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Fast partial decoherence of a superconducting flux qubit in a spin bath
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The superconducting flux qubit has two quantum states with opposite currents which generate different
magnetic fields. Environment of nuclear spins can find out the magnetic field after a decohereneg time
inversely proportional to the magnetic field and the square root of the number of spins. When the Hamiltonian
of the qubit drives fast coherent Rabi oscillations between the states with opposite current, then the magnetic
field is flipped at a constant rateand the decoherence time an'é is much longer tham,. However, on closer
inspection decoherence actually takes place on two time scales. The longismaetime of full decoherence
but a part of quantum coherence is lost already after the much shorterrfimeThis fast partial decoherence
biases coherent flux oscillations towards the initial flux direction and it can affect performance of the super-
conducting devices as qubits.
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Quantum computers can perform certain tasks exponerevolves into|1)cod2wt)-i|0)sinwt) with an expectation
tially faster than their classical counterparfShe basic unit  value of the flux operator
of the quantum computer is a quantum bit or qubit. Several B B
physical implementations of the qubit were proposed includ- F(t) = (o) = codwt) (2)
ing ion traps; nuclear magnetic resonanteuantum dots,  oscillating with the Rabi frequency. Damped flux oscilla-
single photor?, and two flavors of superconducting Joseph-tions were observed in a number of experiméis both
son junction qubit§.The solid state implementations are in types of the superconducting qubit.
principle most easily scallable and most compatible with the” the qubit Hamiltonian(1) is sufficient to perform any
existing classical electronics, but at the same time they argne-qubit operation. Two-qubit operations are possible
the most endanger_ed by quantum decoherence. _Howevgr, ®ranks to inductive coupling between any two qubitn-
cent experiments’ in both types of superconducting qubits tangled eigenstates of two qubits were detected in Ref. 12
show hundreds of coherent oscillations. This is still far fromgnq coherent Rabi oscillations in a system of two inductively
the minimal requirements of the fault tolerant quantumcoypled qubits were observed in Ref. 8. It is possible to
comp_utatloﬂ but it makes superconducting qubits attractive perform single-qubit NOT and two-qubit CNOT operations
candidates for scallable quantum technology. In order tGn an adiabatic wal that, in particular, precludes excitation
push their performance even further it is essential to undemeyond the truncated two-dimensional Hilbert space of the
stand their quantum decoherence better. qubit. However, before it comes to quantum computation,

quantum decoherence has to be overcome first.

I. SUPERCONDUCTING FLUX QUBIT
II. QUBIT IN A SPIN BATH

The superconducting flux qubit is a superconducting loop i i
broken by one or more Josephson junctibiie junctions Various sources of decoherence for flux qubits have been

are designed so that the lowest two quantum eigenstates afiscussed in Ref. 14. At relatively high temperatures the
states with opposite currents and different magnetic fluxegn@in source of decoherence is normal state quasiparticles.
The flux difference can range from a tiny $0-10°2 frac-  However, density of quasiparticles is exponentially sup-
tion of the flux quanturf to 1/2 of the quanturi The two pressed at temperatures much Iess tha_n the 'crltlcal tempera-
states span a two-dimensional Hilbert space of the qubit. furé. Other decoherence mechanisms including electromag-
assume convention that the stitg(|0)) with positivenega- netic radiation from the qu_b|t or ohml_c _d|5$|pat|on in the
tive) current is the +(-1) eigenstate ofr,, Degeneracy of environment are, respectively, negligible or tractable.

these two states is removed by coherent tunneling betweéﬁude""r spins are argued to play a minor role. Due to relax-

the opposite current states driven by the qubit Hamiltonian2"O" the spins randomly flip their 'po[ar|zat|qn. Random
spins are a source of random magnetic field which couples to

the magnetic moment of the qubit and randomizes its quan-
HQZEG’UXJ’MUz- (D) tum state. This picture is further corroborated in Ref. 16

where the spins are assumed to be mutually noninteracting
For u=0 the eigenstates df, are the coherent superposi- but each of them is coupled to a bosonic environment. The
tions [+)=(|1)%|0))/\2. These Schrodinger cats were ob- decoherence time is estimated in the range of milliseconds.
served in two independent experimetftdl For u=0 the qu-  The final Eq.(47) in Ref. 16 shows that in the limit of van-
bit Hamiltonian(1) drives coherent oscillations between the ishing nuclear spin relaxation rate; in Ref. 16 the deco-
states with opposite current. For example, the initial stgte  herence time tends to infinity. As expected, the external mag-
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netic noise vanishes for vanishing nuclear spin relaxation 1 N
rate. H= WO +o| ut X Bl |. (6)
However, apart from generating magnetic noise nuclear n=1

spins can be also silent witnesses of the quantum state of thg,is exactly solvable spin-spin model was also considered in
I?Siltj)llté Isnpitr?espl)lirr?li;?efr\éigl)s:Iggc;pslgirzeilsa);?r::g:;/ ?)r:gcfeogs?:ggi- Ref. 17. The Hamiltoniax6) can be easily diagonalized. The
the magnetic field of the qubit. The direction of the field an(;1Spln part of any eigenstate is
the direction of the precession depend on the state of the 1S) = [s1)- - [sn) - (7)
qubit. This way the spins can learn the quantum state of the , i - i
qubit. Once they know the state any quantum coherence b&l€re s» is an eigenstate ofr,” with an eigenvalues,
tween the states with opposite current is lost. This elemen€ *1,~1. In the subspace °|§>_ the Hamiltonian(6) re-
tary argument shows that decoherence does not vanish fétices to an effective qubit Hamiltonian
vanishing spin relaxation. 1

In this paper | neglect nuclear spin relaxation. When the H(S) = —woy + o,b(S) (8
relaxation rate is longer than any other relevant time scale, 2

like the frequency of the Rabi oscillations or frequency ofyith an effective external “magnetic field"b(§)=pu

the spin precession in the magnetic field of a qubit, then thisi-EN_ansn. H(S has eigenvalues @(§ =2 /%w2+b2(§)

is a very reasonable assumption. Spin lattice relaxation is " : . .
also neglected in the paper of Prokofev and Stafip.con- i\?f;{ QC griecus’]ﬁ)f; ding eigenstates proportional to
+ > .

trast to the very general formalism employed in Ref. 15, in
this paper | apply most elementary methods to a simple

model Hamiltonian. This simple approach benefits with clear IV. PURE INITIAL STATE OF SPINS

interpretation of the results and additional insights into dy-

namics of the decoherence process. In particular, the simple | open the discussion of decoherence with an example
model makes it very clear that even in the absence of anyhere the initial state is

spin lattice relaxation the spin environment decoheres the _ _

quantum state of a single qubit. The decoherence is not an |p(0)) = (o] +) + B]=)) [11,..., 1) 9)
artifact of ensemble average over different static spin congach spin is initially in thet+ 1 eigenstate of itgr(zn)_ This is
figurations or an ensemble of qubits, as sometimes claimed very special initial pure state of spins. However, in Sec.
in the literature, but a result of genuine entanglement bev||| | will show that this example is generic and that all the

tween the qu_bit and _the s_pins. o _ _ results derived in this special pure case literally pass without
The qubit interacting with spins is described by a Hamil-any modification to the case of the initial high temperature
tonian thermal state of spins, or to an ensemble average over all

H=H-+V+H 3) pqssible jnitial pure states of spins. In this section | choose
Q S this special pure state to make it more transparent that deco-
HereV is interaction between the qubit aitspins herence is due to genuine entanglement between the qubit
and the spins, and that it is not an artifact of an ensemble
average over different qubits or over different static spin con-
figurations.
The Hamiltonian(6) evolves the initial state into

N
V=0, B(f)a™. (4)

n=1

B(r,,) is a magnetic field of the qubit in the stdte at the 1

positionr,, of the nth spin. Direction of the magnetic field is (V) = 52 LAY +) + B, 9|19,
reversed in the stat) as is accounted for by the operator 27775

o, 0" is a vector of Pauli matriceeaf(”),a(y”),o;")) in the

Hilbert space of thath spin. A unitary transformation in the _ Lon.ab— B(%w - Q)
Hilbert space of each spin brings the interaction Hamiltonian Alt9)=e bm

to a more convenient form 2

ab - ,B(%w + Q)

" +etifp : (10
V=0,> B, (5) b2+ (30 + Q)2
n=1
(7 1 b-A(30-0)
Here B,=|B(r,,)|>0 is the strength of the qubit magnetic B(t,9 = _e—im(_w_ Q)l
field at the location of theth spin. 2 b?+ (%w—Q)z
1
ll. EXACTLY SOLVABLE MODEL +— e+im(Q + %)M_ (11)
27 P+ (Go+ Q)

When the magnetic field from the qubit is stronger than
magnetic fields from other spins, then spin-spin interactionlhis state is an entangled state of the qubit and the spins: the
can be neglectedis=0 and state of the qubitA(t,s)|+)+B(t,S)|-) depends on the state
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of spins|s). The state of the qubit can be described by re-vation of Eq.(13) demonstrates, this is not an average over

duced density matriyp(t) obtained by taking a partial trace different realizations of the experiment with different static

over the spins: configurations of nuclear spins, but it is an average over a

. . superposition of different states of spins present in a single

B 1 AA  AB realization of the experiment. This is genuine decoherence

p(t) = Tre ) uAD)] = ﬁz A'B BB | 12 dueto entanglement with the spin bath.

s In the following sections special cases of this exact solu-

This matrix form is given in the basis of:) states of the tion are worked out in more detail. | begin with the simplest

qubit. p(t) is in general a mixed state as can be most convecase when the frequency of Rabi oscillatians 0.

niently measured by its “quadratic entropy3(t)=1

-Tr pAt)€[0,%] introduced in Ref. 18. The initial state is

pure, S(0)=0, but in generalS(t) grows as the interacting The density matrix(13) becomes particularly simple in

qubit and spins get entangled and the state of the qubit 1€ absence of flux oscillations when we can @é$)=Db(s)

loosing its initial coherence. and

. The most right-hand side of Ec(12)'can be formally A= acosbt—iBsinbt,

interpreted as an average over all possible states of spins, or

over all possible setSof N independent random variablgs

In the limit of largeN the effective magnetic fielth(S)=u

+3N. B.s, becomes a Gaussian variable with a meanof The productsA”A or A*B in the density matriX13) contain

and a variance oB?=3N_BZ. In this limit the sum in Eq.  oscillatory terms proportional te*2P'. The average ovey in

V. NO RABI OSCILLATIONS

B =pBcosbt-iacosbt.

(12) can be approximated by an integral, Eq. (13) dephases these oscillations to zero,
* * 0 —(h— 2 2
2 grlb- N (A A AB ) f e N diatoNER
t) = do——=-| . .. 13 db———=—¢e""'=e"“*¢ , (14)
P f—oc V2mNB2 \A'B BB (13 —0 27N B2

This density matrix is formally an average over different after decoherence time

values of the static magnetic noibegenerated by different 1
static spin configurations. The mixed state of the qubit results To= >INB2
from an average over different pure states of the qubit, each A
of them evolved from the same initial state but with a differ- It is instructive to write the density matri4.3) in the basis of
ent value ofb in the Hamiltonian(8). However, as the deri- ¢, eigenstates

(15

1
p(t) = >

2 * o 227242t
x( o+ Bl (atB)la - f)eT #). (16)

(o + B) (- P2 2m ja= B

The off-diagonal coherences between theeigenstates are (a==p). This is another fundamental property of the pointer
destroyed after the decoherence timergfvhen the density states.

matrix becomes diagonal in this basis. This is not quite sur-

prising because the, eigenstates are eigenstates of both the

interaction HamiltonianV and the qubit Hamiltonian(w VI. FAST RABI OSCILLATIONS

=0)—they are the ideal pointer states of Ref. 19. Quadratic

. When Rabi oscillations are much faster than the interac-
entropy of the statél6) grows like

tion with the spin bath, then we have a small parameter

ANB?
=—<1. (18)

S0 = S+ - pE(1 -e%). (17) e

w

The only case when the state of the qubit remains pure, oFhe matrix elements in the density mat(i3) contain oscil-
S(t)=0, is when the initial state is one of the eigenstates latory terms which can be approximated as

054516-3



JACEK DZIARMAGA PHYSICAL REVIEW B 71, 054516(2009

210t = grait\1/4w?+b? +ia,t[1+4M/w#(b_ﬂ)/w#+2w2/wi(b_ “)Z’wi] Ref. 17. Both the entropy growth and the decay of flux os-
cillations are due to the decay of the same coherence func-
(19 tion z(t) in the density matrix21). Thus, contrary to Ref. 17,
with w?=w?+442. In this expansion | use the assumption it iS not possible to see oscillations after decay of quantum

(18) that (b= u)/ w, = e<1. coherence: flux oscillations are coherent flux oscillations.
Assuming further that the bigs is weak as compared to ~ When t<r the coherence function is(t<7)=exp
, ><(—t2/27i) and the decay of coherence is Gaussian:
12 < o?, (20) St< =21 -et"m), (29)
the density matrix can be approximated by its leading order ) s
term in bothy and (b-w): F(t< n =€ coswt. (30)
~ |a? aB'Z (et When the biasu is stronger than the influence of spins,
p(t) = o Bat)et 182 (21) NB?< u?< w? thent, < rand the Gaussian decay of coher-
_ _ ence is completed before crossover to the power law decay
with the coherence function after 7. For a weak biasy?<NB?< «?, the coherence decay
% is a power law. The coherence decays most slowly when the
exp—-——F——— biasu=0. The power law(28) and Gaussiaf30) decays are
272(1 —i£> consistent with the decays derived in Ref. 20 from a model
# T with a non-Markovian external noise, compare also to Ref.

)12 (22) 22. Here, these results follow from a microscopic description
1 —l‘> of quantum decoherence in a bath of noninteracting spins.

T After decoherence the density mat(&1) becomes diag-
This function comes from an average of the approximatenal in the basis of, eigenstates. What is more the entropy
(19) over the Gaussian variabke z(t) has two time scales remains zeroS(t)=0, only whena=0 or 8=0, i.e., when the
initial state of the qubit is an eigenstate @f. This is not

z(t) = (

=00« Tos (23)  quite surprising because whefy, dominates ove¥ andHs,
€ then the eigenstates &1, are expected to be the pointer
states’!
70
Tu= 2u <, (24) VII. EARLY TIME PARTIAL DECOHERENCE
( ® > The density matrix21) is the leading order term in the

. expansion of the exact density matri3) in powers of
both of them are much longer than the decoherence tme b/ w= e. In this section | include higher order terms. For the

in the absence of Rabi oscillations. The coherence functio U ; .
2(t) determines both the entropy growth ake of simplicity | consider only the optimal case of zero

bias whenw=0.
St) = 2|a|2|3|2(1 —|z(t)|2) (25) The productsA’B, etc. in the exact density matrid.3)
o are expanded up to second order in powersbbdh. The
and coherent flux oscillations oscillatory factorse®t are approximated as in E(L9). Af-
1 . ter these two approximations the Gaussian integral bvar
Ft) =Trp(t)o,= E[z(t)e""t +c.c (26)  Eq.(13) gives the approximate density matrix accurate up to
second order ire
starting from the initial+1 eigenstater,. The exact solution P c
(21) can be best understood in limiting cases. p(t) :( ) (31)
For timest> 7 the cof&rence function can be approxi- c 1-P
2
mated byz(t> 7) =e‘72’27uv 7/texpi ( w/4- T/ZTit) and the  with matrix elements
coherence decay is characterized by the power laws: ot
, 1 5 5 e“'Z(t) +c.c.
st 22T P(t) = |af? - S (o~ 17| 1 -——— |,
St> 7 =2aB? 1-¢€ ) (27) 2 2
(32
_ :_fz/zfz\ﬁ LAY o .
Fit>n=em% t“’{ ra (“’ zﬁ)t}' 28 Ot = ' it + 1 (o’ B+ c.0o[2 - €420
Apart from thezshift in the frequency of oscillations, and the 1 _
prefactore™”/27. which is close to 1 whep<NB?, in the - Zez[a BEZ(t) +c.cl. (33

regime oft> 7 the coherence decay does not depend-on
This power law decay of flux oscillations was also derived inHereP (or 1-P) is a probability to find the qubit in the state
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003 ———L1T——1— ' ' ! '
- 0.2 - y
02 001 -
| i T FIG. 1. EntropyS(t) according to the exact
—_ o —= S 1'5 — Eq. (13) for w=1,u=0,€=0.1, and a=j
A 4 =1/y2. The time scale for full decoherence s
175) =400 and the early time partial decoherence sets

in on the time scaley=10. The inset shows the
0.1 = entropy at early times. The nonvanishing early
time entropy means partial decoherence.

0 1 | 1 1 1 | 1

0 50 100 150
wt
[+) (or |-)) and C is quantum coherence between these F(t) = Tr o,p(t) = € + (1 - €)coswt. (36)
states. Thez(t) is the function(22) with zero biasu=0 or
T,=%.

For «=0 the functionz(t) has only one time scale The  Unlike the coherent flux oscillation betweenl and—1 in
regimet> 7 has been considered in the preceding section. IfEq. (2) this flux oscillates betweeft 1 and —1+22, see Fig.
the opposite regime of early time we can approximgte 2. The amplitude of the coherent oscillation is reduced due to
<7)=1in Egs.(32) and(33) and get the entropy the partial decoherence. The oscillation is also biased to-
wards the initial positive value df. Similar effect was also
predicted recently in the spin-boson moé&Here it follows
from the simple and explicitly solvable spin-spin model. The
effect seems to be a generic feature of any non-Markovian
environment.

Fast Rabi oscillations make the time of full decoherence
much longer than the decoherence timewithout Rabi os-
No matter what is the initial state, defined byand B, this  cillations. When the flux oscillates many times before the
entropy does not remain zero but oscillates with an amplispins can learn their orientation, then it takes the spins a
tude proportional toe?, see Fig. 1. This fluctuating entropy much longer time to learn the state of the qubit than in the
means partial loss of coherence. static case. On a long time scale covering many flux oscilla-

This partial early time decoherence also shows in fluxtions the oscillating magnetic field measured by the spins
oscillations. The initial state=8=1/2 leads to flux oscil- effectively averages out to zero. This is the key idea of the
lations quantum bang-bang control introduced in Ref. 24. However,

St<17), (34)

(1 - coswt){|a|*+|8*-[(«' B +c.c]}. (35)

05 —

FIG. 2. FluxF(t) according to the exact Eq.

~~
E ok _ (13) for =1, ©=0, €=0.2, anda=B=1/\2. As
[ a result of the fast partial decoherence the flux

| i oscillation is biased towards the initial

F(O)=+1.
0.5 -
_1 1 I 1 I L I 1
0 5 10 15 20

(OF4
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this argument does not apply before the first period of oscil- (2) or an ensemble average over all possible pure states
lation is completed. On this short time scale the magnetiof spins.

field of the qubit is effectively static and during this short The initial state of the qubit and the spins is

time the spins have a chance to get a rough idea about its 1

orientation. The spins more or less realize that the initial flux 0)=(a| +)+ Bl- ) (+|+B(-]) ® —1s. (40)

in Eq. (36) is +1 and this fuzzy knowledge biases the fol- pod0) = (af +)+ A= ([ + F-D NS (

lowing oscillations inF(t) towards this positive value. The The unit matrix % can be expressed in any basis of spins’

el of the QU = ptil solapscc awecs e SCsiates but the representaiop=E. (3 most drect lads
P ' q g to the reduced density matrix of the qubit

substantial when we take as an initial state the equal super-

position of states with opposite currept) (or a=1,3=0) 1 A"A AB

and compare the two expressions for entropy, one valid for p(t) = Trspodt) = ﬁE ( A'B BB

fast Rabi oscillationg35) at an early time long before the s

first period of oscillations is completed, i.e., fet<1, and  Thijs density matrix is identical with the density matfik2)
the other in the absence of any oscillatiods). For such  gptained from the special initial pure state in E).and also

) . (4D

early times both formulas are the same, all the results derived for the pure state, including the fast

2 partial decoherence, literally pass without any modification

Swt<l)=—, (37) to the mixed initial state. This means that the decoherence in

27% the special pure state is exactly the same as in
demonstrating that the early time decoherence takes place on (1) the realistic high temperature thermal state,
the time scaler, as if there were no Rabi oscillations at all. _ (2) or the ensemble average over pure states.
The partial decoherence reaches its first maximum at thErom the point of view of decoherence the special pure state
time is a generic example of spins’ state.

o
Tmax= " (38) IX. ESTIMATES

after which we observe periodic coherence revivals, see the In this section | a_ttempt to'make',- some 'numen'cal est-
inset in Fig. 1. The time of maximal partial decoherenge, mates. For example, in the qubit design considered in Ref. 16

; - -1
is much shorter that the time of full decohererncand even the pairamet_elrs are estimated s 10%, B=10° to 10 s
the time . and w=10° s71, compare Ref. 16. These numbers leadgo

— 8 9 - 2 — 7 9
Fast Rabi oscillations postpone full decoherence after =10°10 107 s, €?=10710 10, andr=10""to 10°°s. In the

— 2 — 2
but they do not prevent partial decoherence to grow on th est case 0.%2_10_ One can seer=e _1(.)2 of cohe're'nt
time scale ofro. This effect may affect scalability of the ux oscillations before the decoherence timeThus it is

superconducting flux qubit technology. The partial loss ofpossu_ale o see hundreds of oscillations as in the
coherence=e¢2 is small in a single qubit, but it scales to- experimentg. For the same parameters the fast partial deco-

gether with the number of quit%ubnsaSNqubnsEz and limits herence limits the number of qub|t§ Ny pits< 107 These
the number of qubits to numbers leave, however, encouraging room for current ex-
periments.

1
Ngubits < 6_2 (39
X. CONCLUSION
Obviously, this upper bound does not apply when quantum
error correction is performed much faster than the time scalgt
7o Of the initial entropy growth.

The environment of spins is a witness to the quantum
ate of the superconducting flux qubit. The qubit gets en-
tangled with spins after a decoherence tirgeCoherent flux
oscillations driven by the qubit Hamiltonian postpone full
decoherence after a much longer timebut they do not
VIIl. ENSEMBLE OF SPINS STATES prevent the fast partial decoherence from reaching its first
ynaximum already after the time, = 7/ which is even

The initial state of spins considered so far was a ver : . .
special choice of a pure state. This choice was made to entHorter thanr,. This partial decoherence biases the flux os-
llations towards the initial orientation of the flux and may

phasize that the decoherence results from genuine entanglg A o o . :
ment between the qubit and the spins and that it is not aferiously limit scalability of the superconducting flux qubit

artifact of any ensemble average over qubits or spin configutechnology.

rations.
In this section | assume that the initial state of spins is a
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