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An extended Drude form is often used to analyze optical data in terms of an optical scattering rate and
renormalized mass corresponding, respectively, to the real and imaginary part of the memory function. We
study the relationship between memory function and quasiparticle self-energy for an isotropic system. We
particularly emphasize boson signatures. We find it useful to introduce a new auxiliary model scattering rate
and its Kramers-Kronig transform determined solely from optics which are much closer to the self-energy than
is the memory function itself in the normal state. In the superconducting state the simplification fails because
the quasiparticle density of states acquires an essential energy dependence.
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I. INTRODUCTION

Optical1,2 and angular resolved photoemissionsARPESd
data3–5 have given a wealth of information on quasiparticle
dynamics in the cuprates both in their normal and supercon-
ducting state. The methods are complementary but the exact
quantitative relationship between the two is complex. One
important difference is that ARPES gives direct information
on angular variations around the Fermi surface while optics
involves an average over all the quasiparticles participating
in the absorption. Even if these anisotropies are not ac-
counted forsisotropic systemd there remain additional differ-
ences which have their fundamental origin in the fact that
ARPES measures directly the quasiparticle spectral density
Ask ,vd at fixed quasiparticle momentumk as a function of
energyv while optics involves the current-current correla-
tion function which depends on the product of two spectral
densities6,7 at the same momentumk but with frequencies
displaced by the photon energy.

In this paper we focus on similarities as well as on essen-
tial differences between the information that is derived from
these two different probes and particularly on how they are
to be compared. We will be interested in both the normal and
the superconducting state at zero and at finite temperature. In
the literature on optics it is the temperature and frequency
dependence of the optical scattering ratetop

−1sT,vd which has
been particularly emphasized.2 More recently the imaginary
part8 of the memory function9,10 related to top

−1sT,vd by
Kramers-KronigsKK d transform has also been used to com-
pare directly with the energy dependence of the real part of
the quasiparticle self-energy determined by ARPES.11,12 Of
particular interest in such a comparison is the relationship
between the position in frequency of peak structures seen in
these quantities and how they reflect corresponding peaks in
the electron-boson spectral densityI2xsvd.13–15 For phonons
I2xsvd is the well-known electron-phonon spectral density
while in the cuprates exchange of spin fluctuations7,16–18 is
more appropriate although as yet there exists no consensus19

on this issue. Here we will consider several models for
I2xsvd within an extended Eliashberg formalism. In the su-
perconducting state provision is made ford-wave symmetry

of the gap. To keep things simple the same form ofI2xsvd is
used in both gap and renormalization channels but with dif-
ferent magnitudes with the ratio between the two equal tog.

In Sec. II we consider only the normal state and coupling
of quasiparticles to a singlesvEd Einstein mode.6,20 We also
employ a simplified approximate scattering time formulation
of the optical conductivity formula in the normal state. This
allows some analytic results to be established and provides
the motivation for introducing a new model scattering rate
and its KK-transform determined solely from optical data but
which is very close to the self-energy itself. While the real
part of the self-energy has a logarithmic singularity atvE the
imaginary part of the memory function does not. Instead, it
shows a peak atv=Î2vE. On the other hand, our model
quantities reproduce well the self-energy atT=0 and only
very small differences arise at finiteT. In Sec. III we provide
the more general formalism needed to treat the conductivity
accurately as well as to take care of extendedI2xsvd spectra
and the superconducting state. Results in these cases are pre-
sented in Sec. IV. For the superconducting state additional
complications arise because of the essential energy depen-
dence of the self-consistent quasiparticle density of states
sDOSd.21–23 In Sec. V we present our numerical results for
our new model scattering rate based on the complete formula
for the optical conductivity and solutions of the Eliashberg
equations and compare these with the imaginary part of the
quasiparticle self-energy. We confirm the previous expecta-
tion, based on simplifying assumptions, that in the normal
state these two quantities are close in magnitude as well as
frequency dependence. In the superconducting state they are
not. Finally, conclusions are found in Sec. VI.

II. NORMAL STATE AND COUPLING TO A SINGLE
BOSON

A generalized Drude form with frequency dependent op-
tical scattering ratetop

−1svd and optical effective mass ratio
fm*svd /mgop has been used extensively to analyze optical
data in a one component approach. The optical conductivity
ssvd is written in terms of the memory function9 Msvd
=top

−1svd− ivlopsvd with lopsvd=hfm*svd /mgop−1j the opti-
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cal mass renormalization parameter. We have12

ssvd = s1svd + is2svd =
Vp

2

4p

i

itop
−1svd + vf1 + lopsvdg

s1d

andtop
−1svd andivlopsvd are related by Kramers Kroning, so

that when the optical scattering rate is known, the optical
mass renormalization can be obtained from the KK-
transform.

The conductivity is a two particle property given by the
current-current correlation function. It is related in a compli-
cated way to the quasiparticle self-energysa one particle
propertyd Ssvd. In the normal state13 at zero temperature
sT=0d

ssvd =
Vp

2

4p

i

v
E

0

v

dn
1

v + itimp
−1 − S snd − S sv − nd

, s2d

wheretimp
−1 is the impurity scattering rate andSsnd accounts

for the inelastic scattering. In terms of the electron-phonon
or electron-spin fluctuation spectral densitya2Fsvd or
I2xsvd, respectively24,25 fcall it Fsvdg

Ssvd = S1svd + iS2svd =E
o

`

dV FsVdlnUV − v

V + v
U

− ipE
0

uvu

dV FsVd. s3d

For coupling to a single Einstein modeFsvd=Adsv−vEd we
obtain the simple, well-known formula

Ssvd = A lnUvE − v

vE + v
U − ipAusuvu − vEd, s4d

with usxd the Heavysideu-function. It is clear froms4d that
the imaginary part has a finite jump atvE as well as a loga-
rithmic singularity in its real part which can be used to iden-
tify boson structure in both cases. The self-energy can in
principle be determined from ARPES data which measures
the quasiparticle spectral function

Ask,vd = −
1

p
Im Gsk,v + i0+d, s5d

with the Greens function Gsk ,v+ i0+d=fv−«k − S sv
+ i0+dg−1, where«k is the quasiparticle dispersion. A usefull
approximate expression fortop

−1svd was obtained directly in
second order perturbation theory by Allen.26 It is sfor T=0d

top
−1svd .

2p

v
E

0

v

dz Fszdsv − zd + timp
−1 . s6d

Details in the validity of this form, based on numerical
evaluation of Eqs.s2d ands3d, are found in Refs. 13,27. For
v.0,

top
−1svd =

2pAtr

v
sv − vEdusv − vEd, s7d

where the subscript tr means transport, although for simplic-
ity, here we will not make a distinction between quasiparticle
and transport spectral density; in general they are different.
sWe have set the impurity term equal to zero for simplicity.d
Note that this formula is less favorable for the identification
of boson structures than is the imaginary part of the self-
energy. While it is zero forv,vE and finite forvùvE it
has no jump atvE. Instead, it smoothly increases from its
zero value which makes it harder to identify the exact posi-
tion of vE in top

−1svd. Application of the KK-transform to Eq.
s7d gives immediately

vlopsvd = − 2ASlnUvE + v

vE − v
U +

vE

v
lnUvE

2 − v2

vE
2 UD s8d

as the optical mass enhancement. This is to be compared
with the real part of the quasiparticle self-energy, Eq.s4d. In
terms of the usual mass enhancement parameterl fdefined as
two times the first inverse moment ofFsvdg, A=lvE/2, and
the limit of S1svd as v→0 equals −vl. Thus, the slope of
the self-energy gives the value ofl as does alsovlop,lv.
This is seen in Fig. 1 where we compareS1svd ssolid lined
and vlopsvd vs v sdashed lined for parametersA=1 meV
and vE=40 meV. While these functions agree in thev→0
limit they deviate from each other at finite frequencies. In
particular, atv=vE the quasiparticle self-energy exhibits a
logarithmic singularity while the optical mass renormaliza-
tion vlopsvd has only a logarithmic singularity in its slope. It
can, furthermore, be shown thatvlopsvd has its maximum at
v=Î2vE. Thus, while the boson structure inSsvd appears at
the boson energy and is singular, the maximum inlopsvd is
instead displaced toÎ2vE and is associated with a rather
broad peak in comparison. We conclude from these consid-

FIG. 1. Comparison of the real part of the quasiparticle self-
energyS1svd as a function ofv with the corresponding optical
quantityvhfm*svd /mgop−1j;vlopsvd. Coupling is to a single Ein-
stein oscillator withvE=40 meV andA=Atr=1 meV in Eqs.s4d
ands8d. There is a logarithmic singularity inS1svd at v=vE while
vlopsvd only has a small peak atv=Î2vE and a logarithmic sin-
gularity in the slope atv=vE.
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erations that the optical mass enhancement parameterlopsvd
can be used to identify boson structure in the imaginary part
of the memory function as done recently by Hwanget al.8

but its signature is much weaker than is the case in the qua-
siparticle self-energy andvE is displaced by a factor ofÎ2, a
fact that does not appear to have been appreciated before, but
is important to realize.

In preparation for what will come later when we consider
the superconducting state, we note that the self-energys4d
and, consequently, the corresponding optical quantitys8d
would also apply21–23 in an impurity model with constant
quasiparticle scattering ratetqp

−1=A, but in which the normal
state quasiparticle density of states,Ns«d, has a gap of size
vE at the Fermi surface, i.e.,Ns«d=N0 for «,0 and«.vE

but is zero for 0,«,vE. This shows immediately that struc-
ture inNs«d can have an effect on the self-energy which is, in
some cases, indistinguishable from boson structure. We re-
turn to this important point later.

How is this picture changed when we consider finite tem-
peratures? In this case the formulas determining the conduc-
tivity as well as the quasiparticle self-energy are more com-
plex. Nevertheless, a simple picture still emerges. The
normal state optical conductivity is now given by28

ssvd =
Vp

2

4p

1

ivHE−`

0

dn tanhSn + v

2T
DS−1sT,v,nd

+E
0

`

dnFtanhSn + v

2T
D − tanhS n

2T
DGS−1sT,v,ndJ ,

s9d

where

SsT,v,nd = v + S*sT,n + vd − S sT,nd − timp
−1 , s10d

and the self-energy is24

SsT,vd = −E dz FszdFcS1

2
+ i

v + z

2pT
D − cS1

2
+ i

v − z

2pT
DG ,

s11d

wherecszd is the digamma function andS*sT,vd is the com-
plex conjugate ofSsT,vd. For a generalFszd,

top
−1sT,vd = − 2S2sT,vd = pE dz FszdF2 cothS z

2T
D

− tanhSv + z

2T
D + tanhSv − z

2T
DG . s12d

Shulgaet al.27 were able to show that to a good approxima-
tion

top
−1sT,vd .

p

v
E dz FszdF2v cothS z

2T
D − sv + zd

3cothSv + z

2T
D + sv − zdcothSv − z

2T
DG .

s13d

At zero temperature Eqs.s12d and s13d reduce to the imagi-

nary part of Eq. s3d and to Eq. s6d, respectively. KK-
transforms can be used to get from Eqs.s12d and s13d the
real part ofSsT,vd at finiteT as well asvlopsT,vd. Results
are shown in Fig. 2 for coupling to a single Einstein mode as
in Fig. 1. Three curves are show in each frame. The dotted
line applies to the quasiparticle self-energy, the dashed line
to the corresponding optical quantity and the solid line to a
model yet to be defined. The top frames give real parts at
T=0.1vE sleftd and atT=0.25vE srightd. The corresponding
scattering rates on which these are based are shown in the
two bottom frames. First we consider the top frames. In all
cases we see that temperature smooths out the corresponding
boson structures, but even forT=0.25vE they remain easily
identifiable, although the difference between quasiparticle
and optical quantities is no longer as pronounced.

The solid curve in Fig. 2 is based on the following obser-
vation. At T=0,dfvtop

−1svdg /dv, given by Eq.s6d equals ex-
actly the quasiparticle scattering rate given as twice the
imaginary part of the quasiparticle self-energy in Eq.s3d.
Thus, in this particular limit one can get the quasiparticle
scattering rate directly from optics by taking the first deriva-
tive of vtop

−1svd. Of course, we have assumed that anisotro-
pies in momentum space can be neglected. In general,
ARPES will give information on thek-dependence of the
quasiparticle self-energy while optics is always an average.
Neglecting such complications, it is interesting to introduce a
model scattering ratetmodel

−1 ;dfvtop
−1svdg /dv defined from

optics alone and consider its relationship to the quasiparticle
self-energy at finite temperatures. The formula for

FIG. 2. Top frames give a comparison of the real part of the
quasiparticle self energy 2S1svd sdotted lined with its optical
sdashed lined and modelssolid lined counterparts as a function ofv.
The right-hand frame is for temperatureT=0.25vE and the left-
hand frame is forT=0.1vE. The bottom frames gives corresponding
quasiparticle scattering rates on which the results in the two top
frames are based. The parameters areA=1 meV andvE=40 meV.
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tmodel
−1 sT,vd equivalent to Eqs.s12d and s13d is

tmodel
−1 sT,vd = pE dz Fszd32 cothS z

2T
D +

1 − 4Sv − z

2T
D

sinh2Sv − z

2T
D

−

1 − 4Sv + z

2T
D

sinh2Sv + z

2T
D4 . s14d

In all cases considered in Fig. 2 the model quantityssolid
linesd deviates from its quasiparticle counterpartsdotted
linesd only very slightly while it deviates much more from
the optical casesdashed linesd. It is clear, therefore, that if
one wishes to compare optical and quasiparticle quantities
directly, it is better to use the KK-transform oftmodel

−1 svd than
that for top

−1svd itself. The peaks in the corresponding model
mass enhancement will now correspond to the Einstein fre-
quencyvE and it will be sharper than in the optical quantity
itself which, as we have seen, is also shifted byÎ2.

Note also that on comparing top and bottom frame it is
the functiontop

−1svd which is least useful in localizing boson
structures as discussed in relation to Eq.s7d. All the other
functions have a sharper signature of the Einstein frequency
vE.

We next turn to a discussion of how the use of an ex-
tended spectrum forFsvd modifies our simple results and
how the superconducting condensation further modifies bo-
son structures in quasiparticle and optical quantities.

III. EXTENDED BOSON SPECTRUM AND
SUPERCONDUCTING STATE

In general, coupling of the electrons to a boson spectrum
such as phonons or spin fluctuations is not restricted to a
single mode. The correspondinga2Fsvd sphononsd or I2xsvd
sspin fluctuationsd can extend to 100 meV or so and even up
to 400 meVsof the order ofJ in the t−J model29d, respec-
tively. Here we wish to consider such extended spectra and
also consider the superconducting state assumingd-wave gap
symmetry since we have the cuprates in mind. The equation
for ssvd,30

ssT,nd =
Vp

2

4p

i

nKE0

`

dv tanhSbv

2
DfJsv,nd − Js− v,ndgL

u

,

s15ad

wherek¯lu denotes the averaging over angleu and the func-
tion Jsv ,nd is given by

2Jsv,nd =
1

Esv;ud + Esv + n;ud
f1 − Nsv;udNsv + n;ud

− Psv;udPsv + n;udg +
1

E*sv;ud − Esv + n;ud

3f1 + N*sv;udNsv + n;ud + P*sv;udPsv + n;udg,

s15bd

with

Esv;ud = Îṽ2sv + i0+d − D̃2sv + i0+;ud, s15cd

and

Nsv;ud =
ṽsv + i0+d

Esv;ud
, Psv;ud =

D̃sv + i0+;ud
Esv;ud

.

s15dd

HereE* ,N* , andP* are the complex conjugates ofE,N, and
P, respectively. The two fundamental functionsṽsvd and

D̃svd are related the renormalization and gap functions,
respectively.7 They are for the gap channel

D̃sn + i0+;ud

= pTgo
m=0

`

coss2udflsn − ivmd + lsn + ivmdg

3K D̃sivm;u8dcoss2u8d
Îṽ2sivmd + D̃2sivm;u8d

L
u8

+ ipgE
−`

`

dzcoss2udI2xszdfnszd + fsz− ndg

3K D̃sn − z+ i0+;u8dcoss2u8d
Îṽ2sn − z+ i0+d − D̃2sn − z+ i0+;u8d

L
u8

,

s16ad

and in the renormalization channel

ṽsn + i0+d = n + ipTo
m=0

`

flsn − ivmd − lsn + ivmdg

3K ṽsivmd
Îṽ2sivmd + D̃2sivm;u8d

L
u8

+ ipE
−`

`

dz I2xszdfnszd + fsz− ndg

3K ṽsn − z+ i0+d
Îṽ2sn − z+ i0+d − D̃2sn − z+ i0+;u8d

L
u8

.

s16bd

Here

lsnd =E
−`

`

dV
I2xsVd

n − V + i0+ . s16cd

The gap is given by

Dsn + i0+;ud = n
D̃sn + i0+;ud
ṽsn + i0+d

, s16dd

or, if the renormalization functionZsnd is introduced in the
usual way asṽsn+ i0+d=nZsnd then
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Dsn + i0+;ud =
D̃sn + i0+;ud

Zsnd
. s16ed

These equations are a minimum set and go beyond a BCS
approach. They include inelastic scattering known to be
strong in the cuprate superconductors. In Eq.s16ad g modi-
fies the electron-boson spectral densityI2xsvd from its value
in the renormalized channel. In general the shape ofI2xsvd
could also be different but we have not included this possible
complication here.

In what follows, we will use forI2xsvd a form suggested
by Millis et al.31 sMMPd given by

I2xsvd = I2 v/vSF

v2 + vSF
2 , s17d

with vSF a spin fluctuation frequency which can be fitted to
optical data and to emphasize structure we also will add in
one case ad-function at some specific frequency. Such a
MMP form for vSF=41 meV is shown in the top frame of
Fig. 3 ssolid lined. It has al=1.5. Also shown is the same
MMP form now with an addedd-function peak atvE
=41 meVsdashed lined. l is again equal to 1.5 but now with
only 0.554 in the MMP form and the rest in thed-function.
In the superconducting state the MMP form is modified be-
cause of the growth of an optical resonance16–18 at 41 meV

which is the same frequency at which a spin one resonance is
also observed in spin polarized inelastic neutron scattering32

for optimally doped YBCO.sIn other cuprates the position of
the observed resonance varies somewhat.33,34d This optical
resonance grows as the temperature is lowered with the area
under the resonance scaling as the superfluid density7,16 to a
reasonable approximation. Such a spectrum has been derived
from a fit to T=10 K optical data on a
YBa2Cu3O6.95sYBCO6.95d twinned single crystal.16 This
spectrum was also used later on to fit optical data for un-
twinned single crystals reported by Homeset al.35,36and also
to calculate the microwave conductivity of the YBCO6.99
single crystals.37,38 This spectrum is shown as the dotted
curve in the top frame of Fig. 3. It has al=2.01. We will
take this I2xsvd spectrum as representative of the oxides.
Note that coupling to a collective mode atsp ,pd is also seen
in the ARPES data of Campuzanoet al.39 Also note that in
the above formulation we have neglected possible momen-
tum space anisotropies. Recent ARPES data by Kaminskiet
al.40 justify this assumption.

The bottom frame of Fig. 3 shows the quasiparticle den-
sity of statesNsvd /Ns0d in the superconducting state forT
=10 K for the three spectra presented in the top frame. This
would be the classic way to see boson structure in conven-
tional superconductors through tunneling which, so far, has
been less successful in the highTc oxides. This is the reason
why optics and ARPES became such important tools in
studying the quasiparticle properties. Note that the solid
curve for Nsvd /Ns0d which is based on a MMP form with
vSF=41 meV shows no distinct sharp structure. Thus, a rela-
tively smooth spectrum extending over a large energy scale
produces in the quasiparticle density of states only very
small, gradual modulations which would be hard but not im-
possible to detect.

IV. NUMERICAL RESULTS

In Fig. 4 we show our numerical results for the real part
of the quasiparticle self-energyS1svd sonly for v.0 and
made positived as a function of frequencyv based on nu-
merical evaluation of Eq.s16d for the renormalized Matsub-
ara frequencies. The black dotted curves apply to the normal
and the black solid lines to the superconducting state. Both
are at temperatureT=10 K. The spectrumI2xsvd used in the
top frame of Fig. 4 is the MMP form of Eq.s8d with vSF
=41 meV to which we have added a delta function contribu-
tion also atvE=41 meV. This is shown as the dashed line in
the top frame of Fig. 3. The resulting boson structure in the
normal state self-energy is sharp and falls exactly atvE
=41 meV. It is the presence of thed-function in I2xsvd
which makes the peak so prominent. The corresponding peak
in the superconducting statessolid black curved has shifted to
higher frequency and falls slightly belowv=vE+D0
=63.3 meV whereD0 is the gap amplitude. For ans-wave
superconductor the shift in the boson structure would fall
exactly atvE+D0 but for d-wave it falls below this value
because the gap is distributed in value and we are seeing the
result of a distribution of shifts from 0 toD0. The peak has
also broadened and the weight under it appears to have in-

FIG. 3. Top frame: the three models for the electron-boson spec-
tral density I2xsvd used in Fig. 4. The MMP model withvSF

=41 meV,lMMP=0.554 augmented by ad-function at vE

=41 meV with ld=0.946 for a total of 1.5sdashed curved. The
model spectrum withl=2.01 obtained from a fit to the optical
conductivity as described in Ref. 16sdotted curved. Coupling to an
optical resonance at 41 meV is included as a peak. A pure MMP
spectrum with vSF=41 meV and l=1.5 ssolid curved. Bottom
frame: the superconducting density of statesNsvd /Ns0d at T
=10 K for the three spectra shown in the top frame.
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creased. In this sense, the opening up of the superconducting
gap in the quasiparticle density of states has not only shifted
the boson structure but has also, in a sense, enhanced it.

This same statement applies even more strikingly to the
corresponding optical quantities. For the imaginary part of
the memory function, optical mass renormalizationlopsvd
=hfsm*svd /mg−1j, black dashed curve for the normal state
and black dash-dotted curve for the superconducting state,
the boson structure is much greater in the dash-dotted curve.
Comparing the normal state memory functionsblack dashed
curved with the self-energysblack dotted curved shows that
the structure in the memory function is indeed atÎ2vE rather
than atvE although there is a background to our boson spec-
trum besides thed-function. This square root of two shift
becomes critical in serious comparison of ARPES and opti-

cal results and has not been appreciated in the past.8 Note
that for the superconducting case the structure in the memory
function is greatly enhanced over its normal state value and
that it is also shifted upwards in energy as for the self-energy.
Its exact position depends on the details of thed-wave gap
structure and a complete Eliashberg calculation is required to
determine it. The size of the peak in the underlying electron-
boson spectral densityI2xsvd is not related simply to the size
of the structure seen in the self-energy or memory function.

To produce sharp, easily identifiable, structures in ARPES
or optical self-energies, it is necessary to have correspond-
ingly sharp structures inI2xsvd. This fact is well illustrated
in the bottom frame of Fig. 4 where we show results based
on a simple MMP model, Eq.s17d, spectral densityI2xsvd
ssolid curve in the top frame of Fig. 3d. Direct comparison of
the curves in the bottom frame of Fig. 4 with the correspond-
ing curves in the top frame shows that now the boson struc-
tures are much reduced. Although there is a broad peak at 41
meV in I2xsvd for the pure MMP spectum, this does not
translate into a discernible peak in any of our results in the
bottom frame of Fig. 4. From this comparison we conclude
that a broad peak inI2xsvd is difficult to detect as a clear
signature in either the real part of the quasiparticle self-
energyS1svd or in the optical mass renormalizationvlopsvd
in the normal as well as in the superconducting state. A de-
tailed Eliashberg analysis is needed to extractI2xsvd from
such data. A method for achieving this has been described in
Refs. 16,17. An appropriate derivative oftop

−1svd, namely
d2fvtop

−1svdg /dv2 which is closely related toI2xsvd, see Eq.
s6d, is used to get a first modification to the MMP form, Eq.
s16d, that fits the optical data better. The procedure can be
continued until a reasonable fit with the optical data is ob-
tained from the model spectral density. However, no high
accuracy fit has so far been achieved.

In the absence of such an analysis experimentalists have
tried to get information on structure inI2xsvd through com-
parison between normal and superconducting state data. To
this end we show in the bottom frame of Fig. 4 results for
vlopsvd in the normal state atT=90 K sblack dash-double
dotted curved. A subtraction of these data from the dash-
dotted curve in the superconducting state gives the difference
sgray dash-dotted curved. On comparing this curve with the
input I2xsvd ssolid line, top frame of Fig. 3d we see little
detail correspondence. The peak in the difference curve is
not at 41 meV and the MMP tails at larger values ofv are
not picked up. This holds as well if the normal state data at
T=10 K sblack dashed curved, albeit not accessible to ex-
periment, are used in the subtractionsgray solid curved or if
S1svd is consideredsgray dotted curved. This subtraction
procedure does not give a reliable way to relate boson struc-
ture in experimentally measured quantities directly to boson
structure in the electron-boson spectral density and is not
recommended as an analysis procedure. This is also seen in
the middle frame of Fig. 4, which applies to the case of the
spectrum fit to optical data on YBCO6.95 twinned single
crystals.16 It is shown as the dotted curve in the top frame of
Fig. 3. It has al=2.01 and corresponds to a MMP form
modified with an optical resonance peak atvr =41 meV and
there is zero weight at smallv. This spectrum is intermediate

FIG. 4. Comparison of the real part of the quasiparticle self-
energy S1svd vs v and optical effective mass renormalization
vlopsvd for the three model electron-boson spectral densities
I2xsvd shown in the top frame of Fig. 3. The top frame is for a
MMP form with vSF=41 meV andlMMP=0.554 augmented by a
d-function atvE=41 meV with ld=0.946, the middle is obtained
with a modelI2xsvd obtained from consideration of optical proper-
ties of YBCO6.95with l=2.01sdotted curve in the top frame of Fig.
3d, and the bottom frame is for the pure MMP withvSF=41 meV
and l=1.5. In all cases the curves come in pairsS1svd in normal
sblack dotted curved and superconducting statesblack solid curved
and vlopsvd in normal sblack dashed curved and superconducting
statesblack dash-dotted curved. In the middle frame we also include
as sgray solid lined the difference between superconducting and
normal state ofvlopsvd and as gray dotted curve the difference
between superconducting and normal stateS1svd. In the bottom
frame similar difference curves are shown but with two different
values ofT in the normal state as labeled.
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in “sharpness of boson structure” between thed-function and
the pure MMP case. We see that this reflected itself in how
structuredS1svd andvlopsvd are. Note in particular that the
large peaks in the black dash-dotted curve forvlopsvd is
now shifted to higher frequencies in the middle frame when
compared to the top frame although the optical resonance
peak is at the same frequency as is thed-function in Fig. 3.
sThis is because the gapD0 is bigger now.d This demon-
strates once more that no exact correspondence between size
and position of the structure invlopsvd and I2xsvd is pos-
sible without a detailed analysis, particularly for extended
spectra. Also these functions strongly reflect the energy de-
pendence of the underlying quasiparticle density of states
that exists in the superconducting statesdotted curve, bottom
frame of Fig. 3d and it is not possible to, so to speak, subtract
out the effects of these modulations from the data. Formally
the subtraction procedure described above between super-
conducting and normal state quantities when applied to the
middle frame of Fig. 4 again fails to give reliable informa-
tion on the shape of the boson spectrum.

In the top frame of Fig. 5 we show results for the optical
scattering ratetop

−1svd based on the modelI2xsvd, which con-
sists of a MMP form plus ad-function sdashed curve in the
top frame of Fig. 3d at vE=41 meV. The solid black curve is
in the superconducting state atT=10 K while the black dot-
ted curve is in the normal state at the same temperature.
While the underlyingI2xsvd is the same in both cases yet the

amount of structure seen in the solid curve is much more
pronounced than it is for the dotted curve. This is due en-
tirely to the energy dependence of the quasiparticle density
of statessdashed line, bottom frame of Fig. 3d which arises in
a d-wave superconductor. On comparing the solid and the
dotted curve we note a shift upward in the initial sharp rise in
the scattering rate as we go to the superconducting case. This
corresponds to the opening of the gap. The black dashed
curve is in the normal state atT=90 K. Temperature smears
the sharp rise at smallv. Only theT=90 K data are available
to experiment. If, as we did in Fig. 4, we take the difference
between superconducting and normal state optical scattering
rate we get the gray solid line forT=10 K and the gray
dashed curve forT=90 K. The minimum in each of these
curves is around 60 meV, which isvE shifted by approxi-
matelyD0. It is obviously hard to get reliable information on
vE from such data. The middle and bottom frames of Fig. 5
are for less structuredI2xsvd and show a progressive de-
crease in the corresponding structures intop

−1svd.
We turn next to the exact correspondence betweentop

−1svd
and the quasiparticle scattering rates given as twice the
imaginary part of the self-energy. In the previous section we
have already examined this relation but based our discussion
on approximations for the conductivity formula. Next we use
the more exact Eq.s15d and solutions of the full Eliashberg
equationss16d.

V. MODEL SELF-ENERGY

We return to the model functiontmodel
−1 svd defined in Sec.

III. It can be constructed from the numerical data shown in
Fig. 5 for top

−1svd defined as

top
−1sT,vd =

Vp
2

4p
Res−1sT,vd =

Vp
2

4p

s1sT,vd
s1

2sT,vd + s2
2sT,vd

,

s18d

and

vSm*

m
D

op
=

Vp
2

4p
Im s−1sT,vd =

Vp
2

4p

s2sT,vd
s1

2sT,vd + s2
2sT,vd

.

s19d

We note in passing, that for smallv the optical effective
mass formulas19d is dominated by the imaginary part of the
optical conductivitys2sT,vd in the superconducting state be-
cause it diverges asv−1 for smallv with coefficients propor-
tional to the inverse square of the penetration depth. This is
not related to a quasiparticle effective mass, but is rather a
property of the condensate itself. Nevertheless, this is what
has been done traditionally and we need to follow this pro-
cedure here to make contact with the literature. An alternate
approach would be to subtract out of the imaginary part of
the optical conductivity the condensate contribution before
forming the ratios indicated in Eqs.s18d and s19d. In this
alternate approach the resultings1 and s2 would refer di-
rectly only to the normal fluid part of the optical conductivity
and so would be more closely related to quasiparticle prop-
erties. But this is not what is done in the literature.

FIG. 5. Optical scattering ratestop
−1sT,vd vs v for the three

quasiparticle-boson spectral densities used in Fig. 4. In each of the
three frames the solid black curve is for the superconducting state at
T=10 K, the black dotted curve for the normal state at the same
temperature, and the black dashed curve for the normal state atT
=90 K. The gray curves are the difference curves, solid curve for
T=10 K and dashed curve forT=90 K.
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For comparison with the quasiparticle self energy it is
useful to usetmodel

−1 sT,vd given by

tmodel
−1 sT,vd =

Vp
2

4p

d

dv
F vs1sT,vd

s1
2sT,vd + s2

2sT,vdG s20d

than top
−1sT,vd. Its imaginary part is given by the KK-

transform

asvd = −
1

p
E

−`

`

dv8
tmodel

−1 sT,v8d
v8 − v

. s21d

In Fig. 6 we show results fortmodel
−1 svd based on the nu-

merical results of Fig. 5 and compare directly with the imagi-
nary part of the self-energyS2svd obtained directly from
Eliashberg calculations, namely ImS svd=−Imṽsv+ i0+d of
Eq. s16d. By definition of the self-energyṽsv+ i0+d=v
− S sv+ i0+d. In the two top frames of Fig. 6 we show results
for the MMP formssolid line in the top frame of Fig. 3d and
in the two bottom frames the YBCO6.95 form sdotted curve in
the top frame of Fig. 3d for I2xsvd is used. In each case we
present two frames, the left-hand frame is for the normal
state and the other frame for the superconducting state. All
results are at temperatureT=10 K. For ease of comparison

with top
−1svd sdashed linesd it is tqp

−1svd /2 ssolid linesd and
tmodel

−1 svd /2 sdotted linesd that is shown. Even when a factor
of one half is included to make magnitude more comparable,
the optical scattering rates differ significantly from the qua-
siparticle scattering rates. On the other hand, in the normal
state the model scattering rate agrees almost perfectly with
the quasiparticle scattering ratestop left-hand framed. It is
clear that tmodel

−1 svd should be used in comparison with
ARPES data and nottop

−1svd. The close correspondence be-
tween model and optical rates is, however, lost when the
superconducting state is consideredstop right-hand framed.
The solid curve is significantly different from the dotted
curve. In particular,tmodel

−1 svd is smaller at smallv and rises
faster around 50 meV after which it stays significantly above
its quasiparticle counterpart up to almost 175 meV where the
two curves cross again. These differences have their origin in
the energy dependence of the superconducting quasiparticle
density of statesssolid line, bottom frame of Fig. 3d and have
nothing to do with the boson structure. For a comparison of
top

−1svd sopticsd and tqp
−1svd sARPESd based completely on

experiment, the reader is refered to Kaminskiet al.41

When the underlyingI2xsvd is more structured, as is the
case for the YBCO6.95 spectrumsdotted curve in Fig. 3d, the
correspondence betweentmodel

−1 svd andtqp
−1svd is not as good

as is seen in the two bottom frames of Fig. 6. There is a small
additional oscillation in the model case, not present in the
self-energy. Nevertheless, the agreement between them is
still much closer than is the case for the optical ratesdashed
curved. Note, however, that for the superconducting state the
disagreement betweentqp

−1svd ssolid curved and tmodel
−1 svd

sdotted curved is now much greater and, in particular, a large
peak is seen in the model curve which is not there in the
dotted curve. This peak can be related to the broad shoulder
in the quasiparticle density of states which follows the loga-
rithmic singularitysdotted line, bottom frame of Fig. 3d.

VI. CONCLUSION

We have analyzed the relationship between the boson
structure seen in the quasiparticle self-energysbe it real or
imaginary partd measured in ARPES experiments and the
corresponding structure seen in the optical memory function
determined in the infrared conductivity measurements. Start-
ing first with the real part of the self-energy ad-function
peak atv=vE in the quasiparticle-boson spectral density
I2xsvd shows up as a logarithmic-like peak atv=vE in the
normal state. In the superconducting state a gap develops in
the quasiparticle density of states and this introduces further
structures in quasiparticle quantities. This effectively shifts
to higher energy the normal state boson structure, broadens
it, and can make it appear more prominent. For ans-wave
gap the shift would beD0 sgap amplituded but for d-wave it
is somewhat less because a distribution of gap values is in-
volved. By contrast, for the memory function the boson
structure in the optical mass renormalization is atÎ2vE in
the normal state rather than atvE and it is much less promi-
nent. Only a very small peak results, which greatly reduces
the value of such measurements for determining boson struc-

FIG. 6. Comparison of optical,top
−1svd sdashed linesd, quasipar-

ticle, tqp
−1svd ssolid linesd, and modeltmodel

−1 svd sdotted linesd scat-
tering rates vsv for a temperature ofT=10 K. For easier compari-
son tqp

−1svd /2 and tmodel
−1 svd /2 are shown. The two top frames

compare our results for a MMP form withvSF=41 meV in the
normal sleft-hand framed and the superconducting statesright-hand
framed. The two bottom frames give the results for the model
I2xsvd determined from optics for YBCO6.95 as shown in the top
frame of Fig. 3sdotted curved.
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ture as was attempted recently in Ref. 8. Again, the boson
structure shifts in the superconducting state and can also ap-
pear more prominent as a result of the additional modulation
brought about by the opening of a gap. These modifications,
however, have nothing to do with the structures inI2xsvd.
The two effects are not additive and require a full nonlinear
Eliashberg analysis to disentangle in detail as we have pro-
vided here. When extended rather thand-function spectra are
used, the situation is even more complex. For example, a
rather broad peak inI2xsvd, as in the MMP form for spin
fluctuations produces no peak at all, even in the supercon-
ducting state.

So far we have described only the real part of the self-
energy and equivalent optical quantity. Much the same can
be said about scattering rates. For ad-function I2xsvd, the
quasiparticle scattering rate jumps from zero to a finite value
at v=vE and remains unchanged after that. On the other
hand, the optical scattering rate starts from zero atv=vE and
increases gradually toward the same finite value which it
only attains at very highv. Thus, the signature of a
d-function is not singular as it is for the quasiparticle case.

We have also found that in the normal state a new model
scattering rate can be introduced which we denote
tmodel

−1 sT,vd and define asdfvtop
−1sT,vdg /dv. It is completely

determined from optical data and has the advantage that it
follows much more closely thev dependence of the quasi-
particle scattering rate than doestop

−1sT,vd itself. Its KK-

transform is very close to the real part of the quasiparticle
self energy. We propose that it is this quantity that should be
used in comparison between ARPES and optical experimen-
tal data. The comparison will be close in isotropic systems
and in the anisotropic case, the model quantity gives an av-
erage over all directions in the Brillouin zone. In the super-
conducting state no such simple comparison between ARPES
and optics is possible. This needs to be kept in mind when
analyzing experimental data, particularly in studies aimed at
deriving boson structure from such data. This fact does not
seem to have always been appreciated in analysis of experi-
mental data, where features, at least partially associated with
the superconducting quasiparticle density of states, have
been assigned to boson structure.

The model spectral densityI2xsvd consisting of a MMP
form with superimposed thed-peak was used to demonstrate
that optics as well as ARPES just pick up the sharp structures
and do not give direct information on a possible coupling to
a smooth background. Nevertheless, it may well be that it is
precisely this coupling of the quasiparticles to such a back-
ground which is primarily responsible for superconductivity.
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