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Shock waves have been simulated by molecular dynamics in the cubic Laves phase C15, in related Frank-
Kasper-typesAlCudLi quasicrystals, and in an amorphous solid of the same composition and potential param-
eters. The goal of this study was to generate shock waves in periodic and aperiodic structures and to compare
their behavior. The expectation was that new types of defects would show up in aperiodic materials. Three
regimes are observed in the Laves phase: at low shock wave intensity the system reacts elastically, at high
intensities it turns disordered. In the intermediate region the velocity of the elastic wave saturates and an
additional plastic wave appears. Extended defects are created which form a network of walls of finite width.
The crystallites in between are rotated by the shock wave. If the samples are quenched a polycrystalline phase
is obtained. The size of the grains decreases with increasing shock wave intensity until complete fragmentation
occurs in the third regime. The behavior of the quasicrystal models is similar, except that there is a continuous
transition from a quasielastic behavior to the plastic regime. Ring processes are observed which break up into
open paths when the shock wave energy grows. The transition to a complete destruction of the structure is
continuous. In the amorphous solid a linearus−up relation is found over the whole range of piston velocities.
Two regimes are present, with unsteady plastic waves at weak shock strengths and steady waves in the range
coinciding with the upper regime in the ordered structures.
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I. INTRODUCTION

Shock wave experiments and simulations are valuable
tools to expose a solid to strong uniaxial stress and to intro-
duce defects without explicitly constructing them. Defects
generated by shock waves have been studied in monatomic
crystals to some depth.1–4 The shock stress relaxes to an
energetically more favorable hydrodynamically compressed
state, for example, by slippage or phase transformations. Of-
ten stacking faults are created which permit a direct detection
of the slippage.

For an ordinary crystal structure it is rather easy to con-
struct slip planes and stacking faults and to analyze them.
This is not the case for quasicrystals. If geometric construc-
tions are used, complicated and rather arbitrary procedures
have to be carried out to create, for example, dislocations and
associated extended defects. These problems may be avoided
if shock waves are studied: Now the structure itself selects
the defect planes and the Burgers vectors. A drawback may
be that most often high-energy defect structures are created,
which may not be representative for slow deformations and
low-energy plasticity.

The first goal of the present study was to find out whether
quasicrystals behave differently than other materials if they
are penetrated by shock waves. Many real metals and alloys
as well as fcc model crystals with Lennard-Jones interac-
tions, if shocked along thek100l direction,1 show a rather
universal behavior with respect to the shock front velocity.
The same is true for quasicrystals, binary crystals, and binary
amorphous solids in the case of strong shock waves. For
weak shock waves a deviation is observed due to elastic
precursor effects. A similar deviation has been found recently
for fcc crystals1 along thek110l and thek111l directions.

The second goal was to find out if new kinds of defects
occur in the quasicrystal. According to Holian,5 a real shock

wave in a crystalsas opposed to a very strong elastic waved
causes permanent plastic deformations, but with respect to
stability the supersonic elastic waves are also shock waves.
Often stacking faults are observed which are the trace of the
slippage. Twinning and martensitic deformations are also
very common. In quasicrystals all these defects are also al-
lowed but additional types of defects are possible: flips,
where a few atoms change to alternative sites, phason walls,
where after slippage the aperiodic sequence of lattice planes
does not fit anymore, or transformations to crystals and ap-
proximants. It turns out that in the models studied here the
defects which show up in the quasicrystals are indeed differ-
ent from those expected for monatomic crystals but that they
are similar to those in the closely related binary Laves crys-
tal. Weak shock waves merely cause elastic distortion
whereas strong shock waves destroy the structure com-
pletely. Therefore they both will not be studied in detail. We
will concentrate on the defect structures generated in the in-
termediate range.

The relation between the shock wave velocityus and the
piston velocityup is studied in detail for shock waves along
all major symmetry directions. The question of steadiness of
the wave profiles will be discussed. The defects accompany-
ing the transition from elastic to plastic behavior will be
described for the fourfold crystalline and the twofold icosa-
hedral direction. Further results have already been published
elsewhere.6–8

The influence of the ordered structure on the effect of
shock waves is addressed in a further study, where shock
waves in an amorphous material with the same composition
have been simulated. In contrast to the crystal and the qua-
sicrystal the Hugoniot curve is almost perfectly linear, but
there are also steady and unsteady waves.

The paper is organized as follows: We will start with the
simulation setup and the structure model. Next we will
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present the results: first the velocities of the shock waves,
then the description of the defects generated, separately for
the Laves crystals and the quasicrystals. The simulations of
the amorphous structures follow. The last section contains
the discussion of the results.

II. MODELS, INTERACTIONS, MOLECULAR DYNAMICS

A. Structure models

We start with the most simple structure models and ex-
pand them step by step. All structures, crystals and quasic-
rystals, belong to the close-packed Frank-Kasper type, which
means that a Delauney decomposition yields a space filling
of nonregular tetrahedra only.

The starting point is the C15 Laves phase. It is a periodic
arrangement of prolate rhombohedrasFig. 1, rightd. The
rhombohedra are decorated with small atomsslight grayd at
the corners and the mid-edge centers and with two large
atomssdark grayd along the body diagonal dividing it in the
ratio 3:2:3. To obey the cubic symmetry the rhombohedra are
slightly distorted with respect to the ones in the quasicrystal.
The large atoms generate a diamond structure, the small at-
oms form a corner-connected network of regular tetrahedra.
The edges of the rhombohedra are twofoldk110l axes, the
long body diagonal is a threefoldk111l axis. The short body
diagonals form thek100l direction which are no true fourfold
axes since the crystal symmetry isFd3m.

The next step is the TI model.9 It is a quasiperiodic ar-
rangement of prolate and oblate rhombohedrasFig. 1d on the
standard three-dimensional rhombohedron tiling.10 The pro-
late rhombohedron is decorated as before, but the large at-
oms now subdivide the body diagonal in the ratiot :1 :t,
with t the golden means1+Î5d /2. The oblate rhombohedron
contains only small atoms at the corners and mid-edge
centers.11 In the quasicrystal models the edges point along
fivefold axes, the face diagonals of the cells are twofold axes,
and the long body diagonal is a threefold axis. Thus the
orientation is different from the Laves phase!

The third step is the BI model.12 It has been created since
the TI model has two drawbacks: the oblate rhombohedra
form underdense and therefore unstable regions, and the sto-
ichiometry is wrong if real quasicrystals are to be described.
Therefore Henley and Elser13 modified the TI model by re-

placing compounds of two oblate and two prolate rhombo-
hedra wherever possible with a rhombic dodecahedronsFig.
2d. The outer hull of the compound and the dodecahedron are
identical, but in the interior four large and five small atoms
are replaced by usually eight large atoms which are placed at
the corners of a hexagonal bipyramid. Depending on the qua-
sicrystal modeledfsAlCudLi or sAlZndMgg the apex sites
slarge light gray atoms in Fig. 2d may be occupied by large or
small atoms. In the case considered here they are large at-
oms.

The fourth model is an amorphous solid which was gen-
erated from the Laves crystal by melting, equilibrating,
quenching, and decompression to ambient pressure.

The four structures have a similar composition: The crys-
tal and the amorphous solid carry the structure formulaA2B,
the composition of the TI quasicrystal isA0.764B0.236, and the
composition of the BI quasicrystal isA0.629B0.371.

Quasicrystals permit localized rearrangements of atoms,
similar to diffusion processes, which may also lead to a re-
arrangement of the tiles. Atom jumps occur in the TI model
in equilibrium simulations already,14 and they play a major
role in the shock simulations. Therefore they will be de-
scribed here in some detail. Starting point are the oblate
rhombohedra. If ten copies of these cells are put together at
the edge marked with an3 in Fig. 1, then the atoms marked
with the 1 form a puckered decagon. The analysis of the
local potential shows that the atoms can move almost freely
around the decagon. This motion will be called a ring pro-
cess. It is possible to replace pairs of oblate rhombohedra by
one prolate rhombohedron. Then the ring is broken into parts
and we speak of chains. The free motion of the atoms along
a chain is hindered to a large degree, but is not completely
impossible. If the TI structure is transformed into the BI
structure, all rings and most of the chains are replaced by
dodecahedra, and the ring processes are suppressed entirely.
There are, however, a few single oblate rhombohedra, and
the atoms marked with the3 in Fig. 1 can still exchange
their places. This leads to the flip processes in the BI model.
Other possibilities exist around the dodecahedra. The atoms

FIG. 1. Oblate and prolate rhombohedron. Light gray: small
atoms; dark gray: large atoms. Left: the3 marks the atom around
which ten oblate rhombohedra fit together. The atoms marked with
the 1 form a puckered decagon, around which the ring processes
occur. Right: the atoms marked with o denote the intersection points
of the k100l direction.

FIG. 2. The rhombic dodecahedron. The atom marked with an
3 and its symmetry-equivalent copies are the primary sites of flips.
The large light gray atoms are also very mobile. The atoms marked
with 1 and o are secondary sites for diffusion.
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marked with the3 in Fig. 2 are the remains of the oblate
rhombohedra; furthermore, the large atoms marked light gray
have a lot of free space around them. Thus exchange pro-
cesses of the large light gray atoms and the atoms marked
with the 3 occur. A few jumps to the atoms marked with o
and1 have also been observed.

B. Interaction

The interactions were modeled by Lennard-Jones poten-
tials for two reasons: first of all, there are currently no spe-
cific potentials available for quasicrystals of the Frank-
Kasper type. Second, we are not interested in the first place
in the behavior of a specific material but in the general dam-
age caused by shock waves. It may be argued that the
Lennard-Jones potential is not well suited for alloys, but we
will comment on this objection later in the discussion.
The radii of the potential minima have been adjusted to the
average of the shortestAA, AB, andBB distances. Such dis-
tances will be called bonds. The potential parameters are
rAA=1.0542a, rAB=1.230 34a, and rBB=1.203 95a, wherea
sRef. 15d is half the edge length of the tiles. The cutoff radius
for the potential wasrC=3.074 76a=2.5rAB. The depth of the
potentials interacting between atoms of the same type is −e,
and −2e for atoms of different types. Since the potential
parameters have been optimized for the TI model, the coor-
dinates of the Laves phase had to be rescaled by 1.027 and of
the BI model by 1.0064 to obtain uncompressed initial states.
With these potentials, the binding energy is 11.478e for the
TI quasicrystal, 12.478e for the BI quasicrystal, 12.974e for
the Laves crystal, and 10.564e for the amorphous solid.

C. Generation of shock waves

There are a number of well established methods to gener-
ate shock waves in simulations.16 In the present work we use
the following setup: The sample is cut into two blocks of
equal size. In the simulation the two parts are moved towards
each other at constant velocities ±up. Two shock waves are
created at the central plane where the blocks collide and
propagate through the compound sample at velocities
±sus−upd. The setup is equivalent to a piston compressing a
sample at rest at speedup, thereby creating a shock wave at
speedus. Test runs have shown that the momentum mirror
method yields equivalent macroscopic results. The shock
wave velocities, for example, are identical. The microscopic
structure of the defects may be different, however, since the
mirror enforces symmetric or antisymmetric behavior.

D. Molecular dynamics and preparation of the samples

All simulations have been carried out with the IMD simu-
lation program.17 For the shock simulations a microcanonical
ensemble was used. Equilibrations were performed with the
constant volume Nose-Hoover and constant pressure Ander-
sen ensemble, depending on the the volume or pressure to be
fixed. At low temperature and low pressure the differences
between constant volume and constant pressure equilibration
are marginal. For the quenching of the shocked samples IMD
provides the microconvergencesmicd and the global conver-

gence sglocd method. The first method works in physical
space separately for every particle: If the velocityvi of par-
ticle i and the forceFi acting on it point in opposite direc-
tions, i.e.,Fi ·vi ,0, then the velocityvi is set to 0. In the
second case the system as a whole is examined in
3N-dimensional configuration space: If the velocity vector

vW =hv1,v2, . . . ,vNj and the forcefW=hF1,F2, . . . ,FNj point in

opposite directions, i.e.,fW ·vW =oi=1
N Fi ·vi ,0, then the veloci-

ties vi of all particles are set to zero. If a sample is close to
equilibrium, the gloc method works much better than mic,
especially if one tries to remove the kinetic energy. For the
shocked structures, however, it was necessary to reduce the
energy with the mic method first and then to minimize it with
the gloc method.

The sample sizes ranged from 20 000 up to about a mil-
lion atoms for both crystals, and quasicrystals. The samples
are long rods with crosssections between 14314 to
61361a2 and lengths between 100 and 260a. The bound-
aries were open along the shock wave propagation direction
and periodic along the two transverse directions. For the
amorphous solid we used samples with 80 000 atoms and
size 160314314a3. To enable periodic boundary condi-
tions the perfect icosahedral quasicrystal is replaced by an
orthorhombic approximant.

After the samples were generated they are equilibrated
for a time interval of t=10t0 at kT=0.001e and pressure
P=0.01P0. When the shock waves have passed through the
samples they are quenched toT=0 to remove the random
displacements of the atoms caused by the heating and defor-
mation.

III. RESULTS

A. Elasticity and anisotropy of the sound waves

In linear elasticity icosahedral quasicrystals behave elas-
tically isotropic whereas the cubic Laves crystal are aniso-
tropic. We have computed the elastic constants for a number
of directions by quasistatic uniaxial deformation of the
samples. Thesquasidlongitudinal velocity of sound is then
given bycl =ÎF /r whereF is the elastic constant for uniaxial
deformation andr is the density. For the Laves crystal in-
deed a strong anisotropy is foundsthe indices are the lattice
directionsd: clk100l=14.29v0, clk111l=12.81v0, clk110l=13.20v0.
The relation 4clk110l−3clk111l=clk100l for cubic crystals is ful-
filled. For the TI quasicrystal the velocities of sound along
the major symmetry directions arecl2=12.22v0,
cl3=12.29v0, cl5=12.21v0. For the BI quasicrystal they are
cl2=9.88v0, cl3=10.00v0, cl5=9.95v0. The velocity of sound
of the amorphous solid isc0<10v0. If all directions are
taken into account an anisotropy of about 2% is found for the
Laves crystal while only 0.2% are calculated for the TI qua-
sicrystal and 0.8% for the BI quasicrystal. An explanation for
the larger anisotropy of the BI samples may be that their
icosahedral “quality” is worse since the modification of the
structure is more severe.

In the elastic shock wave regime the relationus=aup+b
holds between the velocity of the shock waveus and the
piston velocityup. If the strength of the shock wave goes to
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zero, the velocityus should be the velocity of an elastic
sound wave. The constantsb derived accordingly are indeed
close to the velocities of soundcl obtained from the quasi-
static computations for all directions that have been studied
in the simulations.

B. Pressure profiles and steadiness of the profiles

1. Nature of the wave fronts

The behavior of the samples with increasing shock
strength can be subdivided into three regimes with respect to
the observed wave fronts. The criterion is the steadiness of
the wave profiles. A wave front is called steady if it does not
change its shape in time. It frequently happens that a wave
profile is not steady as a whole but contains steady parts, for
example, a steady elastic and plastic front separated by a
spreading and therefore unsteady plastic precursor.18 In this
case the steadiness of each part will be addressed separately.

Here we will shortly sketch the three different regimes
occurring in the simulations. Details about the pressure pro-
files and theus-up relation follow in the next sections.

In the simulations presented here, a single steady
elastic wave front is observed belowus/cl ø0.3. Between
us/cl =0.3 and 0.6, a two-wave structure is found. More pre-
cisely, the previous elastic front is turned into an elastic pre-
cursor which reaches a steady state during simulation, fol-
lowed by a continuously spreading plastic precursor. A
steady plastic front is not present. Aboveus/cl =0.6, steady
waves are occurring. A steady elastic wave front is immedi-
ately followed by a steady plastic front moving at the same
speed. With increasing shock strength, the elastic precursor
in the second regime develops continuously into the steady
plastic front in the third regime by steepening of the profile.

Although the plastic profiles in the second regime are
nonsteady, the structure itself reaches a steady state at the
center where the shock waves started. This means that the
uniaxial pressure and the shear stress converge to a finite
value and the structure relaxes.

2. Pressure profiles

During simulation, the distributions of the instantaneous
pressures averaged over the cross section of the samples are
computed as a function of the propagation directionx and
time. From the uniaxial componentsPxx, Pyy, and Pzz the
hydrostatic pressureP=sPxx+Pyy+Pzzd /3 and the shear pres-
sure S=Pxx−sPyy+Pzzd /2 can be derived. In the following
we will concentrate on the uniaxial pressurePxx and the
shear pressureS. The shape of the pressure profiles as a
function of the piston velocityup fits exactly into the three
regime picture set up in Sec. III B 1. The results are as a rule
identical for all samples and all directions, therefore they
will be presented summarily. Differences will be pointed out
where appropriate.

In the first elastic regimePxx and S rise sharply at the
shock front and stay constant along the samplesFigs. 3 and
4, Laves crystald. The samples are compressed uniaxially,
and no plasticity is observed. In the Laves crystals up to four
oscillations with an amplitude of half the plateau value and a

wavelength of about 7a are found. They are not present in
the quasicrystal and are similar to the locked-in solitary
waves described, for example, by Germannet al.1

In the second regime where defects are created, the wave
profile as a wholedoes notbecome steady during simulation
sFigs. 3 and 4, TI quasicrystal atup/cl =0.37d. The shear
pressureS rises sharply, but then it decays continuously the
whole way down to the center of the sample. The uniaxial
and the shear pressure at the center of the sample drop during
simulation, indicating a relaxation of the structure. But if
us/cl is larger than about 0.25 for the TI model and 0.4 for
the Laves crystal, a constant value is reached after some
time, indicating that the structure has reached a relaxed state.
There is a remarkable difference between the quasicrystal
models and the Laves crystal: In the quasicrystalS falls off
directly behind the shock front whereas in the Laves crystal a
plateau exists which proves that the elastically compressed
sample breaks and plasticity sets in with delay. The uniaxial
pressurePxx behaves in a complementary way: Instead of the
sharp rise and slow decay it grows slowly until it reaches a
plateau at the location whereS has dropped to about the half

FIG. 3. Shear pressureS of three samples representative for the
three regimes.

FIG. 4. Uniaxial pressurePxx of three samples typical for the
three regimes.
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of its peak value. Ifup is larger than 0.45 in the case of the
Laves crystal, the convergence ofPxx and S to a constant
plateau can already be anticipated. In the Laves crystal the
oscillations of the profile in the elastically compressed part
of the sample as described in the first regime are still observ-
able.

In the third regime the curve of the shear pressureS re-
sembles the shape in the second regime at a first glance, but
now the profile is clearly steadysFigs. 3 and 4, TI quasicrys-
tal at up/cl =0.62d. The shear pressure first rises sharply at
the shock front, but then it drops within a fixed interval of 10
to 15a to its final plateau value. The uniaxial pressurePxx
grows slowly within the same range. Hence the plastic de-
struction sets in after only a very short elastic reaction.

In a liquid the shear pressureS should drop to zero after
shock compression since there is no shear elasticity and the
liquid can flow freely. Such a behavior is certainly not found
in our simulations, neither in the second, nor in the third
regime. The shear pressure is a monotonously rising function
of the piston velocityup with changing slopes in the three
regimes. It is expected thatS will drop due to relaxation
processes. But they are too slow to be observed on the simu-
lation time scale.

C. Hugoniot relation us-up in general

In a us-up-Hugoniot plot the velocitiesus of the elastic
and plastic wave fronts are drawn vs the piston velocityup.
The velocitiesus were determined in two ways: either from
the slope of the wave fronts in time-distance contour plots, or
directly from histograms of the uniaxial or shear pressure
with time as a parameter. Two factors limit to the accuracy:
Often there are large fluctuations of the pressures, and some-
times slow relaxation phenomena occur leading to decreas-
ing wave velocities and changing pressures. The fluctuations
are caused by the discrete nature of the sample which leads
to a strong variation of the number of particles in the histo-
gram bins. This problem is even more severe in the case of
the aperiodic, but well ordered quasicrystals. The fluctua-
tions can be avoided to some degree by averaging in a co-
moving frame, but only if the wave profile is steady. The
relaxation phenomena themselves can only be avoided by
much longer simulation times which also require much larger
samples beyond our current computing capacities. It must be
stressed, however, that larger simulations are not expected to
lead to qualitatively new results since relaxed states can be
obtained at the center of the samples if the shock strength is
not too small.

In Fig. 5 we present the typical form of aus-up-Hugoniot
plot for shock waves in the Laves crystals along the fourfold
direction and in the TI quasicrystals along the twofold direc-
tion, respectively. The BI quasicrystals show similar behav-
ior. The curves are characteristic for a material which reacts
elastically below a certain threshold. Then delayed plastic
deformation sets in until at high shock intensities the struc-
ture is destroyed directly behind the shock front.

At low piston velocities elastic shock waves and a
material-dependent gradient are observed. The slopes
sus−cld /up are 3.1 for the crystal and about 2.6 for the qua-

sicrystals. The values are independent of the starting tem-
perature of the sample.

The crossover from delayed to immediate plastic behavior
takes place between 0.3 and 0.6up/cl. The elastic front from
the first regime is turned into an elastic precursor wave. Its
height first decays slowly but it becomes steady during simu-
lation. The elastic front is followed by a nonsteady plastic
precursor. The velocity given in Fig. 5 is not a shock front
velocity, but the velocity of half height between the peak
value of the shear pressure and its value at the center of the
sample. This velocity is not half of the speed of the elastic
wave, since the relaxation of the shear pressure is nonlinear
across the sample. The half-height velocity is presented since
it demonstrates how the sample switches from nonsteady to
steady behavior across the second regime.

At high piston velocities above, aboutup/cl =0.6, the
material-independent plastic behavior occurs andsteady
shock waves are found. The elastic wave front is followed
immediately by the plastic wave. In this regime the finite
yield strength of the solids does not play a role any more.

In the whole range fromup/cl =0.2 up toup/cl =1.0 at
least, an additionalelasticwave front is observed at the be-
ginning of the simulation, moving with a velocity that has a
constant slopesus−cld /up=3.1 for the crystal and 2.6 for the
quasicrystal, respectively, the same velocities as in the elastic
regime sthis wave is not shown in Fig. 5d. It represents an
elastic “one-dimensional” precursor wave. After a simulation
time of t=0.05t0 the precursor wave vanishes and the ordi-
nary elastic and plastic wave fronts take over. Obviously it
takes a certain time interval until the coupling between the
shock wave direction and the transversal directions becomes
effective.

The Hugoniot curves obtained in the simulations do not
depend on the sample cross section and on the length of the
rod as long as the shock wave has not penetrated the whole
sample during simulation time and no interference with re-
flected waves has taken place.

FIG. 5. Shock vs piston velocity. At low piston velocity
squasidelastic behavior is observed. Betweenup/cl =0.3 and 0.6 ap-
proximately a crossover to the plastic shock wave and finally the
change of slope to a materials-independent value is found. The ve-
locitiesup andus are scaled by the velocity of soundcl valid for the
different directions.
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In the crystal the crossover from elastic to plastic behav-
ior occurs at shock wave intensities higher than in the qua-
sicrystal. One reason may be that the local environment of a
single atom is more symmetrical, while the opposite holds
for the averagedenvironment. The transition to plastic be-
havior has to break the local symmetry to couple the normal
and the transverse directions. The trigger are the random
fluctuations induced by temperature, and the mechanism
works better for lower site symmetry. A further reason will
be presented in the section about the defects.

Usually there are sharp kinks in the Hugoniot plot be-
tween the different regimes if a phase transition occurs, with
a flat gradient in the central part. The reason for the rather
weak change of the slope in our case at aboutup/cl =0.6 may
be on the one hand the difficulty to determineus accurately.
But on the other hand there is no clear distinction between
the second and third regime since we do not have an ordinary
phase transition but a fragmentation of the sample with de-
creasing grains. The third regime is reached when the frag-
ment size is of the order of a few interatomic distances. The
reason why there is no kink between the first and second
regime for the quasicrystals will be discussed in the section
about the defects.

D. Orientation dependence of theus-up relation

Figure 6 shows the Hugoniot plot for various propagation
directions. In the TI quasicrystals the curves along six differ-
ent directions are all identical within the error bars if scaled
with the velocity of sound for these directions. The result is
a first hint that the plasticity modes are the same for all
directions in the quasicrystal.

For the Laves crystal, the curves for shock waves propa-
gating along the threefold and twofold axes and in the direc-
tion perpendicular to a mirror plane are rather similar
whereas a significant deviation exists for shock waves along

the fourfold direction. The difference between the curves in
the second and third regime vanishes, however, if the veloci-
ties of the shock waves are scaled with the individual sound
velocities. As in the case of quasicrystals, we conclude that
there is no basic difference in the plasticity modes for the
different shock propagation directions.

E. Analysis of defects

Defects in quasicrystals are much harder to analyze than
in ordinary crystals. In a crystal there is usually only a small
number of different atom sites and a small number of neigh-
borhoods. After a modification of the crystal it is easy to
compare the status of an atom, for example, its potential
energy and the number of neighbors, to the allowed values in
an ideal structure and to figure out which atoms belong to a
defect. Such a procedure is not possible in a quasicrystal.
Certainly, the environments of the atoms can be classified if
only near neighbors are taken into account. In each class the
atoms have another binding energy. But even in simple mod-
els like the ones considered here there exist of the order of 40
ideal environments which often differ very little from one
another. Thus it is challenging to find out whether a change
in the binding energy is due to a defective environment. To
solve the problem we have tabulated the binding energy of
each atom at the beginning of the simulation and compared
the instantaneous binding energy to the stored value. Since
the atoms vibrate around their equilibrium position and ex-
change kinetic and potential energy one has to introduce a
temperature-dependent tolerance interval for the binding en-
ergies. There are, however, still two possibilities if a change
has occurred: the atom has jumped into another allowed
neighborhood class, or it has become a defect atom.

Since shock waves generate large changes in energy, these
classification methods do not work well for quasicrystals and
also not for crystals. There is a second reason for the failure:
the defects are not localized, but extended. We tried out sev-
eral other indicators, but none worked well. The best we
could find was a rescaling the sample after the shock wave
has passed, in such a way that the distances between the
initial and final position of the atoms were minimized. The
minimization can easily be carried out qualitatively by trial
and error if the displacement vectors are plotted as in Fig. 7.

FIG. 6. Orientation dependence of the shock vs piston veloci-
ties. The quasicrystal curves are identical if errors are taken into
account. Therefore they are not marked individually. For the Laves
crystal, the velocities along the fourfold direction differ from the
other orientations which on their part are again quite similar. The
velocitiesup andus are scaled by the velocity of soundcl valid for
the different directions.

FIG. 7. In situ displacement field of the Laves crystal at
up/cl =0.45. The large antiparallel arrows indicate slip planes. The
ring of large arrows marks a rotation axis. Pictures of the quasic-
rystals look similar. The numbers at the figure represent the size in
nearest-neighbor distancesa.
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Then the scaling is varied until the vector lengths become as
small as possible. A good overview of the defects is obtained
if the shortest displacement vectorssor the longestd are re-
moved and the remaining are plotted. The procedure permits
us to extract vortices and thereby to map out the local rota-
tion axis. A three-dimensional impression can be obtained by
cutting slices and comparing themssee Fig. 7d.

A second method which will work for any structure is to
produce a list of nearest-neighbor atoms in the initial struc-
ture. If a pair of atoms is in the list we say that the atoms are
bound. By computing similar lists of atoms in the final states
one can determine which bonds have been broken and if new
bonds have been created.

A third procedure which turned out to be very helpful was
to quench the sample after the shock. We discovered that it
removes not only the kinetic energy and puts the atoms back
into their local force-free state, but eliminates most of the
local rotation of the samplessee Fig. 8d.

F. Laves crystal

In this section we will discuss the results for the Laves
crystal. Due to periodicity the results are much simpler to
analyze than those of the quasicrystal.

The crystal structure remains perfect up toup/cl <0.37
which tells us that only elastic distortions occur in the first
regime. Close to the shock front large displacements may be
found, but these are transient phenomena.

Within a short interval of aboutup/cl =0.1 the behavior
changes abruptly. Extended defects appear which separate
perfectly crystalline domains. The defects start to fill up the
bulk with increasing strength of the shock wave. Beyond
up/cl <0.57 the initial structure seems to be destroyed com-
pletely by the shock wave. The size of the fragments into
which the single crystal breaks become so small that the
structure can no longer be distinguished visually from a dis-
ordered material. The radial distribution function, however,
still contains a few discrete maxima since some small or-
dered regions are left over.

1. Defect bands in situ

A slice through the atomic displacement field represented
in Fig. 7 illustrates the structure of the extended defects.

Bands are visible with a width of up to ten interatomic dis-
tancesa and a separation of the order of 35a. The bands are
shear grain boundaries which separate different crystallites.
It could be speculated that the bands are still molten, but
such an assumption could not be confirmed by local tempera-
ture maps.

Within the crystallites rotation axes are observed. The
edges and corners of the crystallites are given by hyperbolic
points snot visible in the figured. These are locations, where
displacement vectors point towards one another along one
direction while they point in opposite directions along a di-
rections offset by 90°. Thus the original monocrystal is bro-
ken into crystallites which are deformed and rotated with
respect to their initial orientation. If slices parallel to the
coordinate directions are cut through the displacement field
and compared we find that neither the grain boundaries nor
the local rotation axis are perpendicular to the cutting direc-
tion. The local rotation axes turn out to be parallel to the face
diagonals of the simulation box. Since the cuts through the
grain boundaries are also parallel to the face diagonals we
can conclude that the grain boundaries are perpendicular to
the threefold axes.

To our knowledge the rotation of crystallites in shock
wave simulations on an atomic scale has not been reported
before. Similar structures are well known from mesoscopic
shock wave simulations by Yano and Horie19,20 and by
Makarov and co-workers21–24and discussed, for example, by
Lee.25 In the mesoscopic simulations the initial structure is
already polycrystalline and phase boundaries exist, whereas
in the simulations presented here we start with a single crys-
tal which is broken into grains during simulation.

2. Defect bands after quenching

Figure 8 shows the displacement field of the sample after
quenching. The rotational part of the displacement field has
disappeared, only the relative shift of the crystallites re-
mains. The fragments can also be identified in a slice through
the crystalssee Fig. 9d. If the broken bonds are visualized we
find that they mark the edges of the grains which look like
more or less irregular polyhedral blocks. The final state of
the quenched sample has been presented by Davison26 as one
of the states that occur if the deformation of the sample is not
uniform.

3. Summary of the defects in Laves crystals

The Laves single crystals are broken into grains by the
shock wave in the second regime. The boundaries between

FIG. 8. Displacement field of the Laves crystal atup/cl =0.45
after quenching. Shown is nearly the same part of the sample as in
Fig. 7. Pictures of the quasicrystals look similar. The numbers at the
figure represent the size in nearest-neighbor distancesa.

FIG. 9. Slice through the whole Laves crystal after quenching
s260361a2d. The various texturessdotted and stripedd are gener-
ated by displacements of parts of the sample with respect to each
other and represent the newly created grains.
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the grains are broad disordered bands. The grains still con-
tain the original Laves crystal structure, no phase transitions
or twinning has been observed. The spacing between the
bands depends on the cross section of the sample since the
bands are replicated by the periodic boundary conditions. In
the case of small cross sections the boundary conditions may
even pretend a disordered state in the second regime. Stack-
ing faults have not been observed and dislocations could not
be detected.

If the shock wave intensity is increased, the general be-
havior of the Laves crystal does not change. The grains get
smaller and smaller and the defect bands closer and closer
until it is no longer possible to distinguish grains and bands.
Then the third regime has been reached where the sample
structure is destroyed completely.

G. Quasicystal models

The Hugoniot curves for the quasicrystals look similar to
those of the Laves crystal. A first glance at the samples
shows that the quasicrystals stay intact up to a piston veloc-
ity of aboutup/cl =0.25. But there is no sharp boundary be-
tween thesquasidelastic and the plastic regimessee Fig. 5d.
The reason will be discussed in the next paragraphs.

1. TI quasicrystals

In the TI model ring processes, well known from equilib-
rium simulations,14 but enhanced by the shock wave are
observed at very low shock wave intensityup/cl =0.09
alreadysFig. 10d. With increasing shock strength the rings
break up and the atoms start to move around randomlysat
up/cl =0.17d. Well separated chains of atoms are now ob-
served. Atup/cl =0.22 it is no longer possible to speak of
chains; we find clouds of atoms in motion. Atup/cl =0.26 we
finally have a situation similar to the Laves crystal: the
sample is broken into crystallites which are shifted and ro-
tated.

Thus we have two plasticity modes: the ring and chain
processes which take place in the interior of the grains and
the disruption of the single crystal into domains. This is the
reason why there is no sharp boundary between the different
shock wave regimes. In addition to the aperiodicity of the
quasicrystal it is also the reason why it is so much harder to
visualize thesquasidcrystallites. The broken fragments are
similar to those in the Laves crystals, but their shape is less
polyhedral and the grains are smaller.

2. Behavior of the BI model

In the BI model the ring processes are suppressed com-
pletely since the configurations of tiles responsible for the
jumps are removed. Only single atom flips are allowed. The
displacement of the atoms at the shock front is large enough
that some of them can jump to alternative sites where they
remain after the shock wave has passedsFig. 11d. The jump
locations can be considered as double-well potential sites.
Since both positions are equivalent with respect to energy
but separated by a barrier the atoms will not move back to
their initial site.

FIG. 10. Sequence of shocked samples of the TI model. A third
of the width and a fifth of the length has been cut out around the
center of the simulation cell. The boxes are displayed to enhance
the three-dimensional impression. The central squares show the
starting place of the shock waves. The arrows indicate the path of
the shock fronts which have left the boxes already at the recording
time of the pictures. The thick black lines illustrate the local rota-
tion axis. In the first two pictures the spheres represent the jumping
atoms directly, while in the last two pictures they are overshadowed
by clouds of atoms with large displacements.
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Due to the point defects the transition from the elastic to
the plastic regime is again much smoother in the BI quasic-
rystals than in the Laves crystal. Since the number of jumps
and the atoms involved are much less in the BI model than in
the TI model the defects alone cannot be responsible for the
weakness of the quasicrystals. Another reason has been
pointed out in Sec. III C: Although the global symmetry of
the icosahedral quasicrystals is higher than that of the cubic
Laves crystals, locally many atoms in the quasicrystals have
low symmetry whereas the atoms in the Laves crystal have a
high central symmetry. We believe that this is the true reason
why the threshold to generate defects is reduced considerably
in the quasicrystal.

3. Summary of the quasicrystal results

Betweenup/cl =0.25 and 0.5 extended defects can be ob-
served in both quasicrystal models. A process similar to the
one in the Laves crystals takes place: the grains get smaller
and smaller and the defect bands move closer and closer
together. At shock waves stronger thanup/cl =0.5 the quasi-
crystals appears disordered since defect bands and grains can
no longer be distinguished.

Again we find no stacking faults and no dislocations.
Quasicrystal-specific defects like phason walls have not been
observed as well. Although we have seen atoms jump, we
know14 that these processes areno quasicrystal flips since the
jumps do not change the rhombohedron-dodecahedron tiling.
Real flips are very complicated in the quasicrystal models
presented here and involve at least ten atoms.

H. Amorphous solid

In the case of the amorphous solid we find a universal
behavior for all shock front velocities: The slope of the
Hugoniot curve isus/c0=1.85 up/c0+1.0 up toup/c0=1.0
ssee Fig. 12d. This is no indication, however, that the amor-
phous structure behaves like a fluid. If we consider the pres-
sure profiles, especially the shear pressure, we find that up to
up/c0=0.2 the profiles are unsteady as a whole. There is a
steady jump from the elastic compression wave followed by
a slow decay which lasts the whole length of the sample. At
up/c0=0.3 we find a transitional behavior, but atup/c0=0.4
we clearly observe steady waves. The shear pressure decays
within a short interval to a finite constant value. If we com-
pare this behavior to Fig. 5 we find that the transition to the
steadiness of the plastic waves occurs at approximately the
same shock strength as in the ordered samples. It also indi-
cates that the amorphous solid possesses a finite yield
strength since the shear pressure is not zero.

The amorphous solid stays disordered. No obvious change
of the structure has been notified by inspection of the radial
distribution function, for example. In particular, crystalliza-
tion has also not been observed.

IV. DISCUSSION

Our study has revealed yet another type of plasticity ob-
servable in atomistic simulations beyond simple dislocations
and stacking faults16 and phase transitions.1,3,27Here we find
fragmentation of a single crystal into rotated crystallites
separated by thick disordered walls.

The behavior of the crystal and the quasicrystal models in
shock wave simulations is similar to the behavior of ionic
materials: slippage is hindered by the creation of high-energy
antiphase boundaries. Dislocations are slow, rare and high
energies are needed to generate them.28 The single-crystal
ionic materials break into many crystallites and form broad
defect bands.29 In the models presented here it is not possible
to exchangeA andB atoms at random without destabilizing
the structure. If anAB bond is broken it will be replaced by

FIG. 11. Shock wave in the BI model. Half the width and a third
of the length has been cut out of the simulation cell. The box is
displayed to enhance the three-dimensional impression. The square
within the box represents the starting place of the shock waves and
the arrows indicate the path of the shock fronts. In the instant rep-
resented in the picture the left-moving wave is at the left end of the
box, whereas the right-moving wave has already left the box. The
dots indicate atoms with large displacements. In the left half of the
box many points disappear when the shock front proceeds further
which emphasizes the transient character of the large displacements.
Only a few singular points are left over like in the region where the
shock waves started. They mark the sites where atoms have jumped
to alternate positions.

FIG. 12. Shock vs piston velocity for the amorphous solidsdot-
ted curved. The fcc curvesfull lined is from Holian and Lomdahl
sRef. 16d.
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an AA or BB bond which is only half as strong. Due to the
nontrivial plane structure it may also happen that no new
bond is formed. Furthermore, the structure will be strained,
since the different bonds are of different length. The average
binding energy decreases. Thus processes allowed in mon-
atomic structures turn out to be fatal. Recent crack simula-
tions have shown that the Laves phase and the quasicrystal
always behave brittle.30 No dislocation emission could be
observed.

But on the other hand it is well known that stacking faults
exist in Laves crystals and a synchroshear mechanism31

which should permit slippage. Since our models are stable in
a large range of interaction strengths, it would be interesting
to repeat the simulations with a parameter set where the re-
pulsion is reduced. But calculations of theg surface32 for a
number of parameter sets by Rudhart33 dash the hope. Al-
though the heights of the energy minima and maxima might
vary, the overall topology of the surface stays largely the
same. No shift vectors exist which would indicate low-
energy dislocation directions.

We have found that there is a material-independent Hugo-
niot relation governed by the interaction only in the case of
strong shock waves. This is due to the complete destruction
or amorphization of the structures, a phenomenon which is
well known from high-pressure studies of C15 Laves phases.

We have tried to find crystal and quasicrystal structures
which are as similar as possible. The best model would be
monatomic, but no uniform simple monatomic quasicrystals
exist sbut see Roth27d. There are still differences in the aver-
age binding energies, the composition, and the local atomic
environments in our models. Therefore we cannot rule out
that part of the resultssfor example, the different slopes in
the Hugoniot plotd are due to the structural differences.

Defect structures and plasticity modes have been pre-
sented for propagation directions of the shock waves along

the fourfold direction in the Laves crystal which is oblique to
the close-packed planes, and along the twofold direction in
the quasicrystal which is normal to the close-packed planes.
Although these two directions are quite different with respect
to the orientation of the prolate rhombohedra, the results are
rather similar. Simulations in other symmetry directions have
also been carried out, but they have not been discussed since
no new phenomena have been observed. We consider this
observation as a further indication that the phenomenology
of the shock wave plasticity in the present study is governed
mainly by the interaction and not by the structure.

Up to now no shock wave experiments have been carried
out with quasicrystalline materials. There are a number of
high-pressure studies which demonstrate the high strength of
quasicrystals.34 But the high-pressure studies do not lead to
the high temperatures typical for shock waves. It has been
found that quasicrystals are often transformed into approxi-
mants under high pressure, but such a transition has not been
observed in our simulations.

The behavior of Laves crystals under high pressure is well
studiedssee, for example, Lindbaumet al.35d. The crystals
are preferably amorphized similar to what happens if they
are heavily loaded with hydrogen. Shock-wave experiments
of Laves phases have not been found in the literature, espe-
cially no reports are known to us about the investigation of
defect structures caused by shock waves. Frank-Kasper-type
quasicrystals like AlCuLi behave similar to the Laves crystal,
except that crystallization is also observed.36
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