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The superconducting flux qubit has two quantum states with opposite currents which generate different
magnetic fields. Environment of nuclear spins can find out the magnetic field after a decoherence timet0

inversely proportional to the magnetic field and the square root of the number of spins. When the Hamiltonian
of the qubit drives fast coherent Rabi oscillations between the states with opposite current, then the magnetic
field is flipped at a constant ratev and the decoherence timet=vt0

2 is much longer thant0. However, on closer
inspection decoherence actually takes place on two time scales. The long timet is a time of full decoherence
but a part of quantum coherence is lost already after the much shorter timep /v. This fast partial decoherence
biases coherent flux oscillations towards the initial flux direction and it can affect performance of the super-
conducting devices as qubits.

DOI: 10.1103/PhysRevB.71.054516 PACS numberssd: 74.50.1r, 03.67.Lx, 85.25.Dq

Quantum computers can perform certain tasks exponen-
tially faster than their classical counterparts.1 The basic unit
of the quantum computer is a quantum bit or qubit. Several
physical implementations of the qubit were proposed includ-
ing ion traps,2 nuclear magnetic resonance,3 quantum dots,4

single photon,5 and two flavors of superconducting Joseph-
son junction qubits.6 The solid state implementations are in
principle most easily scallable and most compatible with the
existing classical electronics, but at the same time they are
the most endangered by quantum decoherence. However, re-
cent experiments7,8 in both types of superconducting qubits
show hundreds of coherent oscillations. This is still far from
the minimal requirements of the fault tolerant quantum
computation9 but it makes superconducting qubits attractive
candidates for scallable quantum technology. In order to
push their performance even further it is essential to under-
stand their quantum decoherence better.

I. SUPERCONDUCTING FLUX QUBIT

The superconducting flux qubit is a superconducting loop
broken by one or more Josephson junctions.6 The junctions
are designed so that the lowest two quantum eigenstates are
states with opposite currents and different magnetic fluxes.
The flux difference can range from a tiny 10−3

¯10−2 frac-
tion of the flux quantum10 to 1/2 of the quantum.11 The two
states span a two-dimensional Hilbert space of the qubit. I
assume convention that the stateu1l su0ld with positivesnega-
tived current is the +1s−1d eigenstate ofsz. Degeneracy of
these two states is removed by coherent tunneling between
the opposite current states driven by the qubit Hamiltonian:

HQ =
1

2
vsx + msz. s1d

For m=0 the eigenstates ofHQ are the coherent superposi-
tions u± l=su1l± u0ld /Î2. These Schrödinger cats were ob-
served in two independent experiments.10,11For m=0 the qu-
bit Hamiltonians1d drives coherent oscillations between the
states with opposite current. For example, the initial stateu1l

evolves into u1lcoss 1
2vtd− i u0lsins 1

2vtd with an expectation
value of the flux operator

Fstd ; kszl = cossvtd s2d

oscillating with the Rabi frequencyv. Damped flux oscilla-
tions were observed in a number of experiments7,8 in both
types of the superconducting qubit.

The qubit Hamiltonians1d is sufficient to perform any
one-qubit operation. Two-qubit operations are possible
thanks to inductive coupling between any two qubits.6 En-
tangled eigenstates of two qubits were detected in Ref. 12
and coherent Rabi oscillations in a system of two inductively
coupled qubits were observed in Ref. 8. It is possible to
perform single-qubit NOT and two-qubit CNOT operations
in an adiabatic way13 that, in particular, precludes excitation
beyond the truncated two-dimensional Hilbert space of the
qubit. However, before it comes to quantum computation,
quantum decoherence has to be overcome first.

II. QUBIT IN A SPIN BATH

Various sources of decoherence for flux qubits have been
discussed in Ref. 14. At relatively high temperatures the
main source of decoherence is normal state quasiparticles.
However, density of quasiparticles is exponentially sup-
pressed at temperatures much less than the critical tempera-
ture. Other decoherence mechanisms including electromag-
netic radiation from the qubit or ohmic dissipation in the
environment are, respectively, negligible or tractable.
Nuclear spins are argued to play a minor role. Due to relax-
ation the spins randomly flip their polarization. Random
spins are a source of random magnetic field which couples to
the magnetic moment of the qubit and randomizes its quan-
tum state. This picture is further corroborated in Ref. 16
where the spins are assumed to be mutually noninteracting
but each of them is coupled to a bosonic environment. The
decoherence time is estimated in the range of milliseconds.
The final Eq.s47d in Ref. 16 shows that in the limit of van-
ishing nuclear spin relaxation ratesgi in Ref. 16d the deco-
herence time tends to infinity. As expected, the external mag-
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netic noise vanishes for vanishing nuclear spin relaxation
rate.

However, apart from generating magnetic noise nuclear
spins can be also silent witnesses of the quantum state of the
qubit. In the limit of vanishing spin relaxation and for neg-
ligible spin-spin interaction each spin is simply precessing in
the magnetic field of the qubit. The direction of the field and
the direction of the precession depend on the state of the
qubit. This way the spins can learn the quantum state of the
qubit. Once they know the state any quantum coherence be-
tween the states with opposite current is lost. This elemen-
tary argument shows that decoherence does not vanish for
vanishing spin relaxation.

In this paper I neglect nuclear spin relaxation. When the
relaxation rate is longer than any other relevant time scale,
like the frequency of the Rabi oscillations or frequency of
the spin precession in the magnetic field of a qubit, then this
is a very reasonable assumption. Spin lattice relaxation is
also neglected in the paper of Prokofev and Stamp.15 In con-
trast to the very general formalism employed in Ref. 15, in
this paper I apply most elementary methods to a simple
model Hamiltonian. This simple approach benefits with clear
interpretation of the results and additional insights into dy-
namics of the decoherence process. In particular, the simple
model makes it very clear that even in the absence of any
spin lattice relaxation the spin environment decoheres the
quantum state of a single qubit. The decoherence is not an
artifact of ensemble average over different static spin con-
figurations or an ensemble of qubits, as sometimes claimed
in the literature, but a result of genuine entanglement be-
tween the qubit and the spins.

The qubit interacting with spins is described by a Hamil-
tonian

H = HQ + V + HS. s3d

HereV is interaction between the qubit andN spins

V = szo
n=1

N

BW srWndsW snd. s4d

BW srWnd is a magnetic field of the qubit in the stateu1l at the
positionrWn of the nth spin. Direction of the magnetic field is
reversed in the stateu0l as is accounted for by the operator
sz. sW snd is a vector of Pauli matricesssx

snd ,sy
snd ,sz

sndd in the
Hilbert space of thenth spin. A unitary transformation in the
Hilbert space of each spin brings the interaction Hamiltonian
to a more convenient form

V = szo
n=1

N

Bnsx
snd. s5d

Here Bn= uBW srWndu.0 is the strength of the qubit magnetic
field at the location of thenth spin.

III. EXACTLY SOLVABLE MODEL

When the magnetic field from the qubit is stronger than
magnetic fields from other spins, then spin-spin interaction
can be neglected,HS=0 and

H =
1

2
vsx + szSm + o

n=1

N

Bnsx
sndD . s6d

This exactly solvable spin-spin model was also considered in
Ref. 17. The Hamiltonians6d can be easily diagonalized. The
spin part of any eigenstate is

usWl = us1l¯usNl. s7d

Here usnl is an eigenstate ofsx
snd with an eigenvaluesn

[ h+1,−1j. In the subspace ofusWl the Hamiltonians6d re-
duces to an effective qubit Hamiltonian

HssWd =
1

2
vsx + szbssWd s8d

with an effective external “magnetic field”bssWd=m

+on=1
N Bnsn. HssWd has eigenvalues ±VssWd; ±Î1

4v2+b2ssWd
with corresponding eigenstates proportional to
bu+l± fV7

1
2vgu−l.

IV. PURE INITIAL STATE OF SPINS

I open the discussion of decoherence with an example
where the initial state is

ucs0dl = sau + l + bu− ld u11,…,1Nl. s9d

Each spin is initially in the11 eigenstate of itssz
snd. This is

a very special initial pure state of spins. However, in Sec.
VIII I will show that this example is generic and that all the
results derived in this special pure case literally pass without
any modification to the case of the initial high temperature
thermal state of spins, or to an ensemble average over all
possible initial pure states of spins. In this section I choose
this special pure state to make it more transparent that deco-
herence is due to genuine entanglement between the qubit
and the spins, and that it is not an artifact of an ensemble
average over different qubits or over different static spin con-
figurations.

The Hamiltonians6d evolves the initial state into

ucstdl =
1

2N/2o
sW

fAst,sWdu + l + Bst,sWdu− lgusWl,

Ast,sWd = e−iVtb
ab − bs 1

2v − Vd
b2 + s 1

2v − Vd2

+ e+iVtb
ab − bs 1

2v + Vd
b2 + s 1

2v + Vd2 , s10d

Bst,sWd = − e−iVtS1

2
v − VDab − bs 1

2v − Vd
b2 + s 1

2v − Vd2

+ − e+iVtSV +
1

2
vDab − bs 1

2v + Vd
b2 + s 1

2v + Vd2 . s11d

This state is an entangled state of the qubit and the spins: the
state of the qubitAst ,sWdu+l+Bst ,sWdu−l depends on the state
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of spins usWl. The state of the qubit can be described by re-
duced density matrixrstd obtained by taking a partial trace
over the spins:

rstd ; TrSucstdlkcstdu =
1

2No
sW
SA*A AB*

A*B BB* D . s12d

This matrix form is given in the basis ofu± l states of the
qubit. rstd is in general a mixed state as can be most conve-
niently measured by its “quadratic entropy”Sstd=1
−Tr r2std[f0, 1

2
g introduced in Ref. 18. The initial state is

pure, Ss0d=0, but in generalSstd grows as the interacting
qubit and spins get entangled and the state of the qubit is
loosing its initial coherence.

The most right-hand side of Eq.s12d can be formally
interpreted as an average over all possible states of spins, or
over all possible setssW of N independent random variablessn.
In the limit of largeN the effective magnetic fieldbssWd=m
+on=1

N Bnsn becomes a Gaussian variable with a mean ofm
and a variance ofNB2;on=1

N Bn
2. In this limit the sum in Eq.

s12d can be approximated by an integral,

rstd =E
−`

+`

db
e−sb − md2/2NB2

Î2pNB2 SA*A AB*

A*B BB* D . s13d

This density matrix is formally an average over different
values of the static magnetic noiseb generated by different
static spin configurations. The mixed state of the qubit results
from an average over different pure states of the qubit, each
of them evolved from the same initial state but with a differ-
ent value ofb in the Hamiltonians8d. However, as the deri-

vation of Eq.s13d demonstrates, this is not an average over
different realizations of the experiment with different static
configurations of nuclear spins, but it is an average over a
superposition of different states of spins present in a single
realization of the experiment. This is genuine decoherence
due to entanglement with the spin bath.

In the following sections special cases of this exact solu-
tion are worked out in more detail. I begin with the simplest
case when the frequency of Rabi oscillationsv=0.

V. NO RABI OSCILLATIONS

The density matrixs13d becomes particularly simple in
the absence of flux oscillations when we can setVssWd=bssWd
and

A = a cosbt − ib sinbt,

B = b cosbt − ia cosbt.

The productsA*A or A*B in the density matrixs13d contain
oscillatory terms proportional toe±2ibt. The average overb in
Eq. s13d dephases these oscillations to zero,

E
−`

+`

db
e−sb − md2/2NB2

Î2pNB2
e±2ibt = e±2imte−2NB2t2, s14d

after decoherence time

t0 =
1

2ÎNB2
. s15d

It is instructive to write the density matrixs13d in the basis of
sz eigenstates

rstd =
1

2

3S ua + bu2 sa + bdsa* − b*de−t2/2t0
2+2imt

sa* + b*dsa − bde−t2/2t0
2−2imt ua − bu2

D . s16d

The off-diagonal coherences between thesz eigenstates are
destroyed after the decoherence time oft0 when the density
matrix becomes diagonal in this basis. This is not quite sur-
prising because thesz eigenstates are eigenstates of both the
interaction HamiltonianV and the qubit Hamiltoniansv
=0d—they are the ideal pointer states of Ref. 19. Quadratic
entropy of the states16d grows like

Sstd =
1

2
ua + bu2ua − bu2s1 − e−t2/t0

2d . s17d

The only case when the state of the qubit remains pure, or
Sstd=0, is when the initial state is one of thesz eigenstates

sa= ±bd. This is another fundamental property of the pointer
states.

VI. FAST RABI OSCILLATIONS

When Rabi oscillations are much faster than the interac-
tion with the spin bath, then we have a small parameter

e2 =
4NB2

v2 ! 1. s18d

The matrix elements in the density matrixs13d contain oscil-
latory terms which can be approximated as
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e±2iVt = e±2itÎ1/4v2+b2
< e±ivtf1+4m/vmsb−md/vm+2v2/vm

2 sb − md2/vm
2 g

s19d

with vm
2 =v2+4m2. In this expansion I use the assumption

s18d that sb−md /vm.e!1.
Assuming further that the biasm is weak as compared to

v,

m2 ! v2, s20d

the density matrix can be approximated by its leading order
term in bothm and sb−md:

rstd = S uau2 ab*z*stde−ivt

a*bzstdeivt ubu2
D s21d

with the coherence function

zstd =

exp1−
t2

2tm
2S1 − i

t

t
D2

S1 − i
t

t
D1/2 . s22d

This function comes from an average of the approximate
s19d over the Gaussian variableb. zstd has two time scales

t =
t0

e
! t0, s23d

tm =
t0

S2m

v
D ! t0, s24d

both of them are much longer than the decoherence timet0
in the absence of Rabi oscillations. The coherence function
zstd determines both the entropy growth

Sstd = 2uau2ubu2s1 − uzstdu2d s25d

and coherent flux oscillations

Fstd = Tr rstdsz =
1

2
fzstdeivt + c.c.g s26d

starting from the initial11 eigenstatesz. The exact solution
s21d can be best understood in limiting cases.

For times t@t the coherence function can be approxi-

mated byzst@td=e−t2/2tm
2Ît / texpisp/4 −t/2tm

2 td and the
coherence decay is characterized by the power laws:

Sst @ td = 2uau2ubu2S1 − e−t2/tm
2 t

t
D , s27d

Fst @ td = e−t2/2tm
2Ît

t
cosFp

4
+ Sv −

t

2tm
2 DtG . s28d

Apart from the shift in the frequency of oscillations, and the

prefactore−t2/2tm
2

which is close to 1 whenm!NB2, in the
regime oft@t the coherence decay does not depend ontm.
This power law decay of flux oscillations was also derived in

Ref. 17. Both the entropy growth and the decay of flux os-
cillations are due to the decay of the same coherence func-
tion zstd in the density matrixs21d. Thus, contrary to Ref. 17,
it is not possible to see oscillations after decay of quantum
coherence: flux oscillations are coherent flux oscillations.

When t!t the coherence function iszst!td=exp

3s− t2/2tm
2 d and the decay of coherence is Gaussian:

Sst ! td = 2uau2ubu2s1 − e−t2/tm
2d , s29d

Fst ! td = e−t2/2tm
2

cosvt. s30d

When the biasm is stronger than the influence of spins,
NB2!m2!v2, thentm!t and the Gaussian decay of coher-
ence is completed before crossover to the power law decay
aftert. For a weak bias,m2!NB2!v2, the coherence decay
is a power law. The coherence decays most slowly when the
biasm=0. The power laws28d and Gaussians30d decays are
consistent with the decays derived in Ref. 20 from a model
with a non-Markovian external noise, compare also to Ref.
22. Here, these results follow from a microscopic description
of quantum decoherence in a bath of noninteracting spins.

After decoherence the density matrixs21d becomes diag-
onal in the basis ofsx eigenstates. What is more the entropy
remains zero,Sstd=0, only whena=0 or b=0, i.e., when the
initial state of the qubit is an eigenstate ofsx. This is not
quite surprising because whenHQ dominates overV andHS,
then the eigenstates ofHQ are expected to be the pointer
states.21

VII. EARLY TIME PARTIAL DECOHERENCE

The density matrixs21d is the leading order term in the
expansion of the exact density matrixs13d in powers of
b/v.e. In this section I include higher order terms. For the
sake of simplicity I consider only the optimal case of zero
bias whenm=0.

The productsA*B, etc. in the exact density matrixs13d
are expanded up to second order in powers ofb/v. The
oscillatory factorse±iVt are approximated as in Eq.s19d. Af-
ter these two approximations the Gaussian integral overb in
Eq. s13d gives the approximate density matrix accurate up to
second order ine

rstd = SP C*

C 1 − P
D s31d

with matrix elements

Pstd = uau2 −
1

2
e2suau2 − ubu2dF1 −

eivtz3std + c.c.

2
G ,

s32d

Cstd = a*bzstdeivt +
1

4
e2sa*b + c.c.df2 − eivtz3stdg

−
1

4
e2fa*beivtz3std + c.c.g . s33d

HereP sor 1−Pd is a probability to find the qubit in the state
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u+l sor u−ld and C is quantum coherence between these
states. Thezstd is the functions22d with zero biasm=0 or
tm=`.

For m=0 the functionzstd has only one time scalet. The
regimet@t has been considered in the preceding section. In
the opposite regime of early time we can approximatezst
!td=1 in Eqs.s32d and s33d and get the entropy

Sst ! td, s34d

e2s1 − cosvtdhuau4 + ubu4 − fsa*bd2eivt + c.c.gj . s35d

No matter what is the initial state, defined bya andb, this
entropy does not remain zero but oscillates with an ampli-
tude proportional toe2, see Fig. 1. This fluctuating entropy
means partial loss of coherence.

This partial early time decoherence also shows in flux
oscillations. The initial statea=b=1/Î2 leads to flux oscil-
lations

Fstd ; Tr szrstd = e2 + s1 − e2dcosvt. s36d

Unlike the coherent flux oscillation between11 and21 in
Eq. s2d this flux oscillates between11 and −1+2e2, see Fig.
2. The amplitude of the coherent oscillation is reduced due to
the partial decoherence. The oscillation is also biased to-
wards the initial positive value ofF. Similar effect was also
predicted recently in the spin-boson model.23 Here it follows
from the simple and explicitly solvable spin-spin model. The
effect seems to be a generic feature of any non-Markovian
environment.

Fast Rabi oscillations make the time of full decoherencet
much longer than the decoherence timet0 without Rabi os-
cillations. When the flux oscillates many times before the
spins can learn their orientation, then it takes the spins a
much longer time to learn the state of the qubit than in the
static case. On a long time scale covering many flux oscilla-
tions the oscillating magnetic field measured by the spins
effectively averages out to zero. This is the key idea of the
quantum bang-bang control introduced in Ref. 24. However,

FIG. 1. EntropySstd according to the exact
Eq. s13d for v=1, m=0, e=0.1, and a=b
=1/Î2. The time scale for full decoherence ist
=400 and the early time partial decoherence sets
in on the time scalet0=10. The inset shows the
entropy at early times. The nonvanishing early
time entropy means partial decoherence.

FIG. 2. Flux Fstd according to the exact Eq.
s13d for v=1, m=0, e=0.2, anda=b=1/Î2. As
a result of the fast partial decoherence the flux
oscillation is biased towards the initial
Fs0d= +1.
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this argument does not apply before the first period of oscil-
lation is completed. On this short time scale the magnetic
field of the qubit is effectively static and during this short
time the spins have a chance to get a rough idea about its
orientation. The spins more or less realize that the initial flux
in Eq. s36d is 11 and this fuzzy knowledge biases the fol-
lowing oscillations inFstd towards this positive value. The
state of the qubit is partially “collapsed” towards the state
with positive flux. This qualitative argument becomes more
substantial when we take as an initial state the equal super-
position of states with opposite currentu+l sor a=1,b=0d
and compare the two expressions for entropy, one valid for
fast Rabi oscillationss35d at an early time long before the
first period of oscillations is completed, i.e., forvt!1, and
the other in the absence of any oscillationss17d. For such
early times both formulas are the same,

Ssvt ! 1d =
t2

2t0
2 , s37d

demonstrating that the early time decoherence takes place on
the time scalet0 as if there were no Rabi oscillations at all.
The partial decoherence reaches its first maximum at the
time

tmax=
p

v
, s38d

after which we observe periodic coherence revivals, see the
inset in Fig. 1. The time of maximal partial decoherencetmax
is much shorter that the time of full decoherencet and even
the timet0.

Fast Rabi oscillations postpone full decoherence aftert
but they do not prevent partial decoherence to grow on the
time scale oft0. This effect may affect scalability of the
superconducting flux qubit technology. The partial loss of
coherence.e2 is small in a single qubit, but it scales to-
gether with the number of qubitsNqubitsasNqubitse

2 and limits
the number of qubits to

Nqubits!
1

e2 . s39d

Obviously, this upper bound does not apply when quantum
error correction is performed much faster than the time scale
t0 of the initial entropy growth.

VIII. ENSEMBLE OF SPINS STATES

The initial state of spins considered so far was a very
special choice of a pure state. This choice was made to em-
phasize that the decoherence results from genuine entangle-
ment between the qubit and the spins and that it is not an
artifact of any ensemble average over qubits or spin configu-
rations.

In this section I assume that the initial state of spins is a
mixed state described by the density matrix 1/2N 1S propor-
tional to the unit matrix 1S. This state can have at least two-
fold interpretation as either

s1d the realistic high temperature thermal state of spins,

s2d or an ensemble average over all possible pure states
of spins.
The initial state of the qubit and the spins is

rQSs0d = sau + l + bu− ldsa*k+ u + b*k− ud ^
1

2N1S. s40d

The unit matrix 1S can be expressed in any basis of spins’
states but the representation 1s=osWusWlksWu most directly leads
to the reduced density matrix of the qubit

rstd ; TrS rQSstd =
1

2No
sW
SA*A AB*

A*B BB* D . s41d

This density matrix is identical with the density matrixs12d
obtained from the special initial pure state in Eq.s9d and also
all the results derived for the pure state, including the fast
partial decoherence, literally pass without any modification
to the mixed initial state. This means that the decoherence in
the special pure state is exactly the same as in

s1d the realistic high temperature thermal state,
s2d or the ensemble average over pure states.

From the point of view of decoherence the special pure state
is a generic example of spins’ state.

IX. ESTIMATES

In this section I attempt to make some numerical esti-
mates. For example, in the qubit design considered in Ref. 16
the parameters are estimated asN=108, B=104 to 105 s−1

andv=109 s−1, compare Ref. 16. These numbers lead tot0
=10−8 to 10−9 s, e2=10−2 to 10, andt=10−7 to 10−9 s. In the
best case ofe2=10−2 one can seevt=e−2=102 of coherent
flux oscillations before the decoherence timet. Thus it is
possible to see hundreds of oscillations as in the
experiments.7 For the same parameters the fast partial deco-
herence limits the number of qubits toNqubits!102. These
numbers leave, however, encouraging room for current ex-
periments.

X. CONCLUSION

The environment of spins is a witness to the quantum
state of the superconducting flux qubit. The qubit gets en-
tangled with spins after a decoherence timet0. Coherent flux
oscillations driven by the qubit Hamiltonian postpone full
decoherence after a much longer timet, but they do not
prevent the fast partial decoherence from reaching its first
maximum already after the timetmax= p/v which is even
shorter thant0. This partial decoherence biases the flux os-
cillations towards the initial orientation of the flux and may
seriously limit scalability of the superconducting flux qubit
technology.
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