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We present an analysis of the time evolution of self-interstitial atom and vacancyspoint defectd populations
in pure bcc metals under constant irradiation flux conditions. Mean-field rate equations are developed in
parallel to a kinetic Monte CarloskMCd model. When only considering the elementary processes of defect
production, defect migration, recombination and absorption at sinks, the kMC model and rate equations are
shown to be equivalent and the time evolution of the point defect populations is analyzed using simple scaling
arguments. We show that the typically large mismatch of the rates of interstitial and vacancy migration in bcc
metals can lead to a vacancy population that grows as the square root of time. The vacancy cluster size
distribution under both irreversible and reversible attachment can be described by a simple exponential func-
tion. We also consider the effect of highly mobile interstitial clusters and apply the model with parameters
appropriate for vanadium anda-iron.
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I. INTRODUCTION

Many properties of metals depend crucially on the type
and concentration of defects that perturb the ideal crystal
structure. Of these, the simplest are point defects, such as
self-interstitials and vacancies. Since their formation ener-
gies are of the order of electron volts, their equilibrium con-
centrations tend to be very low. They do form in abundance,
however, in radiation environments due to the collisions be-
tween the irradiating speciesselectrons, heavy ions or neu-
tronsd and the atoms of the host crystal.1 When the energy of
the impinging particle is close to, but above, the displace-
ment threshold, the collision typically produces a single
Frenkel pair. Particles with higher kinetic energy, for in-
stance neutrons produced in fusion reactions, create collision
cascades which can produce not only Frenkel pairs, but an
ensemble of mobile and immobile self-interstitial and va-
cancy clusters of different sizes. The ensuing evolution of the
point defect distributions due to diffusion2 determines the
long time scale degradation of the mechanical properties of
the material, in addition to volume swelling at large doses.

For body centered cubicsbccd metals, such asa-Fe, V,
and Mo, molecular dynamicssMDd simulations have re-
vealed a detailed microscopic picture of the diffusive motion
of individual defects and vacancies.3 While the migration
barrierDEv for vacancy migration is rather highs,0.5 eVd,
both self-interstitial atoms and small self-interstitial cluster
are highly mobile and easily diffuse along particular crystal-
lographic directionssk111l-directionsd. In V, the lowest en-
ergy self-interstitial configuration is ak111l-oriented dumb-
bell, which migrates easily with a crowdion transition state.4

However, this easy migration, with barriers as low asDEi
,0.02 eV,5 leads to long one-dimensional self-interstitial
diffusional trajectories. The self-interstitial dumbbell can
change direction by rotating into otherk111l-directions. The
barrier associated with such rotationsDEr is of the same
order asDEv si.e., DEr @DEid.

In a-Fe, by contrast, the ground state of the dumbbell
self-interstitial is thek110l configuration, and accessing the
easy-glidek111l configuration requires overcoming a quali-

tatively similar rotational barrier that separates thek110l
from the k111l configurations.6 Although the migration bar-
riers for the crowdion mechanism ina-Fe are also believed
to be very smalls,0.04 eVd, the observed effective migra-
tion barriersincluding rotation into thek111l orientation and
migration along thek111l directiond are higher than in V.29,30

Similar arguments apply to Mo and Ta. Both diffusion
mechanisms imply that interstitial transport in bcc metals
takes place in the form of long one-dimensional trajectories
with occasional directional changes that become more fre-
quent as the temperature increases. In fcc metals such as Cu,
for instance, simulations showed that self-interstitial diffu-
sion occurs through much more conventional, isotropic dif-
fusion mechanisms.27 In most metals, however, large separa-
tions in timescale between self-interstitial and vacancy
motion exist.

The intent of the present study is to illuminate the conse-
quences of the intriguing microscopic diffusion mechanisms
in bcc metals on the evolution of the point defect population
using simple, but readily generalizable models. Our models
shall minimally include local self-interstitial/vacancy mutual
annihilation and absorption intosunsaturabled sinks which, in
a real system, are in the forms of dislocations or grain
boundaries. Together with the continuous production of point
defects, these processes form the fundamental events in met-
als under irradiation conditions.

On the continuum level, point defect dynamics can be
described by a set of kinetic master or rate equations that
treat the point defects as a continuous density whose tempo-
ral evolution is governed by various gain and loss processes.
These equations do not take into account spatial correlations
and are only analytically tractable in the simplest situations.
Although we focus the discussion specifically on bcc metals,
the continuum theory makes no reference to the underlying
crystal structure and could be readily applied to fcc metals as
well. In many cases, single interstitials and vacancies com-
bine with defects of the same type to form stable clusters.
The evolution of the cluster size distribution and other mi-
croscopic variables is more conveniently studied in a
particle-based model that explicitly represents defects and
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their diffusion mechanismsstranslation, rotationd on a lattice.
The competition of events occuring with different rates can
then be followed using a kinetic Monte CarloskMCd
scheme.

Both master equation and Monte Carlo approaches have
frequently been employed to illuminate the physics of dam-
age evolution in irradiated materials. Starting from the el-
ementary processes mentioned above,7 steady-state rate
equations have been used to study the effects of preferential
absorption of self-interstitial atoms at sinkssabsorption
biasd,8,9 the formation of interstitial cluster during the cas-
cade phasesproduction biasd,8–11 and the one-dimensional
motion of these clusters in bcc metals.9–11 kMC models were
first used to evolve the primary damage state obtained from
ns-long molecular dynamics simulations to macroscopic time
scales, but have increasingly been used to study the evolu-
tion of defect structure during continuous irradiation in
copper,12–14 vanadium,15 and iron.16

Although many treatments have included a high level of
atomistic detail from the start, we begin by analyzing the
simplest situation that includes only production of Frenkel
pairs, point defect recombination and absorption at sinks in
Sec. II. Even though this simplified case has been studied
many times before,7 we shall see that the inclusion of spe-
cific features of bcc metals leads to a surprisingly rich evo-
lutionary picture. This approach allows us to gradually in-
crease the level of complexity of the model in a verifiable,
controlled manner. We introduce first interactions between
vacancies that lead to vacancy cluster formation in Sec. III
and then interactions between interstitials in Sec. IV. In par-
ticular, we shall discuss how interstitial cluster mobility af-
fects vacancy cluster formation. While the discussion in the
text is applicable to bcc metals broadly, we apply our find-
ings to the specific cases of V anda-Fe in Sec. V.

II. POINT DEFECT DYNAMICS IN SIMPLE SITUATIONS

A. Atomistic details and kMC model

The physics of radiation damage evolution is governed by
the production of defects due to irradiation and their subse-
quent elimination from the population through diffusional
processes. Typical values for the defect production ratesF
range between 10−3 dpa/s, in ion irradiation experiments,17

and 10−10 dpa/s, for neutron irradiation,14 where F is the
irradiation flux ands is the cross section. A “displacement
per atom”sdpad refers to the production of one Frenkel de-
fect pair per lattice site.

Self-interstitial transport in bcc metals is composed of two
parts, a one-dimensional diffusive motion along one of the
four distinct k111l directions and dumbbell rotations from
one k111l direction to another. The temperature dependence
of the sone-dimensionald diffusivity Di is usually described
through the Arrhenius form in most cases except for vana-
dium, where the unusually low activation barrier can lead to
more complicated behavior at higherT5. For T,600 K,
however, the interstitial diffusivity is well described by the
Arrhenius expressionDi /a

2= fni exps−DEi /kBTd, whereDEi

is the activation energy barrier,ni an attempt frequency and

correlations are expressed through the correlation factorf
sf =1 when the diffusion is uncorrelatedd. The temperature
dependence of the rotation rategr, by contrast, is always of
the Arrhenius form,gr =nr exps−DEr /kBTd, whereDEr is the
characteristic rotation barrier andnr is an attempt frequency.
Values for both ni and nr range between 1012 s−1 and
1013 s−1. Finally, vacancies diffuse three dimensionally with
rate Dv /a2=nv exps−DEv /kBTd, where DEv and nv are the
activation barriers and attempt frequencies, respectively. The
defects can undergo two basic reactions, recombination once
an interstitial and vacancy defect are within a certain “re-
combination volume,” or absorption at sinks. Typical dislo-
cation densities in metals are of the order 1012–1014 m−2,
which translates into dislocation sink densitiessper lattice
sited of ns,10−4–10−6.

Since the relevant timescales for the evolution of the point
defect distributions far exceed those of molecular dynamics
simulations, we employ a coarse grained description, in
which we represent vacancies, dumbbell interstitial configu-
rations, and sinks as pointlike objects that occupy ideal lat-
tice sites of a bcc lattice with lattice parametera. In order to
mimic constant irradiation conditions, new pairs of defects
sself-interstitial and vacancyd are introduced randomly onto
defect-free lattice sites with ratesF. The microscopic diffu-
sion process is replaced by instantaneous hops of point de-
fects to vacant neighboring lattice sites with ratesDi /a

2 and
Dv /a2, respectively. A self-interstitial is constrained to
forward–backward hops along one of the fourk111l direc-
tions, but can also rotate to anotherk111l direction with rate
gr. Vacancies diffuse isotropically. A self-interstitial or va-
cancy recombines if it finds itself next to a vacancy or self-
interstitial, respectively, or is absorbed if one of its eight
neighboring sites contains a sink. At each time step, an event
is chosen according to its probability and then executed.
Time is advanced according to the usual continuous time
algorithm,18 where the time increment is chosen from an
exponential distribution.

B. Basic rate equations

The elementary processes described in the kMC model
can, alternatively, be described within a rate equation formal-
ism. Before the advent of large scale computer simulations,
this method represented the only viable theoretical approach
for simulating long time radiation damage evolution. The
rate equations can be solved by direct numerical integration
or direct analysis in limiting cases. In the minimal model
discussed above, the time evolution of the number densities
of the interstitialsnistd and vacanciesnvstd is given by the
coupled nonlinear equations7,19,23

dni

dt
= sF − kvvivni − kivvinv − kisvisni ,

s1d
dnv

dt
= sF − kvvivni − kivvinv − kvsvvsnv.

Defect pairs are added to the population at a rate proportional
to the particle fluxF and a cross-sections. Loss can occur
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through a diffusing interstitial recombining with a vacancy
with rate viv and a diffusing vacancy recombining with an
interstitial with ratevvi. The recombination rates are all pro-
portional to the diffusion constant of the moving defect, but
depend on the dimensionality of the diffusion process.ki and
kv are dimensionless capture numbers that represent the spa-
tial extent of the defects and their effectivespossibly long
rangedd interactions. Losses can also occur through absorp-
tion at sinks with ratesvis andvvs and corresponding capture
numberskis and kiv for interstitials and vacancies, respec-
tively. An alternative representation of Eqs.s1d is to define
sink strengthskx

2 via the relationkx
2Dx=kxvx, where the sub-

script x refers to any of the combination of indices used
above.

The encounter rates of the defects are given by the num-
ber of distinct sites visited by a random walker per unit time.
Since the mean squared displacementkR2l= l2N for a random
walk with step lengthl, the number of sites visited iss
=skR2l / l2d1/2,N1/2 in one dimension. By contrast, a detailed
analysis of random walks on three-dimensional cubic lattices
shows that a random walker visitsOsNd distinct sites afterN
hops. For a given density of target sitesn, the typical colli-
sion time tc is given by the conditionDtc/a2=1/n fthree
dimensionals3Ddg and sDtc/a2d1/2=1/n fone dimensional
s1Ddg, from which we deduce the encounter rates

v3D , nD/a2 and v1D , n2D/a2. s2d

In a similar manner, the capture numbersk are also affected
by the dimensionality of the random walk. Assuming ideal
spherical defects of linear dimensionr, k, r /a for a 3D
random walk in a mean-field approximation,20 but in general,
capture numbers can also depend on spatial fluctuations and
dose. For a 1D random walk, the scaling with defect size
becomes much stronger,21 k,sr /ad.4

These expressions apply to strictly 1D or 3D random
walks. As discussed in the Introduction, we encounter an
intermediate case in bcc metals, where rotations interrupt 1D
random walks and lead to 3D trajectories. The encounter rate
of this random walk must, therefore, be larger than the purely
1D case. For a rotation rategr, the random walker performs
on averageD /gra

2 hops in a particular direction before ro-
tating into a new direction. There aregrt of these segments
during timet. The mixed 1D/3D collision time thus follows
from the conditionsD /gra

2d1/2grtc=1/n, which implies

v1D/3D = v3D
Îgra

2/D. s3d

The mixed encounter ratev1D/3D scales like the 3D encoun-
ter ratev3D, but is reduced by the square root of the ratio of
the number of rotations to hops. This reaction rate has also
been derived in Ref. 21. This work views the kinetics in the
intermediate 1D/3D regime as an enhanced 1D reaction rate,
but the resulting expressions agree up to numerical prefac-
tors. These authors also showed that the size dependence of
the mixed capture numberk,sr /ad2, and Ref. 22 provides
an interpolation formula between the limiting cases using a
continuum description. While the encounter rates and reac-
tion kinetics of random walkers decrease when the dimen-
sionality of the random walk changes from three to one, the

diffusivity does not, since the mean squared displacement of
a random walk ofN steps of lengthl is kRsNd2l= l2N inde-
pendent of dimensionality.

Note that these encounter rates are derived under the as-
sumption of collisions with a stationary target. The case of
several colliding 1D random walkers becomes equivalent to
a 3D random walk because, from the rest frame of a given
walker, the other walkers appear to be executing a 3D ran-
dom walk. This case would be relevant for describing the
collisions of interstitials with each other, but not with the
vacancies or sinks.

Inserting these encounter rates into Eqs.s1d, assuming
mixed 1D/3D encounter for diffusing interstitials, yields rate
equations of the form

dni

dt
= sF − ninvskv

ÎbDi/a
2 − kiDv/a

2d − kisnsni
ÎbDi/a

2,

s4d
dnv

dt
= sF − ninvskv

ÎbDi/a
2 − kiDv/a

2d − kvsnsnvDv/a
2,

whereb=gra
2/Di is a dimensionless ratio that describes the

relative frequency of dumbbell rotations and diffusional
hops.

C. Simple scaling analysis

We now specialize these results to the common case of
bcc metals, wheregra

2/Di !1 and Di /Dv@1. Before per-
forming the kMC simulations and solving the full rate equa-
tions numerically, it is instructive to analyze the limiting be-
haviors of this system.23 Inititally, there are no defects in the
metal, and only the first term in the rate equations is impor-
tant. In this regimesregime Id, defect densities increase lin-
early with time,

ni
I = nv

I = sFt. s5d

Once a sufficient density of defects has been produced
such that the encounter times between defects becomes
smaller than the time between creation events, loss through
recombination ssecond and third termsd becomes
important.24 As we shall see below, typical parameter ranges
lead to a situation in which defect recombination becomes
important before sink loss. The balance between creation and
recombination makes a steady state possible:dni /dt
=dnv /dt=0. Ignoring the sink terms, one readily finds for
this regime II

ni
II = nv

II = Skv
ÎbDi + kiDv

sFa2 D−1/2

, G−1/2, s6d

which only depends on the dimensionless ratioG=sÎbDi

+Dvd /sFa2. The crossover from regime I to regime II occurs
at time tI/II =FstI/II .G−1/2, i.e., tI/II ,ni

−1sDi /a
2d−1. Note that

this scaling regime is bound from above by the following
condition: if nv becomes so large that the time between
interstitial-vacancy encounters is on average shorter than the
time between two subsequent rotationssi.e., if G,b−1d, the
scaling of the encounter time becomes that of a 1D random
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walk. In this case, the scaling of the steady–state defect den-
sity with G changes fromni

II =nv
II ,G−1/2 to ni

II =nv
II ,G−1/3.

This regime is unlikely to be of experimental relevance.
Eventually, loss through sinks becomes important and the

steady–state regime II ends. Clearly, there exists a terminal
steady statessee belowd in which all loss terms in Eqs.s1d
balance the creation of defects. IfDi @Dv as in the bcc metal
case, however, the system will initially lose mostly intersti-
tials and very few vacancies. This breaks the symmetry be-
tween interstitials and vacancies andnv@ni. The second
steady state is, therefore, reached through a transient regime
III with distinct scaling. Subtracting the two rate equations
sand neglecting vacancy loss at sinksd,

dsnv − nid
dt

.
dnv

dt
= kisns

Îb
Di

a2ni , s7d

wherens denotes the sink density. This equation allows us to
eliminateni in the rate equation fornv, so that

dnv

dt
. sF −

kvnv

kisns

dnv

dt
. s8d

Integrating Eq.s8d, we obtainsto leading orderd power-law
growth of nv with time,

nv
III . sksnissFt/kvd1/2. s9d

In the case of extremely large sink densitiesns, the encounter
ratesvis between interstitials and sinks would not be 3D as
assumed above, but 1D-like. In this case,ns would have to be
replaced byns

2, but again, such high densities are unrealistic.
The crossover timetII/III between regimes II and III can be
obtained from the conditionG.kisnssFtII/III /kv, which im-
plies tII/III ,skv /kisnsd1/2/ sDi /a

2d. The crossover occurs at
constant time, independent of the defect densities.

If there are only sinks for interstitials and no sinks for
vacancies, regime III will simply continue. In all other cases,
a final steady state will occur when all loss terms are impor-
tant. Setting againdni /dt=dnv /dt=0 as in Ref. 19, we obtain
a condition for steady state,

nv
IV

ni
IV =

ÎbDi

Dv
=

kis

kvs
aÎb, s10d

where we have introduced a third dimensionless ratioa
=Di /Dv. The interstitial and vacancy populations will, in
general, be different. The steady state values are the roots of
the quadratic equation

snv
IVd2 kvsG

kisaÎb
− nv

IV kvsnsDv

sFa2 = 1. s11d

Since typicallyns!1, the linear term can be neglected rela-
tive to the quadratic term, and we obtain the scaling of the
vacancy density in regime IV,

nv
IV , S G

aÎb
D−1/2

. s12d

The crossover timetIII/IV follows again from the condition
kisnssFtIII/IV /kv.sG /aÎbd−1, i.e., tIII/IV ,saÎbkv /kisnsd1/2/
sDi /a

2d is again independent ofni or nv.

The volume swelling is proportional to the excess va-
cancy population in this regime,S=nv−ni. Note that the im-
balance arises here due to the very different diffusivities of
the two types of defects. Upon termination of the irradiation,
both theni andnv populations would relax exponentially to
zero in this simple model.

D. Numerical integration and kMC

A full solution of the rate equationss1d is only possible
numerically. In the following, we show a series of such nu-
merical and kinetic Monte Carlo simulation results for a rep-
resentative choice of parametersDi =1000Dv, gr =0.01Di /a

2,
so thata=1000 andb=0.01 ssee Sec. V for typical experi-
mental regimesd. In addition, we set the density of sinks to
ns=10−4. Figure 1 shows the evolution of the average inter-
stitial and vacancy densityssymbolsd based on the above
parameters obtained from the kMC simulation and numerical
integration of the corresponding rate equationsssolid linesd
using the expression Eq.s3d for the mixed encounter rates.
The dimensionless parameterG was varied by changing the
defect creation rateFs. As predicted by the scaling analysis,
four distinct regimes appear with increasing time. After first
rising linearly with time sregime Id, ni and nv reach the
steady–state plateau of regime II. Once loss through sinks
becomes importantsregime IIId, nv increases ast1/2 while ni
decreases. Finally, all curves reach the steady-state regime
IV, where ni andnv are given by Eqs.s10d and s11d. At the
highest defect densities, the kMC simulations were not car-
ried out into the final steady–state regimes, because the com-
putational effort becomes very large.

Excellent agreement between continuum theory and kMC
model for the three largest values ofG is achieved by adjust-
ing all capture numbers to a single numerical constant. In the
simple situation examined here, kMC and rate theory are
completely equivalent. Since we have usedv1D/3D in the rate
equations, this agreement also validates the scaling argument

FIG. 1. Self-interstitialsjd, ni, and vacancysLd, nv, densities
as a function of time forG=102,103,104,105, and 106 sG increases
from the top to bottom of the figured. Time is measured in units of
the inverse interstitial hopping ratea2/Di. The solid lines show the
result of direct numerical integration of Eqs.s1d with kv=ki =kis

=kvs=21, and the symbols correspond to the results of the kMC
simulations in a periodic simulation box. The straight solid lines
have slope 1 and 1/2.
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for the mixed 1D/3D encounter rate. For the two smallest
G-values, we observe increasing discrepancies between rate
equations and kMC. As discussed above, we expect a transi-
tion from the mixed 1D/3D encounter ratesviv to 1D domi-
nated encounter kinetics when the interstitial density be-
comes so high that they typically collide with vacancies or
sinks before rotatingsG,100d. This transition is not faith-
fully reproduced by the rate theory which assumes only the
limiting cases of either 1D or mixed 1D/3D encounter rate
scaling, but is properly captured by the kMC which includes
explicit 1D/3D trajectories.

Note also that with increasingG, regime II begins to
shrink and regime I crosses over directly into regime III.
This happens because as the defect densities decrease below
the sink density, point defect loss at sinks will become domi-
nant before recombination plays a significant role. Since the
crossover timetI/III .ksns/kvsF only depends on the point
defect production rate, a further decrease of the production
rate will eventually lead to a direct crossover from regime I
to regime IV. A smaller sink density would push the appear-
ance of regimes II and III to higher values ofG.

III. VACANCY CLUSTER FORMATION

A. Irreversible aggregation

To this point, we have neglected interactions between va-
cancies. Experimental vacancy–vacancy binding energiesEb
can be of order the single vacancy migration energy. This
suggests that it is not unreasonable to expect vacancies to
form stable clusters or microvoids once they meet. A rela-
tively simple approximation for this situation is to consider
the limiting case of “irreversible aggregation,” which ne-
glects any dissociation of a vacancy from a cluster and thus
setsEb=`. The realistic situation, which includes finite bind-
ing energies, can be viewed as an intermediate case between
irreversible aggregation and the case ofEb=0 of the previous
section.

In the “irreversible aggregation” model, vacancies bind to
form stable divacancies, leaving the population of free va-
cancies, while interstitials recombining with a divacancy rec-
reate a single mobile vacancy. Stable cluster grow or shrink
under the influence of arriving vacancies and interstitials.
Denoting the number density of clusters of sizem asncsmd,
we can write the following set of rate equations:25

dni

dt
= sF − kivvinv − Skvviv + kisvis + o

m

ki
mvicsmdDni ,

dnv

dt
= sF − Skivvi + kvsvvs + o

m

kv
mvvcsmd − 2kvvvvDnv

− skvviv − ki
2viss2ddni ,

dncsmd
dt

= skv
m−1vvcsm−1d − kv

mvvcsmddnv + ski
m+1vicsm+1d

− ki
mvicsmddni , s13d

wherenv;ncs1d is now understood to refer to the free va-

cancy densitysor cluster of size 1d. The additional terms in
the equations for the evolution ofni and nv account for
interstitial/vacancy-cluster encounters, vacancy/vacancy-
cluster encounters, vacancy-cluster nucleation, and diva-
cancy decomposition. vicsmd=ncsmdÎbDi /a

2, vvcsmd
=ncsmdDv /a2, and vvv=nvDv /a2 denote the corresponding
encounter rates. The last expression ins13d describes the
evolution of stable, immobile vacancy clusters of sizem
.1 due to the diffusive arrival of interstitials and vacancies.
The hierarchy of rate equationss13d is, in principle, ame-
nable to a semianalytical treatment via numerical integration,
if all constantski/v

m are specified. However, such a solution
requires termination of the set of equations at a finite cluster
size mmax, i.e., one imposes a boundary conditionncsmmaxd
=0. The corresponding kMC model does not require anyad
hoc assumptions and takes all these processes naturally into
account.

Before examining this model in kMC, we can draw some
premliminary conclusions. In regime I, only nucleation of
divacancies will be important. Since here the vacancy den-
sity grows linearly with time, we predict the scaling regime

ncs2dI , ssFtd3. s14d

The divacancy density grows cubically with time. In the
steady-state regime II, the vacancy cluster density is slaved
to the free vacancy density and, therefore, is constant as well.
For a@1, we expect the total cluster densitync=omncsmd to
be much smaller thannv andni, so that the presence of va-
cancy clustering does not yet strongly alter the interstitial
and vacancy population. Using Eq.s6d, we find

nc
II . G−1/2/saÎbd. s15d

Once past regime II, the cluster density will begin to rise
again asnv increases.nv will then increasingly fall below the
total number of vacancies in the systemnvtot, because in-
creasing numbers of vacanciesom.1mncsmd become immo-
bilized in clusters. These clusters act as additional sinks for
the diffusing vacancies, but do not remove them from the
system. The higher the cluster density, the smaller the loss of
vacancies through sinks and interstitial recombination. We
therefore expect that regime III will extend to larger times
and the presence of the immobile vacancy cluster delays the
onset of the final steady-state regime IV.

For the total number of vacanciesnvtot, we can write the
rate equations as

dnvtot

dt
= sF − kivvinv − o

m=1
ki

mvicsmdni ,

s16d
dni

dt
= sF − kivvinv − So

m=1
ki

mvicsmd − kisvisDni ,

where we have neglected vacancy loss at sinks. This is the
regime III situation discussed earlier. Subtraction of Eqs.
s16d and elimination ofni, as in Eq.s8d, leads to

POINT DEFECT DYNAMICS IN bcc METALS PHYSICAL REVIEW B71, 064109s2005d

064109-5



dnvtot

dt
. sF −

kv

kisns

dnvtot

dt o
m=1

ki
m

kv
ncsmd. s17d

At relatively early times, when only small clusters are
present,om=1skm/kvdncsmd.nvtot and nvtot will initially in-
crease asnvtot,skisnssFtd1/2. The subsequent behavior de-
pends on the detailed form of the capture numberskis.

In the absence of vacancy clustering, regime III ends
when the vacancy density has become so large that vacancy
loss through sinks balances interstitial loss through sinks.
This condition, Eq.s10d, must hold for a final steady state to
appear. In the present simple model, this condition depends
only on the ratio of the diffusivities, but in a real system, Eq.
s10d also depends on sink concentrations and capture num-
bers, which may be different for interstitial and vacancies.
Eventually this condition can also occur as a result of va-
cancy clustering, because vacancy clusters act as additional
sinks for the interstitials and remove them symetrically from
the system. At high cluster densities, the low mobile vac-
ancy concentration can therefore be compensated. In the
steady-state regime IV, we expect the hierarchyni

IV ,nv
IV

,nc
IV ,nvtot

IV . Because of the later entry into regime IV,S
=nvtot−ni sthe total amount of volume swellingd will be
larger than in the absence of clustering.

In regime IV, we can obtain an approximate scaling rela-
tion for the total cluster density. The density is determined by
the competition between nucleation of clusters out of the
vacancy gas and decomposition of divacancies due to arriv-
ing interstitials. Denoting the fraction of clusters that repre-
sent divacancies asf, we can write the rate equation

dnc
IV

dt
= kvnv

2Dv/a
2 − fstdki

2nc
IVni

ÎbDi/a
2, s18d

which implies nc
IV =kvnv

2/ fki
2aÎbni =kvnv / fk2, where we

have used Eq.s10d. The cluster density is therefore of order
of the free vacancy density with a numerical prefactor that
depends on the mean cluster size.

1. Average cluster density

The effect of irreversible vacancy aggregation on the de-
fect dynamics as seen through kMC is shown in Fig. 2 for
three values ofG=105, G=107, and G=109 with all other
parameters as before. In this figure, we also plot the total
cluster densitync and the total vacancy densitynvtot. In re-
gimes I and II,nc and ni are nearly unchanged. The defect
densitync rises first,t3 and then remains constant during
regime II as discussed above. In regime III,nv begins to fall
below the result from Fig. 1 because of trapping of vacancies
into clusters. At the same time,nvtot rises with an idealt1/2

law, and regime III extends to larger times.nc also rises
again due to new cluster nucleation events out of the vacancy
gas. All quantities reach constant values in regime IV. As one
might expect, the total number of vacancies in the system is
higher than in the absence of clustering. However, the gen-
eral sequence of regimes remains unchanged.

In order to gain additional insight into the growth dynam-
ics, we also numerically integrate the full set of rate equa-
tionss13d ssolid lines in Fig. 2d. This requires specification of

the capture numberskm. In the simplest mean field model for
nucleation dynamics, the capture numbers do not depend on
cluster sizem and ki,v

1 =ki,v
m =const si.e., the point cluster

modeld. Interestingly, we find surprisingly good agreement
between the rate equationsssolid lines in Fig. 2d and the full
kMC simulations when using this simple approximation.
This suggests that for relatively smallm, km is only very
weakly size dependent. The rate equations faithfully repro-
duce the sequence of regimes, but begin to show deviations
at late times when larger clusters become more prominent
and the point cluster assumption is no longer accurate. Here,
km begins to show some size dependence. The success of this
comparison shows, however, that a mapping between kMC
and rate equations is possible even with void nucleation and
growth if thekm’s are accurately parametrized.

FIG. 2. Interstitial densitiesni sjd, free vacancy densitynv sLd
as well as the total vacancy densitynvtot s* d and vacany cluster
densitync smd as a function of time forsad G=105, sbd G=107, and
scd G=109. The thin solid lines show the result of direct numerical
integration of Eqs.s13d with ki

m=kv
m=25 and ammax=20 ssee textd.
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Note that in the present model, the volume swelling rate
dS/dt is zero in regime IV. This is possible because we have
chosen the same capture radiiks for the sinks for both inter-
stitials and vacancies, i.e., the sinks are symmetric with re-
spect to defect type.S, t would be valid, if, for example, the
capture radius for interstitials is larger than that for vacan-
cies. This situation can arise with the introduction of dislo-
cation sinkssknown as “dislocation bias”d and has been in-
voked to explain unusually large swelling ratesssee also Sec.
VI d at times later than considered here.8,9

2. Cluster size distribution

A full description of the evolution of the point defects in
the material includes a characterization of the cluster size
distribution. The growth of these clusters is the result of the
diffusive arrival of interstitial and vacancy defects at already
nucleated clusters. The full dynamics of this process is de-
scribed by the last equation ins13d. Consider this equation in
the following simplified notation:

dncsmd
dt

= nvfkv
m−1ncsm− 1d − kv

mncsmdgDv/a
2

+ nifki
m+1ncsm+ 1d − ki

mncsmdgÎbDi/a
2. s19d

If ni and nv change very slowly in time, the distribution
ncsmd is given by the steady–state solution to Eq.s19d, i.e.,
dncsmd /dt=0. This equation is supplemented by the detailed
balance condition

nvkv
mncsmdDv/a

2 = niki
m+1ncsm+ 1dÎbDi/a

2, s20d

which should also hold formù2. From this condition, we
can deduce the distributionncsmd by induction. Sincenv
;ncs1d, we havencs2d=nv

2k1/ ski
2aÎbnid and consequently

for all m.1,

ncsmd =
nv

m

saÎbnidm−1

pl=1

m−1
kv

l

pl=2

m
ki

l
. s21d

Equations21d is tested against the kMC results in Fig. 3,
where we show the cluster size distributions at four different
times. All curves fall along straight lines in a semilogarith-
mic plot, and the slope decreases with increasing mean clus-
ter size. A comparison with Eq.s21d requires, again, knowl-
edge of the capture numberskm. As in the preceding section,
use of the point cluster approximationki,v

l /ki,v
1 =1 yields ex-

cellent agreement between the kMC data and Eq.s21d upon
inserting the values fornistd and nvstd at the appropriate
times.

Note that the distributions shown in Fig. 3 are not peaked,
i.e., the frequency with which different clusters appear de-
crease with increasing cluster size and single vacancies occur
most frequently. This situation is in sharp contrast to other
cluster growth situations as, e.g., found in submonolayer is-
land growth during vapor deposition,26 where the distribution
ncsmd peaks at the mean cluster sizekml. In this problem,
however, clusters cannot shrink, since interstitials are absent.
One expects Eq.s21d to hold as long as the assumption of
quasistationary values forni andnv is valid.

B. Reversible attachment

The above discussion immediately raises the question of
whether the results forncstd and its size distribution Eq.s21d
survive in the more realistic situation of reversible cluster
growth, i.e., vacancies have a finite probability to attach to
and to leave the cluster. Let us introduce “detachment rates”
from a cluster of sizem, gdetsmd /a2 for all vacancies, inde-
pendent of their local environment. Equations19d needs to
be generalized by the addition of two terms,

dncsmd
dt

= nvfkv
m−1ncsm− 1d − kv

mncsmdgDv/a
2

+ nifki
m+1ncsm+ 1d − ki

mncsmdgÎbDi/a
2

+ fkd
m+1ncsm+ 1d − kd

mncsmdggdetsmd/a2, s22d

wherekd
m represent “detachment numbers” in analogy to the

capture numberski,v
m . Consequently, the condition for de-

tailed balance now reads

kv
mnvncsmdDv/a

2 = ki
m+1nincsm+ 1dÎbDi/a

2

+ kd
m+1ncsm+ 1dgdetsmd/a2 s23d

and Eq.s21d generalizes to

ncsmd =
pl=1

m−1
kv

l nv
m

pl=2

m
fki

laÎbni + kl
da8smdg

, s24d

wherea8smd=gdetsmda2/Dv. We see that the general form of
the distribution is the same, but the prefactor changes due to
the additional growth and shrinkage probabilities. From a
statistical point of view, interstitial arrival and vacancy de-
tachment are equivalent. Equations24d can be easily evalu-
ated for any functional form of the size-dependent capture
numbers and detachment rates. In the point cluster approxi-
mation, where allki,v,d

m /ki,v,d
1 =1 anda8=a8smd is size inde-

pendent, it predicts an exponential distribution as in the case
of irreversible attachment,

FIG. 3. Plot of the cluster size distributionncsmd found from the
kMC simulations withG=105 of Fig. 2sad at four different times
tDi /a

2=33104 sjd, 33105 sld, 33106 s* d, and 33107 smd in
regimes III and IV. The straight lines correspond to
nvstdm/ faÎbnistdgm−1.
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ncsmd =
nv

m

saÎbni + a8kd
1/ki

1dm−1
. s25d

Figure 4 presents a numerical investigation of reversible
vacancy cluster growth using kMC. Although detachment
rates may be cluster size dependent in general, we only in-
troduce one size-independent rategdet/a

2=0.01Dv /a2 for va-
cancy detachment for simplicity. This model would be most
relevant for faceted cluster shapes with one dominant detach-
ment rate from the faces. The other parameters are that of
Fig. 2. We see in Fig. 4sad that the cluster density behaves in
a qualitatively similar manner as in the irreversible case, but
nc is reduced and the final steady state is reached at earlier
times. As in the irreversible case, the cluster size distribution
ncsmd shown in Fig. 4sbd is well described by Eq.s25d. The
present discussion is of course only relevant when void
coarsening can be neglected.

IV. INTERSTITIAL INTERACTIONS

One of the fascinating aspects of point defect dynamics in
bcc metals is the high mobility of interstitial clusters.27 The

interaction between single interstitial atoms is even stronger
than that between vacancies, and the interstitial clusters, such
as dislocation loops,28 are stable at all relevant temperatures.
Unlike the immobile vacancy cluster, however, the intersti-
tial cluster migrate easily for clusters with up to 50 or 100
interstitial atoms.16,29We now modify the preceding analysis
to account for this behavior.

In this analysis, we return to the irreversible aggregation
limit, i.e., interstitials never separate after encounter. This
implies a reduction of the density of mobile interstitials due
to nucleation of interstitial clusters, i.e., interstitials act as
sinks for other interstitials. However, this creates a popula-
tion of larger clusters with a larger cross section and eventu-
ally larger capture numbers. The reaction kinetics will be
affected by the competition of these two effects.

The rate equationss13d can now be expanded to include
terms representing the above processes, but become even
more complex. In our kMC model, we begin by studying the
effect of interstitial cluster formation by considering com-
pletely immobile interstitial clusters in complete analogy to
the vacancy cluster. This situation is rarely realistic, but pro-
vides an upper bound on the magnitude of the effects. Figure
5 shows the evolution of the free interstitial and vacancy
densities as well as the interstitial and vacancy cluster den-
sities for the same parameters as before. As expected, the
immoblization of interstitials increases the total number of
vacancies in the system. In the final steady state,nvtot is
about three times as large as in the situation in Fig. 2. The
interstitial clusterssopen squaresd nucleate earlier than the
vacancy cluster, but their density later drops below that of
the vacancy clusters, since the single interstitial density is
much lower than the single vacancy density.

The situation in Fig. 5 can be favorably contrasted with
that of completely mobile interstitial clusters, i.e., the cluster
diffuse with the same rates as the single interstitials regard-
less of their size. This case is again not fully realistic, since
interstitial clusters seldom rotate into otherk111l directions
once they contain several interstitialssi.e., they diffusive one
dimensionally29,30d. For small clusters, however, the com-
pletely mobile interstitial cluster case represents a good ap-

FIG. 4. sad Interstitial densityni sjd, free vacancy densitynv
sLd as well as the total vacancy densitysmd and vacancy cluster
densitync s* d as a function of time forG=105, and 107 for revers-
ible aggregation, whered=0.01.sbd Cluster size distributionncsmd
for the case ofG=105 at four different times in regimes III and IV.
The straight lines correspond tonvstdm/ faÎbnistd+kd

1/ki
1a8gm−1

with kd
1/ki

1=0.25.

FIG. 5. Interstitial densitiesni sjd, free vacancy densitynv sLd,
total vacancy densitynvtot smd, vacany cluster densitync s* d, and
density of immobile interstitial clustershd as a function of time for
G=106.
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proximation. Figure 6 shows the corresponding results for
the various densities introduced above. As in the case of
immobile interstitial clusters, the mobile interstitial cluster
density first rises due to nucleation events. However, the
highly mobile interstitial clusters also collide with the sinks,
and the cluster density decreases rapidly. Since the free in-
terstitial density also declines, nucleation events become
rare. Once steady state has been achieved, the interstitial
density has become so low that the nucleation of new inter-
stitial clusters due to diffusion is almost completely absent.
Consequently, the vacancy densities and the total swelling
rates are the same as for the case of noninteracting intersti-
tials.

V. APPLICATION TO VANADIUM AND IRON

In this section, we apply our model to the V anda-Fe
cases. Vanadium is particularly interesting, because here the
effect of mixed 1D/3D diffusion is most pronounced. First
principles calculations and classical MD simulations of V
have yielded estimates ofDEi =0.018 eV,5 DEr =0.44 eV,5

andDEv<0.5 eV.4 For Fe, the different ground state of the
self-interstitialsk110l instead ofk111ld leads to a higher ef-
fective activation barrier for 1D migration,DEi, which
ranges between 0.12 eVsRef. 30d and 0.17 eV.29 The rotation
barrier was estimated asDEr =0.16 eV,29 and the vacancy
migration energy is assumed to be of the same order16 as in

V sthe prefactors for all processes tend to vary by less than
an order of magnituded. One therefore expects that the self-
interstitial trajectories ina-Fe will be much more isotropic
than in V.

The two metals are best compared in terms of the relevant
dimensionless parametera , b, and G. Table I summarizes
the values for these quantities using the above energy barri-
ers and the production rate for ion irradiationsF=10−3 s−1

for two representative temperaturesT=300 K and T
=600 K. We first note thatG is typically larger than 1010 and
would in fact reach 1020 when typical production rates for
neutron irradiation are used. A kMC simulation with such
large values ofG would require very long simulation times,

TABLE I. Dimensionless parametersa=Di /Dv, b=gr /Di, G
=sÎbDi +Dvd /sF, anda8=aÎb for V and Fe at 300 and 600 K.

V, 300 K V, 600 K Fe, 300 K Fe, 600 K

a 108 104 106 103

b 10−8 10−4 100 100

G 1011 1013 1011 1013

a8 104 102 106 103

FIG. 7. Interstitial, vacancy, interstitial cluster, and vacancy
cluster densitiesssymbols as in Fig. 5d with parametersa8=102,
ns=10−5, for sad G=109, sbd G=1011, andscd G=1013 representative
for V or a-Fe at 600 K. Thin solid lines show the result of numeri-
cally integrating Eqs.s13d again forkm=25 andmmax=20. The solid
lines have slope 1 and 1/2, respectively.

FIG. 6. Interstitial, vacancy, interstitial cluster, and vacancy
cluster densities forG=105 andG=107 ssymbols as in Fig. 5d. In-
terstitial clustersshd diffuse and rotate with the same rate as single
interstitials. The interstitial cluster density first rises due to nucle-
ation events, but then rapidly drops as mobile clusters collide with
sinks.
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since diffusion and recombination occur much more often
than the introduction of new defects. It also requires large
system sizes, because the defect densities become very small.
In addition, the very small value ofb implies very long 1D
segments of the interstitial trajectories between rotations.
The period of the kMC simulation box should be several
times larger than the typical length of those segments in or-
der to properly reproduce the continuum theory values of the
encounter rates. If the box period is much smaller than the
1D segment, the trajectory will wrap around the box many
times, but is not necessarily space-filling.

The last of these issues can be addressed by using a result
from Sec. II, where we showed that the mixed 1D/3D en-
counter rates scale like the ideal 3D rates that are reduced by
a factor Îb. We can therefore replace the explicit 1D/3D
trajectories of the interstitials and interstitial cluster with
ideal 3D random walks, but reduce the hopping rate by a
factor of Îb. This procedure leaves the reaction kinetics in-
variant sup to small corrections from the capture numbersd
and implies that the effective ratio of time scales between
interstitial and vacancy migration is given bya8=Di

Îb /Dv
=ÎDigr /a

2. Interestingly, this ratio is very similar for both V
and Fe at 300 and 600 Kssee Table Id, even though the
values ofa andb are very different. At a given temperature,
the self-interstitial trajectories ina-Fe are much more isotro-
pic than in V, but the encounter rates with vacancies and
sinks only depend on the product of diffusivityDi and rota-
tion rategr. Within the present model, one therefore expects
that the point defect reaction kinetics in these two metals is
very similar.

In Fig. 7, we use a ratio of timescales representative for
V/ a-Fe atT=600 K and show results forG=109, G=1011,
andG=1013. Here, we have multiplied the time axis with the
production rate, which is a more convential presentation of
the data in experimental studies. Rescaled by the production
rate, all curves initially coincide and start out with near-
constant slopes. For the present parameters, regime II is
practically absent, and the vacancy density crosses over im-
mediately from regime Iswhere it rises linearly with dosed
into regime III. The crossover dose is roughly constant and
depends on the sink density. Note that the growth ofnvtot in
regime III is well described by assFtd1/2 power law over
several decades before the final steady-state regime IV is
reached. Since the onset of regime IV is independent of time
ssee Sec. IId, larger values ofG push the beginning of steady
state to smaller doses. Here, steady state is reached at about
1 dpa forG=109 and earlier forG=1011 andG=1013. There
is some initial nucleation of interstitial clusters atG=109, but
as discussed before, all of these rapidly disappear due to fast
collisions with sinks. For higher values ofG, the interstitial
cluster density becomes negligibly small.

In the same figure, we also show the predictions of a
numerical integration of the full set of rate equationss13d
using the point cluster modelssize independent capture num-
bersd. As in Fig. 2, the agreement with the “exact” kMC
simulation is satisfactory. Since the computational effort for
direct kMC simulations forG.1010 becomes tremendous,
the rate equation approach, when properly parametrized, is
clearly preferable.

VI. CONCLUSIONS

We have studied the early-time evolution of point defect
populations with specific reference to migration mechanisms
in bcc metals under constant irradiation conditions. Only
very simplified models that incorporate the most important
processes were employed in order to identify the rate-
limiting events. These models were solved using scaling ar-
guments, direct numerical integration of kinetic rate equa-
tions and full kMC simulations.

In the simplest case, which only considers homogeneous
defect production, recombination, and sink absorption, but
no interactions between defects of the same type, the kMC
model and the corresponding rate equations were shown to
be in near perfect agreement. We employed simple random
walk arguments to derive a mixed encounter rate that de-
scribes one-dimensional diffusion with occasional rotations.
This encounter rate scales linearly with target density as the
isotropic 3D encounter rate, but is reduced by the square root
of the ratio of rotation rate and hopping rate. As in Ref. 23,
four distinct scaling regimes for the point defect density with
time were identified. First, the point defect densities increase
linearly in time due to productionsregime Id, then saturate as
defect recombination sets insregime IId. Sink absorption
then begins to reduce the interstitial density and the vacancy
density grows in time with a characteristic,t1/2 behavior
sregime IIId. A final steady statesregime IVd is reached when
all loss processes are taken into account. The full sequence
of regimes I–IV is most visible when the production rate is
not much smaller than the interstitial hopping rates. Regimes
II and III shrink with decreasing production rate, and in the
limit of very small production rates, regime I crosses over
directly into regime IV. These results were based on param-
eters typical for bcc metals, but the continuum level reaction
kinetics equally applies to fcc metals or other crystal struc-
tures provided they exhibit similar diffusion mechanisms.

The introduction of vacancy reactions to form immobile
vacancy clusters does not change the general sequence of the
scaling regimes, but has a profound effect on the population
dynamics. In steady state, the density of free vacancies and
interstitials is reduced relative to the noninteracting case, but
the total number of vacanciesnvtot is enhanced. In regime III,
nvtot, t1/2, and the steady–state regime IV is reached at later
times. Reasonable agreement between rate equations and
kMC could still be achieved in a point cluster approximation,
where the capture numbers are size-independent. Of particu-
lar interest is the size distribution of vacancy clusters, which
grow and shrink under the diffusive arrival of interstitials
and vacancies. For irreversible vacancy aggregation, we de-
rived a new expression for the cluster size distribution,
ncsmd=k1nv

m/kmsaÎbnidm−1. The general form of this distri-
bution remains when also allowing vacancy detachment from
the cluster.

Immobile interstitial clusters were shown to further in-
crease the vacancy population. However, interstitial clusters
that are as mobile as single interstitials decay rapidly in rel-
evant parameter regimes. We therefore expect that nucleation
of interstitial clusters through diffusion plays a negligible
role in the microstructural damage evolution of pure bcc
metals. It can become important, however, if trapping of self-
interstitials near impurities occurs.
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Because of their importance in applications and the avail-
ablitity of detailed molecular dynamics studies, we applied
the model for parameters suitable for V anda-Fe. Within our
model, both metals exhibit similar defect kinetics and there-
fore similar swelling rates at a given temperature. For pro-
duction rates and diffusivities in typical experimental situa-
tions, our calculations revealed a sequence of growth
regimes for the total vacancy densitynvtot, t1, , t1/2, and
,t0. The volume swelling rate follows the same scaling se-
quence in the sub-1 dpa regime. Interestingly, growth of the
vacany cluster density as,t1/2 over several decades in time
has been observed in the much more detailed kMC simula-
tion of Ref. 16, but the origin of this growth law had not
been identified. All our simulations reach the steady–state
regime at damage levels of less than 1 dpa. In the experi-
mentally relevant regime of damage levels between 1 and
100 dpa, it will therefore be more efficient to use steady–
state rate equations rather than explicit kMC to predict the
long time point defect distribution evolution. Nonetheless, it
is important to understand the onset of damage evolution and
the conditions of applicability of the steady–state theory.

The fact that experimental swelling rates of V anda-Fe
are very different is of course an indication that our present
model does not yet include all relevant phenomena of radia-
tion damage. One obvious refinement of the models devel-
oped here would be a more detailed parametrization of the
detachment ratessbinding energiesd of interstitial and va-
cancy cluster. However, the intent of the present study has
been to focus on general trends rather than quantitative com-
parisons with experiments, and no new physics is expected
to appear from these additional details. For cascade damage

conditions,31 however, two other processes not included in
this study are known to have a crucial impact on the defect
evolution sin particular void swelling ratesd. Frenkel pair
production is only assumed to be homogeneous for energies
right above the displacement threshold, while higher energies
lead to the formation of mobile interstitial and immobile va-
cancy clusters during the cascade phase. Our present model
is therefore most relevant to low particle energies. Inclusion
of intracascade clustering processes will change results
qualitatively and quantitatively, but requires reliable infor-
mation about the cluster size distribution during cascades
from MD simulations.

In addition to this “production bias,” “absorption bias”
also usually exists in bcc metals. “Absorption bias” leads to
a preferred absorption of self-interstitials at sinks and is
known to be an essential driving force for swelling. The
origin of this bias, which leads to increased capture numbers,
are long range elastic interactions between point defects and
sinks such as dislocations32,33 or grain boundaries.34 Exten-
tions of the model to include these effects should provide a
fruitful topic for future work. The combination of kMC and
rate theory can then be used to determine which parameters
are most important in radiation damage, so that atomistic
simulation resources can be better focused.
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