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We study the fundamental magnetic states of disc-shaped ferromagnetic particles with a uniaxial anisotropy
along the symmetry axis. Besides the monodomain, a bidomain state is also identified and studied both
numerically and theoretically. This bidomain state in the symmetry broken system is the analog of the vortex
state, consists of two coaxial oppositely magnetized cylindrically symmetric domains, and is stable at zero-bias
field, unlike magnetic bubbles in ferromagnetic films. For a given disc thickness we find the critical radius
above which the magnetization configuration falls into the bidomain bubble state. The critical radius depends
strongly on the film thickness, especially for ultrathin films. In an external field the bidomain state remains
stable over a range of field strengths. The switching from the bidomain to the monodomain takes place through
an abrupt domain annihilation mechanism.
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Vortices have been studied extensively in many physical
systems, and specifically in magnetism, where they are asso-
ciated with configurations of magnetic-flux closure and thus
correspond to states of low magnetostatic energy. In particu-
lar, magnetic particles with small magnetocrystalline
anisotropies tend to fall into the magnetic vortex state above
the critical size for single-domain formation. This corre-
sponds, therefore, to a fundamental state which is expected
to be present whenever the magnetostatic energy dominates
over the other energy terms. Extensive work has been done
in circular particles with in-plane anisotropy.1–3 Recently,
ferromagnetic rings were studied4,5 where the vortex state is
the state of lowest energy for a wide range of geometrical
parameters. We found that highly symmetric domain con-
figurations mediate the switching between a high moment
soniond state and low momentsvortexd state.6

In view of the recent development of materials with large
perpendicular anisotropies7,8 and experiments in Permalloy
discs,9 we study in this Communication the magnetic struc-
ture of particles in the presence of a strong symmetry-
breaking anisotropy field and identify the analog of the vor-
tex. Motivated by the work on rings and the importance of
the vortex state we search in the present case for high-
symmetry stable states in disc particles with perpendicular
anisotropy. We identify bidomain states which exist even in
the absence of a bias field but are otherwise the analogs of
the magnetic bubbles observed in ferromagnetic films. The
bidomain states have a circulation similar to the vortices and
are thus expected to be generic and of a corresponding im-
portance to the vortices. Our study also predicts the size of
the magnetic domains supported in the particle, correspond-
ing to the periodicity of stripes observed in films.

Furthermore, the bidomain state is robust and remains
stable for a range of applied fields. Its domain-wall position
depends on the applied field and it is abruptly expelled out of
the particle when it comes close to the outer radius. Like-
wise, it shrinks abruptly to a point when the bubble becomes
very small. This procedure therefore gives rise to an unusual

type of switching mechanism. The importance of the present
findings is that, again, very simple, high-symmetry domain
structures are found to be stable and to mediate the magnetic
switching process, in contrast to the complex behavior which
usually occurs in small elements.

Static, as well as dynamical properties of the magnetiza-
tion m are governed by the Landau-Lifshitz equation. The
constant length of the magnetization is normalized to unity:
m2=1. An important length scale of the system is the ex-
change length

,ex =Î A

2pM0
2 , s1d

whereA is the exchange constant andM0 is the saturation
magnetization. In the following, we shall use,ex as the unit
of length. Another important quantity is the dimensionless
quality factor

k =
K

2pM0
2 , s2d

whereK is the anisotropy constant. The significance of the
quality factor can be seen in two important quantities. First,
the domain-wall width is,ex/Îk. Second,k controls the rela-
tive strength of the magnetostatic field which has a demag-
netizing effect, with respect to the anisotropy field which
favors alignment along a direction perpendicular to the film.
We shall suppose here thatk.1, which means that the an-
isotropy is, in general, stronger than the demagnetizing field.

The Landau-Lifshitz equation is the basis for all our cal-
culations and we are interested only in its static solutions. We
find such magnetic configurations by a relaxation algorithm,
the details of which were explained in Refs. 10 and 11. We
only note here that we use finite differences with a typical
lattice spacing of 0.2. We introduce a Gilbert damping term
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in the equation and feed the algorithm with an initial guess
state. This eventually converges to a static solution at a local
minimum of the energy functional.

The most demanding part of the method is by far the
calculation of the magnetostatic field which requires the so-
lution of a boundary value Poisson problem. A huge reduc-
tion of the numerical calculations is obtained if we confine
our interest to axially symmetric configurations, and in the
rest of this paper we shall be concerned only with such mag-
netic states. We expect that this is not a serious constraint, at
least for the most basic magnetic states of small particles
which will be our main focus. Indeed, it is reasonable to
assume that the lowest-lying states of the system will have
the symmetry of the geometry of the particle. We callz the
axis of symmetry of the disc which is also the direction of
the easy axis. We use cylindrical coordinates and suppose
that the radialsmrd, azimuthalsmfd, and longitudinalsmzd
components of the magnetization vector are functions ofr
andz only: mr=mrsr ,zd, mf=mfsr ,zd, mz=mzsr ,zd.

As a first step we calculate the simplest possible state.
This is expected to be a single-domain state in which all
spins are driven by anisotropy and lie roughly along the sym-
metry z axis. We use the uniformm=s0,0,1d state as an
initial guess in the relaxation algorithm. This then quickly
converges to a quasiuniform static state, at least for strong
anisotropyk.1. The magnetization vector deviates from the
z axis only around the edges of the disc. The quasiuniform
state is a monodomain state and is thus expected to be the
ground state for sufficiently small particles. The transforma-
tion m→−m gives a second monodomain state.

As the size of the particle becomes larger it is anticipated
that the magnetic configuration will break up into domains.
We conjecture a bidomain state that is axially symmetric.
This consists of an inner cylindrical domain of “down” mag-
netization surrounded by the outer domain of “up” magneti-
zation. A domain wall has to separate the two domains. We
shall call these axially symmetric bidomain states “bubbles”
because they bear some essential similarities to the so-called
magnetic bubbles observed in abundance in ferromagnetic
films.

Ferromagnetic films with a strong perpendicular aniso-
tropy were studied experimentally and theoretically around
the 1970s. These early studies were largely driven by tech-
nological interest in magnetic bubbles whose statics and dy-
namics were analyzed in detail.12 A magnetic bubble is a
circular domain of opposite magnetization in an otherwise
uniformly magnetized film with magnetization perpendicular
to the film. The presence of an external bias field is essential
for the stabilization of these structures.13,14 If the bias field is
lifted, then the magnetostatic field destroys the bubble which
expands and eventually transforms into stripe domains. In
contrast, the bubble states calculated here for sufficiently
small ferromagnetic particles remain stable even in the ab-
sence of a bias field.

We thus return to our conjecture and proceed to test it
numerically. As a standard example we choose the following
values for the quality factor, the film thickness, and the ra-
dius:

k = 2, d = 8,ex, R= 24,ex, s3d

and this choice will be explained later in the text. In the case
of the FePt films of Ref. 7, whereM0=1150 emu/cm3,
A=10−6 erg/cm, the exchange length is,ex=3.5 nm and
thus the values of Eq.s3d are translated tod=28 nm,
R=84 nm. The valuek=2 for the quality factor corresponds
to K=1.63107 erg/cm3 for the anisotropy constant, as is
typical in FePt films. We feed our numerical algorithm with
an initial condition which has the gross features of the
bubble state described above with a domain wall of the
Bloch type smoothly connecting the domains. The algorithm
converges to a static bubble state which has a complicated
domain-wall structure shown in Fig. 1. Also, the magnetiza-
tion deviates to some extent from thez direction at the side
surface of the particle. The profile of this structure is suffi-
ciently interesting and deserves attention. The magnetostatic
energy is the driving force here and it clearly favors a bido-
main state with opposite magnetization where the total mag-
netization would roughly vanish. On the other hand, the an-
isotropy and exchange energies are significant at the domain
wall and they put a tension on it to shrink. In the final result
the bubble has an inner domain with volume smaller than the
outer domain. Thus the total magnetization points along the
symmetry axis and it is nonzero. As mentioned already, con-
trary to the situation in films, we suppose here that no exter-
nal bias field is present.

The domain wall resembles those discussed in the litera-
ture in related calculations.10,15 It is Bloch in the central
plane sset atz=0 hered and it progressively becomes Néel
towards the surfaces. The Néel wall is significantly wider
than the Bloch wall. The radius of the bubble is larger at the
center than near the surfaces, but this is a small effect. It is
easy to understand that for this type of wall the magneto-
static energy and the total-energy density are larger near the
surfaces than at the disc center. In short, the surfaces disfavor
the bubble domain wall. The final and important result is

FIG. 1. The bubble state illustrated at the middlesz=0d plane
of the disc and at the topsz=d/2d. The magnetization is such
that mz=−1 at the center andmz<1 in the outer domain. The ar-
rows show the projection of the magnetization on thesx,yd plane,
which has a significant value at the domain wall. This is a Bloch-
like wall in the middlesz=0d plane and it turns almost Néel-like at
the top and bottom surfacessz= ±d/2d. In all cases that the algo-
rithm converges, the magnetization satisfies the parity relations
mrsr ,zd=−mrsr ,−zd, mfsr ,zd=mfsr ,−zd, mzsr ,zd=mzsr ,−zd.
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that, for the parameterss3d, the bubble state has a lower
energy than the monodomain state.

We now proceed to a systematic numerical study of the
bubble state. We first fix the disc thickness atd=8 and vary
the radiusR. We find a bubble state when the radius is larger
than some critical radiusR1<14. For smaller radiiR,R1
our algorithm always converges to the quasiuniform state
irrespective of the initial condition. Our results thus indicate
that the inner bubble domain cannot be sustained if it is too
small. For a disc radius slightly larger thanR1 the bubble
radius is small and the total magnetization of the structure is
large. As the radius of the disc increases the inner bubble
domain expands and the absolute value of the total magneti-
zation decreases.

The energy per unit volume of the bubble state as a func-
tion of the disc radius is given in Fig. 2 for three values of
the thicknessd, along with the corresponding energy for the
monodomain state. The latter exists as a local minimum of
the energy for any radius up to the largest that we checked.
The energy per unit volume of the bubble is greater than that
of the monodomain state at the lowest radiusR1 where the
bubble first appears. It decreases for larger radii and becomes
lower than that of the monodomain state above a critical
radius Rc. It eventually becomes an increasing function of
the radius but apparently remains lower than the energy of
the monodomain state for allR.Rc. We considerRc as
marking the size for the breakup of the magnetization con-
figuration into domains. We could find the bubble as a local
minimum of the energy for all radiiR.R1 that we have
checked. However, it is expected that a multidomain state
will eventually set in for a sufficiently large radius, with
energy lower than the energy of both the monodomain and
the bubble.

In order to study the dependence ofRc on the thicknessd
we have repeated our calculation for a few values ofd. From
Fig. 2 one can extract the critical radii for three values of
d=6,8,15. InFig. 3 we give theRc as a function ofd in-
ferred from six values ofd. For smalld the critical radius
significantly exceeds the particle thickness because surface
effects become important and disfavor the formation of a
domain wall. On the other hand, the critical radiusRc levels
off for higher values ofd. The thickness for whichRc attains
a minimum appears to be close tod=8 for which Rc<18.
This is actually the reason for choosings3d as our standard
parameters, along with the fact that ford=8 the energy of the
bubble has a minimum atR<24 as is seen in Fig. 2.

We have also repeated our calculation for the particle
sizes employed in the experiment of Ref. 9 and have con-
firmed the existence of a bubble state. However, a detailed
quantitative comparison cannot be made before one deter-
mines the strength of the deposition-induced anisotropy in
the Permalloy used in the experiment.

Once we have established the existence of a bubble we
would like to know how it behaves under an externally ap-
plied field. Apart from the apparent practical implications,
this is an interesting question also because the field will af-
fect the intricate balance of energies that is responsible for
the stabilization of the bubble. The field is applied along the
symmetry axis of the disc, i.e., it is of the form
hext=s0,0,hextd.

We apply the field on a particle which is already in a
bubble state. As a specific example, we choose our standard
parameter valuess3d. Our results are given in Fig. 4. For
hext=0 the total magnetization per unit volume,
m=1/VemzdV, is nonzero. If we choose the inner domain to
point down thenm is positivespoint C in Fig. 4d. Applying a
positive external field favors the outer domain, which ex-
pands at the expense of the inner domain. The system does
reach a new equilibrium state which is again a bubble state,
but with a smaller radius. This corresponds to an increased
value for m. For a high enough magnetic field the bubble
becomes too small and it cannot be sustained by the system.
In our examplem jumps to unity forhext.hB=0.13, which

FIG. 2. Energy per unit volumesin units of 2pM0
2d of the mon-

odomainsdashed linesd and of the bubble statessolid linesd as a
function of the disc radiusR for three values of the disc thicknessd
sR and d in exchange length unitsd. The bubble exists only forR
greater than a critical radiusR1 and it has a lower energy for
R.Rc whereRc is yet another critical radius which corresponds to
the intersection of the two lines for each value ofd. BothR1 andRc

depend ond.

FIG. 3. The critical radiusRc as a function of the thickness of
the discd. For R.Rc the bubble has a lower energy than the mon-
odomain state.
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signals that the bubble shrinks to zero radius, resulting in a
monodomain state with magnetization pointing upspoint Bd.
On the other hand, if we start from pointC but now reduce
hext to negative values the inner domain is favored and
pushes the domain wall to a larger radius, which is reflected
in a smaller value form. The total magnetizationm crosses
zero forhext=−0.08; it then becomes negative and eventually
m jumps to minus unity forhext,hA=−0.26, which means
that the system is in the monodomain state pointing down
spoint Ad. Below hA the domain wall is attracted by the side

surface and is expelled from the disc. The dashed line in Fig.
4 corresponds to the equivalent physical situation obtained
by the symmetry transformationm→−m, hext→−hext.

The bubble is stable in the rangehA,hext,hB in which
reversible behavior occurs. Forh,hA andh.hB irreversible
jumps in the magnetization occur, which correspond to the
domain wall being attracted to the edgespoint Ad or shrink-
ing to the center of the discspoint Bd. The size of the jumps
in the magnetization reflect the size of the domain wall being
annihilatedslarger when the inner domain expandsd and con-
stitutes yet another example of how the geometry of the el-
ement constrains the shape of the domain wall and the details
of the switching process.16,17 On the other hand, if a particle
with R.Rc is saturated by a strongin-plane field, it will
eventually relax into a bubble state after the field is
removed.9

In conclusion, we have studied the fundamental states of
disc-shaped magnetic particles with uniaxial anisotropy
along the axis of the disc. A magnetic bubble state has been
identified within our numerical calculation and has been
studied in detail. The bubble is a particularly simple axially
symmetric state and it is expected to play for perpendicular
anisotropy materials the role that the vortex plays for in-
plane anisotropy.

We recently became aware of Ref. 18, where experiments
on Ni particles support our present theoretical results.
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