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Point defect dynamics in bcc metals
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We present an analysis of the time evolution of self-interstitial atom and va¢poiyt defect populations
in pure bcc metals under constant irradiation flux conditions. Mean-field rate equations are developed in
parallel to a kinetic Monte CarlkMC) model. When only considering the elementary processes of defect
production, defect migration, recombination and absorption at sinks, the kKMC model and rate equations are
shown to be equivalent and the time evolution of the point defect populations is analyzed using simple scaling
arguments. We show that the typically large mismatch of the rates of interstitial and vacancy migration in bcc
metals can lead to a vacancy population that grows as the square root of time. The vacancy cluster size
distribution under both irreversible and reversible attachment can be described by a simple exponential func-
tion. We also consider the effect of highly mobile interstitial clusters and apply the model with parameters
appropriate for vanadium angtiron.
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I. INTRODUCTION tatively similar rotational barrier that separates #1640

from the(111) configuration$. Although the migration bar-
Many properties of metals depend crucially on the type (119 d d d

. ) riers for the crowdion mechanism iaFe are also believed
and concentration of defects that perturb the ideal crystal) po very smal(<0.04 eV}, the observed effective migra-

structure. Of these, the simplest are point defects, such g%, parrier(including rotation into thé111) orientation and

s_elf-lnterstltlals and vacancies. Since th§|r for_n_1at_|on enerhigration along thé111) direction are higher than in %9-%
gies are of the order of electron volts, their equilibrium con-

centrations tend to be very low. They do form in abundanceSimilar arguments apply to Mo and Ta. Both diffusion
; L Y ' y L mechanisms imply that interstitial transport in bcc metals
however, in radiation environments due to the collisions be;

. L . . takes place in the form of long one-dimensional trajectories
tween the irradiating specidslectrons, heavy ions or neu- b g )

with occasional directional changes that become more fre-
tron_s) a’?d t_he atoms of_the host crystalvhen the energy of guent as the temperature increases. In fcc metals such as Cu,
the impinging particle is close to, but above, the displace-

ment threshold. the collision tvpically produces a sin Iefor instance, simulations showed that self-interstitial diffu-
o . ypically p 9'€sion occurs through much more conventional, isotropic dif-
Frenkel pair. Particles with higher kinetic energy, for in-

stance neutrons produced in fusion reactions, create collisiofUSion mechanisms. In most metals, however, large separa-
P ' fibns in timescale between self-interstitial and vacancy

cascades which can produce not only Frenkel pairs, but al stion exist

ensemble of mobile and immobile self-interstitial and va- The intent of the present study is to illuminate the conse-
cancy clusters .Of (_jiffe_rent sizes. Th‘? en_suing evo!ution of th%uences of the intriguing microscopic diffusion mechanisms
point .defect d|str|but|ons. due to d|ffu5|6rd¢term|nes the i]n bcc metals on the evolution of the point defect population
long tlme_sca_le degradatlon of the mechamcal properties ousing simple, but readily generalizable models. Our models
theFrgraLe(;’:jal, ég;g?g&o';l}giéﬂgmnfe‘:’ggll'ggcﬁt gz?gedci/ses. shall minimally include local self-interstitial/vacancy mutual
and Mo n}:olecular dynamicéMD) sim,ulations havé r;e- annihilation and absorption infonsaturablesinks which, in

' ) ay o I . a real system, are in the forms of dislocations or grain
vealed a detailed microscopic picture of the diffusive mOtlonboundaries. Together with the continuous production of point

g;;;g:\giuigf\?;igicanrgi Vg%iﬂﬁfﬂ?}'g ;?;%|%rign defects, these processes form the fundamental events in met-
v y mig ' ’ als under irradiation conditions.

both self-interstitial atoms and small self-interstitial cluster On the continuum level, point defect dynamics can be
are highly mobile and easily diffuse along particular CryStal'described by a set of kine,tic master or rate equations that

lographic directions(111-directions. In V, the lowest en- o4t the noint defects as a continuous density whose tempo-
ergy self-interstitial configuration is @11)-oriented dumb- 4 eyolution is governed by various gain and loss processes.
bell, which migrates easily with a crowdion transition state. These equations do not take into account spatial correlations
However, this easy migration, with barriers as low &,  and are only analytically tractable in the simplest situations.
~0.02 eV} leads to long one-dimensional self-interstitial Ajthough we focus the discussion specifically on bce metals,
diffusional trajectories. The self-interstitial dumbbell canthe continuum theory makes no reference to the underlying
change direction by rotating into oth¢r1l)-directions. The  crystal structure and could be readily applied to fcc metals as
barrier associated with such rotatiod€; is of the same well. In many cases, single interstitials and vacancies com-
order asAE, (i.e., AE;> AE)). bine with defects of the same type to form stable clusters.
In a-Fe, by contrast, the ground state of the dumbbellThe evolution of the cluster size distribution and other mi-
self-interstitial is the(110) configuration, and accessing the croscopic variables is more conveniently studied in a
easy-glide(111) configuration requires overcoming a quali- particle-based model that explicitly represents defects and
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their diffusion mechanism@ranslation, rotationon a lattice.  correlations are expressed through the correlation fattor
The competition of events occuring with different rates can(f=1 when the diffusion is uncorrelatedThe temperature
then be followed using a kinetic Monte CarltkMC) dependence of the rotation rajg by contrast, is always of
scheme. the Arrhenius form;y, =v, exp(—AE,/kgT), whereAE, is the
Both master equation and Monte Carlo approaches haveharacteristic rotation barrier angis an attempt frequency.
frequently been employed to illuminate the physics of damValues for both»; and v, range between 18s? and
age evolution in irradiated materials. Starting from the el-10** s™*. Finally, vacancies diffuse three dimensionally with
ementary processes mentioned abbvsteady-state rate rate D,/a’=wv, exp(—AE,/kgT), where AE, and v, are the
equations have been used to study the effects of preferentigttivation barriers and attempt frequencies, respectively. The
absorption of self-interstitial atoms at sinkgbsorption defects can undergo two basic reactions, recombination once
biag,®° the formation of interstitial cluster during the cas- an interstitial and vacancy defect are within a certain “re-
cade phasdproduction biag®*! and the one-dimensional combination volume,” or absorption at sinks. Typical dislo-
motion of these clusters in bcc met&td'kMC models were  cation densities in metals are of the ordef2a04 m2
first used to evolve the primary damage state obtained frorwhich translates into dislocation sink densitigser lattice
ns-long molecular dynamics simulations to macroscopic timaite) of n,~ 104-107.
scales, but have increasingly been used to study the evolu- Since the relevant timescales for the evolution of the point
tion of defect structure during continuous irradiation in defect distributions far exceed those of molecular dynamics
coppert>*4vanadiumt® and iron'® simulations, we employ a coarse grained description, in
Although many treatments have included a high level ofwhich we represent vacancies, dumbbell interstitial configu-
atomistic detail from the start, we begin by analyzing therations, and sinks as pointlike objects that occupy ideal lat-
simplest situation that includes only production of Frenkeltice sites of a bcc lattice with lattice paramegedn order to
pairs, point defect recombination and absorption at sinks itmimic constant irradiation conditions, new pairs of defects
Sec. Il. Even though this simplified case has been studiegself-interstitial and vacangyare introduced randomly onto
many times beforé,we shall see that the inclusion of spe- defect-free lattice sites with rateF. The microscopic diffu-
cific features of bcc metals leads to a surprisingly rich evosion process is replaced by instantaneous hops of point de-
lutionary picture. This approach allows us to gradually in-fects to vacant neighboring lattice sites with ralBgsa® and
crease the level of complexity of the model in a verifiable,D /a?, respectively. A self-interstitial is constrained to
controlled manner. We introduce first interactions betweerforward—backward hops along one of the fdan 1) direc-
vacancies that lead to vacancy cluster formation in Sec. litions, but can also rotate to anot{@d 1) direction with rate
and then interactions between interstitials in Sec. IV. In par-, vacancies diffuse isotropically. A self-interstitial or va-
ticular, we shall discuss how interstitial cluster mobility af- cancy recombines if it finds itself next to a vacancy or self-
fects vacancy cluster formation. While the discussion in thenterstitial, respectively, or is absorbed if one of its eight
text is applicable to bce metals broadly, we apply our find-pejghhoring sites contains a sink. At each time step, an event
ings to the specific cases of V amdFe in Sec. V. is chosen according to its probability and then executed.
Time is advanced according to the usual continuous time

algorithm?® where the time increment is chosen from an
IIl. POINT DEFECT DYNAMICS IN SIMPLE SITUATIONS exponential distribution.

A. Atomistic details and kMC model

The physics of radiation damage evolution is governed by B. Basic rate equations
the production of defects due to irradiation and their subse- e elementary processes described in the kMC model

quent elimination from the population through diffusional ¢5, aiternatively, be described within a rate equation formal-
processes. Typical values for the defect production ode s Before the advent of large scale computer simulations,
range bl%tween ®dpa/s, in ion irradiation experimentS, yis' method represented the only viable theoretical approach
and 10"°dpal/s, for neutron irradiatiotf, where F is the o simylating long time radiation damage evolution. The
irradiation flux ando is the cross section. A “displacement ata equations can be solved by direct numerical integration
per atom”(dpa refers to the production of one Frenkel de- o girect analysis in limiting cases. In the minimal model

fect pair per lattice site. _ discussed above, the time evolution of the number densities
Self-lnterstltllal transport in bcp metal; is composed of twouf the interstitialsn;(t) and vacancies,(t) is given by the
parts, a one-dimensional diffusive motion along one of thecoupled nonlinear equatioh¥ 23

four distinct (111) directions and dumbbell rotations from

one(111) direction to another. The temperature dependence dny _ F B B

of the (one-dimensionaldiffusivity D, is usually described gt =" T K@il T K@il T Kis@igh,

through the Arrhenius form in most cases except for vana- (1)
dium, where the unusually low activation barrier can lead to dn,

more complicated behavior at highd@®. For T<600 K, dt = oF = kWi, N — Kj@,iN, = Kyswysh, -
however, the interstitial diffusivity is well described by the
Arrhenius expressiol;/a’=fy; exp(—AE;/kgT), whereAE; Defect pairs are added to the population at a rate proportional

is the activation energy barriep, an attempt frequency and to the particle fluxF and a cross-sectioa. Loss can occur
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through a diffusing interstitial recombining with a vacancy diffusivity does not, since the mean squared displacement of
with rate w;, and a diffusing vacancy recombining with an a random walk ofN steps of length is (R(N)?=I?N inde-
interstitial with ratew,;. The recombination rates are all pro- pendent of dimensionality.

portional to the diffusion constant of the moving defect, but  Note that these encounter rates are derived under the as-
depend on the dimensionality of the diffusion procesgnd  sumption of collisions with a stationary target. The case of
K, are dimensionless capture numbers that represent the spgeveral colliding 1D random walkers becomes equivalent to
tial extent of the defects and their effectijgossibly long a 3D random walk because, from the rest frame of a given
ranged interactions. Losses can also occur through absorpwalker, the other walkers appear to be executing a 3D ran-
tion at sinks with rates); andw,s and corresponding capture dom walk. This case would be relevant for describing the
numbersk;s and «;, for interstitials and vacancies, respec- collisions of interstitials with each other, but not with the
tively. An alternative representation of Eq4) is to define  vacancies or sinks.

sink strengths via the relatiorkiD, = x,w,, Where the sub- Inserting these encounter rates into E(B, assuming
script x refers to any of the combination of indices usedmixed 1D/3D encounter for diffusing interstitials, yields rate
above. equations of the form

The encounter rates of the defects are given by the num- q
ber of distinct sites visited by a random walker per unit time. 9" _ F-nn 8D /a2 = kD /a2) — k..n.n\ BD./a2
Since the mean squared displacem@&3}=1°N for a random at b1\ BDy Dy a%) = Ko VD27,
walk with step lengthl, the number of sites visited is (4)
=((R?/1%)Y2~ N2 in one dimension. By contrast, a detailed dn, _ = 5 5
analysis of random walks on three-dimensional cubic lattices g; = ©T ~ MiMo(%VBDi/a” = kiD,/a%) = k,snen, D, /2,
shows that a random walker visit¥(N) distinct sites afteN S _ ) _ )
hops. For a given density of target sitesthe typical colli- where 8=vy,a°/D; is a dimensionless ratio that describes the
sion time 7, is given by the conditiorDr,/a?=1/n [three relative frequency of dumbbell rotations and diffusional
dimensional(3D)] and (D7./a®Y?=1/n [one dimensional hOpPS.

(1D)], from which we deduce the encounter rates

w3p ~nD/a® and w;p~ n°D/a’. (2) C. Simple scaling analysis

We now specialize these results to the common case of
bcc metals, wherey,a?/D;<1 andD;/D,> 1. Before per-
forming the kMC simulations and solving the full rate equa-
tions numerically, it is instructive to analyze the limiting be-

capture numbers can also depend on spatial fluctuations afgviors of this systerf® Inititally, there are no defects in the

dose. For a 1D random walk, the scaling with defect sizé“aal' anq only. the firs_t term in the rate equat.ions is im.por—
becomes much strong®rx ~ (r/a).4 tant. In this regimeregime ), defect densities increase lin-

These expressions apply to strictly 1D or 3D randomearly with time,
walks. As discussed in the Introduction, we encounter an '—n! = oFt 5
intermediate case in bcc metals, where rotations interrupt 1D o _
random walks and lead to 3D trajectories. The encounter rate Once a sufficient density of defects has been produced
of this random walk must, therefore, be larger than the purelypuch that the encounter times between defects becomes
1D case. For a rotation ratg, the random walker performs smaller than the time between creation events, loss through
on averageD/ y,a2 hops in a particular direction before ro- recombination (second and third terms becomes

tating into a new direction. There argr of these segments important** As we shall see below, typical parameter ranges
during time 7. The mixed 1D/3D collision time thus follows lead to a situation in which defect recombination becomes

In a similar manner, the capture numbearare also affected
by the dimensionality of the random walk. Assuming ideal
spherical defects of linear dimension «~r/a for a 3D
random walk in a mean-field approximatiéhbut in general,

from the condition(D/ y,a®)2y, 7.=1/n, which implies important before sink loss. The balance between creation and
recombination makes a steady state possibdis/dt
w1p/3p= W3p\ Y a%D. ©)) =dn,/dt=0. Ignoring the sink terms, one readily finds for
this regime 1l

The mixed encounter rat®;p/3p scales like the 3D encoun-
ter ratewsp, but is reduced by the square root of the ratio of
the number of rotations to hops. This reaction rate has also
been derived in Ref. 21. This work views the kinetics in the _
intermediate 1D/3D regime as an enhanced 1D reaction ratéhich only depends on the dimensionless rdfio (VAD;

but the resulting expressions agree up to numerical prefactD,)/oFa® The crossover from regime | to regime Il occurs
tors. These authors also showed that the size dependenceaiftimet, =Fot,, =T, i.e., t,;, ~n *(D;/a® . Note that

the mixed capture number~ (r/a)?, and Ref. 22 provides this scaling regime is bound from above by the following
an interpolation formula between the limiting cases using aondition: if n, becomes so large that the time between
continuum description. While the encounter rates and readnterstitial-vacancy encounters is on average shorter than the
tion kinetics of random walkers decrease when the dimentime between two subsequent rotatidis., if I'<g™?), the
sionality of the random walk changes from three to one, thescaling of the encounter time becomes that of a 1D random

n'=n! = (6)

2

o -1/2
(M) e
oFa '
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walk. In this case, the scaling of the steady—state defect den-  10°
sity with T' changes from!'=n!! ~T"%2 to n!'=n!' ~ %3, y

This regime is unlikely to be of experimental relevance. 107t}
Eventually, loss through sinks becomes important and the

steady-state regime Il ends. Clearly, there exists a terminal 1072 ~t "
steady statésee below in which all loss terms in Eqq1) S ¥

nj,0y

balance the creation of defectsDf> D, as in the bcc metal 103} <
case, however, the system will initially lose mostly intersti- , : --..::"
tials and very few vacancies. This breaks the symmetry be- 194} 7~ 7 /7 = e
tween interstitials and vacancies ang>n,. The second P
steady state is, therefore, reached through a transient regime -5 s
Il with distinct scaling. Subtracting the two rate equations 107! 10! 10° 10° 10’
(and neglecting vacancy loss at siiks tD; /a2
M ~ d_nv =N \@En- (7) FIG. 1. Self-interstitial(W), n;, and vacancy ¢ ), n,, densities
dt dt S Ta2 " as a function of time fof'=1(?, 1%, 10%,10%, and 16 (" increases

from the top to bottom of the figuyeTime is measured in units of
%he inverse interstitial hopping ra&&/D;. The solid lines show the
result of direct numerical integration of Egdl) with «,=k;=k;s
dn, KN, dn, =k,s=21, and the symbols correspond to the results of the kMC
. =o0F—T—— /. (8) simulations in a periodic simulation box. The straight solid lines
dt Kisns dt

have slope 1 and 1/2.

wheren, denotes the sink density. This equation allows us t
eliminaten; in the rate equation fom,, so that

Integrating Eq.(8), we obtain(to leading order power-law
growth ofn, with time, The volume swelling is proportional to the excess va-
)2, 9) cancy population in this regim&=n,-n;. Note that the im-

v balance arises here due to the very different diffusivities of
In the case of extremely large sink densitigsthe encounter the two types of defects. Upon termination of the irradiation,
ratesw;s between interstitials and sinks would not be 3D asboth then; andn, populations would relax exponentially to
assumed above, but 1D-like. In this casgwould have to be  zero in this simple model.

replaced byﬁ, but again, such high densities are unrealistic.

The crossover time;,;, between regimes Il and Ill can be D. Numerical integration and kMC

obtained from the conditiof’ = x;ignsoFty, / x,, which im-
plies ty ~ (x,/ kishg¥?/(D;/a?). The crossover occurs at
constant time, independent of the defect densities.

If there are only sinks for interstitials and no sinks for
vacancies, regime Il will simply continue. In all other cases,
a final steady state will occur when all loss terms are impor
tant. Setting agaidn;/dt=dn,/dt=0 as in Ref. 19, we obtain
a condition for steady state,

n:)” = (khisoFt/k

A full solution of the rate equation€l) is only possible
numerically. In the following, we show a series of such nu-
merical and kinetic Monte Carlo simulation results for a rep-
resentative choice of parameté@s=100D,, 7,=0.01D;/a?,
so thata=1000 andB=0.01(see Sec. V for typical experi-
‘mental regimes In addition, we set the density of sinks to
ns=10"% Figure 1 shows the evolution of the average inter-
stitial and vacancy densitysymbolg based on the above
n'v \“%Di Kis [~ parameters obtained from the kMC simulation and numerical

— = a\B, (100 integration of the corresponding rate equati¢sslid line9

‘ v fos using the expression E¢3) for the mixed encounter rates.
where we have introduced a third dimensionless ratio The dimensionless parametérwas varied by changing the
=D,;/D,. The interstitial and vacancy populations will, in defect creation rateo. As predicted by the scaling analysis,
general, be different. The steady state values are the roots &fur distinct regimes appear with increasing time. After first
the quadratic equation rising linearly with time (regime ), n; and n, reach the
steady-state plateau of regime Il. Once loss through sinks
=1. (11)  becomes importariregime Il), n, increases as’? while n;
decreases. Finally, all curves reach the steady-state regime
Since typicallyn,<1, the linear term can be neglected rela- I\./’ wheren; andn, are given by EqsﬁlO) apd(ll). At the
: . . : highest defect densities, the kMC simulations were not car-
tive to the quadratic term, and we obtain the scaling of the. ; ; .
o . fied out into the final steady—state regimes, because the com-
vacancy density in regime 1V, :
putational effort becomes very large.
v r o\ Excellent agreement between continuum theory and kMC
n, ~ a\@ ' (12) model for the three largest valueslofs achieved by adjust-
ing all capture numbers to a single numerical constant. In the
The crossover timey;;,,_follows again from the condition simple situation examined here, kMC and rate theory are
KisNsoFtyyy 1, = (C1aB) ™, ie., typy ~ (aVBr,/ kisnd '/ completely equivalent. Since we have usegsp in the rate
(Di/a?) is again independent af or n,. equations, this agreement also validates the scaling argument

(n'V)2 ksl Vv K,shsD,
v s 2

Ksa\p * oFa
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for the mixed 1D/3D encounter rate. For the two smallestcancy densityor cluster of size L The additional terms in
I'-values, we observe increasing discrepancies between rattee equations for the evolution of; and n, account for
equations and KMC. As discussed above, we expect a transiterstitial/vacancy-cluster encounters, vacancy/vacancy-
tion from the mixed 1D/3D encounter rateg, to 1D domi-  cluster encounters, vacancy-cluster nucleation, and diva-
nated encounter kinetics when the interstitial density becancy  decomposition. wic(m):nc(m)\s’ﬁDi/az, Wyc(m)
comes so high that they typically collide with vacancies or=ny(m)D,/a? and w,,=n,D,/a’ denote the corresponding
sinks before rotatlnqr<100) This transition is not faith- encounter rates. The last expression(m) describes the
fully reproduced by the rate theory which assumes only thesyolution of stable, immobile vacancy clusters of size
limiting cases of either 1D or mixed 1D/3D encounter rate> 1 due to the diffusive arrival of interstitials and vacancies.
scaling, but is properly captured by the kMC which includesThe hierarchy of rate equatiorfd¢3) is, in principle, ame-
explicit 1D/3D trajectories. nable to a semianalytical treatment via numerical integration,
Note also that with increasing, regime Il begins to if all constants«!], are specified. However, such a solution
shrink and regime | crosses over directly into regime lll. requires termination of the set of equations at a finite cluster
This happens because as the defect densities decrease belgype m ... i.e., one imposes a boundary conditiogimy,)
the sink denSity, pOint defect loss at sinks will become domi— 0. The Corresponding kMC model does not require ady
nant before recombination plays a significant role. Since th@oc assumptions and takes all these processes naturally into
crossover time,, = s/ k,oF only depends on the point zccount.
defect production rate, a further decrease of the production Befgore examining this model in kMC, we can draw some
rate will eVentUa”y lead to a direct crossover from regime Ipremiiminary conclusions. In regime |, Oniy nucleation of
to regime IV. A smaller sink density would push the appear-djvacancies will be important. Since here the vacancy den-
ance of regimes Il and Il to higher values Bf sity grows linearly with time, we predict the scaling regime

Ill. VACANCY CLUSTER FORMATION n(2)' ~ (aFt)3. (14)

A. Irreversible aggregation ) ) ) o
The divacancy density grows cubically with time. In the

To this point, we have neglected interactions between Vagieady-state regime |1, the vacancy cluster density is slaved
cancies. Experimental vacancy-vacancy binding enetgjes 4 the'free vacancy density and, therefore, is constant as well.
can be of order the single vacancy migration energy. Th'?:ora>1, we expect the total cluster density=S,n(m) to
suggests that it is not un_reasonable to expect vacancies £ much smaller than, andn;, so that the presence of va-
form stable clusters or microvoids once they meet. A rela'cancy clustering does not yet strongly alter the interstitial

tively si_mple approxirnation fqr this situatio_n is”to c_onsider and vacancy population. Using E), we find
the limiting case of “irreversible aggregation,” which ne-

glects any dissociation of a vacancy from a cluster and thus _ —
TR L T n! = TY2(a\B) (15)

setsE,=00. The realistic situation, which includes finite bind- c :
ing energies, can be viewed as an intermediate case between ) ) ) . )
irreversible aggregation and the cas&gE 0 of the previous Once past regime I, the cluster density will begin to rise
section. again as, increasesn, will then increasingly fall below the

In the “irreversible aggregation” model, vacancies bind tototal number of vacancies in the system),, because in-
form stable divacancies, leaving the population of free vafreasing numbers of vacancigg..;mn(m) become immo-
Canciesy while interstitials recombining with a divacancy rec_b|||zed in clusters. These clusters act as additional sinks for
reate a single mobile vacancy. Stable cluster grow or shrinkhe diffusing vacancies, but do not remove them from the
under the influence of arriving vacancies and interstitialsSystem. The higher the cluster density, the smaller the loss of
Denoting the number density of clusters of simaas nc(m)' vacancies thl’ough sinks and interstitial recombination. We

we can write the following set of rate equatiofis: therefore expect that regime Ill will extend to larger times
and the presence of the immobile vacancy cluster delays the

dny _ Ew N — bkt S KM, n onset of the final steady-state regime IV.
dt 7 i (K”w'” Kisis ~ i w'C(m)) b For the total number of vacanci@s,, we can write the
rate equations as

dn,

— = 0F - | Kjw,i + Kyswys+ 2, Ko, - 2Kk,w,, |N d

dt < s e % v ot ’ w) ’ r(;vtwt =oF - Kjw,in, = > K" Dic(m) N

m=1
2
= (K, @i, = K Wi(2));, (16)
dn
dn.(m) m-1 m el d_tl =oF - Kjw,n, - (E Kimwic(m) - Kiswis) N,
dt = (K ye(me1) ~ Ky Oyem) Ny + (K Oig(me1) m=1

where we have neglected vacancy loss at sinks. This is the
regime Il situation discussed earlier. Subtraction of Egs.
wheren,=n(1) is now understood to refer to the free va- (16) and elimination ofn;, as in Eq.(8), leads to

- Kimwic(m))nh (13
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dny ot Ky ANyt Kim 10_1
o = °F o dt mE:l p Ne(m). (17) (a)
o -2
At relatively early times, when only small clusters are 2 10 l—-_105
present,Z -1 (xkm/ k,)N(M) =N, @and Ny Will initially in- S 3 - 53060000
crease as),,~ (kisNsoFt)2 The subsequent behavior de- < 10°
pends on the detailed form of the capture numbeys =1
In the absence of vacancy clustering, regime Il ends ,:.f' 10—4
when the vacancy density has become so large that vacancy | / 4 e
loss through sinks balances interstitial loss through sinks. RV 2
This condition, Eq(10), must hold for a final steady state to 10 101 103 105 107 10°
appear. In the present simple model, this condition depends
only on the ratio of the diffusivities, but in a real system, Eq. 107!
(10) also depends on sink concentrations and capture num- (b)

bers, which may be different for interstitial and vacancies. 10_2
Eventually this condition can also occur as a result of va- % 3
cancy clustering, because vacancy clusters act as additiona™: 10~
sinks for the interstitials and remove them symetrically from & _,
the system. At high cluster densities, the low mobile vac- & 10

ancy concentration can therefore be compensated. In theé 10_5

steady-state regime IV, we expect the hierarehy<n!’

tot

<nY <nly . Because of the later entry into regime IS, 10-6 4

=n,i—N; (the total amount of volume swellingwill be 1 5 7 9

larger than in the absence of clustering. gO 10° 10 10 10
In regime 1V, we can obtain an approximate scaling rela- 10~

tion for the total cluster density. The density is determined by (©

the competition between nucleation of clusters out of the
vacancy gas and decomposition of divacancies due to arriv-
ing interstitials. Denoting the fraction of clusters that repre-

sent divacancies a5 we can write the rate equation

—
o
IS

n;,Ny,N¢,Nytot
p—
=
b

an’ L 2 Vo a0 /a2 107°
T kD, fa” - f(t)kn; nVBD;/as, (18
. . . — =7
which implies nlY =k,n2/fxa\Bni=«,n,/fx, where we 10 z
have used Eq.10). The cIuslter density is therefore of order 10 10° 10° 10 10°
of the free vacancy density with a numerical prefactor that t])i/a2

depends on the mean cluster size.
FIG. 2. Interstitial densities; (M), free vacancy density, ()
1. Average cluster density as well as the total vacancy density;, (*) and vacany cluster

. . . densityn, (A) as a function of time fota) I'=10, (b) '=10, and
The effect of irreversible vacancy aggregation on the de(c) I'=10°. The thin solid lines show the result of direct numerical

IE?;:XZ?&I;SO?{,S:??'”I'Eir;)ggharlﬁgﬂrc ;ic;h\?v\m? ;:I lf)ltgh.ef forintegration of Egs(13) with «{"=«}'=25 and amp,,=20 (see text
parameters as before. In this figure, we also plot the total
cluster densityn. and the total vacancy density,,. In re-  the capture numberg”. In the simplest mean field model for
gimes | and Il,n; andn; are nearly unchanged. The defect nucleation dynamics, the capture numbers do not depend on
density n, rises first~t® and then remains constant during cluster sizem and Ki]:U:Km):COﬂSt (i.e., the point cluster
regime |l as discussed above. In regime fi},begins to fall mode). Interestingly, we find surprisingly good agreement
below the result from Fig. 1 because of trapping of vacanciebetween the rate equatiofsolid lines in Fig. 2 and the full
into clusters. At the same timae, rises with an ideat>  kMC simulations when using this simple approximation.
law, and regime lll extends to larger times, also rises This suggests that for relatively smati, <™ is only very
again due to new cluster nucleation events out of the vacanoyeakly size dependent. The rate equations faithfully repro-
gas. All guantities reach constant values in regime IV. As onaluce the sequence of regimes, but begin to show deviations
might expect, the total number of vacancies in the system iat late times when larger clusters become more prominent
higher than in the absence of clustering. However, the genand the point cluster assumption is no longer accurate. Here,
eral sequence of regimes remains unchanged. ™ begins to show some size dependence. The success of this
In order to gain additional insight into the growth dynam- comparison shows, however, that a mapping between kMC
ics, we also numerically integrate the full set of rate equa-and rate equations is possible even with void nucleation and
tions(13) (solid lines in Fig. 2. This requires specification of growth if the k™s are accurately parametrized.
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Note that in the present model, the volume swelling rate
dS/dtis zero in regime IV. This is possible because we have
chosen the same capture ragjifor the sinks for both inter- 107
stitials and vacancies, i.e., the sinks are symmetric with re-
spect to defect type&s~t would be valid, if, for example, the Gl
capture radius for interstitials is larger than that for vacan- ‘é 1074
cies. This situation can arise with the introduction of dislo-
cation sinks(known as “dislocation biag"and has been in-
voked to explain unusually large swelling ratese also Sec. 105
V1) at times later than considered héfe.

2. Cluster size distribution 0 5 10 15 20

A full description of the evolution of the point defects in
the material includes a characterization of the cluster size FIG. 3. Plot of the cluster size distributiar(m) found from the
distribution. The growth of these clusters is the result of thekMC simulations withl'=10° of Fig. 2@ at four different times
diffusive arrival of interstitial and vacancy defects at alreadytD;/a’=3x 10" (H), 3X 10° (#), 3x 10° (*), and 3x 10’ (A) in
nucleated clusters. The full dynamics of this process is detegimes 1l and IV. The straight lines correspond to
scribed by the last equation {@3). Consider this equation in M [avBn(®)]™
the following simplified notation:

B. Reversible attachment

dn,(m)
a [ n(m - 1) = k'n(m) D, /a? The above discussion immediately raises the question of

_ whether the results fan,(t) and its size distribution Eq21)
+ni[Kim+lnC(m+ 1) - K"'n(m)]VBD/a2. (19) survive in the more realistic situation of reversible cluster
L ... .. growth, i.e., vacancies have a finite probability to attach to
It ny ?”d n, change very slowly in tlm_e, the dlstnlputmn and to leave the cluster. Let us introduce “detachment rates”
n(m) is given by the steady-state solution to E), i.e., from a cluster of sizam, yu(m)/a? for all vacancies, inde-

dn,(m)/dt=0. This equation is supplemented by the detailed o gent of their local environment. Equatit9) needs to
balance condition be generalized by the addition of two terms,

n,k™Me(M)D, /a2 = nx™n(m+ 1)\AD/a2,  (20)

dnc(m) _ m-1 m 2
which should also hold fom=2. From this condition, we dt MLk, (M =1) = 1,/ n(M) D, /2
can deduce the distribution,(m) by induction. Sincen, el " =2
=ny(1), we haveny(2)=n?«,/(x’a"Bn;) and consequently Nl ne(m+ 1) = i"n(m)]VAD/a
for all m>1, + [ ne(m+ 1) = kgin(m)]yge(m/a?, (22)
m-1
n' H.:l KL wherex{' represent “detachment numbers” in analogy to the
ne(m) = (V)™ " (21)  capture numbersd". Consequently, the condition for de-
P 1=2 i tailed balance now reads

Equation(21) is tested against the kMC results in Fig. 3,
where we show the cluster size distributions at four different
times. All curves fall along straight lines in a semilogarith- + kg (m+ 1) yge(m)/a® (23
mic plot, and the slope decreases with increasing mean clus-
ter size. A comparison with E@21) requires, again, knowl- and Eq.(21) generalizes to
edge of the capture numbex8. As in the preceding section,

KMn,n(m)D, /a2 = K™ nin(m + 1)+8Di/a2

use of the point cluster approximatiat, /«, =1 yields ex- HI": < nm

cellent agreement between the kMC data and (). upon ne(m) = — T . , (24)
inserting the values fon;(t) and n,(t) at the appropriate H,zz[Kia\f‘,Bnﬁm a'(m)]

times.

Note that the distributions shown in Fig. 3 are not peakedwherea’ (m)=y4{m)a?/D,. We see that the general form of
i.e., the frequency with which different clusters appear dethe distribution is the same, but the prefactor changes due to
crease with increasing cluster size and single vacancies occtire additional growth and shrinkage probabilities. From a
most frequently. This situation is in sharp contrast to othesstatistical point of view, interstitial arrival and vacancy de-
cluster growth situations as, e.g., found in submonolayer istachment are equivalent. Equatit@4) can be easily evalu-
land growth during vapor depositiGAwhere the distribution ated for any functional form of the size-dependent capture
n.(m) peaks at the mean cluster sig®). In this problem, numbers and detachment rates. In the point cluster approxi-
however, clusters cannot shrink, since interstitials are absenmnation, where alki’f}),d/kﬁv,dzl anda’=a’(m) is size inde-
One expects Eq21) to hold as long as the assumption of pendent, it predicts an exponential distribution as in the case
guasistationary values far, andn, is valid. of irreversible attachment,

064109-7



ROTTLER, SROLOVITZ, AND CAR

107!
1072 @ y
g 1073 T

0 2 4 6 8
m

10 12 14

FIG. 4. (8 Interstitial densityn; (M), free vacancy density,
(©) as well as the total vacancy densiak) and vacancy cluster
densityn, (*) as a function of time fol’=10°, and 10 for revers-
ible aggregation, wheré=0.01.(b) Cluster size distributiom,(m)
for the case ol'=1CP at four different times in regimes Il and IV.
The straight lines correspond to,(t)™/[avAn;(t)+ i/ ita’ ™t
with «3/k=0.25.

nm

(a\Bn; + a'kifkh ™

n.(m) = (25)

Figure 4 presents a numerical investigation of reversibl
vacancy cluster growth using kMC. Although detachmen
rates may be cluster size dependent in general, we only i

troduce one size-independent ratg/a?=0.01D,/a? for va-

cancy detachment for simplicity. This model would be mos
relevant for faceted cluster shapes with one dominant detac
ment rate from the faces. The other parameters are that
Fig. 2. We see in Fig. (@) that the cluster density behaves in
a qualitatively similar manner as in the irreversible case, bu
n. is reduced and the final steady state is reached at earli&
times. As in the irreversible case, the cluster size distributio

n.(m) shown in Fig. 4b) is well described by Eq(25). The

present discussion is of course only relevant when voi

coarsening can be neglected.

IV. INTERSTITIAL INTERACTIONS

PHYSICAL REVIEW B71, 064109(2005
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FIG. 5. Interstitial densities; (M), free vacancy density, (<),
total vacancy density, (A), vacany cluster density. (*), and
density of immobile interstitial clustdf]) as a function of time for
r=1c.

interaction between single interstitial atoms is even stronger
than that between vacancies, and the interstitial clusters, such
as dislocation loop# are stable at all relevant temperatures.
Unlike the immobile vacancy cluster, however, the intersti-
tial cluster migrate easily for clusters with up to 50 or 100
interstitial atoms-82°We now modify the preceding analysis

to account for this behavior.

In this analysis, we return to the irreversible aggregation
limit, i.e., interstitials never separate after encounter. This
implies a reduction of the density of mobile interstitials due
to nucleation of interstitial clusters, i.e., interstitials act as
sinks for other interstitials. However, this creates a popula-
tion of larger clusters with a larger cross section and eventu-
ally larger capture numbers. The reaction kinetics will be
affected by the competition of these two effects.

The rate equation&l3) can now be expanded to include
terms representing the above processes, but become even
more complex. In our KMC model, we begin by studying the
effect of interstitial cluster formation by considering com-
pletely immobile interstitial clusters in complete analogy to
éhe vacancy cluster. This situation is rarely realistic, but pro-
(vides an upper bound on the magnitude of the effects. Figure
shows the evolution of the free interstitial and vacancy
densities as well as the interstitial and vacancy cluster den-
tsities for the same parameters as before. As expected, the
fmmoblization of interstitials increases the total number of
eﬁacancies in the system. In the final steady stajg, is
about three times as large as in the situation in Fig. 2. The
jnterstitial clusters(open squargsnucleate earlier than the
pcancy cluster, but their density later drops below that of
rlihe vacancy clusters, since the single interstitial density is
much lower than the single vacancy density.

The situation in Fig. 5 can be favorably contrasted with
Cihat of completely mobile interstitial clusters, i.e., the cluster
diffuse with the same rates as the single interstitials regard-
less of their size. This case is again not fully realistic, since
interstitial clusters seldom rotate into othi@rl1) directions
once they contain several interstitidi®., they diffusive one

One of the fascinating aspects of point defect dynamics imimensionally®29. For small clusters, however, the com-

bce metals is the high mobility of interstitial clustérfsThe

pletely mobile interstitial cluster case represents a good ap-
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FIG. 6. Interstitial, vacancy, interstitial cluster, and vacancy _3 (b)
cluster densities for =10° andI'=10 (symbols as in Fig. b In- .10
terstitial clusterg[) diffuse and rotate with the same rate as single § 10_4 11
interstitials. The interstitial cluster density first rises due to nucle- &, =10
ation events, but then rapidly drops as mobile clusters collide with e’ 10—5
sinks. S
%107
proximation. Figure 6 shows the corresponding results for < 10—7
the various densities introduced above. As in the case of 8 o= -
immobile interstitial clusters, the mobile interstitial cluster 10™ -8 26 ) '_2
density first rises due to nucleation events. However, the 10 10 10 10 1
highly mobile interstitial clusters also collide with the sinks, _3
and the cluster density decreases rapidly. Since the free in- 10
terstitial density also declines, nucleation events become 0_4 (©)
rare. Once steady state has been achieved, the interstitial g
density has become so low that the nucleation of new inter- ‘5 10— F=1013
stitial clusters due to diffusion is almost completely absent. "3 -6
Consequently, the vacancy densities and the total swelling E? 10
rates are the same as for the case of noninteracting intersti- q 10—7
tials.
5108
V. APPLICATION TO VANADIUM AND IRON -9 * .
-8 -6 —4 -2 1
. . 10 10 10 10
In this section, we apply our model to the V andFe F/d
cases. Vanadium is particularly interesting, because here the to- / pa
effect of mixed 1D/3D diffusion is most pronounced. First . _ .
FIG. 7. Interstitial, vacancy, interstitial cluster, and vacancy

principles calculations and classical MD simulations of V
have yielded estimates afE;=0.018 e\? AE,=0.44 eV®
andAE,=0.5 eV For Fe, the different ground state of the
self-interstitial ((110 instead of(111)) leads to a higher ef-
fective activation barrier for 1D migrationAE;, which
ranges between 0.12 gRef. 30 and 0.17 e\?° The rotation
barrier was estimated asE,=0.16 eV?® and the vacancy
migration energy is assumed to be of the same éfder in

TABLE |. Dimensionless parametei®=D;/D,, f=v/D;, I’
=(\BD;+D,)/oF, anda’ =a\/B for V and Fe at 300 and 600 K.

V, 300 K V, 600 K Fe, 300 K Fe, 600 K
@ 108 10t 10° 10°
B 1078 104 10° 10°
r 101 10% 101 108
o 10 107 10° 10°

cluster densitiegsymbols as in Fig. Bwith parametersay’ =107,
ne=107, for (@) I'=10°, (b) I'=10"%, and(c) I'=10" representative
for V or a-Fe at 600 K. Thin solid lines show the result of numeri-
cally integrating Eqs(13) again fork,,=25 andm,,,,=20. The solid
lines have slope 1 and 1/2, respectively.

V (the prefactors for all processes tend to vary by less than
an order of magnitude One therefore expects that the self-
interstitial trajectories inx-Fe will be much more isotropic
than in V.

The two metals are best compared in terms of the relevant
dimensionless parameter, 8, andI'. Table | summarizes
the values for these quantities using the above energy barri-
ers and the production rate for ion irradiatiofr=10° st
for two representative temperature§=300K and T
=600 K. We first note thaf is typically larger than 1% and
would in fact reach 1% when typical production rates for
neutron irradiation are used. A kMC simulation with such
large values of” would require very long simulation times,
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since diffusion and recombination occur much more often VI. CONCLUSIONS

than the introduction of new defects. It also requires large e have studied the early-time evolution of point defect
system sizes, because the defect densities become very smabpulations with specific reference to migration mechanisms
In addition, the very small value g8 implies very long 1D in bcc metals under constant irradiation conditions. Only
segments of the interstitial trajectories between rotationsvery simplified models that incorporate the most important
The period of the kMC simulation box should be severalprocesses were employed in order to identify the rate-
times larger than the typical length of those segments in orlimiting events. These models were solved using scaling ar-
der to properly reproduce the continuum theory values of thguments, direct numerical integration of kinetic rate equa-
encounter rates. If the box period is much smaller than théions and full kKMC simulations.
1D segment, the trajectory will wrap around the box many In the simplest case, which only consi_ders homogeneous
times, but is not necessarily space-filling. defgct production, recombination, and sink absorption, but
The last of these issues can be addressed by using a resiift interactions between defects of the same type, the kMC
from Sec. I, where we showed that the mixed 1D/3D en-model and the corresponding rate equations were shown to
counter rates scale like the ideal 3D rates that are reduced B¢ in near perfect agreement. We employed simple random

a factor V3. We can therefore replace the explicit 1D/3D Walk arguments to derive a mixed encounter rate that de-
trajectories of the interstitials and interstitial cluster with scribes one-dimensional diffusion with occasional rotations.

ideal 3D random walks, but reduce the hopping rate by Jhls encounter rate scales linearly with target density as the

= : L [ r rate, but is reduced by the square root
factor of y3. This procedure leaves the reaction kinetics in- SOlropic 3D encounte Y d

. I ; f h of the ratio of rotation rate and hopping rate. As in Ref. 23,
variant (u_p to small corrections from the capture nUMDErs ¢4, gistinct scaling regimes for the point defect density with
and implies that the effective ratio of time scales betwee

‘ O ’ fau Bl T Mime were identified. First, the point defect densities increase
interstitial and vacancy migration is given ly=DivA/D, |inearly in time due to productiofregime ), then saturate as
=\D;y,/@. Interestingly, this ratio is very similar for both V' defect recombination sets ifregime 1). Sink absorption
and Fe at 300 and 600 Ksee Table ), even though the then begins to reduce the interstitial density and the vacancy
values ofa and g are very different. At a given temperature, density grows in time with a characteristiet’2 behavior

the self-interstitial trajectories in-Fe are much more isotro- (regime Ill). A final steady statéregime V) is reached when

pic than in V, but the encounter rates with vacancies andll loss processes are taken into account. The full sequence
sinks only depend on the product of diffusiviy and rota-  of regimes |-V is most visible when the production rate is
tion ratey,. Within the present model, one therefore expectsnot much smaller than the interstitial hopping rates. Regimes
that the point defect reaction kinetics in these two metals il and Il shrink with decreasing production rate, and in the
very similar. limit of very small production rates, regime | crosses over

In Fig. 7, we use a ratio of timescales representative fodirectly into regime IV. These results were based on param-
V/a-Fe atT=600 K and show results fdr=10°, =10",  eters typical for bcc metals, but the continuum level reaction
andI'=10". Here, we have multiplied the time axis with the kinetics equally applies to fcc metals or other crystal struc-
production rate, which is a more convential presentation ofures provided they exhibit similar diffusion mechanisms.
the data in experimental studies. Rescaled by the production The introduction of vacancy reactions to form immobile
rate, all curves initially coincide and start out with near-vacancy clusters does not change the general sequence of the
constant slopes. For the present parameters, regime Il italing regimes, but has a profound effect on the population
practically absent, and the vacancy density crosses over ingynamics. In steady state, the density of free vacancies and
mediately from regime [where it rises linearly with doge interstitials is reduced relative to the noninteracting case, but
into regime Ill. The crossover dose is roughly constant andhe total number of vacanci@s, is enhanced. In regime lIl,
depends on the sink density. Note that the growtim,gf in  n,,;~t"?, and the steady-state regime IV is reached at later
regime Il is well described by &Ft)2 power law over times. Reasonable agreement between rate equations and
several decades before the final steady-state regime IV &MC could still be achieved in a point cluster approximation,
reached. Since the onset of regime 1V is independent of timavhere the capture numbers are size-independent. Of particu-
(see Sec. )| larger values of" push the beginning of steady lar interest is the size distribution of vacancy clusters, which
state to smaller doses. Here, steady state is reached at abgudw and shrink under the diffusive arrival of interstitials
1 dpa for['=10° and earlier fol'=10'!* and'=10'3. There  and vacancies. For irreversible vacancy aggregation, we de-
is some initial nucleation of interstitial clusterslat 10°, but ~ rived a new expression for the cluster size distribution,
as discussed before, all of these rapidly disappear due to fasg(m) = xk;n[/ k(e Bm)™ 2. The general form of this distri-
collisions with sinks. For higher values &f, the interstitial  bution remains when also allowing vacancy detachment from
cluster density becomes negligibly small. the cluster.

In the same figure, we also show the predictions of a Immobile interstitial clusters were shown to further in-
numerical integration of the full set of rate equatidd8) crease the vacancy population. However, interstitial clusters
using the point cluster modésize independent capture num- that are as mobile as single interstitials decay rapidly in rel-
berg. As in Fig. 2, the agreement with the “exact” kMC evant parameter regimes. We therefore expect that nucleation
simulation is satisfactory. Since the computational effort forof interstitial clusters through diffusion plays a negligible
direct kMC simulations forl’>10'° becomes tremendous, role in the microstructural damage evolution of pure bcc
the rate equation approach, when properly parametrized, isietals. It can become important, however, if trapping of self-
clearly preferable. interstitials near impurities occurs.
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Because of their importance in applications and the availeonditions3! however, two other processes not included in
ablitity of detailed molecular dynamics studies, we appliedthis study are known to have a crucial impact on the defect
the model for parameters suitable for V amdre. Within our  evolution (in particular void swelling ratés Frenkel pair
model, both metals exhibit similar defect kinetics and thereproduction is only assumed to be homogeneous for energies
fore similar swelling rates at a given temperature. For proright above the displacement threshold, while higher energies
duction rates and diffusivities in typical experimental situa-|ead to the formation of mobile interstitial and immobile va-
tions, our calculations revealed a sequgncellé)f growthancy clusters during the cascade phase. Our present model
regimes for the total vacancy densifyo~t", ~t", and 5 therefore most relevant to low particle energies. Inclusion
~t. The volume swelling rate follows the same scaling Se+ jntracascade clustering processes will change results
quence in the sub-1 dpa regime. Interestingly, growth of the, ajitatively and quantitatively, but requires reliable infor-
vacany cluster density ast™* over several decades in time mqiion apout the cluster size distribution during cascades
has been observed in the much more detailed kMC simulag ., MD simulations.
tion of Ref. 16, but the origin of this growth law had not |, s4dition to this “production bias,” “absorption bias”
begn identified. All our simulations reach the steady—stat%|so usually exists in bcc metals. “Absorption bias” leads to
regime at damage levels of less than 1 dpa. In the experly hreferred absorption of self-interstitials at sinks and is
mentally relevant regime of damage levels between 1 an@nqyn o be an essential driving force for swelling. The
100 dpa, it will therefore be more efficient to use steady—,gin of this bias, which leads to increased capture numbers,
state rate equations rather than explicit kMC to predict the, ' |ong range elastic interactions between point defects and
long time point defect distribution evolution. Nonetheless, itgins such as dislocatio®s? or grain boundarie¥ Exten-
is important to understand the onset of damage evolution ang, s of the model to include these effects should provide a
the conditions of applicability of the steady-state theory.  titfy| topic for future work. The combination of kMC and

The fact that experimental swelling rates of V ande 416 theory can then be used to determine which parameters

are very different is _of course an indication that our present .o most important in radiation damage, so that atomistic
model does not yet include all relevant phenomena of radiagjm1ation resources can be better focused

tion damage. One obvious refinement of the models devel-

oped here would be a more detailed parametrization of the ACKNOWLEDGMENTS
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