean void size fromsbd. Note the
strain scales are different.
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IV. INFLUENCE OF THE NEIGHBORING VOID

A. Distance measurements of the voids

Figure 3 offers several visual indications of the interaction
between voids. Clearly, the separation between the void sur-
facessthe ILDd serves as something akin to a reaction coor-
dinate for the coalescence: the voids coalesce when it goes to
zero. Other indications include the displacement of the center
of a void as it grows preferentially toward the neighboring
void and the change in the void growth rate as the voids
interact. In this section we now quantify two of these effects,
the evolution of the ILD and the void center movement, in
order to analyze the coalescence. In Sec. IV B we study the
void shape evolution, and the void growth rate is studied in
Sec. V.

In Figs. 5sad and 5sbd the dynamic evolution of the ILD
has been plotted for strain rates«̇=108/sec and 109/sec and

for various initial closest surface-to-surface distances be-
tween the voids ILD0. sIn Figs. 2–4 the data from the case
ILD0.1.81 were shown.d The dynamic ILD has been de-
rived as the separation distance of the two surface atoms
from the two voids that are closest to the line connecting the
original centers of the voids. The raw data of the ILD have
been plotted in Fig. 5sad, and in Fig. 5sbd scaled data are
shown. For the horizontal axis of Fig. 5sbd, the linear mean
void size f̄1/3 has been used in order to collapse data from
different strain rates«̇=108/sec and 109/sec in the same fig-
ure. For the vertical axis the intervoid ligament distance has
been divided by the current diameter of a void,d snote that it
is not the initial valued0=2r0d. The diameterd is calculated
from the void volume assuming a spherical shapesthe for-
mula is given belowd. This scaling is motivated by the ansatz
that the void diameter sets the length scale for the system,
and hence the relevant distance between the voids is not the
pure distance, but its ratio with the diameters of the voids.
The void diameter affects both the elastic and plastic fields
around the void. Initially the void separation distance de-
creases essentially smoothly until plasticity begins, eventu-
ally reaching zero. A transition occurs when the ILD starts to
decrease noticeably faster than the free impingement line
sthe thin solid lines calculated from two independent spheri-
cal voidsd indicating void interactions at the onset of coales-
cence. The thin solid lines are derived by calculating from

the same simulations the average sizes of the two voidsV̄void

and deriving the diameter asd=2fs3/4pdV̄voidg1/3. Then the
free impingement curve is given by ILDfree=sILD0+d0ds1
+ t«̇d−d. The accelerated ILD decrease associated with tran-
sition to coalescence takes place when the ILD reaches ap-
proximately one-half: ILDc=0.5±0.1 diameter or one radius,
independently of ILD0 or the strain rate. Also note that a
curve derived from a single-void growth is provided to esti-
mate the contribution of uncorrelated faceting effectssthe
“one-void” curve at ILD0=1.81d, and these effects are seen
to be relatively small. They are most noticeable near the start
of void growth where there is a relatively large upward fluc-
tuation in the “one-void” curve. The critical ILD of one ra-
dius is much lower than the Brown-Embury estimate, and it

corresponds to a strain of 3.48%s f̄1/3.0.15d for ILD0

=1.81 at«̇=109/sec, close to framescd of Fig. 3. The values
for critical strain and linear mean void size when ILD
=0.5d, derived from Fig. 5sbd, are tabulated for the simulated
systems in Table II. In the very final stages the ligament is
drawn under biaxial stress, and the flow switches from radial
material transport to tangential transport as the mechanism
switches from loop punching to drawing. This transition is
visible in Figs. 5sad and 5sbd as slowing down of the reduc-
tion of ILD. At this point, the material is highly defective but
it remains ductile. There is no abrupt fracture, as might be
expected at larger length scales. Here the final coalescence
involves an extended drawing and thinning of the ligament
until rupture.

Another measure of void interactions is whether the voids
grow preferentially toward their neighbor. This effect is
quantified in Fig. 6, which shows the movement of the center
of mass of the void surface for the voids shown in Fig. 3
sILD0=1.81d. We use here the center of mass of the void

FIG. 5. Evolution of the ILD and the critical ILD.sad Dynamical
ILD, the distance between the surfaces of the voids along the line
connecting the original center positions for various initial ILD0

=1.81, 1.50, 1.20, 1.00, plotted versus strain. For ILD0=1.81 the
thick solid line and thick medium dashed line denote«̇=109/sec
and 108/sec, respectively. The thin solid lines show the hypothetical
ILD for spherical voids with the same ILD0 impinging freely on
each otherssee textd. The short dashed line shows the hypothetical
ILD computed by duplicating a single voidsin the same box size as
the two void simulationsd at fixed centersshere the duplication is to
the position with ILD0=1.81d. sbd The same as insad, but now

plotted versus the linear average void sizef̄1/3 and the distances are
given in the units of the current average diameterd of the voids,
calculated from their volumes assuming that they are sphericalssee
textd. The horizontal line is at ILD=0.5 diameters, the value we
identify as the ILDc. fPanelsbd is after Ref. 27.g
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surface as the definition for calculations of the void center.
The void surface has been derived by Voronoi triangulation
based on the center points of the surface atomssthe same is
done when the volume of the void is calculatedd. See Ref. 16
for the details of the void surface derivation. The distance

dcv = fsx8 − xcv
0 d2 + sy8 − ycv

0 d2 + sz8 − zcv
0 d2g1/2 s1d

is calculated between the original center of mass of the void
surfacefxcv

0 ,ycv
0 ,zcv

0 g and the projectionfx8 ,y8 ,z8g of the cur-

rent center of voidfxcv ,ycv ,zcvg, where the projection is onto
the line connecting the original void centers. The sign is
positive if the void center has moved toward the other void
and negative in the opposite case.

Let us look first at the case with«̇=109/sec, Fig. 6sad.
After the void growth starts, the center of voidA initially

moves only slightly, but at aboutf̄1/3=0.15 sILD=0.5dd in

Fig. 5sbd and f̄ c
1/3 in Table IId, it starts to move in the direc-

tion of the other void as the void growth becomes biased
toward its neighbor. Just before coalescence the center of
void A begins to move away from voidB, as the growth is
biased in the opposite direction. During this sequence, voidB
initially grows away from voidA, then roughly in unison

with void A s f̄1/3= f̄ c
1/3=0.15d it begins to grow toward its

neighbor, and before coalescence it too switches to growth
away from the proximal void. This retrograde growth hap-

pens at the same pointsafter f̄1/3=0.19d as the decrease of the
ILD begins to slow down in Fig. 5sbd fsee also the snapshot
in Fig. 3sddg. The same phenomenon—first slow movement
or repulsion from the void, then growth toward the nearby

void at aboutf̄1/3=0.15s f̄ c
1/3d—holds in the«̇=108/sec case,

too, Fig. 6sbd. However, the retrograde growth phenomenon
is less pronounced in the«̇=108/sec case, as is the slowing
down of the decrease of the ILD in Fig. 5sbd. Indeed, only
the growth toward the neighboring void is well above the
noise in the«̇=108/sec case. As a reference the movement of
the center of a single voidsin same box sized projected to the
same line is plotted for both strain rates, too. Comparing the
single-void case with the interacting voids with the same
strain rates, one sees that the maximum distance the centers
of the interacting voids have moved is 2.5–5 times larger
than the nanoscale random walk of the single-void center,
except for the voidB in Fig. 6sbd. The noise is these curves
appears to be dependent on the history, reflecting the nature
of the plastic deformation processes involved. It is difficult
to quantify the level of noise in such a non-Markov process,
but it should be clear that the movement of the void center,
especially the movement toward the neighboring void, is sta-
tistically significant and not just due to fluctuations at the
void surface.

B. Shape evolution of the voids

The presence of a nearby void not only affects the posi-
tion of the void but its shape, as well. The shape can be
quantified by calculating multipole moments of spherical
harmonicsQlm;s1/ r̄2deYlmsu ,fdr2su ,fddV; see Refs. 16
and 40. Under fully triaxial expansion the void tends to an
octahedral shape because of the index of the active glide
planes in fcc crystals, anisotropic elastic constants, and an-
isotropic surface energies. See also Ref. 41 for a study of
void shapes in fcc crystals. On the other hand, under uniaxial
expansion the voids are of predominantly ellipsoidal shapes
aligned along the preferred axis, and they make a transition
from a prolate to an oblate shape.16 References 42–44 have
also considered oblate void shapes under uniaxial loading
through continuum modeling. One may enquire whether the
presence of a nearby void causes evolution to an ellipsoidal

TABLE II. Critical strain «c and critical linear mean void size

f̄ c
1/3 from Fig. 5, calculated as when the intervoid ligament distance

crosses the line ILD=0.5d: f̄ c
1/3= f̄1/3sILD=0.5dd, «c=«sILD

=0.5dd.

ILD0 «̇ ssec−1d f̄ c
1/3 «c s%d

1.81 108 0.153 2.46

1.81 109 0.150 3.48

1.50 109 0.132 3.22

1.20 109 0.121 3.06

1.00 109 0.106 2.74

FIG. 6. Void center-of-mass displacement. The distancedcv from
the original center of void to the instantaneous void center, pro-
jected onto the line connecting the original void centers, is plotted
versus the average void size to the point of coalescencesILD .0d.
The sign of the displacementdcv is positive for movement toward
the other void. Solid and long dashed lines are for voidsA andB,
respectively. Strain rates are«̇=109/sec in sad and «̇=108/sec in
sbd. The thin solid line is for a single void in the same size of the
box and with the same radius and strain rate projected to the same
line. Here the distancedcv is given in the units of the original void
diameterd0. ILD0=1.81 in bothsad and sbd.
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shape; see, e.g., voidA in Fig. 3scd. Ellipsoidal shapes can be
quantified with quadrupole moments:

Q20 =
1

4
Î 5

p

1

r̄2 E 3z2 − r2 dV,

ReQ21 = −
1

2
Î 15

2p

1

r̄2 E xz dV,

Im Q21 = −
1

2
Î 15

2p

1

r̄2 E yz dV,

Re Q22 =
1

4
Î 15

2p

1

r̄2 E x2 − y2 dV,

Im Q22 =
1

2
Î 15

2p

1

r̄2 E xy dV, s2d

where r̄2=s1/4pde r2su ,fddV is averaged over the surface
of the void. In calculating the quadrupole moments the origin
of the coordinates is taken to be the center of the void. In Eq.
s2d the quadrupole moments are calculated withẑ as the pre-
ferred axis, whereas the physically preferred axis is the line
connecting the void centers. Thus, we transform the mo-
ments to the more natural coordinates usingD matrices:45

Qlmsu8,f8d = o
m8=−l

l

Dm8m
l sa,bdQlm8su,fd,

Dm8m
l sa,bd = e−im8adm8m

l sbd, s3d

where the Euler anglea defines the rotation between coor-
dinates axes insxyd plane scorresponding anglefd and the
Euler angleb describes the rotation inz axis scorresponding
angleud. dmm8

l sbd can be found from tables.46 The quadru-
pole moments are plotted for the voidsA and B from the
simulation with ILD0=1.00 in Figs. 7sad and 7sbd, respec-
tively. One sees from Fig. 7sad that void A becomes mark-
edly elliptical in the direction of the other void, as repre-

sented byQ20, when f̄1/3. f̄ c
1/3.0.106 sfrom Table IId. The

quadrupole data from an identical simulation but with only
one void are plotted in Fig. 7scd as a control, and a smaller
variation in the quadrupole moment is observed simply due
to fluctuations in the atomistic growth. Other cases with
larger ILD0 look about the same as Figs. 7sad and 7sbd al-
though the trend and especially the transition point may not
be as clear. This variation may be due to the elastic and
plastic interactions causing random shape evolution longer
before the critical ILDc sILD=0.5dd is reached in cases when
the voids are initially separated further from each other
slarger ILD0d. See Fig. 7scd for the single-void case as an

example of the random shape evolution. Theref̄1/3=0.09 is
when the dislocation driven void growth starts; see inset of
Fig. 4sbd. Thus, in larger-ILD0 cases the random shape evo-
lution suppresses the transition to the shape evolution due to
the other void.

V. VOID VOLUME EVOLUTION UNDER THE INFLUENCE
OF THE SECOND VOID

In Ref. 27, we briefly discussed how void growth after the
onset of interaction but prior to coalescence is different from
void growth for an isolated void. We address this further
here. How does the correlated growth differ from the expo-
nential growth of an isolated void12,16?

FIG. 7. sad Quadrupole momentss2d of the surface of voidA
from the start of the simulation until coalescence. The coordinate
axes have been rotated using Eq.s3d so that thez axis is aligned
with the center of voidB. The initial intervoid ligament distance is
ILD0=1.00 and the strain rate is«̇=109/sec.sbd Quadrupole mo-
ments for voidB, located atf0.1778,0.0829,0.0387gL from void A.
Now Eq. s3d has been used so that the positivez axis is toward the
void A. scd Quadrupole momentssnot rotatedd for a single void in a
simulation with same box size as insad and sbd and the strain rate
«̇=109/sec.
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A. A pair of voids

We first examine the volume evolution for the same two-
void simulations described above. Figure 8sad shows the void
fraction f =Vvoid/V for void A salso in the case of a single
void in the same box sized with respect to the strain before
coalescence. As can be seen from the figure the void grows
as exps200ed, at least for the larger ILD0’s and for the single
void in the box. In Fig. 8sbd we have factored out the
asymptotic growth rate fromf in order to emphasize the
differences between the curves and plotted versus linear void
size f1/3. The void growth data for ILD0=4.62 and 1.81 co-
incide with the single-void curve. The void growth rates with
smaller ILD0’s reach their asymptotic growth rate earlier. In
the figure we have drawn as circles the void size values,
where the dynamic ILD’s cross the line ILD=0.5d in Fig.
5sbd. As can be seen from figure, there is no significant
change in the void volume behavior when the voids start to
interact. Therefore we conclude that the void growth rate is
not affected by the interaction between the voids: thus the
interaction cannot be detected through the growth rate. The
key factor for the void growth rate is the rate at which the
dislocations separate from the void, and it appears to remain
unchanged in the vicinity of the second void. However, the

location at the void surface from where the dislocation loops
separate is affected by the interaction with another void, as
seen in Sec. IV in the accelerated reduction of ILD, in the
movement of void center and in the shapes of the voids.

B. Single void interacting with its periodic images

We have also performed a series of simulations of a single
void with fixed initial radius sizer0 in various initial box
sizesV0=L3 in order to find the coalescence process of the
void with its ssixd periodic imagessd, similar to the manner in
which some continuum calculations of coalescence have
been donescf. Refs. 9 and 43d. The details of the different
box sizes are reported in Table III. Figure 9 shows the data
from this series of simulations. There we have scaled the
void fraction f =Vvoid/V with the exponential exps200ed sas
in Fig. 8d as well assr0/Ld3 in order to take into account
different initial volumesV0=L3 of the box. Alsosr0/Ld scal-

FIG. 8. sad Growth of the voidA until coalescence presented by
void fraction f =Vvoid/V versus strain for ILD0=0.50, 1.00, 1.20,
1.50, 1.81, and 4.62 diameters as well as in a single-void casesin
the same box sized at «̇=109/sec. The asymptotic behaviorsbefore
finite-size effectsd is exponential growth with exps200ed as seen
from the line drawn as a guide to the eye.sbd The void sizef
presented insad has been scaled with the exponential and plotted
versus linear void sizef1/3. The circles point where the dynamical
ILD’s cross the horizontal line ILD=0.5d in Fig. 5sbd.

TABLE III. Sizes for simulated systems with variousr0/L sr0

=2.17 nm is fixedd as the number of fcc cells, the equilibrium side
length of the cubeL at ambient pressure and room temperature, and
the number of atoms in the box after the void is formed. The short-
est initial intervoid ligament distance ILD0 of the void with its
periodic image in the units of the void diameterd is reported in the
last column.

r0/L fcc cells L Atoms ILD0

1/3 18318318 6.50 nm 23328 0.50

2/9 27327327 9.75 nm 78732 1.25

1/6 36336336 13.0 nm 186624 2.00

1/8 48348348 17.3 nm 442368 3.00

1/10 60360360 21.7 nm 860396 4.50

1/20 12031203120 43.3 nm 6908379 9.00

FIG. 9. Growth of a single void with varying initial box size.
The initial radius of the void is kept constantr0=2.17 nm, while the
initial side length of the cube is varied asL=6.50, 9.75, 13.0, 17.3,
21.7, and 43.3 nm. The void fractionf has been divided bysr0/Ld3

in order to take into account different initial volumesV0=L3 of the
box. The vertical axis has been divided also with the exponential of
the strain in order to show the asymptotic behavior as in Fig. 8 for
the largest box size. The strain rate is for all the simulations«̇
=109/sec.
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ing is applied to the linear voidf1/3 shorizontal axisd. From
the figure one concludes that the behavior is opposite to the
results from the case of an isolated pair of voids, Sec. V A, in
an important way. The smaller the box size, and hence the
smaller the ILD0, the later the void starts to grow. This is
easy to understand since measured from afar the two separate
voids act as one big void and thus grow faster than a smaller
void. In a single void with its periodic image that picture
does not hold. For example, there is no distance at which the
stress field approaches a single-void stress field. The periodic
image only restricts the growth of the void. At a more
mechanistic level, the net effect of the array of voids is to
reduce the resolved shear stress driving dislocation emission
from the void surface, whereas a single nearby void enhances
this resolved shear stress on some regions of the void sur-
face. An intuitive way to understand this phenomenon is to
consider that the shear stress field of a single void forces
interstitial loops away from the void. This field decreases
with the distance from the void as 1/r3. At the near side of a
neighboring void, this field would tend to drive interstitial
loops into that void; in combination, it reduces that void’s
own stress field. At the far side, it adds to the other void’s
field, but the effect is smaller due to the greater distance. For
a symmetric array, the effect is to reduce the maximum re-
solved shear stress across the surface and delay dislocation
emission.

VI. CONCLUSIONS

To summarize, interaction and coalescence of two voids
in copper under tension have been simulated in multimillion-
atom MD simulations. The effects of interactions between
voids have been quantified by the increased reduction rate of

their separation, by the movement of their centers, and by
their shape evolutions. The void interaction has also been
visualized by detecting the dislocations moving in the system
using the generalized centrosymmetry parameter. The critical
intervoid ligament distance has been found to be close to one
void radius, independent of the strain rate or the initial sepa-
ration distance ILD0. The onset of coalescence occurs at the
point that the plastic zones surrounding the voids first inter-
act strongly. Signatures of coalescence have been found in
the dynamic ILD curves and the void center movements, as
explained in detail here, including reference to the stress-
strain and void volume curves. A weaker signature of the
onset of coalescence has also been found in the void shape
curves giving the quadrupole moment evolution. It has been
demonstrated that the interaction of the voids is not reflected
in the volumetric asymptotic growth rate of the voids. Fi-
nally, the coalescence process of an isolated pair of voids has
been shown to be markedly different than the coalescence of
a single void with its periodic images, so the latter would not
provide a reliable description of coalescence in typical low-
symmetry configurations.

In the future it would be interesting to study the cases
with uniaxial expansionsand the various orientations of the
voids with respect to the expansion directiond, different sizes
of the voids relative to each other, other crystal structures
such as body-center-cubic and hexagonal lattices, and sys-
tems including larger collections of voids.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S.
Department of Energy by the University of California,
Lawrence Livermore National Laboratory, under Contract
no. W-7405-Eng-48. We would like to thank R. Becker for
useful discussions.

*Present address: Nokia Research Centre, P.O. Box 407, FIN-00045
NOKIA GROUP, Finland. Electronic address: eira@iki.fi

†Electronic address: belak@llnl.gov
‡Corresponding author. Electronic address: robert.rudd@llnl.gov
1High-Pressure Shock Compression of Solids II: Dynamic Frac-

ture and Fragmentation, edited by L. Davison, D. E. Grady, and
M. ShahinpoorsSpringer-Verlag, Berlin, 1996d.

2T. W. Barbee, Jr., L. Seaman, R. Crewdson, and D. Curran, J.
Mater. 7, 393 s1972d.

3D. R. Curran, L. Seaman, and D. A. Shockey, Phys. Rep.147,
253 s1987d.

4F. A. McClintock, in Metallurgical Effects at High Strain Rates,
edited by R. W. Rhode, B. M. Butcher, and J. R. HollandsPle-
num Press, New York, 1973d.

5J. Belak, J. Comput.-Aided Mater. Des.9, 165 s2002d.
6F. A. McClintock, J. Appl. Mech.6, 363 s1968d.
7J. R. Rice and D. M. Tracey, J. Mech. Phys. Solids17, 201

s1969d.
8A. L. Gurson, J. Eng. Mater. Technol.99, 2 s1977d.
9J. Koplik and A. Needleman, Int. J. Solids Struct.24, 835s1988d;

V. Tvergaard and A. Needleman,ibid. 32, 1063 s1995d; 34,
2221 s1997d; V. Tvergaard,ibid. 35, 3989s1998d.

10M. A. Zikry, Mech. Mater. 17, 273 s1994d.
11R. Cortes, Int. J. Solids Struct.29, 1339s1992d.
12J. Belak, inShock Compression of Condensed Matter, edited by

Schmidtet al. sAIP, New York, 1997d, p. 211.
13J. Belak, J. Comput.-Aided Mater. Des.5, 193 s1998d.
14J. Belak and R. Minich, inFracture and Ductile vs Brittle

Behavior—Theory, Modeling and Experiment, edited by G. E.
Beltz et al., MRS Symposia Proceedings No. 539sMaterials
Research Society, Pittsburgh, 1999d, p. 257.

15R. E. Rudd and J. Belak, Comput. Mater. Sci.24, 148 s2002d.
16E. T. Seppälä, J. Belak, and R. E. Rudd, Phys. Rev. B69, 134101

s2004d.
17J. P. Bandstra and D. A. Koss, Mater. Sci. Eng., A319–321, 490

s2001d; A. B. Geltmacher, D. A. Koss, P. Matic, and M. G.
Stout, Acta Mater.44, 2201s1996d; D. M. Goto and D. A. Koss,
Scr. Mater.35, 459s1996d; P. E. Magnusen, D. J. Srolovitz, and
D. A. Koss, Acta Metall. Mater.38, 1013 s1990d; P. E. Mag-
nusen, E. M. Dubensky, and D. A. Koss, Acta Metall.36, 1503
s1988d; V. Jablokov, D. M. Goto, and D. A. Koss, Metall. Mater.
Trans. A 32, 2985s2001d.

18D. L. Tonks, A. K. Zurek, and W. R. Thissell, inShock Compres-
sion of Condensed Matter, edited by M. D. Furnish, N. N.

THREE-DIMENSIONAL MOLECULAR DYNAMICS… PHYSICAL REVIEW B 71, 064112s2005d

064112-9



Thadhani, and Y. HoriesAIP, New York, 2002d.
19T. Pardoen, I. Doghri, and F. Delannay, Acta Mater.46, 541

s1998d.
20T. I. Zohdi, M. Kachanov, and I. Sevostianov, Int. J. Plast.18,

1649 s2002d.
21J. Benson, J. Mech. Phys. Solids41, 1285s1993d.
22V. Tvergaard and J. W. Hutchinson, Int. J. Solids Struct.39, 3581

s2002d.
23T. Pardoen and J. W. Hutchinson, J. Mech. Phys. Solids48, 2467

s2000d.
24V. C. Orsini and M. A. Zikry, Int. J. Plast.17, 1393s2001d.
25R. Becker, J. Mech. Phys. Solids35, 577 s1987d.
26B. P. Somerday, P. D. Pattillo II, M. F. Horstemeyer, and M. I.

Baskes, inMultiscale Phenomena in Materials—Experiments
and Modeling, edited by D. H. Lassilaet al., MRS Symposia
Proceedings No. 578sMaterials Research Society, Warrendale,
PA, 2000d, p. 333.

27E. T. Seppälä, J. Belak, and R. E. Rudd, Phys. Rev. Lett.93,
245503s2004d.

28J. D. Eshelby, Proc. R. Soc. London, Ser. A252, 561 s1959d.
29L. M. Brown and J. D. Embury, in The Microstructure and De-

sign of Alloys: Proceedings of the Third International Confer-
ence on Strength of Metals and AlloyssInstitute of Metals, Lon-
don, 1973d, Vol. 1, p. 164.

30M. F. Horstemeyer, M. M. Matalanis, A. M. Sieber, and M. L.
Botos, Int. J. Plast.16, 979 s2000d.

31M. P. Allen and D. J. Tildesley,Computer Simulations of Liquids
sOxford University Press, Oxford, 1987d.

32D. J. Oh and R. A. Johnson, J. Mater. Res.3, 471 s1988d.
33D. J. Oh and R. A. Johnson, inAtomistic Simulation of Materials:

Beyond Pair Potentials, edited by V. Vitek and D. Srolovitz,
sPlenum, New York, 1989d.

34W. G. Hoover, Phys. Rev. A31, 1695s1985d.
35The surface-to-surface distance between the voids refers here and

in the rest of the paper to the distance between the surfaces of
the voids without crossing the periodic boundaries.

36M. Parrinello and A. Rahman, J. Appl. Phys.52, 7182s1981d.
37C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, Phys. Rev. B

58, 11 085s1998d.
38J. P. Hirth and J. Lothe,Theory of Dislocations, 2nd ed.sKrieger,

Malabar FL, 1982d, Chap. 23.
39J. A. Zimmerman, E. B. Webb III, J. J. Hoyt, R. E. Jones, P. A.

Klein, and D. J. Bammann, Modell. Simul. Mater. Sci. Eng.12,
S319s2004d.

40P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B28,
784 s1983d.

41M. Hori and S. Nemat-Nasser, Mech. Mater.7, 1 s1988d.
42B. Budiansky, J. W. Hutchinson, and S. Slutsky, inMechanics of

Solids: The Rodney Hill Anniversary Volume, edited by H. G.
Hopkins and M. J. SewellsPergamon Press, Oxford, 1982d.

43H. Andersson, J. Mech. Phys. Solids25, 217 s1977d.
44P. Ponte Castañeda and M. Zaidman, J. Mech. Phys. Solids42,

1459 s1994d.
45M. E. Rose,Elementary Theory of Angular MomentumsWiley,

New York, 1957d.
46K. Hagiwaraet al., Phys. Rev. D66, 010001s2002d.

SEPPÄLÄ, BELAK, AND RUDD PHYSICAL REVIEW B71, 064112s2005d

064112-10


