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Surface and shear horizontal waves in piezoelectric composites

G. Monsivaist J. A. Otero®2 and H. Cala%
lInstituto de Fisica, Universidad Nacional Auténoma de México, Apartado Postal 20-364, 01000 Mexico D.F., Mexico
2Instituto Tecnoldgico y de Estudios Superiores de Monterrey, Apartado Postal 18, Atizapan, Edo. de Mexico, Mexico
3Instituto de Cibernética, Matematica y Fisica (ICIMAF), Calle 16@/y D. CP10400, Vedado, Habana 4, Cuba
(Received 23 June 2004; published 1 February 2005

Surface and shear horizontal waves in piezoelectric composite media consisting of piezoelectric layers of
hexagonal fim symmetry are studied. We consider finite and infinite systems. For the finite case we study
“periodic” and two types of nonperiodic structures: Fibonacci sequences and systems with a linear perturbation
in the piezoelectric parameters which give rise to resonances of Stark-Ladder type. For the infinite case we
only consider periodic systems. The transmission, dispersion relation, angular dispersion relation, and eigen-
modes of vibration of the composites are analyzed. We discuss in detail the effect of surface waves on these
properties. We use the transfer matrix formalisms of 4and 2< 2 dimensions to study the system in the
exact approach and in the approximation where the surface waves are neglected, respectively. Numerical
results are also presented.
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I. INTRODUCTION lytical calculation of the relation itself has been discussed

Due to increasing implementation of acoustoelectroni¢!Nder certain fairly restrictive approximations and assump-
devices in modern communication systems, the study ofonS- For example, in particular, in Refs. 10 and 11 the
acoustic wave propagation in solid structures has receivefroPagator matrix has been effectively reduced to the22
much attention in recent years. Layered composites may sugimension thanks to the screening properties of metallized
port novel types of waves with specific frequency depen Interfaces separating piezoelectric [ayers. The an_alyucal
dence of phase and group velocities that do not exist of€thod, which has been worked out in Ref. 6 for solid lay-
homogeneous substrates. ers, assumes a semi-infinite periodic structure and a normal

There are two kinds of wave motion in elementary phys-ncidence. The reflection coefficiéntvas obtained in a
ics: traveling waves, which can have any frequency, ar]&omewhat implicit form, via the root of a matrix equation.

standing waves, which occur only for discrete “allowed” fre- In the present paper, we analyze finite and infinite piezo-
9 ' y electric laminated composites. For the finite case we consider

quencigs. Bqt there e>§ists a t.hird kind of wave motion that. eriodic” and two types of nonperiodic systems: Fibonacci
occurs in periodic media. In this case the frequency spectruthaing and structures with a linear variation of the piezoelec-
shows a band structure, that is, the allowed frequencies faflic harameters as a function of the distance along the axis of
into continuous “bands,” separated by forbidden “gaps.” Inthe " piezocomposite. This configuration gives rise to the
the quantum context there is a similar behavior of the energgtark-Ladder resonanc¢SLR). In these cases we study the
spectrum of the electrons in periodic potentials. This wasscattering of incident SH and surface piezoelectric waves as
clearly shown by Kronig and Penney in the classic paper thai function of the material properties, width of the layers,
laid the foundation for the modern theory of solfdBand  angle of incidence, and frequency. For the infinite case we
structure is practically the signature of solid state physicsponly consider periodic systems and we analyze the disper-
but the same phenomenon occurs, in principle, for mechansion relation, angular dispersion relatitas defined beloyy
cal, acoustical, electromagnetic, and even oceanographand eigenmodes of vibration. We also consider the case when
waves. a polymer bonding layer of araldite is placed between each
One of the most effective theoretical tools for the exactcouple of piezoelectric layers. In all cases we discuss in de-
analytical study of various wave phenomena in periodicallytail the effects of the surface waves. These waves are some-
stratified media is the method of the propagator matrix basetimes neglected in order to simplify the calculatidese, for
on the Bloch formalism. However, the direct analytical cal-example, Ref. 12 These approximated calculations will be
culations become very cumbersome once the dimension agéferred as th@on-surface wave approximatidhNSWA).
the propagator matrix is higher thanx2 due to the This work is devoted to the study of wave propagation in
coupled-mode effect. It occurs, for instance, at a mixing ofsolid multilayered piezoelectric systems which can be in
the sagittal acoustic modes in a symmetry plane of purelgontact with other solids. The problem involving interaction
elastic stratified medfa® or at the shear horizontalSH)  with fluids is studied in other work&14and it is not consid-
waves propagation in the presence of electromechanica&red in this paper. The study and the applications of different
coupling?7-11 piezoelectric layered structures have been facilitated by the
Theoretical treatment in those cases is largely numericadevelopment of the computationally efficient transfer matrix
The explicit analytical results have been mainly confined tamethod for certain types of matrix-1” However, the de-
obtaining the Bloch dispersion relatiofthe characteristic scription of the surface waves by means of the transfer ma-
equation for the propagator matyjxvhereas the direct ana- trix requires exponential functions of real arguméas we
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. Both for finite and infinite cases we will be interested first
X in periodic structures. However, as mentioned, two nonperi-
odic special structures will be also considered. For the first
case “periodic structure” meansg, periods in the interval
k® [Yo.Yal in such a way that the piezocomposite consists of a
% O set of n; layers repeatedh, times and thereforé=n,-n,.
= U The n, layers are made, in general, of different piezoelectric
O A v vova vl y homogeneous materials. We will describe the macroscopic
properties of thenth layer by means of the following quan-

oz tities: the tensor of elastic modubfj”k)l, the tensor of piezo-

FIG. 1. Layers of the piezocomposite with their interfaces at€lectric modulie,;, the dielectric tensot;;”, and the density

Yn-1.Yn Yre1, Ve €1C. The wave vector in thath layer isk™ with P - _ _ _ _
magnitudek™=[k™|=\/pMw2/cT) and the mechanical displace- The system described above will be studied using the con-

ment in thez direction isug‘)(x,y,t). t@nuum mechanic; approa_ch with the quasistatic approxima-
tion for the electric potential.

G

will see below, and therefore the numerical calculations be-
come unstable for large multilayered me#isSo, more ap- lIl. FUNDAMENTAL EQUATIONS OF
propriate methods have been developed, for example: sur- PIEZOELECTRICITY

i 26 i 7-30
face impedance methd#;® global matrix method™*etc. Since the layers are made of homogeneous material, we

g?]\{v::'c\)/ehrétr;ez(ra] r_r(;t—:étgocish%re t:?i’;ciﬂiug'sn?tsn;ét ;Ts]ég.?gr'an use in each layer the dynamic equations of elast(fity
v ' W mu u m implicity we will omit in this section the inder):

when surface waves are neglected to avoid numerical insta-
bilities. Thus in this paper the surface waves are included in
the formalism and the results are compared with those of the
NSWA. !
which describe the wave propagation in piezoelectric
Il. STATEMENT OF THE PROBLEM crystals¥*35 The components of the stress tensgrare re-

The piezoelectric materials that will be considered in thislated with the strain tensor componefgand with the elec-
paper have been the object of many studies since 1969 whéfic field E, components by means of

|5

_ A
_pFI |1J_112131 (1)

Bleustein and Gulyaev simultaneously discovered that in — o L =
these systems there exists a SH wave. This is known today as o = GpaSa ~ @B LhkI=1,2,3, @
the Bleustein-Gulyaev wavg 32 where

Thus let us consider a SH piezoelectric wave which is
traveling inside a layered heterogeneous piezoelectric me- :1<%+%) (3)
dium with crystal symmetry classnm whose six-order "2 o X'

symmetry axis coincides with theaxis (z=x;). The QY axis . . .

was chosen perpendicular to the interfaces. Let us assume tﬁnééﬁ%’yéc?gﬁg the components of the mechanical displace-
SH wave propagates in th€Y plane(x=x;,y=X,), and it is .

polarized along th®Z axis (see Fig. L It will be shown in Together with Eq(1) we need the Gauss Id#7°

Sec. IV that the system admits, in fact, this kind of wave D
propagation. We define theh layer as the layer between the =
coordinatey/,, andy,.1. The thickness of thath layer isp,.
The wave vector of the traveling wave inside it layer  where D; is theith component of the electric displacement
will be denoted byk™ and its components on tf@X, OY,  vector given by

0z axes byk”, k™, K" =0, respectively. The wave number

is kM=|k™|. As mentioned, we will consider finite and infi- Di=ewSa + ;. 5
nite systems. For the first case we will assume that the com= ; e L

posite is embedded within two semi-infinite piezoe|ectri2]_:gg;‘§):m\?vférg‘ (;Tftﬂ‘éa;':f;‘rtl'g sgt%rr?t’i(gl”a“o” we heye
media, one of them located on the left and the other on the Taki#{g into account Eq3) and substitl.Jting Eq€2) and

right. In this case the piezocomposite is madeNopiezo- - : :
electric layers which are inside the two semi-infinite media.gu'gtt%riqs'(l) and(4), we obtain the following system of

The layers associated with the values—1 andn=N are the

0, (4)

&Xi -

left semi-infinite medium and the right semi-infinite medium, Puy ) Py,

respectively, thus —£n<N. The interface between the left Ciji XX + ekijax I = PF,

(right) semi-infinite medium and the system is yaty,=0 177 K

(y=yn). We will analyze the response of the layered piezo- 5

composite when the waves impinge at an angieom the S —e P =0 (6)
left semi-infinite medium upon the system. W IX X 'kaxkaxi '
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IV. METHOD OF SOLUTION

For piezoelectric materials of classnén the system of
Egs.(6) can be separated in two systems of differential equa-
tions corresponding to the shear verti¢@V) and SH waves
respectively?*3®> The SH waves correspond to a nontrivial
solution of the system with;# 0, ¢ # 0 both independent of
z andu;=u,=0. Under these considerations the system be-
comes

Pus  u Pd P Pu
4( ax23 ’ c?y23> e (ax(f+ &y(f> at23’ @
azug d u3) _ (a2¢ c?zda)
. ( X (yyz &11 X2 &y 0, (8)
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n-th LAYER

oxp(-k (y-y ) exp(k (- ))

’

. /
AN e

Vn Vas1

FIG. 2. The surface waves in theh layer are described by

. . ) exponential functions exp(y-y,) 1 and exp-k.(y—-y,)] of real ar-
Whgre we are using an .abbreVIated ”Ota“?”‘iikr and_elkl gument and they are localized around theandy,.; coordinates,
which assigns a single indexto the couplej and a single  regpectively.

index B to the couplekl according to the rule

11 12 13| |1 6 5
21 22 23| |6 2 4. (9)
31 32 33| |5 4 3

The system(7) and (8) has the following four nontrivial
linearly independent solutiors§:

d(x,y,1) = exdi(kx + Ky — wt)]

(n)

& .

ud(x,y,t) = ﬁ(A(”) exlik{"y]
15

+B™ exp- ik{"y])exdi(kx - wt)], (16)

n)

A" (xy,1) = n)ug)(x y,2) +{C" exdk(y - yn)]

+D ™ eXF[_ kx(y - Yn)]}exlﬂ (kxx - wt)],

with ug(x,y,t) = Z—llqﬁ(x,y,t), (10) 17
15
where A", B™, C™W, andD™ are coefficients that will be
d(xy,t) = exdi(kx —ky — wt)] determined below. The wave vectkg is the same in all
layers due to the Snell law and therefore it does not have a
label n.
. &
with us(x,y,t) =e—11¢(x,y,t), (11 We see that the electric potentigl™(x,y,t) is a linear
15

d(x,y,1) = exfdi(kx = wt) + Ky = yn)]

with us(x,y,t) =0, (12

combination of two parts, one pafteferred to as<I>(”
X(x,y,t)= P d(y)expil(kxx wt)]) is proportional to the me-
chanical dlsplacementlsj(3 (x y,2) and the other parfre-

ferred to as<D(”>(x y,t)= <I> (y)exdl(kxx wt)]) represents
the surface wavés-28of the nth layer “located” at the inter-

) facesy=y, andy=y,., (see Fig. 2 Furthermore, for layers
#(x,y,t) = exdi(kx = wt) = Ky = yn)] of hexagonal fim symmetry we have, from Eq$3), (5),
(10), (1), and(17),

with us(x,y,t) =0, (13
Q)
h b
nere Dy, = a2 = — o1k C extlkoly ~ o]
2
pw
G= = k=K k=K cos' o, (14 — D™ exp{- k(y - yo) Jfexeli (kx - ot)].
44
(18)
2
_ e
Cy4=Cyq+ £ (15) Thus the electric d|splaceme|ﬁ1(n (as well astb(”)) only
g1 involves surface waves. In the NSWA we will tak¥" and

0 being the angle of incidence. The general solution to EqsD™ equal to zero. Therefored{=D{"=0 and u’

(7) and(8) at thenth layer is a linear combination of the four =(s!}/&2)d "= (&l /€l0) ™. In this ¢ case only the f|rst 2
particular solutions given in expressiof0)—(13) as fol- X2 block of the 4x 4 transfer matrices discussed in the next
lows: sections will be used.
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In order to have the complete solution for the whole sys- oYy = o5 Dy, (20)
tem and to determine unambiguously the coefficiehts,
B™, CM, andD™ we need to find the relation between the D,M(y.) = D, V(y,) (1)
solution at a given layer and the solutions at its neighboring 2 n 2 n
layers. This is done by using the boundary conditid®€). ~
() = V(Y. (22

These can be summarized in two groups: the conditions act-

ing at each interface, and those related with the global char- ysing conditions19—22) we obtain the transfer matrix
acteristics of the solutioffor finite systems the global char- genoted byM (1M which relates the coefficienss™, B™,
acteristics are direction of the incident wave, boundc® andD®™ defined in Egs(16) and (17) associated with
solutions, etc., and for infinite systems the global charactefihe solution at thenth layer with the corresponding coeffi-
istic is the Bloch condition cients AmD B-1 c-1) and D™D associated with the
solution at theln—1)th layer by means of the expression
A. BC at the interfaces and their implications

AN A-D

For the first group, we consider at each interface the con- ™ (1)
tinuity of the displacements, the stress tensar,s, the elec- B =M 10 B (23)

tric displacemenD,, and the electric potentiab. These con- cn cb

ditions can be written in the following form: DM pD(h-1)

uf (yn) = ug ™y, (19 The transfer matrix has the following for#fi:
|
-aexgiy,A] -Bexg-iy,2]  sexdE] - dexd-0]
ML = i -8 exdiy,2] -—aexg-iy,A] -d8exd0] Sexd-E] 24
2| yexdiyky ™1 yexd-iy kM - pexdkY] -éexd-kyY] |

yexdiy K™ yexd-iy k'] - £exgkY] - nexd- kY]

where M =M N-LN)  pf(N=2N=-1) pg (=2 oz 0D\ (1.0
| E(n— VgD E(n—l)EE&—l) (26)
a=|1+ g ) p=\1- K ) relates the coefficienta™?, B=Y, C-D andDV of the left
ky " Cas y ~a4 semi-infinite mediun{n=-1) with the coefficientA™, BN,

cN, andD™ of the last layefn=N) by means of

S < IR N ] v\ fa
efvei KVeei P\ ey Vel BN 5D
o [FML e | (27)
Wz(%%ii% %Ef), =<%§ﬁ§%__é%f>' oM DD
€15€11 €15 €15€11 €15

which establishes four relations between eight coefficients.
A= (k;”_l) - k§”)), 3= (k;”) + kg,n_l)), B. BC at y<y, and y>yy for finite systems and their
implications

For the boundary conditions at the two semi-infinite me-
dia (y<yp andy>yy) we have the following statement. Be-
cause we only are interested in bound solutions for all values
of y we must take

E = (kY —iyk"), 0= (kY +iyk"),
Y= Yn~ Yn-1- (25)

D = N) =
The first block(2x 2) of M1 has the usual form of the D 0, C7=0 (28)

transfer matrix describing elastic wa¥&s?? but with'c,, in-
stead ofc,,. Note thatc,, appears explicitly and implicitly
through Eq.(14), which gives the value df,. For the finite

where, as before, the coefficier®é™ and CN) are defined
in Eq. (17) for the casesxi=-1 andn=N, respectively. Fi-
nally, the other two conditions come from the normalization

systems the matri¥l of order(4 x 4) defined as the product of the transmitted wave traveling to the right, i.AN=1
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and from the fact that we have no incident waves from the OS(y) = \S(y), (39
right (BN =0). Therefore we have four conditions given by

Eq.(27) in order to determine the same number of unknownWhefeS(Y) [(y),us(y)]" and O is a matrix differential op-
coefficients:ACY, BCY, ¢D, andD™). These coefficients erator, which is invariant under translations of the foym

are calculated rearranging 5@7) and we obtain —Yy+jp. In other words,0O commutes with the correspond-
1 N ing translation operatorr,, j being an arbitrary integer.
A A 1 Therefore there exist solutions of E4) which also are
BV o o, 8" 4.0 eigenfunctions ofr,.43-¢ Thus we will look for solutions
c-n |7 B™-B cN |~ BB ol (290 g(y) satisfying
DM DY 0 7pS(y) = exdijp]S(y), (35)
where where the eigenvalue ebigjp] is the one-dimensional irrep

for the elementr;, of the Abelian discrete group of transla-
tions andx is the index of the irrep or Bloch’s wave number.

BeM 1ol 4laz My My, My O (51 0 ) If we use the property;,S(y)=S(y+]jp) in Eg. (35 we ob-
- I3 3~ ’

5, Mgy Mgz O B, -1 tain the Bloch condition, that for the cagel, becomes
M Mz Meg ~1 Bly+p) = exdixpl4(y) (36)
(30 and
100 -my uz(y +p) = exdixplus(y). (37)
B =M -(Is—1)+15= 0 1 0 -my (31) Because these equations are valid for all valueg aifid the
3 oo 1- Mgy |’ exponential functions are linearly independent we have
000 -my AT exdik{™™(y + p)] = exdikp] A" exdik{y],
1000 (38)
0100 - (rm) () — exdicp]BM o)
lg= 1=(8), i,j=1,...,4. (32 B ™ exp - iky " (y + p)] = exdixp]B™ exg - ik, Y],
O O 1 0 il |] H il l Ll
(39
0000O0
B, andB, are matrices of order:83 and 1x 3, respectively, ~ C™™ exgKd(y + p = Ynm] = exlixp]C"™ exdky(y = y,)1,
andmy; is theij element of the transfer matriM. The in- (40)
verse of matrixB can be found as the inverse of the parti-
tioned matrix defined in Eq30) as follows: D™ ey — K (y + P = Yirer)] = expli kp]D™
-1
B—l:( B, 0 ) (33) exg-kdy-yn], (41
B,-B;* -1

wheren is an arbitrary integer anch is the number of layers
In Sec. V we will discuss the properties of coefficientsin each perlod that isp=Y,+m—Ya. Due to the periodicity

AD B ¢V andDM as given by Eq(29). We recall k;”"m) " and Eqgs(38)—(41) can be written as

that the transmission and the reflection coefficients are de-

. (n+m) ile(M) (n+m) (n)
fined asT=|AN[2/|AY]2 and R=|BY[2/|ACY[2, respec- AT exdiky"p] Al AR
tively. These definitions are also used in the NSWA. How- B ™ exd~iky"p] | _ [ B™™ | _ .o B"
ever, in this case all matrices appearing in E2f) must be cn+m =E cmm [~ ch |
taken as matrices'of ordéR X 2). which are the first blocks D(n+m D(rm) DM
(2% 2) of the matricesV ™17 given by Eq.(24).
(42)
C. Global condition for infinite systems and their implications where
For infinite systems we will consider only periodic struc- exik{"p] 0 00
tures with periodp. Now the solutions can be characterized 0 exd - ik§,”)p] 00
by an irreducible representatiginrep) of the group of trans- E= : (43)
. _ . 0 0 10
lations by a finite amounp. As a matter of fact, since the
solutions of Egs.(7) and (8) are of the form ¢(x,y,t) 0 0 01

= g(y)exdi(kx-wt)] and us(x,y,t)=uUs(y)exdi(kx-wt)],  On the other hand, from the properties of the transfer matri-
the system of equations can be rewritten as the followinges, there exists other relation between the coefficients of the
eigenvalue equation: (n+m)-layer with the ones of the-layer, which reads
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A+m) A ()

_fu1 . .
B+ ol B [y = @m}m exlik{"y] + B" exd - ik{"y]),
=M , 44
cn+m) Pl cm (44) (51)
p+m DM

#"(y) = A" exdik{My] + B exd - ik{Vy] + CI"
xextlky(y — Y]+ D" exd - k(y - yn)] (52)

where

M E)n) =M (n+m=1n+m) M (n+m-2,n+m-1) , .. M (n,n+l)‘ (45)

for j=1,2,3,4.
Therefore In the NSWA, where the surface waves are neglected, the
- - dispersion relationk vs /27 and the angular dispersion
A A relation « vs sirt @ are defined implicitly by
) B(M B(M
n _ . _
EMPY) o [=exHixP]l o |- (46) defEM ™ -1 exdixp]} =0, (53)
DM DM
whereE is the first blocks of order 2 of E and M

given by Eq.(45). However, now all matrices appearlng
there must be taken as matrices of or®x 2) which are
de(EM E)n) ~1 exdixp]) =0, (47)  the first blocks(2X 2) of the matricesV (n-1m given by Eq.
(24). Therefore we only have two values far with ;=

where the angle of incidencg s a constant. However, we —,. Furthermore, because of the periodicity{ﬁ(”)}:l
will be also interested in a similar relation of the fomws  4nq «. can be calculated from P
sir # which is again given implicitly by Eq(47) but now
with the frequency equal to a constant. This relation will be
calledangular dispersion relation

In order to simplify the calculations we will use the sym-
metries of the system. We will write the characteristic poly-The coefﬂmentsA(”) B™™ associated with the two eigenso-

nomial in A=exdixp], P(A)= de(EMpn)—| exflixp)), a8’ Jutions ¢\"(y) and¢>”)(y) are obtained by solving

The dispersion relatioR vs w/27 is given implicitly by

cod kp) = % TrH{EM V). (54)

— A2(A2 2 . _

P(A) = A“(A“+agA +a, + ay/A + a/A“), (48) [EM E)ﬂ) - exp[lij]]X}”) =0, (55)
whereag=-THEM "}, a,=[(THEM "})2-TH{(EM ")2}]/2, whereX"=(A™,B™)T with j=1,2 and
and ay= de{EM(m} The symbol Tr={( )} means trace of a !
matrix -. Now we remark that if is a solution of Eq(47) el N o .
representing a Bloch wave traveling towards the right, thend)”(¥) = (n)[_g )] = A" exdik{"y] + B{"” exf - ik{y].
-k is also a solution and it represents the same wave but
traveling towards the left. Therefore X is a zero ofP(A), (56)
so is 1/A. From Eq.(48) we see that we should hawg
=az and ayz=1. Therefore the fourth-order equation in

exiixp] can be written as V. ANALYSIS OF THE RESULTS

_ _ We first consider finite piezocomposites. Figure 3 shows
0=A%+ A +ag A +A™]+a,= 4 cos(kp) + 2a5 Cod kp) plots T vs f for fixed values of the angle of incidende f is
+a,-2 (49 frequency in hertzf=w/27. In Fig. 3@ we consider the
system analyzed in Fig. 2 of Ref. 12 where the NSWA was
from which the four values,, «,, k3, and«, of x are cal- used and only one period was taken into account. The values
culated. We should mention that not eacl 4 matrix de-  of the quamitieg;n), e(lg, 8(1“1 andp™ were taken from that
scribing layered media has the above-mentioned Pfopeftleﬁeference Dotted lines correspond to the NSWA and solid
However, due to the symmetries of our system, maEMpn lines to the exact calculation where the surface waves are
has those properties. This fact was used to check our numetiaken into account. In the upper curve the dotted and solid
cal calculations. lines coincide. The dotted lines reproduce exactly the curves
For each value; there is a solutior)(}”) to the equation (1), (2), and(3) of Fig. 2 of Ref. 12 which correspond to
angles of incidenc®=0°, 30° and 60°, respectively. Figure

[EMUY -1 exdip]]X{" = 0. (50)  3(a) shows that the larger the angle of incidence is, the more
_ © _ ) different are the results of the NSWA and the exact calcula-
If the e|genvector XV s written as X tion. In fact, the curves corresponding &0 are the same.

—(A(n (”) C(“) n))T wheren is the index associated with This is so becaus®#=0 implies k,=0 and §=0. Thus the
the nth Iayer WhICh is, of course, arbitrary, we have thematricesM ™" are of the form[see Eqs(14), (24), and
following four eigensolutions to thath layer: (29)]
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of2n (10°%)

ol2n (10°)
10 15 20 3

FIG. 3. Transmission coefficiefit as a func-
tion of frequencyf =w/ 27 for different fixed val-
ues of the angle of incidenag In all figures the
dotted lines correspond with the NSWA and
the solid lines with the exact calculations. In
(@ we show three solid lines corresponding
with angles of incidence#=0° (upper curve
30°, and 60° (bottom curve, respectively.
The structure of the Piezocomposite
ZnOPZT4PZT5APZT5HCASZnO, with the
same layer widtlid=1.25 mm), which is the sys-
tem analyzed in Fig. 2 of Ref. 12. The parameters
in (b) are the same as @) but now the sequence
of layers PZT#PZT5APZT5HCASZnO is re-
peated ten timeé&en periodg §=10° and the in-
terval of frequency is shorter. The parameters in
(c) and (d) are the same as itb), but now we
only have three periods. The corresponding val-
ues off are 30° and 60°, respectively.

2

is

of2x (10%) 2% (10°)

for large values of frequencies, angle of incidence, and width
( ) of the layers. This fact causes the broadening of the curve at
the right side of the plot. For this reason, in Fig¢c)3and
whereM;; and O are matrices of order 22 andO is the  3(d), we have taken only three periods. Now the curves have
zero matrix. Furthermore, because the product of two matritess structure and one can clearly see the differences between
ces of the form(57) is the NSWA (dotted line$ and the exact calculatiofsolid
lines). In Fig. Jc) the value off is smaller than that in Fig.
(All O )(Bll O ) - (AllBll O 3(d), therefore the two curves of Fig(@ are more similar to
Az1 A2/ \Ba1 Bz C A2B2

each other than the two curves of FigdB Figure 3 also
With C=A B+ A B,y the first 2x 2 block of matrixM of shows that the larger the number of periods is, the better is
Eq. (26) is equal to the product of the first>X22 blocks of

the shape of the bands. So, if we want to have a well-defined
matricesM ™11 Therefore for the cas€=0° the calcula-

profile for the bands we need to have a larger number of
tions of the transmission and reflection coefficients must be

layers.
the same for the NSWA and for the exact approach. For Othe[Sr For nonperiodic systems the band structure is, of course,
values ofé the second block df1™%" is not equal tdD but

oken, but for small angles of incidence the NSWA is still a
we can expect that for small values 6fboth calculations good approximation. See, for example, the plbtes w/2m
give very similar results as shown in Fig(aB We have

My, O

(57)
M2 My,

) (58)

shown in Fig. 4. This figure corresponds to a multilayered
. system built according to the Fibonacci sequeBgesuch

Yhat thenth sequencs, is equal to the juxtapositions of the

analyzed. In particular for those considered in Ref. 12, even_— - _
in systems having polymer bonding of araldite at each interrean Dth sequencé,-, with the (n-2)th sequencé,, that

face. So, the calculations of the transmission and reflectiol”
coefficients for small angles can be done approximately by S,=S,1S,
using the NSWA, which is easier, numerically stable, and

faster. whereS;=A, S,=AB, and the bock#\, B are defined in the

(59

Figure 3b) also shows a ploT vs w/27 but now for a
system with ten periodsg=10° and w/27 < [0,6X 10°].
The values of the other parameters are as in Hig.. 3Ve

caption of the figure. This sequence is an example of quasi-
periodic structures which, in the last years, have received
much attention because of their intermediate properties be-

have increased the number of periods from 1 to 10 in ordetween periodic and disordered systems. In particular, these
to have well shaped bands. In fact, in this figure we clearlykinds of systems have been used to study the evolution of the
see a band structure for the transmission coefficient witband structure when the degree of disorder of the system
three gaps and four bandsne of them incomplejein the  changes from perfectly ordered to a Fibonacci sequéses,
analyzed interval of frequency. A detailed observation of thefor example, Ref. 48 In Fig. 4 the number of layers is equal
curve shows that each complete band has nine maxima astd 55 which, for a periodic system, is sufficient to have well-
must be. In fact, because the system has ten periods, it habaped bands. However, Fig. 4 shows that for this Fibonacci
nine cells each of them able to catch a resonance. In this casequence we do not have well-defined bands neither in
the curve corresponding to the NSWA is not shown for clar-NSWA nor in exact calculation.

ity but it will be considered below. In this figure the system  Some interesting properties of layered piezocomposites
has 10x5=50 layers and the calculations become unstablean be also studied if one analyzes the transport properties as
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FIG. 4. Plots ofT as a function of frequenci for a fixed value FIG. 5. Plots ofT as a function of sifig for a fixed value of
of the angle of incidencé=30°. The structure of the piezocompos- frequency. In(@) f=1.2x 10 and the piezocomposite is a sequence
ite is a Fibonacci sequence with two blocks B of the typeA  of ten periods where each period is formed with two blogke
=PZT4 andB=PZT5A with the same layer widthd=1.25 mm). blocks A, B considered in Fig.)4The system is embedded between

The system is embedded between two layers of ZnO. two layers of ZnO. In(b) f=(2/7)x 10" and we have taken 49
periods. Now the block#, B are as in Fig. 4 of Ref. 39 and they

a function of the angle of incidence. In these cases the leff2/¢ e 5f°|low'ng(n)paramete@@:pA:S'X10?0?1’ p=ps
side of the curvegthat is, 0< #<90°) for the NSWA and for _ 1< 107 M. 7= pazps=2500 kg/rlrj, e =enT 1443
the exact calculation must coincide, but, in general, they*10 “F/m. = & =e1,=64.63<107" F/m, 3152625
must become different for large values @fFor example, in - 0-0875 C/M, ey =€je=1 C/n, Cyq =Cas=1/4X 100N/ m2,
Fig. 5(a) we have two plotd vs sir? 6 for a sequence of ten 1dCas =Cas=4/11x 101 N/m?. In this case the dotted and solid
periods with two different blocks in each period. We see tha{'nes coincide because the parameters obey relations .Of the form
the dotted and solid lines coincide for small valuesfotf given by Eqs(60-63) and therefore the matrices are as in expres-
we increase the number of periods we obtain a well-defined" (64) (see Ref. 39 for detajs

band structure similar to the band structure of the plots ) S

/27 shown in previous figures. In Fig(15 we show a plot As _for the plotsT vs w/ 2, if the periodicity of the sys-

of this type for a system with 49 periods. A detailed analysisl®ms is broken, the band structure of the pldtsys 6 is

of the results shows that the plot has 48 peaks in the Congestroye_d. An |nte'rest|ng example of this is when the vglues
plete central band. However, in this case, we have considerédf the piezoelectric parameters of the layers obey a linear
a different periodic structure as in Figi@ Now the dotted Variation of the formisee Fig. 6a)]

and solid lines coincide for all values 6f This is so because 2\ (j+2m) 2\ ()
the system is of a special kind as the one considered in Ref. <&> = (_ﬂ) + mpF, (65)
39. In this system the material constants obey the linear re- Ca4

Ca4

lations o o whereF is an arbitrary constantn andj arbitrary integers,
s =0Cyy, (60)  p=p;+p, and(pw?/c,y) Y represents the values of the mag-
nitude pw?/Cy at the jth layer, that is, (pw?/Cpy)"
ey =T, (6D =pWw?/c)=(pw?ICi)(y) for y e [y;,yj+1]. Now the system
is nonperiodic and it has been shoi®ff*°that the plotsT
eWich) = QIT, (62)  vs sirf @ must show a sequence of pegkssonancessepa-
rated a distancA proportional to the slope of the dotted line
p™V=p O nm, (63)  shown in Fig. 6a). These peaks are called Stark-Ladder

resonance$SLR). Figure &b) shows a plot of this kind

where(}, I' are two constants independent of the sclipt where we have used piezoelectric parameters that obey Eq.

Thereforecf, =c,,(1+QI). In this case the matrit " (69). This figure shows clearly that the band structure has

reduces tdsee Eqs(24) and(25)] disappeared, and a Stark-Ladder structure appears instead.
My O This property is analogous to the one observed in the elec-
o M22>' (64) tronic spectrum of crystals in the presence of uniform elec-

tric fields. The SLR were predicted in 1961 by Wanrifer,
for all values ofé. Therefore all the comments following Eq. and observed experimentally in 1989 by Menééal 52 The

(57) are applicable and the exact calculations give the samphysics behind the SLR is a phenomenon of alternating con-
results as the ones of the NSWA. structive and destructive interference as in a Fresnel
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0.30 Figure 7 shows plots of Rpky}, Im{px,}, Repks}, and
I Im{pxs} as a function ofw/27 (dispersion curvesfor a
0251 fixed value of the angl®. The values of the piezoelectric
I parameters are as in Fig(d3 except that now we have an
0.20 - infinite number of periods. First we will analyze the behavior
- of x;. We note that in the intervals of frequency where the
To.5 function k; = k1 (w) is imaginary the expressidexdipx,]| is
different from 1 and Block’s theorem is not satisfied. There-
0.10 - fore the functions¢; and (u;); are not valid solutions for
these values of frequency. As a matter of fact, from a com-
] parison between Fig.(B) and Figs. 7a) and 7c) we observe
Il L L

patiIc,

0.05 |-

that Im{px;}=0 in the bands and l{p«;}# 0 in the gaps.
Furthermore, & Re{pk;} <7 in the bands and Rpxi}
=ma in the gaps, wheren=0 or m=1. We have observed
these characteristics, both for the exact and for the NSWA
FIG. 6. (a) Plot of pw?/Cy4 as a function of the coordinate(in calculations. Howeverks does not show this behavior as
arbitrary unit3 when pw?/c,, satisfies Eq(65). The slope of the ~Will be discussed below. Furthermore; does not exist in
dashed line is equal t6. For the periodic casé=0. (b) Transmis- the NSWA and therefore it must be associated with the be-
sion coefficient as a function of €im for a composite with param- havior of the surface waves.
eters satisfying a relation of the form plotted(&. The plot shows At this point we must comment on the following: for each
the SLR. The parameters are as in Fi@J)Sexcepts(l?:lo.GSZS value of frequency we obtain, from E@L7), four values ofx
X 10710 F/m, e(l%)=0.6875 C/m, Cﬁ:(so/lzj) x 10°°N/m?,  for the exact calculations and, from E&3), two values for
¢’ =4% 101 N/m?2. The values of the parameters for other valuesthe NSWA. So, when we plot the real and imaginary parts of
of n are obtained from Eq65) with F=9961.64 m>. However, the  these four(two) values ofx as a function of frequency we
parameters still obey relations of the form given by EG8)—(63) obtain eight(four) families of points and we have observed
and therefore the dotted and solid lines coincide. that each family can be joined by means of a continuous line.
Furthermore, these results confirm thakiis a solution to
interferomete?®*%%0 Since in this example we have used Eq.(47) then —« is also a solution. The decision about which
also Eqgs.(60)—(63) the curves are unchanged when one ne- is to be root 1 or 2, etc., is, of course, arbitrary but since
glects the surface waves. However, for other analyses theye curves are continuous one can follow the evolution of
are necessary as we will see below. each root. However, in some intervals of frequency, where
Now we consider an infinite number of periods. From Eq.two or more roots have the same value, it is difficult to
(47) we obtain four dispersion relationg vs w/27. How-  decide whichk is to be root 1 or 2, etc. In these cases we
ever, as discussed; =—«, and k3=—k,4. Therefore we will have used the criterion that the curves kgrand «, for the
analyze only the dispersion relations fey and k3. For the  exact calculations must be similar to those of the NSWA
NSWA we have only two dispersion relatiors vs /2, calculations. Note that in the NSWA case we only have two
with x;=-k, and therefore we will analyze only the disper- values forx, and therefore the decision is easy. However, in

0.00
00 02 04 06 08 10

sin’(0)

sion relation fork;. some other few intervaléwhere x; and «, for the NSWA
of/2r (10%) of2x (10%)
c 1 2 3 4 6 6 1 2 3 4 5 8
L] L) 5 L L L
3@ 4L ©
-~ 3}
s 2r £ 2| FIG. 7. Dispersion relations vs w/ 2 for an
% E - infinite piezocomposite with parameters as in Fig.
14 1} 1 [ 3(b). In (8) and (c) we have the real and imagi-
0 nary parts ofx;, respectively, and irtb) and (d)
0 AL the real and imaginary parts @, respectively.
1.0 The figures show four solid lines but only two

dotted lines because in the NSW4& does not
exist. The intervals where the solid lines of
Re{pky} are equal to zero owr are [150 412.5,
217550.9, [335043.1, 413571.05 and
[546 049.5, 584 414]3

b
T
<
Im{ pxa}

4] 1 2 3 4 5 6 4] 1 2 3 4 5 6
of2x (10°%) wf2n (10%)
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coincide our assignation was arbitrary. Therefore our classi- ® @ —T 5 o :
fication of the four curves vs w/27 could be differentin =~ &~ ) s U
some few intervalsfrom the classification of the curves of %* 0 ( 3 O—v_ﬁ ]
other authors. 2 N P Y
The eigenmode associated wikh is obtained from Eq. ¢ 1 2 3 4 5 6 e 1 2 3 4 5 6
(50) with j=1 [or from Eq.(55) in the NSWA). Because this s ofz=00) s of2=(0)
equation represents a homogeneous system with four (© , . (d) :
two) equations we can assign an arbitrary value to one of th&, o 1 Sn 0 -——s—-——"’,L
coefficientsA,™,B,",c," D, (or A,",B,"™). This of- & ‘ ]
fers a lot of possibilities with respect to the relations betweer 61 2 3 4 5 6 S0 2z 3 4 5 6
the coefficients associated with the exact calculations an s /27 (10%) 5 w/ 2r (10°)
those associated with the NSWA. For example, we can as ) ' \ ) o .
sign the same value to the coefficiem§(”) corresponding @1‘_ 0 @”\; 0 i ]
with the exact and the NSWA calculations. Another possibil- & j ) r
!ty is to assign a fixed value tDl(”):l (which is nptl present e T N ST T s T e
in the NSWA and obtain the other three coefficients from ol 27 (109 o/ 25 (10°)

Eqg. (50). Then, we can take the above calculated value of

A," to be equal to the corresponding NSWA coefficient ~ FIG. 8. Plots of the coefficients as a functionaf27. (a), (o),

A,". However, we can also take two completely differentand (¢) are P'O(tos) of ReA, ), Re(B,"%}, and RéC, %}, respec-

values for these coefficienta,™ in both approaches, etc. fively, (0‘)""th D, =1-(0)(b)’ (d), and (f) are %?ts of ReA,

So, a direct comparison between the coefficients associatd¥f{Bz 1, and R¢C, "}, respectively, withD, "=1. The param-

with the exact and NSWA calculations has no sense. Theretters of the piezocomposite are as in Figh) and 7.

fore in the next two figures we do not include the corre-

sponding NSWA curves. In any case we have observed that gl@(y) - Al<0) ex;{iki,‘”y] + Bl(O) exd- ik(yo)y]

the behavior of the eigenmodes reflect the fact that the solu-

tions are extended in the permitted bands of frequency and +C, ¥ exky] + exf - ky], (69)

they are nonphysical in the gaps as we will see below.
Becausec,; =-«, we have(exdipxi])* =explipk,] in the

bands andexdipxi])*=explipk;] in the gaps. Therefore

(0)
O\ = 214 O ayrik© © oy — ik©
[4\"(y)]* is proportional tog}”(y) in the bands and propor- [0 ()] = el? (A, exiliky"y]+ B, exr - ik, y]),

and

tional to #\"(y) in the gaps. Thus if we tak®,"”=D," (70)
=1 we have
AM=B, BM=a M cM=c® (66 o (y)= A0 exp{ik(yo)y] + B, exg - ik(yo)y]
+ G exilky] + exd - kyl, (7D)

in the bands and
are finite in the bands and diverge in the gaps.
B,"=A,"", BMW=A"" c®™=c/™ (67 Now we will discuss the properties of;. Figures Tb)
and 7d) show that the behavior of; is quite different from
in the gaps. In Fig. 8 we have plotted some of these coeffithose ofx; and x,. We see that Rp«s}=0 for all values of
cients as a function ofv/27. Figures &), 8(c), and 8¢)  frequency. Therefora;=exip«s] is always a real quantity.
show plots of RgA, ¥}, RegB,?}, and R¢C, ¥} for D,  Furthermore, as mentioned, becaus@ndx, do not exist in
=1 and Figs. &), 8(d), and §f) show plots of R{aqz(o)}, the NSWA they are associated with the surface waves. This
Re(B,”}, and R¢C,"} for D, =1, for the same system as can be also seen from the following reasoning: first we con-

in Figs. 3b) and 7. The imaginary part of these coefficientsSider an angle of incidence equal to zero. Thek=0 and,
is not shown but it has a very similar behavior as the reafiue to the periodicity, the produgiM " of the matricesE of

part. The same is true for the behavior of the coefficientEq. (43) and the transfer matrik g” of Eqg. (45) reduce to a
A" B, andc,™ for other values oh. From a compari- matrix of the form

son between Fig. (@) [or Fig. 3b)] with the plots of Fig. 8

we observe that all the coefficients are finite in the bands but (
some of them diverge in the gaps. Therefore the mathemati-

cal expression for the eigenmodes at the Oth layer associat(\eNdh M
with k; and «,, ere

Mll O), (72)

Moy |

ij; O, | are matrices of order’22. O and| are the
zero and unit matrices, respectively. Furthermore, a plot

0) vs w/ 27 for the cased=0 (not shown in a figureshows that
[ag())(y)]l:%(,ql((’) ex;{ik<y°)y]+51<°> exp:—ik)(lo)y]), k3=0 Ow. Thus \;=exfdipks]=1 and, if we defineag”)
€15 =(A;",B,"7 and c"=(c,",D,")7, Eq. (50) can be
(68)  written as
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AR AN
Mo 1/\cl/) \Mpal +c )\ )
(73)
which implies
M 113(3n) = a(sn)a
M,a’=0. (74)

These two equations can be satisfied Wlaélln (0,07 or
when a(3”> is an eigenvector o ;; and M ,; simultaneously
with eigenvalues.;=1 and 0O, respectively. However, we can
see that the only two eigenvalues of th& 2 matrixM (; are

N =exfdipx;] and\,=exdipk,]. In fact, from Eq.(50) for
k,=0 andj=1,2 wehave

|

So, the solution to Eq$74) is a(3“)=(0 ,0)T and the eigenvec-
tor of the matrix

n)

My |

a

(n)
G Cl

(n) — (n)
(n)) U Mya " =Ng.

(79)

My O
EM = ( 1 ) (76)
My |
with eigenvaluen;=1 is of the form(0,0,C,™, D,;™)T. This

property was used to check our numerical calculations. Th
is, we have verified tha&\@):B}”):O Ow whenk,=0, A=1,
andj=3,4.Thereforex; and x, are associated with the sur-
face waves and they are described by

() = C" exlky]+ D" exd-kyl  (77)
and
#(y) = C," exdkyl+ D, exd-kyl  (78)
with
[W(y)j=0, j=3,4. (79)
Furthermore, from Eqg44), (46), and(73)
CJ(n+m) + Cj(n)
<Dj(n+m)> = (i_DJ(n) ) ’ (80)

wherem is the number of layers in each periadan arbi-
trary integer, andj=1,2. Equation (80) implies that the
structure of the surface waves repeat periodically with perio
p.

For the casd # 0 the coefficientsA,™, B, A,", and
54

in Flgs 3b) 7, and 8, wher®=10°, the plots oA, © B3(0),
and C3 with D =1 are as shown in Fig. 9. In th|s case
the e|genfunct|or¢3(y) diverges and is not a physical solu-
tion. Furthermorex; is different from zero but purely imagi-
nary as can be see in Figgbyand 7d). Therefore\; is real
and B;"=(A,")* Ow, as shown in Figs. @-9(d).

are not equal to zero but they are smaII as compared
with C(”) and DJ(”> For example, for the systems considered

PHYSICAL REVIEW B 71, 064101(2005
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FIG. 9. (a—(f) Plots of RéA3O)} Im{A;?}, Re(B,%},
Im{B,}, Re{C,”}, and In{C,”}, respectively, as a function of

wl 27 with D3<0)_ 1. The parameters of the piezocomposite are as in
Figs. 3b), 7, and 8.

Finally we discuss the angular dispersion relation. Figure
10 shows plots of Rpx,}, Im{p«,}, Re{pks}, and In{pxs}
as a function of sifhi# (angular dispersion curvesor a fixed
value of the frequencyn. The values of the piezoelectric
parameters are as in Fig( except that now we have an
infinite number of periods. As in Fig. 7, the functiogg and

3)1 are not valid solutions in the intervals @fwhere «;
=k, (sir? 6) is imaginary. From a comparison between Figs.
5(b) and 10, we observe that {pw,;}=0 in the bands and
Im{px,} # 0 in the gaps. Furthermore;<0Re{p«,} < 7 in the
bands and R@x,}=ma in the gaps, wheren=0 or m=1.
The quantity R§«k;} is always equal to 0. Indeed, all com-
ments made for Fig. 7 related with the problem of the assig-
nation of the roots, and other properties, are also applicable
in Fig. 10, except that now the NSWA and the exact calcu-
lations give the same results because the matrices are of the
form (64). Furthermore, in this case, a plot bg{p«s3}) vs
log(sir? ) shows that there exists a linear relation between
these variables, that is,

log(Im{pxs}) = C log(sir? 6) (81)
whereC is a constant. Therefore
Im{pk3}) = sirf® 6 (82

(Eowever, for the dispersion curve of Fig(df we do not

ave a linear relation between ldg{p«s}) and lodw).

VI. CONCLUSIONS

In this work we have analyzed the transport properties of
SH and surface waves in heterogeneous finite and infinite
piezoelectric media. For “periodic” piezocomposites we have
obtained band structures according to the Bloch theorem,
both when the response of the systems is studied as a func-
tion of frequency and when the response is studied as a func-
tion of the angle of incidence. Furthermore, we have corre-
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sl@ ' | (b) ' ]
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T 1 3 - : FIG. 10. Angular dispersion relations vs
e & o5} - sir? @ for an infinite piezocomposite with param-
0 - 1 eters as in Fig. ). In Figs. 8) and &c) we
0.0 * 0'5 * 10 '1-000 * 0'5 * 10 have the real and imaginary parts ©f, respec-
) ) ’ ) ) ; tively, and in Figs. &) and §d) the real and
sin™(0} sin”(8} . ; . )
0.4 . . . . imaginary parts ofks, respectively. The figures
03[ © ] shows four solid lines but only two dotted lines
“} . because in the NSWA; does not exist. How-
- 02 N N ever, the dotted and solid lines coincide because
i' 0.1} - the parameters obey relations of the form given
Z o i ] by Egs.(60)—(63).
202l . 1 L ] 0 1

0.0 0.5 1.0 0.0 0.5 1.0
sin’(e) sin’(@)

lated the structure of the transmission coefficient with thecase when a polymer bonding layer of araldite is placed be-
structure of the curves for the dispersion relation and for théween each couple of piezoelectric layers. We have seen that
angular dispersion relation. For finite systems we have alsthis knowledge is important because the fundamental equa-
analyzed the transport properties for some special nonpertions describing the piezoelectric effects are a complicated
odic systems. In particular, in one of them we have obtainedystem of equations whose solution is time-consuming and
Stark-Ladder resonances. numerically unstable. This is due to the coupling between the

We have also analyzed how the surface waves modify thenechanical displacements and the electric potential which is
results obtained from the NSWA. We have considered exdescribed by exponential functions of real argument. So, al-
amples in which these waves can be neglected and others farnative methods are useful as those mentioned in the text

which these waves affect the NSWA results, including theand, in particular, the NSWA.
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