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Surface and shear horizontal waves in piezoelectric composite media consisting of piezoelectric layers of
hexagonal 6mm symmetry are studied. We consider finite and infinite systems. For the finite case we study
“periodic” and two types of nonperiodic structures: Fibonacci sequences and systems with a linear perturbation
in the piezoelectric parameters which give rise to resonances of Stark-Ladder type. For the infinite case we
only consider periodic systems. The transmission, dispersion relation, angular dispersion relation, and eigen-
modes of vibration of the composites are analyzed. We discuss in detail the effect of surface waves on these
properties. We use the transfer matrix formalisms of 434 and 232 dimensions to study the system in the
exact approach and in the approximation where the surface waves are neglected, respectively. Numerical
results are also presented.

DOI: 10.1103/PhysRevB.71.064101 PACS numberssd: 77.65.Fs, 77.65.Dq, 77.90.1k

I. INTRODUCTION

Due to increasing implementation of acoustoelectronic
devices in modern communication systems, the study of
acoustic wave propagation in solid structures has received
much attention in recent years. Layered composites may sup-
port novel types of waves with specific frequency depen-
dence of phase and group velocities that do not exist on
homogeneous substrates.

There are two kinds of wave motion in elementary phys-
ics: traveling waves, which can have any frequency, and
standing waves, which occur only for discrete “allowed” fre-
quencies. But there exists a third kind of wave motion that
occurs in periodic media. In this case the frequency spectrum
shows a band structure, that is, the allowed frequencies fall
into continuous “bands,” separated by forbidden “gaps.” In
the quantum context there is a similar behavior of the energy
spectrum of the electrons in periodic potentials. This was
clearly shown by Kronig and Penney in the classic paper that
laid the foundation for the modern theory of solids.1 Band
structure is practically the signature of solid state physics,
but the same phenomenon occurs, in principle, for mechani-
cal, acoustical, electromagnetic, and even oceanographic
waves.

One of the most effective theoretical tools for the exact
analytical study of various wave phenomena in periodically
stratified media is the method of the propagator matrix based
on the Bloch formalism. However, the direct analytical cal-
culations become very cumbersome once the dimension of
the propagator matrix is higher than 232 due to the
coupled-mode effect. It occurs, for instance, at a mixing of
the sagittal acoustic modes in a symmetry plane of purely
elastic stratified media2–6 or at the shear horizontalsSHd
waves propagation in the presence of electromechanical
coupling.2,7–11

Theoretical treatment in those cases is largely numerical.
The explicit analytical results have been mainly confined to
obtaining the Bloch dispersion relationsthe characteristic
equation for the propagator matrixd, whereas the direct ana-

lytical calculation of the relation itself has been discussed
under certain fairly restrictive approximations and assump-
tions. For example, in particular, in Refs. 10 and 11 the
propagator matrix has been effectively reduced to the 232
dimension thanks to the screening properties of metallized
interfaces separating piezoelectric layers. The analytical
method, which has been worked out in Ref. 6 for solid lay-
ers, assumes a semi-infinite periodic structure and a normal
incidence. The reflection coefficient6 was obtained in a
somewhat implicit form, via the root of a matrix equation.

In the present paper, we analyze finite and infinite piezo-
electric laminated composites. For the finite case we consider
“periodic” and two types of nonperiodic systems: Fibonacci
chains and structures with a linear variation of the piezoelec-
tric parameters as a function of the distance along the axis of
the piezocomposite. This configuration gives rise to the
Stark-Ladder resonancessSLRd. In these cases we study the
scattering of incident SH and surface piezoelectric waves as
a function of the material properties, width of the layers,
angle of incidence, and frequency. For the infinite case we
only consider periodic systems and we analyze the disper-
sion relation, angular dispersion relationsas defined belowd,
and eigenmodes of vibration. We also consider the case when
a polymer bonding layer of araldite is placed between each
couple of piezoelectric layers. In all cases we discuss in de-
tail the effects of the surface waves. These waves are some-
times neglected in order to simplify the calculationsssee, for
example, Ref. 12d. These approximated calculations will be
referred as thenon-surface wave approximationsNSWAd.

This work is devoted to the study of wave propagation in
solid multilayered piezoelectric systems which can be in
contact with other solids. The problem involving interaction
with fluids is studied in other works13,14 and it is not consid-
ered in this paper. The study and the applications of different
piezoelectric layered structures have been facilitated by the
development of the computationally efficient transfer matrix
method for certain types of matrix.15–17 However, the de-
scription of the surface waves by means of the transfer ma-
trix requires exponential functions of real argumentsas we
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will see belowd, and therefore the numerical calculations be-
come unstable for large multilayered media.18 So, more ap-
propriate methods have been developed, for example: sur-
face impedance method,19–26 global matrix method,27–30 etc.
However, these methods are time-consuming and it is impor-
tant to have an idea of how much the results are modified
when surface waves are neglected to avoid numerical insta-
bilities. Thus in this paper the surface waves are included in
the formalism and the results are compared with those of the
NSWA.

II. STATEMENT OF THE PROBLEM

The piezoelectric materials that will be considered in this
paper have been the object of many studies since 1969 when
Bleustein and Gulyaev simultaneously discovered that in
these systems there exists a SH wave. This is known today as
the Bleustein-Gulyaev wave.31–33

Thus let us consider a SH piezoelectric wave which is
traveling inside a layered heterogeneous piezoelectric me-
dium with crystal symmetry class 6mm whose six-order
symmetry axis coincides with thez axis sz=x3d. TheOY axis
was chosen perpendicular to the interfaces. Let us assume the
SH wave propagates in theXY planesx=x1,y=x2d, and it is
polarized along theOZ axis ssee Fig. 1d. It will be shown in
Sec. IV that the system admits, in fact, this kind of wave
propagation. We define thenth layer as the layer between the
coordinatesyn andyn+1. The thickness of thenth layer ispn.
The wave vector of the traveling wave inside thenth layer
will be denoted byk snd and its components on theOX, OY,
OZ axes bykx

snd, ky
snd, kz

snd=0, respectively. The wave number
is ksnd= uk sndu. As mentioned, we will consider finite and infi-
nite systems. For the first case we will assume that the com-
posite is embedded within two semi-infinite piezoelectric
media, one of them located on the left and the other on the
right. In this case the piezocomposite is made ofN piezo-
electric layers which are inside the two semi-infinite media.
The layers associated with the valuesn=−1 andn=N are the
left semi-infinite medium and the right semi-infinite medium,
respectively, thus −1ønøN. The interface between the left
srightd semi-infinite medium and the system is aty=y0=0
sy=yNd. We will analyze the response of the layered piezo-
composite when the waves impinge at an angleu from the
left semi-infinite medium upon the system.

Both for finite and infinite cases we will be interested first
in periodic structures. However, as mentioned, two nonperi-
odic special structures will be also considered. For the first
case “periodic structure” meansnp periods in the interval
fy0,yNg in such a way that the piezocomposite consists of a
set of nc layers repeatednp times and thereforeN=nc·np.
The nc layers are made, in general, of different piezoelectric
homogeneous materials. We will describe the macroscopic
properties of thenth layer by means of the following quan-
tities: the tensor of elastic modulicijkl

snd , the tensor of piezo-
electric moduliekij

snd, the dielectric tensor«i j
snd, and the density

rsnd.
The system described above will be studied using the con-

tinuum mechanics approach with the quasistatic approxima-
tion for the electric potential.

III. FUNDAMENTAL EQUATIONS OF
PIEZOELECTRICITY

Since the layers are made of homogeneous material, we
can use in each layer the dynamic equations of elasticitysfor
simplicity we will omit in this section the indexnd:

]si j

]xj
= r

]2ui

]t2
, i, j = 1,2,3, s1d

which describe the wave propagation in piezoelectric
crystals.34,35 The components of the stress tensorsi j are re-
lated with the strain tensor componentsSkl and with the elec-
tric field Ek components by means of

si j = cijklSkl − ekijEk, i, j ,k,l = 1,2,3, s2d

where

Skl =
1

2
S ]uk

]xl
+

]ul

]xk
D , s3d

u1,u2,u3 being the components of the mechanical displace-
ment vectoru.

Together with Eq.s1d we need the Gauss law34,35

]Di

]xi
= 0, s4d

whereDi is the ith component of the electric displacement
vector given by

Di = eiklSkl + «i jEj . s5d

Furthermore, in the quasistatic approximation we haveEj =
−]f /]xj, wheref is the electric potential.

Taking into account Eq.s3d and substituting Eqs.s2d and
s5d into Eqs.s1d and s4d, we obtain the following system of
equations:

cijkl
]2uk

]xl]xj
+ ekij

]2f

]xk]xj
= r

]2ui

]t2
,

eikl
]2uk

]xl]xi
− «ik

]2f

]xk]xi
= 0. s6d

FIG. 1. Layers of the piezocomposite with their interfaces at
yn−1,yn,yn+1,yn+2, etc. The wave vector in thenth layer isk snd with
magnitudeksnd= uk sndu=Îrsndv2/ c̄44

snd and the mechanical displace-
ment in thez direction isu3

sndsx,y,td.
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IV. METHOD OF SOLUTION

For piezoelectric materials of class 6mm the system of
Eqs.s6d can be separated in two systems of differential equa-
tions corresponding to the shear verticalsSVd and SH waves
respectively.34,35 The SH waves correspond to a nontrivial
solution of the system withu3Þ0, fÞ0 both independent of
z and u1=u2=0. Under these considerations the system be-
comes

c44S ]2u3

]x2 +
]2u3

]y2 D + e15S ]2f

]x2 +
]2f

]y2 D = r
]2u3

]t2
, s7d

e15S ]2u3

]x2 +
]2u3

]y2 D − «11S ]2f

]x2 +
]2f

]y2 D = 0, s8d

where we are using an abbreviated notation forcijkl andeikl
which assigns a single indexa to the couplei j and a single
index b to the couplekl according to the rule

311 12 13

21 22 23

31 32 33
4 → 31 6 5

6 2 4

5 4 3
4 . s9d

The systems7d and s8d has the following four nontrivial
linearly independent solutions:36

fsx,y,td = expfiskxx + kyy − vtdg

with u3sx,y,td =
«11

e15
fsx,y,td, s10d

fsx,y,td = expfiskxx − kyy − vtdg

with u3sx,y,td =
«11

e15
fsx,y,td, s11d

fsx,y,td = expfiskxx − vtd + kxsy − yndg

with u3sx,y,td = 0, s12d

fsx,y,td = expfiskxx − vtd − kxsy − yndg

with u3sx,y,td = 0, s13d

where

ky
2 =

rv2

c̄44

− kx
2 = k2 − kx

2 = k2 cos2 u, s14d

c̄44 = c44 +
e15

2

«11
, s15d

u being the angle of incidence. The general solution to Eqs.
s7d ands8d at thenth layer is a linear combination of the four
particular solutions given in expressionss10d–s13d as fol-
lows:

u3
sndsx,y,td =

«11
snd

e15
snd sAsnd expfiky

sndyg

+ Bsnd expf− iky
sndygdexpfiskxx − vtdg, s16d

fsndsx,y,td =
e15

snd

«11
sndu3

sndsx,y,zd + hCsnd expfkxsy − yndg

+ Dsnd expf− kxsy − yndgjexpfiskxx − vtdg,

s17d

whereAsnd, Bsnd, Csnd, and Dsnd are coefficients that will be
determined below. The wave vectorkx is the same in all
layers due to the Snell law and therefore it does not have a
label n.

We see that the electric potentialfsndsx,y,td is a linear
combination of two parts, one partsreferred to asFmd

snd

3sx,y,td;F̄md
sndsydexpfiskxx−vtdgd is proportional to the me-

chanical displacementsu3
sndsx,y,zd and the other partsre-

ferred to asFsw
sndsx,y,td;F̄sw

sndsydexpfiskxx−vtdgd represents
the surface waves36–38of thenth layer “located” at the inter-
facesy=yn andy=yn+1 ssee Fig. 2d. Furthermore, for layers
of hexagonal 6mm symmetry we have, from Eqs.s3d, s5d,
s10d, s11d, ands17d,

D2
sndsx,y,td = − «11

]F̄sw
snd

]y
= − «11kxhCsnd expfkxsy − yndg

− Dsnd expf− kxsy − yndgjexpfiskxx − vtdg.

s18d

Thus the electric displacementD2
snd sas well asFsw

sndd only
involves surface waves. In the NSWA we will takeCsnd and
Dsnd equal to zero. ThereforeFsw

snd=D2
snd=0 and u3

snd

=s«11
snd /e15

snddFmd
snd=s«11

snd /e15
snddfsnd. In this case only the first 2

32 block of the 434 transfer matrices discussed in the next
sections will be used.

FIG. 2. The surface waves in thenth layer are described by
exponential functions expfkxsy−yndg and expf−kxsy−yndg of real ar-
gument and they are localized around theyn andyn+1 coordinates,
respectively.
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In order to have the complete solution for the whole sys-
tem and to determine unambiguously the coefficientsAsnd,
Bsnd, Csnd, andDsnd we need to find the relation between the
solution at a given layer and the solutions at its neighboring
layers. This is done by using the boundary conditionssBCd.
These can be summarized in two groups: the conditions act-
ing at each interface, and those related with the global char-
acteristics of the solutionsfor finite systems the global char-
acteristics are direction of the incident wave, bound
solutions, etc., and for infinite systems the global character-
istic is the Bloch conditiond.

A. BC at the interfaces and their implications

For the first group, we consider at each interface the con-
tinuity of the displacementu3, the stress tensors23, the elec-
tric displacementD2, and the electric potentialf. These con-
ditions can be written in the following form:

u3
sndsynd = u3

sn−1dsynd, s19d

s23
sndsynd = s23

sn−1dsynd, s20d

D2
sndsynd = D2

sn−1dsynd, s21d

fsndsynd = fsn−1dsynd. s22d

Using conditionss19d–s22d we obtain the transfer matrix
denoted byM sn−1,nd, which relates the coefficientsAsnd, Bsnd,
Csnd, andDsnd defined in Eqs.s16d and s17d associated with
the solution at thenth layer with the corresponding coeffi-
cients Asn−1d, Bsn−1d, Csn−1d, and Dsn−1d associated with the
solution at thesn−1dth layer by means of the expression

1
Asnd

Bsnd

Csnd

Dsnd
2 = M sn−1,nd1

Asn−1d

Bsn−1d

Csn−1d

Dsn−1d
2 . s23d

The transfer matrix has the following form:39

M sn−1,nd = −
1

21
− a expfiynDg − b expf− iynSg d expfJg − d expf− Qg
− b expfiynSg − a expf− iynDg − d expfQg d expf− Jg

g expfiynky
sn−1dg g expf− iynky

sn−1dg − h expfkxYg − j expf− kxYg

g expfiynky
sn−1dg g expf− iynky

sn−1dg − j expfkxYg − h expf− kxYg
2 , s24d

where

a = S1 +
ky

sn−1dc̄44
sn−1d

ky
sndc̄44

snd D, b = S1 −
ky

sn−1dc̄44
sn−1d

ky
sndc̄44

snd D ,

g = S1 −
e15

sn−1d«11
snd

e15
snd«11

sn−1dD, d = i
kxse15

sn−1dd2

ky
sndc̄44

snd«11
sn−1dS1 −

e15
snd«11

sn−1d

e15
sn−1d«11

sndD ,

h = Se15
sn−1d«11

snd

e15
snd«11

sn−1d +
e15

sn−1d

e15
snd D, j = Se15

sn−1d«11
snd

e15
snd«11

sn−1d −
e15

sn−1d

e15
snd D ,

D = sky
sn−1d − ky

sndd, S = sky
snd + ky

sn−1dd,

J = skxY − iynky
sndd, Q = skxY + iynky

sndd,

Y = yn − yn−1. s25d

The first blocks232d of M sn−1,nd has the usual form of the
transfer matrix describing elastic waves40–42 but with c̄44 in-
stead ofc44. Note thatc̄44 appears explicitly and implicitly
through Eq.s14d, which gives the value ofky. For the finite
systems the matrixM of orders434d defined as the product

M = M sN−1,Nd ·M sN−2,N−1d
¯ M sn−1,nd

¯ M s0,1d ·M s−1,0d

s26d

relates the coefficientsAs−1d, Bs−1d, Cs−1d, andDs−1d of the left
semi-infinite mediumsn=−1d with the coefficientsAsNd, BsNd,
CsNd, andDsNd of the last layersn=Nd by means of

1
AsNd

BsNd

CsNd

DsNd
2 = M1

As−1d

Bs−1d

Cs−1d

Ds−1d
2 , s27d

which establishes four relations between eight coefficients.

B. BC at y,y0 and y.yN for finite systems and their
implications

For the boundary conditions at the two semi-infinite me-
dia sy,y0 andy.yNd we have the following statement. Be-
cause we only are interested in bound solutions for all values
of y we must take

Ds−1d = 0, CsNd = 0 s28d

where, as before, the coefficientsDs−1d andCsNd are defined
in Eq. s17d for the casesn=−1 andn=N, respectively. Fi-
nally, the other two conditions come from the normalization
of the transmitted wave traveling to the right, i.e.,AsNd=1
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and from the fact that we have no incident waves from the
right sBsNd=0d. Therefore we have four conditions given by
Eq. s27d in order to determine the same number of unknown
coefficients:As−1d, Bs−1d, Cs−1d, and DsNd. These coefficients
are calculated rearranging Eq.s27d and we obtain

1
As−1d

Bs−1d

Cs−1d

DsNd
2 = B−1 ·B81

AsNd

BsNd

CsNd

Ds−1d
2 = B−1 ·B81

1

0

0

0
2 , s29d

where

B = M · I 3 − I + I 3 =1
m11 m12 m13 0

m21 m22 m23 0

m31 m32 m33 0

m41 m42 m43 − 1
2 ; SB1 0

B2 − 1
D ,

s30d

B8 = M · sI 3 − I d + I 3 =1
1 0 0 − m14

0 1 0 − m24

0 0 1 − m34

0 0 0 − m44

2 , s31d

I 3 =1
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0
2, I = sdi jd, i, j = 1, . . . ,4. s32d

B1 andB2 are matrices of order 333 and 133, respectively,
and mij is the i j element of the transfer matrixM . The in-
verse of matrixB can be found as the inverse of the parti-
tioned matrix defined in Eq.s30d as follows:

B−1 = S B1
−1 0

B2 ·B1
−1 − 1

D . s33d

In Sec. V we will discuss the properties of coefficients
As−1d, Bs−1d, Cs−1d, andDsNd as given by Eq.s29d. We recall
that the transmission and the reflection coefficients are de-
fined asT;uAsNdu2/ uAs−1du2 and R;uBs−1du2/ uAs−1du2, respec-
tively. These definitions are also used in the NSWA. How-
ever, in this case all matrices appearing in Eq.s26d must be
taken as matrices of orders232d which are the first blocks
s232d of the matricesM sn−1,nd given by Eq.s24d.

C. Global condition for infinite systems and their implications

For infinite systems we will consider only periodic struc-
tures with periodp. Now the solutions can be characterized
by an irreducible representationsirrepd of the group of trans-
lations by a finite amountp. As a matter of fact, since the
solutions of Eqs.s7d and s8d are of the form fsx,y,td
=f̄sydexpfiskxx−vtdg and u3sx,y,td= ū3sydexpfiskxx−vtdg,
the system of equations can be rewritten as the following
eigenvalue equation:

OSsyd = lSsyd, s34d

whereSsyd=ff̄syd ,ū3sydgT andO is a matrix differential op-
erator, which is invariant under translations of the formy
→y+ jp. In other words,O commutes with the correspond-
ing translation operatort jp, j being an arbitrary integer.
Therefore there exist solutions of Eq.s34d which also are
eigenfunctions oft jp.43–46 Thus we will look for solutions
Ssyd satisfying

t jpSsyd = expfik jpgSsyd, s35d

where the eigenvalue expfik jpg is the one-dimensional irrep
for the elementt jp of the Abelian discrete group of transla-
tions andk is the index of the irrep or Bloch’s wave number.
If we use the propertyt jpSsyd=Ssy+ jpd in Eq. s35d we ob-
tain the Bloch condition, that for the casej =1, becomes

f̄sy + pd = expfikpgf̄syd s36d

and

ū3sy + pd = expfikpgū3syd. s37d

Because these equations are valid for all values ofy and the
exponential functions are linearly independent we have

Asn+md expfiky
sn+mdsy + pdg = expfikpgAsnd expfiky

sndyg,

s38d

Bsn+md expf− iky
sn+mdsy + pdg = expfikpgBsnd expf− iky

sndyg,

s39d

Csn+md expfkxsy + p − yn+mdg = expfikpgCsnd expfkxsy − yndg,

s40d

Dsn+md expf− kxsy + p − yn+mdg = expfikpgDsnd

expf− kxsy − yndg, s41d

wheren is an arbitrary integer andm is the number of layers
in each period, that is,p=yn+m−yn. Due to the periodicity
ky

sn+md=ky
snd and Eqs.s38d–s41d can be written as

1
Asn+md expfiky

sndpg
Bsn+md expf− iky

sndpg
Csn+md

Dsn+md
2 = E1

Asn+md

Bsn+md

Csn+md

Dsn+md
2 = eikp1

Asnd

Bsnd

Csnd

Dsnd
2 ,

s42d

where

E =1
expfiky

sndpg 0 0 0

0 expf− iky
sndpg 0 0

0 0 1 0

0 0 0 1
2 . s43d

On the other hand, from the properties of the transfer matri-
ces, there exists other relation between the coefficients of the
sn+md-layer with the ones of then-layer, which reads
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1
Asn+md

Bsn+md

Csn+md

Dsn+md
2 = M p

snd1
Asnd

Bsnd

Csnd

Dsnd
2 , s44d

where

M p
snd ; M sn+m−1,n+md ·M sn+m−2,n+m−1d

¯ M sn,n+1d. s45d

Therefore

EM p
snd1

Asnd

Bsnd

Csnd

Dsnd
2 = expfikpg1

Asnd

Bsnd

Csnd

Dsnd
2 . s46d

The dispersion relationk vs v /2p is given implicitly by

detsEM p
snd − I expfikpgd = 0, s47d

where the angle of incidenceu is a constant. However, we
will be also interested in a similar relation of the formk vs
sin2 u which is again given implicitly by Eq.s47d but now
with the frequency equal to a constant. This relation will be
calledangular dispersion relation.

In order to simplify the calculations we will use the sym-
metries of the system. We will write the characteristic poly-
nomial in L;expfikpg, PsLd=detsEM p

snd− I expfikpgd, as47

PsLd = L2sL2 + a3L + a2 + a1/L + a0/L
2
−d, s48d

wherea3=−TrhEM p
sndj, a2=fsTrhEM p

sndjd2−TrhsEM p
sndd2jg /2,

and a0=dethEM p
sndj. The symbol Tr=hs·dj means trace of a

matrix ·. Now we remark that ifk is a solution of Eq.s47d
representing a Bloch wave traveling towards the right, then
−k is also a solution and it represents the same wave but
traveling towards the left. Therefore ifL is a zero ofPsLd,
so is 1/L. From Eq. s48d we see that we should havea1
=a3 and a0=1. Therefore the fourth-order equation in
expfikpg can be written as

0 = L2 + L−2 + a3fL + L−1g + a2 = 4 cos2skpd + 2a3 cosskpd

+ a2 − 2 s49d

from which the four valuesk1, k2, k3, andk4 of k are cal-
culated. We should mention that not each 434 matrix de-
scribing layered media has the above-mentioned properties.
However, due to the symmetries of our system, matrixEM p

snd

has those properties. This fact was used to check our numeri-
cal calculations.

For each valuek j there is a solutionX j
snd to the equation

†EM p
snd − I expfipk jg‡X j

snd = 0. s50d

If the eigenvector X j
snd is written as X j

snd

=sA j
snd ,B j

snd ,C j
snd ,D j

snddT, wheren is the index associated with
the nth layer, which is, of course, arbitrary, we have the
following four eigensolutions to thenth layer:

fū3
sndsydg j =

«11
snd

e15
snd sA j

snd expfiky
sndyg + B j

snd expf− iky
sndygd,

s51d

f̄ j
sndsyd = A j

snd expfiky
sndyg + B j

snd expf− iky
sndyg + C j

snd

3expfkxsy − yndg + D j
snd expf− kxsy − yndg s52d

for j =1,2,3,4.
In the NSWA, where the surface waves are neglected, the

dispersion relationk vs v /2p and the angular dispersion
relationk vs sin2 u are defined implicitly by

dethĒM̄ P
snd − I expfikpgj = 0, s53d

whereĒ is the first blocks of order 232 of E and M̄ p
snd is

given by Eq. s45d. However, now all matrices appearing
there must be taken as matrices of orders232d which are
the first blockss232d of the matricesM sn−1,nd given by Eq.
s24d. Therefore we only have two values fork with k1=

−k2. Furthermore, because of the periodicity dethĒM̄ p
sndj=1

andki can be calculated from

cosskpd =
1

2
TrhĒM̄ p

sndj. s54d

The coefficientsA j
snd, B j

snd associated with the two eigenso-
lutions f̄1

sndsyd and f̄2
sndsyd are obtained by solving

†ĒM̄ p
snd − I expfipk jg‡X̄ j

snd = 0, s55d

whereX̄ j
snd=sA j

snd ,B j
snddT with j =1,2 and

f̄ j
sndsyd =

e15
snd

«11
snd fū3

sndsydg j = A j
snd expfiky

sndyg + B j
snd expf− iky

sndyg.

s56d

V. ANALYSIS OF THE RESULTS

We first consider finite piezocomposites. Figure 3 shows
plots T vs f for fixed values of the angle of incidenceu. f is
frequency in hertz:f =v /2p. In Fig. 3sad we consider the
system analyzed in Fig. 2 of Ref. 12 where the NSWA was
used and only one period was taken into account. The values
of the quantitiesc44

snd, e15
snd, «11

snd, andrsnd were taken from that
reference. Dotted lines correspond to the NSWA and solid
lines to the exact calculation where the surface waves are
taken into account. In the upper curve the dotted and solid
lines coincide. The dotted lines reproduce exactly the curves
s1d, s2d, and s3d of Fig. 2 of Ref. 12 which correspond to
angles of incidenceu=0°, 30° and 60°, respectively. Figure
3sad shows that the larger the angle of incidence is, the more
different are the results of the NSWA and the exact calcula-
tion. In fact, the curves corresponding tou=0 are the same.
This is so becauseu=0 implies kx=0 and d=0. Thus the
matricesM sn−1,nd are of the formfsee Eqs.s14d, s24d, and
s25dg
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SM 11 O

M 21 M 22
D , s57d

whereM i j and O are matrices of order 232 andO is the
zero matrix. Furthermore, because the product of two matri-
ces of the forms57d is

SA11 O

A21 A22
DSB11 O

B21 B22
D = SA11B11 O

C A22B22
D s58d

with C=A21B11+A22B21, the first 232 block of matrixM of
Eq. s26d is equal to the product of the first 232 blocks of
matricesM sn−1,nd. Therefore for the caseu=0° the calcula-
tions of the transmission and reflection coefficients must be
the same for the NSWA and for the exact approach. For other
values ofu the second block ofM sn−1,nd is not equal toO but
we can expect that for small values ofu both calculations
give very similar results as shown in Fig. 3sad. We have
observed that this fact is also true for all the configurations
analyzed. In particular for those considered in Ref. 12, even
in systems having polymer bonding of araldite at each inter-
face. So, the calculations of the transmission and reflection
coefficients for small angles can be done approximately by
using the NSWA, which is easier, numerically stable, and
faster.

Figure 3sbd also shows a plotT vs v /2p but now for a
system with ten periods,u=10° and v /2pP f0,63105g.
The values of the other parameters are as in Fig. 3sad. We
have increased the number of periods from 1 to 10 in order
to have well shaped bands. In fact, in this figure we clearly
see a band structure for the transmission coefficient with
three gaps and four bandssone of them incompleted in the
analyzed interval of frequency. A detailed observation of the
curve shows that each complete band has nine maxima as it
must be. In fact, because the system has ten periods, it has
nine cells each of them able to catch a resonance. In this case
the curve corresponding to the NSWA is not shown for clar-
ity but it will be considered below. In this figure the system
has 1035=50 layers and the calculations become unstable

for large values of frequencies, angle of incidence, and width
of the layers. This fact causes the broadening of the curve at
the right side of the plot. For this reason, in Figs. 3scd and
3sdd, we have taken only three periods. Now the curves have
less structure and one can clearly see the differences between
the NSWA sdotted linesd and the exact calculationssolid
linesd. In Fig. 3scd the value ofu is smaller than that in Fig.
3sdd, therefore the two curves of Fig. 3scd are more similar to
each other than the two curves of Fig. 3sdd. Figure 3 also
shows that the larger the number of periods is, the better is
the shape of the bands. So, if we want to have a well-defined
profile for the bands we need to have a larger number of
layers.

For nonperiodic systems the band structure is, of course,
broken, but for small angles of incidence the NSWA is still a
good approximation. See, for example, the plotsT vs v /2p
shown in Fig. 4. This figure corresponds to a multilayered
system built according to the Fibonacci sequenceS9, such
that thenth sequenceSn is equal to the juxtapositions of the
sn−1dth sequenceSn−1 with the sn−2dth sequenceSn−2, that
is,

Sn = Sn−1Sn−2, s59d

whereS1=A, S2=AB, and the bocksA, B are defined in the
caption of the figure. This sequence is an example of quasi-
periodic structures which, in the last years, have received
much attention because of their intermediate properties be-
tween periodic and disordered systems. In particular, these
kinds of systems have been used to study the evolution of the
band structure when the degree of disorder of the system
changes from perfectly ordered to a Fibonacci sequencessee,
for example, Ref. 48d. In Fig. 4 the number of layers is equal
to 55 which, for a periodic system, is sufficient to have well-
shaped bands. However, Fig. 4 shows that for this Fibonacci
sequence we do not have well-defined bands neither in
NSWA nor in exact calculation.

Some interesting properties of layered piezocomposites
can be also studied if one analyzes the transport properties as

FIG. 3. Transmission coefficientT as a func-
tion of frequencyf =v /2p for different fixed val-
ues of the angle of incidenceu. In all figures the
dotted lines correspond with the NSWA and
the solid lines with the exact calculations. In
sad we show three solid lines corresponding
with angles of incidenceu=0° supper curved,
30°, and 60° sbottom curved, respectively.
The structure of the Piezocomposite is
ZnOuPZT4uPZT5AuPZT5HuCdSuZnO, with the
same layer widthsd=1.25 mmd, which is the sys-
tem analyzed in Fig. 2 of Ref. 12. The parameters
in sbd are the same as insad but now the sequence
of layers PZT4uPZT5AuPZT5HuCdSuZnO is re-
peated ten timessten periodsd, u=10° and the in-
terval of frequency is shorter. The parameters in
scd and sdd are the same as insbd, but now we
only have three periods. The corresponding val-
ues ofu are 30° and 60°, respectively.
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a function of the angle of incidence. In these cases the left
side of the curvessthat is, 0øu!90°d for the NSWA and for
the exact calculation must coincide, but, in general, they
must become different for large values ofu. For example, in
Fig. 5sad we have two plotsT vs sin2 u for a sequence of ten
periods with two different blocks in each period. We see that
the dotted and solid lines coincide for small values ofu. If
we increase the number of periods we obtain a well-defined
band structure similar to the band structure of the plotsT vs
v /2p shown in previous figures. In Fig. 5sbd we show a plot
of this type for a system with 49 periods. A detailed analysis
of the results shows that the plot has 48 peaks in the com-
plete central band. However, in this case, we have considered
a different periodic structure as in Fig. 5sad. Now the dotted
and solid lines coincide for all values ofu. This is so because
the system is of a special kind as the one considered in Ref.
39. In this system the material constants obey the linear re-
lations

e15
snd = Vc44

snd, s60d

e15
snd = G«11

snd, s61d

«11
snd/c44

snd = V/G, s62d

rsn+1d = rsnd ∀ n,m, s63d

whereV, G are two constants independent of the scriptsnd.
Thereforec̄44

snd=c44
snds1+VGd. In this case the matrixM sn−1,nd

reduces tofsee Eqs.s24d and s25dg

SM 11 O

O M 22
D , s64d

for all values ofu. Therefore all the comments following Eq.
s57d are applicable and the exact calculations give the same
results as the ones of the NSWA.

As for the plotsT vs v /2p, if the periodicity of the sys-
tems is broken, the band structure of the plotsT vs u is
destroyed. An interesting example of this is when the values
of the piezoelectric parameters of the layers obey a linear
variation of the formfsee Fig. 6sadg

Srv2

c̄44
Ds j±2md

= Srv2

c̄44
Ds jd

± mpF, s65d

whereF is an arbitrary constant,m and j arbitrary integers,
p=p1+p2, andsrv2/ c̄44ds jd represents the values of the mag-
nitude rv2/ c̄44 at the j th layer, that is, srv2/ c̄44ds jd

;rs jdv2/ c̄44
s jd=srv2/ c̄44dsyd for yP fyj ,yj+1g. Now the system

is nonperiodic and it has been shown39,49,50that the plotsT
vs sin2 u must show a sequence of peakssresonancesd sepa-
rated a distanceD proportional to the slope of the dotted line
shown in Fig. 6sad. These peaks are called Stark-Ladder
resonancessSLRd. Figure 6sbd shows a plot of this kind
where we have used piezoelectric parameters that obey Eq.
s69d. This figure shows clearly that the band structure has
disappeared, and a Stark-Ladder structure appears instead.
This property is analogous to the one observed in the elec-
tronic spectrum of crystals in the presence of uniform elec-
tric fields. The SLR were predicted in 1961 by Wannier,51

and observed experimentally in 1989 by Mendezet al.52 The
physics behind the SLR is a phenomenon of alternating con-
structive and destructive interference as in a Fresnel

FIG. 4. Plots ofT as a function of frequencyf for a fixed value
of the angle of incidenceu=30°. The structure of the piezocompos-
ite is a Fibonacci sequence with two blocksA, B of the typeA
=PZT4 andB=PZT5A with the same layer widthsd=1.25 mmd.
The system is embedded between two layers of ZnO.

FIG. 5. Plots ofT as a function of sin2 u for a fixed value of
frequency. Insad f =1.23106 and the piezocomposite is a sequence
of ten periods where each period is formed with two blockssthe
blocks A, B considered in Fig. 4d. The system is embedded between
two layers of ZnO. Insbd f =s2/pd3107 and we have taken 49
periods. Now the blocksA, B are as in Fig. 4 of Ref. 39 and they
have the following parameters:ps0d=pA=5.310−5 m, ps−1d=pB

=15.310−5 m, rsnd=rA=rB=2500 kg/m3, «11
s0d=«11

A =44.43
310−10 F/m, «11

s−1d=«11
B =64.63310−10 F/m, e15

s0d=e15
A

=0.6875 C/m2, e15
s−1d=e15

B =1 C/m2, c44
s0d=c44

A =1/431010 N/m2,
andc44

s−1d=c44
B =4/1131010 N/m2. In this case the dotted and solid

lines coincide because the parameters obey relations of the form
given by Eqs.s60d–s63d and therefore the matrices are as in expres-
sion s64d ssee Ref. 39 for detailsd.
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interferometer.39,49,50 Since in this example we have used
also Eqs.s60d–s63d the curves are unchanged when one ne-
glects the surface waves. However, for other analyses they
are necessary as we will see below.

Now we consider an infinite number of periods. From Eq.
s47d we obtain four dispersion relationsk j vs v /2p. How-
ever, as discussed,k1=−k2 and k3=−k4. Therefore we will
analyze only the dispersion relations fork1 and k3. For the
NSWA we have only two dispersion relationsk j vs v /2p,
with k1=−k2 and therefore we will analyze only the disper-
sion relation fork1.

Figure 7 shows plots of Rehpk1j, Imhpk1j, Rehpk3j, and
Imhpk3j as a function ofv /2p sdispersion curvesd for a
fixed value of the angleu. The values of the piezoelectric
parameters are as in Fig. 3sbd except that now we have an
infinite number of periods. First we will analyze the behavior
of k1. We note that in the intervals of frequency where the
functionk1=k1svd is imaginary the expressionuexpfipk1gu is
different from 1 and Block’s theorem is not satisfied. There-
fore the functionsf̄1 and sū3d1 are not valid solutions for
these values of frequency. As a matter of fact, from a com-
parison between Fig. 3sbd and Figs. 7sad and 7scd we observe
that Imhpk1j=0 in the bands and Imhpk1jÞ0 in the gaps.
Furthermore, 0,Rehpk1j,p in the bands and Rehpk1j
=mp in the gaps, wherem=0 or m=1. We have observed
these characteristics, both for the exact and for the NSWA
calculations. However,k3 does not show this behavior as
will be discussed below. Furthermore,k3 does not exist in
the NSWA and therefore it must be associated with the be-
havior of the surface waves.

At this point we must comment on the following: for each
value of frequency we obtain, from Eq.s47d, four values ofk
for the exact calculations and, from Eq.s53d, two values for
the NSWA. So, when we plot the real and imaginary parts of
these fourstwod values ofk as a function of frequencyv we
obtain eightsfourd families of points and we have observed
that each family can be joined by means of a continuous line.
Furthermore, these results confirm that ifk is a solution to
Eq. s47d then −k is also a solution. The decision about which
k is to be root 1 or 2, etc., is, of course, arbitrary but since
the curves are continuous one can follow the evolution of
each root. However, in some intervals of frequency, where
two or more roots have the same value, it is difficult to
decide whichk is to be root 1 or 2, etc. In these cases we
have used the criterion that the curves fork1 andk2 for the
exact calculations must be similar to those of the NSWA
calculations. Note that in the NSWA case we only have two
values fork, and therefore the decision is easy. However, in
some other few intervalsswhere k1 and k2 for the NSWA

FIG. 6. sad Plot of rv2/ c̄44 as a function of the coordinatey sin
arbitrary unitsd when rv2/ c̄44 satisfies Eq.s65d. The slope of the
dashed line is equal toF. For the periodic caseF=0. sbd Transmis-
sion coefficient as a function of sin2 u for a composite with param-
eters satisfying a relation of the form plotted insad. The plot shows
the SLR. The parameters are as in Fig. 5sbd except«11

s0d=10.6825
310−10 F/m, e15

s0d=0.6875 C/m2, c44
s0d=s80/121d31010 N/m2,

c44
s−1d=431010 N/m2. The values of the parameters for other values

of n are obtained from Eq.s65d with F=9961.64 m−3. However, the
parameters still obey relations of the form given by Eqs.s60d–s63d
and therefore the dotted and solid lines coincide.

FIG. 7. Dispersion relationsk vs v /2p for an
infinite piezocomposite with parameters as in Fig.
3sbd. In sad and scd we have the real and imagi-
nary parts ofk1, respectively, and insbd and sdd
the real and imaginary parts ofk3, respectively.
The figures show four solid lines but only two
dotted lines because in the NSWAk3 does not
exist. The intervals where the solid lines of
Rehpk1j are equal to zero orp are f150 412.5,
217 550.9g, f335 043.1, 413 571.05g, and
f546 049.5, 584 414.3g.
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coincided our assignation was arbitrary. Therefore our classi-
fication of the four curvesk vs v /2p could be differentsin
some few intervalsd from the classification of the curves of
other authors.

The eigenmode associated withk1 is obtained from Eq.
s50d with j =1 for from Eq.s55d in the NSWAg. Because this
equation represents a homogeneous system with foursor
twod equations we can assign an arbitrary value to one of the
coefficientsA1

snd ,B1
snd ,C1

snd ,D1
snd sor A1

snd ,B1
sndd. This of-

fers a lot of possibilities with respect to the relations between
the coefficients associated with the exact calculations and
those associated with the NSWA. For example, we can as-
sign the same value to the coefficientsA1

snd corresponding
with the exact and the NSWA calculations. Another possibil-
ity is to assign a fixed value toD1

snd=1 swhich is not present
in the NSWAd and obtain the other three coefficients from
Eq. s50d. Then, we can take the above calculated value of
A1

snd to be equal to the corresponding NSWA coefficient
A1

snd. However, we can also take two completely different
values for these coefficientsA1

snd in both approaches, etc.
So, a direct comparison between the coefficients associated
with the exact and NSWA calculations has no sense. There-
fore in the next two figures we do not include the corre-
sponding NSWA curves. In any case we have observed that
the behavior of the eigenmodes reflect the fact that the solu-
tions are extended in the permitted bands of frequency and
they are nonphysical in the gaps as we will see below.

Becausek1=−k2 we havesexpfipk1gd* =expfipk2g in the
bands andsexpfipk1gd* =expfipk1g in the gaps. Therefore

ff̄1
sndsydg* is proportional tof̄2

sndsyd in the bands and propor-

tional to f̄1
sndsyd in the gaps. Thus if we takeD1

snd=D2
snd

=1 we have

A2
snd = B1

snd* , B2
snd = A1

snd* , C2
snd = C1

snd* s66d

in the bands and

B1
snd = A1

snd* , B2
snd = A2

snd* , C1
snd = C1

snd* s67d

in the gaps. In Fig. 8 we have plotted some of these coeffi-
cients as a function ofv /2p. Figures 8sad, 8scd, and 8sed
show plots of RehA1

s0dj, RehB1
s0dj, and RehC1

s0dj for D1
s0d

=1 and Figs. 8sbd, 8sdd, and 8sfd show plots of RehA2
s0dj,

RehB2
s0dj, and RehC2

s0dj for D2
s0d=1, for the same system as

in Figs. 3sbd and 7. The imaginary part of these coefficients
is not shown but it has a very similar behavior as the real
part. The same is true for the behavior of the coefficients
A1

snd, B1
snd, andC1

snd for other values ofn. From a compari-
son between Fig. 7sad for Fig. 3sbdg with the plots of Fig. 8
we observe that all the coefficients are finite in the bands but
some of them diverge in the gaps. Therefore the mathemati-
cal expression for the eigenmodes at the 0th layer associated
with k1 andk2,

fū3
s0dsydg1 =

«11
s0d

e15
s0d sA1

s0d expfiky
s0dyg + B1

s0d expf− iky
s0dygd,

s68d

f̄1
s0dsyd = A1

s0d expfiky
s0dyg + B1

s0d expf− iky
s0dyg

+ C1
s0d expfkxyg + expf− kxyg, s69d

and

fū3
s0dsydg2 =

«11
s0d

e15
s0d sA2

s0d expfiky
s0dyg + B2

s0d expf− iky
s0dygd,

s70d

f̄2
s0dsyd = A2

s0d expfiky
s0dyg + B2

s0d expf− iky
s0dyg

+ C2
s0d expfkxyg + expf− kxyg, s71d

are finite in the bands and diverge in the gaps.
Now we will discuss the properties ofk3. Figures 7sbd

and 7sdd show that the behavior ofk3 is quite different from
those ofk1 andk2. We see that Rehpk3j=0 for all values of
frequency. Thereforel3=expfipk3g is always a real quantity.
Furthermore, as mentioned, becausek3 andk4 do not exist in
the NSWA they are associated with the surface waves. This
can be also seen from the following reasoning: first we con-
sider an angle of incidenceu equal to zero. Thenkx=0 and,
due to the periodicity, the productEM p

snd of the matricesE of
Eq. s43d and the transfer matrixM p

snd of Eq. s45d reduce to a
matrix of the form

SM 11 O

M 21 I
D , s72d

whereM i j , O, I are matrices of order 232. O and I are the
zero and unit matrices, respectively. Furthermore, a plotk3
vs v /2p for the caseu=0 snot shown in a figured shows that
k3=0 ∀v. Thus l3=expfipk3g=1 and, if we definea3

snd

;sA3
snd ,B3

snddT and c3
snd;sC3

snd ,D3
snddT, Eq. s50d can be

written as

FIG. 8. Plots of the coefficients as a function ofv /2p. sad, scd,
and sed are plots of RehA1

s0dj, RehB1
s0dj, and RehC1

s0dj, respec-
tively, with D1

s0d=1. sbd, sdd, and sfd are plots of RehA2
s0dj,

RehB2
s0dj, and RehC2

s0dj, respectively, withD2
s0d=1. The param-

eters of the piezocomposite are as in Figs. 3sbd and 7.
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SM 11 O

M 21 I
DSa3

snd

c3
snd D = S M 11a3

snd

M 21a3
snd + c3

snd D = l3Sa3
snd

c3
snd D = Sa3

snd

c3
snd D ,

s73d

which implies

M 11a3
snd = a3

snd,

M 21a3
snd = O. s74d

These two equations can be satisfied whena3
snd=s0,0dT or

whena3
snd is an eigenvector ofM 11 andM 21 simultaneously

with eigenvaluesl3=1 and 0, respectively. However, we can
see that the only two eigenvalues of the 232 matrixM 11 are
l1=expfipk1g and l2=expfipk2g. In fact, from Eq.s50d for
kx=0 and j =1,2 wehave

SM 11 O

M 21 I
DSaj

snd

cj
snd D = l jSaj

snd

cj
snd D ⇒ M 11aj

snd = l jaj
snd.

s75d

So, the solution to Eqs.s74d is a3
snd=s0,0dT and the eigenvec-

tor of the matrix

EM p
snd = SM 11 O

M 21 I
D s76d

with eigenvaluel3=1 is of the forms0,0,C3
snd ,D3

snddT. This
property was used to check our numerical calculations. That
is, we have verified thatA j

snd=B j
snd=0 ∀v whenkx=0, l=1,

and j =3,4.Thereforek3 andk4 are associated with the sur-
face waves and they are described by

f̄3
sndsyd = C3

snd expfkxyg + D3
snd expf− kxyg s77d

and

f̄4
sndsyd = C4

snd expfkxyg + D4
snd expf− kxyg s78d

with

fū3
s0dsydg j = 0, j = 3,4. s79d

Furthermore, from Eqs.s44d, s46d, ands73d

SC j
sn+md

D j
sn+md D = S±C j

snd

±D j
snd D , s80d

wherem is the number of layers in each period,n an arbi-
trary integer, andj =1,2. Equation s80d implies that the
structure of the surface waves repeat periodically with period
p.

For the casekxÞ0 the coefficientsA3
snd, B3

snd, A4
snd, and

B4
snd are not equal to zero but they are small as compared

with C j
snd andD j

snd. For example, for the systems considered
in Figs. 3sbd, 7, and 8, whereu=10°, the plots ofA3

s0d, B3
s0d,

and C3
s0d with D3

s0d=1 are as shown in Fig. 9. In this case
the eigenfunctionf̄3syd diverges and is not a physical solu-
tion. Furthermore,k3 is different from zero but purely imagi-
nary as can be see in Figs. 7sbd and 7sdd. Thereforel3 is real
andB3

snd=sA3
sndd* ∀v, as shown in Figs. 9sad–9sdd.

Finally we discuss the angular dispersion relation. Figure
10 shows plots of Rehpk1j, Imhpk1j, Rehpk3j, and Imhpk3j
as a function of sin2 u sangular dispersion curvesd for a fixed
value of the frequencyv. The values of the piezoelectric
parameters are as in Fig. 5sbd except that now we have an
infinite number of periods. As in Fig. 7, the functionsf̄1 and
sū3d1 are not valid solutions in the intervals ofu wherek1

=k1ssin2 ud is imaginary. From a comparison between Figs.
5sbd and 10, we observe that Imhpk1j=0 in the bands and
Imhpk1jÞ0 in the gaps. Furthermore, 0,Rehpk1j,p in the
bands and Rehpk1j=mp in the gaps, wherem=0 or m=1.
The quantity Rehpk3j is always equal to 0. Indeed, all com-
ments made for Fig. 7 related with the problem of the assig-
nation of the roots, and other properties, are also applicable
in Fig. 10, except that now the NSWA and the exact calcu-
lations give the same results because the matrices are of the
form s64d. Furthermore, in this case, a plot logsImhpk3jd vs
logssin2 ud shows that there exists a linear relation between
these variables, that is,

logsImhpk3jd = C logssin2 ud s81d

whereC is a constant. Therefore

sImhpk3jd = sin2C u. s82d

However, for the dispersion curve of Fig. 7sdd we do not
have a linear relation between logsImhpk3jd and logsvd.

VI. CONCLUSIONS

In this work we have analyzed the transport properties of
SH and surface waves in heterogeneous finite and infinite
piezoelectric media. For “periodic” piezocomposites we have
obtained band structures according to the Bloch theorem,
both when the response of the systems is studied as a func-
tion of frequency and when the response is studied as a func-
tion of the angle of incidence. Furthermore, we have corre-

FIG. 9. sad–sfd Plots of RehA3
s0dj, ImhA3

s0dj, RehB3
s0dj,

ImhB3
s0dj, RehC3

s0dj, and ImhC3
s0dj, respectively, as a function of

v /2p with D3
s0d=1. The parameters of the piezocomposite are as in

Figs. 3sbd, 7, and 8.
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lated the structure of the transmission coefficient with the
structure of the curves for the dispersion relation and for the
angular dispersion relation. For finite systems we have also
analyzed the transport properties for some special nonperi-
odic systems. In particular, in one of them we have obtained
Stark-Ladder resonances.

We have also analyzed how the surface waves modify the
results obtained from the NSWA. We have considered ex-
amples in which these waves can be neglected and others in
which these waves affect the NSWA results, including the

case when a polymer bonding layer of araldite is placed be-
tween each couple of piezoelectric layers. We have seen that
this knowledge is important because the fundamental equa-
tions describing the piezoelectric effects are a complicated
system of equations whose solution is time-consuming and
numerically unstable. This is due to the coupling between the
mechanical displacements and the electric potential which is
described by exponential functions of real argument. So, al-
ternative methods are useful as those mentioned in the text
and, in particular, the NSWA.
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