PHYSICAL REVIEW B 71, 054506(2005

Boson structures in the relation between optical conductivity and quasiparticle dynamics
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An extended Drude form is often used to analyze optical data in terms of an optical scattering rate and
renormalized mass corresponding, respectively, to the real and imaginary part of the memory function. We
study the relationship between memory function and quasiparticle self-energy for an isotropic system. We
particularly emphasize boson signatures. We find it useful to introduce a new auxiliary model scattering rate
and its Kramers-Kronig transform determined solely from optics which are much closer to the self-energy than
is the memory function itself in the normal state. In the superconducting state the simplification fails because
the quasiparticle density of states acquires an essential energy dependence.
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I. INTRODUCTION of the gap. To keep things simple the same forn’gf ) is

) ) o used in both gap and renormalization channels but with dif-
Op_)élcafl' and angular resolved photoemissiGhRPES farant magnitudes with the ratio between the two equaj. to
dat&=® have given a wealth of information on quasiparticle In Sec. Il we consider only the normal state and coupling

dynamics in the cuprates both in their normal and supercons¢ quasiparticles to a singlesg) Einstein modé:2° We also

ducting state. The methods are complementary but the exagi, 1oy 4 simplified approximate scattering time formulation
quantitative relationship between the two is complex. Ongy e ‘gptical conductivity formula in the normal state. This
important difference is that ARPES gives direct mformatlona"OWS some analytic results to be established and provides
on angular variations around the Fermi surface while optic$y,o motivation for introducing a new model scattering rate
involves an average over all the quasiparticles participating, jts KK-transform determined solely from optical data but
in the absorption. Even if these anisotropies are not acyich js very close to the self-energy itself. While the real
counted for(isotropic systemthere remain additional differ- art of the self-energy has a logarithmic singularitysatthe

ences which have their fundamental origin in the fact tha'maginary part of the memory function does not. Instead, it
ARPES measures directly the quasiparticle spectral density, o o peak am:\s’EwE. On the other hand. our model

A(k,w) at fixed quasiparticle momentuknas a function of quantities reproduce well the self-energyTat0 and only
energyw while optics involves the current-current correla- yery small differences arise at finite In Sec. 11l we provide

tion function which depends on the product of two spectrakne’more general formalism needed to treat the conductivity
d¢n5|tle§v7 at the same momentuik but with frequencies accurately as well as to take care of extentfadw) spectra
displaced by the photon energy. and the superconducting state. Results in these cases are pre-

. I'g.}?'s papert;/ve focus r?n _5|fm|Iar|t|_es ars] W.e”j‘s .Onoﬁsenéented in Sec. IV. For the superconducting state additional
tial differences between the information that is derive romcomplications arise because of the essential energy depen-

these two different probes and particularly on how they argjence of the self-consistent quasiparticle density of states
to be compared. We will be interested in both the normal an DO9S).2-23|n Sec. V we present our numerical results for
the superconducting state at zero and at finite temperature. r new model scattering rate based on the complete formula

the literature on optics it is the temperature and frequency, ye ptical conductivity and solutions of the Eliashberg
dependence of the optical scattering rgf§T, ) which has equations and compare these with the imaginary part of the
been particularly emphamzéd\/l%re recently ”]‘19 Imaginary - guasiparticle self-energy. We confirm the previous expecta-
parf of the memory functiot® related to 7,,(T,®) by  tion, based on simplifying assumptions, that in the normal
Kramers-Kronig(KK) transform has also been used to com-giate these two quantities are close in magnitude as well as

pare directly with the energy dependence of the real part ofrequency dependence. In the superconducting state they are
the quasiparticle self-energy determined by ARBES.Of ot Finally, conclusions are found in Sec. VI.

particular interest in such a comparison is the relationship

between the_ _position in frequency of peak structqres seen i.n Il NORMAL STATE AND COUPLING TO A SINGLE

these quantities and how they reflect corresponding peaks in BOSON

the electron-boson spectral denslity(w).3-1°For phonons

I’x(w) is the well-known electron-phonon spectral density A generalized Drude form with frequency dependent op-
while in the cuprates exchange of spin fluctuatidfis!®is tical scattering rata-;é(w) and optical effective mass ratio
more appropriate although as yet there exists no cons@nSuim’*(w)/m]Op has been used extensively to analyze optical
on this issue. Here we will consider several models fordata in a one component approach. The optical conductivity
I”x(w) within an extended Eliashberg formalism. In the su-o(w) is written in terms of the memory functi®nVl(w)
perconducting state provision is made tbwave symmetry :r;;(w)—iw)\op(w) with )\op(w):{[m*(w)/m]op— 1} the opti-
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cal mass renormalization parameter. We Réve 8
I —,
02 i 4r --= ok
— H - -p , op
olw) = ayfw) Hiogw) = 755(0) + 01+ \gp(@)] <Ll Pt
(1) g€
ORLL
and Tgé(w) andiw\,p(w) are related by Kramers Kroning, so :s
that when the optical scattering rate is known, the optical i 2k PP
mass renormalization can be obtained from the KK- & o7
transform. oLl -7
The conductivity is a two particle property given by the
current-current correlation function. It is related in a compli- & . .
cated way to the quasiparticle self-ener@y one particle -400 -200 0 200 400
property 3(w). In the normal staté at zero temperature o (meV)
(T=0 FIG. 1. Comparison of the real part of the quasiparticle self-
Q2 (@ 1 energyEl(w)*as a function ofw with the corresponding optical
o(w) = —J dv — , (2 quantity o{[m’ (w)/m]yp— 1} = whqp(w). Coupling is to a single Ein-
Arwly o+ [ Timp ~ 2(v)-2(w-v) stein oscillator withog=40 meV andA=A;=1 meV in Egs.(4)

and(8). There is a logarithmic singularity iB;(w) at w=wg while
where 7, is the impurity scattering rate ark{») accounts  who(w) only has a small peak ai=12wg and a logarithmic sin-
for the inelastic scattering. In terms of the electron-phonorgularity in the slope at=wg.
or electron-spin fluctuation spectral density’F(w) or
5 . .
I°x(w), respectively*2>[call it F(w)] L 2mhy
Top(w) -

- ‘ @

(0 - wg) 8w - wg), (7)

“ QO
() =2 (w) +i2y(w) = JO dQ F(Q)In YR

where the subscript tr means transport, although for simplic-
ity, here we will not make a distinction between quasiparticle
(el and transport spectral density; in general they are different.
- 'Wf dQ F(Q). ©) (We have set the impurity term equal to zero for simpligity.
Note that this formula is less favorable for the identification
For coupling to a single Einstein mo@féw)=As(w-wg) we  Of boson structures than is the imaginary part of the self-
obtain the simple, well-known formula energy. While it is zero fow < wg and finite forw= wg it
has no jump atwg. Instead, it smoothly increases from its

Wg— zero value which makes it harder to identify the exact posi-

w’ —imAl(|o| - wg), (4)  tion of wg in 7,5(w). Application of the KK-transform to Eq.
the imaginary part has a finite jump at as well as a loga- whop(w) == 2A<In

(7) gives immediately
) (8)
rithmic singularity in its real part which can be used to iden-

tify boson structure in both cases. The self-energy can ims the optical mass enhancement. This is to be compared
principle be determined from ARPES data which measuregiith the real part of the quasiparticle self-energy, Ej. In

0

2 (w)=Aln

Wg

with 6(x) the Heavysided-function. It is clear from(4) that 2

2 _
(.L)E w
2
Wg

wgtw
Wg — @

w
+_E

In

w

the quasiparticle spectral function terms of the usual mass enhancement paramdigefined as
two times the first inverse moment Bfw)], A=\wg/2, and

A, ) = - llm G(k,w+i0%), (5) the limit of El(w)_as w— 0 equals w\. Thus, the slope of
T the self-energy gives the value dfas does als@\,,~ \w.

. ) ) This is seen in Fig. 1 where we compaig(w) (solid line)
with the Greens function G(k,w+i0")=[w-ex~=2(0  and w\,y(w) Vs o (dashed ling for parametersh=1 meV
+i0%)]™%, wheree, is the quasiparticle dispersion. A usefull gnq wz=40 meV. While these functions agree in the-0
approximate expression faf;(w) was obtained directly in  |imit they deviate from each other at finite frequencies. In
second order perturbation theory by Allgnit is (for T=0)  particular, atw=we the quasiparticle self-energy exhibits a

) logarithmic singularity while the optical mass renormaliza-
s, 2w (© _ -1 tion w\,(w) has only a logarithmic singularity in its slope. It
Top() = » fo dz R2)(@ =2)+ 7imp: ) can,_furt?]ermore, be shown thak q,(w) has its maximum at
w=\2wg. Thus, while the boson structure Yi{w) appears at
Details in the validity of this form, based on numerical the boson energy and is singular, the maximum jgw) is
evaluation of Eqs(2) and(3), are found in Refs. 13,27. For instead displaced tq2wg and is associated with a rather
>0, broad peak in comparison. We conclude from these consid-
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erations that the optical mass enhancement paramgjes)

can be used to identify boson structure in the imaginary part

of the memory function as done recently by Hwaetgal®

but its signature is much weaker than is the case in the qua-

siparticle self-energy andg is displaced by a factor of2, a

fact that does not appear to have been appreciated before, but

is important to realize.

In preparation for what will come later when we consider
the superconducting state, we note that the self-enétpy
and, consequently, the corresponding optical quan@y
would also appl§*=22in an impurity model with constant
quasiparticle scattering ratxgg:A, but in which the normal
state quasiparticle density of stat®ig), has a gap of size
wg at the Fermi surface, i.eN(e)=Ng for e <0 ande > wg
but is zero for B< & < wg. This shows immediately that struc-
ture inN(g) can have an effect on the self-energy which is, in

some cases, indistinguishable from boson structure. We re-

turn to this important point later.

How is this picture changed when we consider finite tem-

peratures? In this case the formulas determining the condu
tivity as well as the quasiparticle self-energy are more com
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plex. Nevertheless, a simple picture still emerges. The o (meV)

normal state optical conductivity is now givenZ8y

021 (° +
o(w) = J—{f dvtan?‘<u>5_1(T,w,v)
daiow| J_, 2T

+f dv tanl'(—)—tanl‘ _> S (| w V)
0 2T 2T T '
where

STon=0+S (Tr+e) - 3Ty -15n (10
and the self-energy 46

E(T,w):—jdz F(z){d;(%ﬂcz;_rz) —z,b(%ﬂaz)T_Tz)],
(11

wherey(z) is the digamma function ar¥l’ (T, w) is the com-
plex conjugate o&(T,w). For a generaF(2),

AT =25, Tw) =7 [ 0z F<z>[zcot(%)

)’( w+ Z) |‘( w— Z)]
—tan +tanh —— | |. (12
2T 2T

Shulgaet al?” were able to show that to a good approxima-
tion

Top(T, ) = 7dez F(z){Zw coth(zi_l_) -(w+2)

(O]

wtZ w—Z
><cotl-<—> +(w- z)cotf(—)} .
2T 2T
(13
At zero temperature Eq$12) and(13) reduce to the imagi-

FIG. 2. Top frames give a comparison of the real part of the
quasiparticle self energy22(w) (dotted ling with its optical
(dashed lingand modelsolid line) counterparts as a function af
The right-hand frame is for temperatuile=0.250 and the left-
hand frame is folf =0.1wg. The bottom frames gives corresponding
quasiparticle scattering rates on which the results in the two top
frames are based. The parametersfAxd meV andwg=40 meV.

nary part of Eq.(3) and to Eq.(6), respectively. KK-
transforms can be used to get from E{E2) and (13) the

real part of(T, w) at finite T as well asw\,,(T, ). Results

are shown in Fig. 2 for coupling to a single Einstein mode as
in Fig. 1. Three curves are show in each frame. The dotted
line applies to the quasiparticle self-energy, the dashed line
to the corresponding optical quantity and the solid line to a
model yet to be defined. The top frames give real parts at
T=0.1wg (left) and atT=0.250¢ (right). The corresponding
scattering rates on which these are based are shown in the
two bottom frames. First we consider the top frames. In all
cases we see that temperature smooths out the corresponding
boson structures, but even foE=0.250¢ they remain easily
identifiable, although the difference between quasiparticle
and optical quantities is no longer as pronounced.

The solid curve in Fig. 2 is based on the following obser-
vation. AtT=O,d[wr;r1)(w)]/dw, given by Eq.(6) equals ex-
actly the quasiparticle scattering rate given as twice the
imaginary part of the quasiparticle self-energy in E8).
Thus, in this particular limit one can get the quasiparticle
scattering rate directly from optics by taking the first deriva-
tive of wrgg(w). Of course, we have assumed that anisotro-
pies in momentum space can be neglected. In general,
ARPES will give information on the&-dependence of the
quasiparticle self-energy while optics is always an average.
Neglecting such complications, it is interesting to introduce a
model scattering rate; 4= dlwy5(w)]/dw defined from
optics alone and consider its relationship to the quasiparticle
self-energy at finite temperatures. The formula for
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7t el T, @) equivalent to Eqs(12) and(13) is E(0:0) = Va?(@+i0) - A2(w+i0%0), (150
- 4<w_'2) g
N z 2T an
TrodelTh@) =7 | dz H2)| 2coth — |+ ——F—— -
2T Ginr €22 @(w+i0") A(w+i0";6)
sinff\ =7 N(w;)=——— =, P(w;f)=—— "=
E(w;0) E(w;0)
1- 4(“’2—;2) (159
- (14  HereE",N’, andP’ are the complex conjugates BfN, and
smh?<w+z> P, respectively. The two fundamental functioagw) and
Z(w) are related the renormalization and gap functions,

In all cases considered in Fig. 2 the model quarttylid  respectively. They are for the gap channel

lines deviates from its quasiparticle counterpddotted
lines) only very slightly while it deviates much more from
the optical casddashed lines It is clear, therefore, that if
one wishes to compare optical and quaS|part|cIe quantities

A(v+i0*: 0)

= 7TgY, cod20) N (v=iwm) + AN(v+iwy)]

directly, it is better to use the KK-transform g () than
that for (w) itself. The peaks in the corresponding model
mass enhancement will now correspond to the Einstein fre-
quencywg and it will be sharper than in the optical quantity
itself which, as we have seen, is also shifted\l2y

Note also that on comparing top and bottom frame it is

m=0
Aliwpy,; 0')c0g26")
Valliog) + Aiwg; @) | »

the functionr, (w) which is least useful in localizing boson + iwgf dzcog26)12x(2)[n(2) + f(z— v)]
structures as dlscussed in relation to EQ. All the other —o

functions have a sharper signature of the Einstein frequency -

wg. A(v—z+i0%;0')coq260")

We next turn to a discussion of how the use of an ex- X \/Nz o Yo e
tended spectrum foF(w) modifies our simple results and @ (v=2z+i07) —A%(v=2z+i0%6) [ o
how the superconducting condensation further modifies bo- (169
son structures in quasiparticle and optical quantities.

and in the renormalization channel
Ill. EXTENDED BOSON SPECTRUM AND

SUPERCONDUCTING STATE o
In general, coupling of the electrons to a boson spectrum®(¥ +i0%) = v+ 7T 2 [Ny = o) = Nv +iwg)]
such as phonons or spin fluctuations is not restricted to a m=0
single mode. The correspondiagF(w) (phonong or 1%y(w) (iwy)
(spin fluctuationscan extend to 100 meV or so and even up X \/~2 _ ~
to 400 meV/(of the order of] in the t—J modeP9), respec- o (ioy) + Aiwm 0') [ o

tively. Here we wish to consider such extended spectra and
also consider the superconducting state assudkingve gap

: > a5 . +im f dz Px(2[n(2) + f(z-v)]
symmetry since we have the cuprates in mind. The equation —

for o(w),%° w(v-z+i0")
Qi [~ Bw “\ T _ = : :
o(T,v)=—2- f dwtann — |[J(w,v) = I(- w,v)] ) , \/wz(V—Z+IO+)—AZ(V—Z+IO+;9') e
A7v\ Jg 2 P
(159 (16b)
Here

where(: - -), denotes the averaging over angland the func-
tion J(w, v) is given by

123 (Q
) = f do-—= §(+ |)0+ (160
2)(w,v) = 1-N(w;0)N(w+v;6
(@) B gt M@ ON@+0)
1 The gap is given by
—P(w; 0)P(w+v;0)]+ = -
] E(0;6) ~E(o+v;6) _ A(v+i0*;6)
. . A(w+i0%0) =v——, (160
X[1+N (w;)N(w+ v;0) + P (w; ))P(w+ v;0)], w(v+i0")
(15b) or, if the renormalization functioZ(v) is introduced in the
with usual way aso(v+i0")=vZ(v) then
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12 P which is the same frequency at which a spin one resonance is
10l : ___MMP',(;WKF;_‘,, ’ also ot_)served in spin polarized inelastic neutron scgtté’nng
0o YBCO. 2= 2.01 for optimally doped YBCO(In other cuprates the position of
0.8 - sos’ . . .
o HH the observed resonance varies somewh&y. This optical
o 08f : resonance grows as the temperature is lowered with the area
04l i1t under the resonance scaling as the superfluid dér8ity a
o2l P reasonable approximation. Such a spectrum has been derived
) ;1-__;_- T from a fit to T=10K optical data on a
0000 200 300 400 YBa,Cus06,9f YBCOg 99 twinned  single c.rystaﬂl?3 This
o (meV) spectrum was also used later on to fit optical data for un-
twinned single crystals reported by Hometsal 35%6and also
20F 4 to calculate the microwave conductivity of the YBgE3
S . single crystal$’38 This spectrum is shown as the dotted
o 15} ;" curve in the top frame of Fig. 3. It has)=2.01. We will
5 N take this|?y(w) spectrum as representative of the oxides.
E 10F f7o=al - Note that coupling to a collective mode(at, 7) is also seen
z : in the ARPES data of Campuzamt al3° Also note that in
osf the above formulation we have neglected possible momen-
4 tum space anisotropies. Recent ARPES data by Kamgtski
0.0 ' ' al.*0 justify this assumption.
0 50 100 150

The bottom frame of Fig. 3 shows the quasiparticle den-
 (meV) sity of statesN(w)/N(0) in the superconducting state far
FIG. 3. Top frame: the three models for the electron-boson spec? 10 K for the three' spectra presented in the top frame. This
tral density I%y(w) used in Fig. 4. The MMP model withosr v_vould be the classic way to see boso_n structure in conven-
=41 meVap=0.554 augmented by asfunction at wg tional superconductor_s through tur_mellng yvh_|ch, so far, has
=41 meV with \;=0.946 for a total of 1.5dashed curje The Peen less successful in the highoxides. This is the reason
model spectrum witt\=2.01 obtained from a fit to the optical Why optics and ARPES became such important tools in
conductivity as described in Ref. 16otted curvi Coupling to an ~ Studying the quasiparticle properties. Note that the solid
optical resonance at 41 meV is included as a peak. A pure MMFeEUrve for N(w)/N(0) which is based on a MMP form with
spectrum with wsg=41 meV and\=1.5 (solid curve. Bottom  wgr=41 meV shows no distinct sharp structure. Thus, a rela-
frame: the superconducting density of statdéw)/N(0) at T  tively smooth spectrum extending over a large energy scale
=10 K for the three spectra shown in the top frame. produces in the quasiparticle density of states only very
small, gradual modulations which would be hard but not im-
. A(r+i0%:6) possible to detect.
A(v+i0%0) =———. (16

Z(v) IV. NUMERICAL RESULTS
These equations are a minimum set and go beyond a BCS
approach. They include inelastic scattering known to beOf
strong in the cuprate superconductors. In Bda g modi-

In Fig. 4 we show our numerical results for the real part
the quasiparticle self-energ¥;(w) (only for >0 and

. ; made positivg as a function of frequencw based on nu-
fleshthe electro?-bzsorr]l specltr;al den$?r,y(|w£]frorlz1 |tsbzvalue merical evaluation of Eq(16) for the renormalized Matsub-

n the renormaiized channel. 1n genera the s ape elfew) ., ara frequencies. The black dotted curves apply to the normal
could also be different but we have not included this possible,,y the plack solid lines to the superconducting state. Both

complication here. , are at temperatur&=10 K. The spectruniy(w) used in the

In -vv.hat follows, we WI|.| use foll?y(w) a form suggested top frame of Fig. 4 is the MMP form of Eq8) with wgr
by Millis et al*! (MMP) given by =41 meV to which we have added a delta function contribu-
ol wsp tion also atwg=41 meV. This is shown as the dashed line in
12x(w) = |2ﬁ, (17)  the top frame of Fig. 3. The resulting boson structure in the

@ T Osk normal state self-energy is sharp and falls exactlywat

with wsr a spin fluctuation frequency which can be fitted to =41 meV. It is the presence of th&function in 12y(w)
optical data and to emphasize structure we also will add invhich makes the peak so prominent. The corresponding peak
one case as-function at some specific frequency. Such ain the superconducting stateolid black curvghas shifted to
MMP form for wge=41 meV is shown in the top frame of higher frequency and falls slightly beloww=wg+Aq

Fig. 3 (solid line). It has arn=1.5. Also shown is the same =63.3 meV where\, is the gap amplitude. For astwave
MMP form now with an addeds-function peak atwg  superconductor the shift in the boson structure would fall
=41 meV(dashed ling \ is again equal to 1.5 but now with exactly atwg+Aq but for d-wave it falls below this value
only 0.554 in the MMP form and the rest in ti&function.  because the gap is distributed in value and we are seeing the
In the superconducting state the MMP form is modified be-result of a distribution of shifts from 0 td,. The peak has
cause of the growth of an optical resonaffc® at 41 meV  also broadened and the weight under it appears to have in-
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woFT=10k - - -+ -3 (o), normal state cal results and has not been appreciated in the®piste
= ~\ , '
/Y %) supercond. state that f_or the superconducting case the structure in the memory
. 4 '\ T~ ®©h0) normalstate function is greatly enhanced over its normal state value and
100 Y S i Do i et s that it is also shifted upwards in energy as for the self-energy.
i J. R Its exact position depends on the details of theave gap
50 . .77 @h,0), supercond. state structure and a complete Eliashberg calculation is required to
i determine it. The size of the peak in the underlying electron-
] L L L _L boson spectral densityy(w) is not related simply to the size
< 200 ~. i, ity dfference; of the structure seen in the self-energy or memory function.
> .- Z (o) difference g - .
“E’ 150 ~ To produce sharp, easily identifiable, structures in ARPES
= L SERIRETo T or optical self-energies, it is necessary to have correspond-
& 1001 ingly sharp structures itPy(w). This fact is well illustrated
3 50 in the bottom frame of Fig. 4 where we show results based
Z ul on a S|mpIe_MMP model, Ec(.l?)_, speptral denS|ty_2X(w)
s —— (solid curve in the top frame of Fig.) 3Direct comparison of
120 e TS ST the curves in the bottom frame of Fig. 4 with the correspond-
100 oI ing curves in the top frame shows that now the boson struc-
- tures are much reduced. Although there is a broad peak at 41
! meV in 12y(w) for the pure MMP spectum, this does not
60 1 g _ translate into a discernible peak in any of our results in the
40 - T 3”:3 :::r';“r:::t::;og:'( bottom frame of Fig. 4. From this comparison we conclude
2L o ' that a broad peak iPy(w) is difficult to detect as a clear
’ : . : signature in either the real part of the quasiparticle self-
O = 100 450 200 250 energyX(w) or in the optical mass renormalizatiam ()

o (meV) in the normal as well as in the superconducting state. A de-
tailed Eliashberg analysis is needed to extidg(w) from
energy 34(w) vs » and optical effective mass renormalization Refs. 16,17. An appropriate derivative af(w), namely
whop(w) for the three model electron-boson spectral densitiesdz[an{),l)(a))]/dw2 which is closely related t¢y(w), see Eq.
I2x(w) shown in the top frame of Fig. 3. The top frame is for a (6), is used to get a first modification to the MMP form, Eq.
MMP form with wsg=41 meV and\yyp=0.554 augmented by a (16), that fits the optical data better. The procedure can be
&function atwg=41 meV withA;=0.946, the middle is obtained continued until a reasonable fit with the optical data is ob-
with a modell®x(w) obtained from consideration of optical proper- tained from the model spectral density. However, no high
ties of YBCQ g5 With A=2.01(dotted curve in the top frame of Fig. accuracy fit has so far been achieved.
3), and the bottom frame is for the pure MMP widise=41 meV In the absence of such an analysis experimentalists have
and\=1.5. In all cases the curves come in pdiigw) in normal e to get information on structure iRy(w) through com-
(black dotted curveand superconducting statblack solid curve 5 ison ‘hetween normal and superconducting state data. To
and whop(w) in normal (black dashed curyeand superconducting this end we show in the bottom frame of Fig. 4 results for
state(black dash-dotted curyeln the middle frame we also include Aoo(@) in th | state aT=90 K (black d. h-doubl
as (gray solid ling the difference between superconductin and @\ op\? In the horma S?e at= ack dasn-double
dray P g dotted curve. A subtraction of these data from the dash-

normal state ofw\,,(w) and as gray dotted curve the difference . . . .
between superconducting and normal stiitw). In the bottom dotted curve in the superconducting state gives the difference

frame similar difference curves are shown but with two different (9ray dash-dotted curyeOn comparing this curve with the
values ofT in the normal state as labeled. input 12x(w) (solid line, top frame of Fig. Bwe see little
detail correspondence. The peak in the difference curve is
creased. In this sense, the opening up of the superconductimgt at 41 meV and the MMP tails at larger valueswofire
gap in the quasiparticle density of states has not only shiftedot picked up. This holds as well if the normal state data at
the boson structure but has also, in a sense, enhanced it. T=10 K (black dashed curye albeit not accessible to ex-
This same statement applies even more strikingly to thg@eriment, are used in the subtracti@ray solid curve or if
corresponding optical quantities. For the imaginary part of3;(w) is considered(gray dotted curve This subtraction
the memory function, optical mass renormalizatiofy(w)  procedure does not give a reliable way to relate boson struc-
={[(m"(w)/m] -1}, black dashed curve for the normal state ture in experimentally measured quantities directly to boson
and black dash-dotted curve for the superconducting statstructure in the electron-boson spectral density and is not
the boson structure is much greater in the dash-dotted curveecommended as an analysis procedure. This is also seen in
Comparing the normal state memory functidmlack dashed the middle frame of Fig. 4, which applies to the case of the
curve with the self-energyblack dotted curveshows that spectrum fit to optical data on YBGQs twinned single
the structure in the memory function is indeed/at rather  crystals'® It is shown as the dotted curve in the top frame of
than atwg although there is a background to our boson specFig. 3. It has ax=2.01 and corresponds to a MMP form
trum besides thes-function. This square root of two shift modified with an optical resonance peakegat41 meV and
becomes critical in serious comparison of ARPES and optithere is zero weight at small. This spectrum is intermediate
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150 | == amount of structure seen in the solid curve is much more
i emTET pronounced than it is for the dotted curve. This is due en-
100 |- L2777 = = normal state, T=90K tirely to the energy dependence of the quasiparticle density
- + - - - normal state, T=10 K . . . . .
50 |- —— supercond. state of stateqdashed line, bottom frame of Fig) &hich arises in
- T=10K a d-wave superconductor. On comparing the solid and the
0 : Pk dotted curve we note a shift upward in the initial sharp rise in
50 L dmij;?gE the scattering rate as we go to the superconducting case. This
L L L L corresponds to the opening of the gap. The black dashed
200 [ curve is in the normal state @=90 K. Temperature smears
7 150} the sharp rise at smadl. Only theT=90 K data are available
S 100} to experiment. If, as we did in Fig. 4, we take the difference
g 50 o between superconducting and normal state optical scattering
% of rate we get the gray solid line for=10 K and the gray
8 sof dashed curve folf=90 K. The minimum in each of these
“® 00 f - . . . curves is around 60 meV, which isg shifted by approxi-
150 matelyA,. It is obviously hard to get reliable information on
- wg from such data. The middle and bottom frames of Fig. 5
1°°_ are for less structuretPy(w) and show a progressive de-
50 crease in the corresponding structuresqi;(w).
ol We turn next to the exact correspondence betvvxgé(rau)
and the quasiparticle scattering rates given as twice the
Sol— imaginary part of the self-energy. In the previous section we
g o 10 150 R 20 have already examined this relation but based our discussion
® (meV) on approximations for the conductivity formula. Next we use
FIG. 5. Optical scattering rates;é(T,w) vs w for the three tehqeuggﬁg(i)gd Eq15) and solutions of the full Eliashberg

quasiparticle-boson spectral densities used in Fig. 4. In each of the
three frames the solid black curve is for the superconducting state at
T=10 K, the black dotted curve for the normal state at the same V. MODEL SELF-ENERGY

temperature, and the black dashed curve for the normal stéte at

=90 K. The gray curves are the difference curves, solid curve for We return to the model functior},,q(w) defined in Sec.
T=10 K and dashed curve fd=90 K. lll. It can be constructed from the numerical data shown in

. . Fig. 5 for 7,5(w) defined as

in “sharpness of boson structure” between #feinction and

the pure MMP case. We see that this reflected itself in how  _; a 0?2 . _ QE o1(T,w)
structuredS;(w) andwh,(w) are. Note in particular that the Top(Th @) = 4WReU (o) = 47 o}(T,w) + 05T, w)
large peaks in the black dash-dotted curve dd, () is

now shifted to higher frequencies in the middle frame when (18)
compared to the top frame although the optical resonancgnd

peak is at the same frequency as is ghinction in Fig. 3. . 5 5

(This is because the gay, is bigger now This demon- w( m ) O Ty = 2 )

strates once more that no exact correspondence between size '\ m/,, 4w ' A o%(T,0) + o5(T,w)
and position of the structure i@\,(w) and I°x(w) is pos- (19)

sible without a detailed analysis, particularly for extended

spectra. Also these functions strongly reflect the energy deAfe note in passing, that for small the optical effective

pendence of the underlying quasiparticle density of statemass formulg19) is dominated by the imaginary part of the

that exists in the superconducting stédetted curve, bottom optical conductivityo,(T, w) in the superconducting state be-

frame of Fig. 3 and it is not possible to, so to speak, subtractcause it diverges as™! for small » with coefficients propor-

out the effects of these modulations from the data. Formallyional to the inverse square of the penetration depth. This is

the subtraction procedure described above between supatet related to a quasiparticle effective mass, but is rather a

conducting and normal state quantities when applied to theroperty of the condensate itself. Nevertheless, this is what

middle frame of Fig. 4 again fails to give reliable informa- has been done traditionally and we need to follow this pro-

tion on the shape of the boson spectrum. cedure here to make contact with the literature. An alternate
In the top frame of Fig. 5 we show results for the optical approach would be to subtract out of the imaginary part of

scattering rate-;é(w) based on the modéty(w), which con-  the optical conductivity the condensate contribution before

sists of a MMP form plus a-function (dashed curve in the forming the ratios indicated in Eq$18) and (19). In this

top frame of Fig. 3at wg=41 meV. The solid black curve is alternate approach the resulting and o would refer di-

in the superconducting state Bt 10 K while the black dot- rectly only to the normal fluid part of the optical conductivity

ted curve is in the normal state at the same temperatur@and so would be more closely related to quasiparticle prop-

While the underlying?x(w) is the same in both cases yet the erties. But this is not what is done in the literature.
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o — T suporna - with Top(@) (dashed linesit is 7q,(w)/2 (solid lines and
Trodel @) /2 (dotted line$ that is shown. Even when a factor
of one half is included to make magnitude more comparable,
the optical scattering rates differ significantly from the qua-
siparticle scattering rates. On the other hand, in the normal
state the model scattering rate agrees almost perfectly with
the quasiparticle scattering ratp left-hand framg It is
clear that 7% () should be used in comparison with
ARPES data and not;é(w). The close correspondence be-
tween model and optical rates is, however, lost when the
superconducting state is considergdp right-hand frame
The solid curve is significantly different from the dotted
curve. In particulars,: . (®) is smaller at small» and rises
faster around 50 meV after which it stays significantly above
its quasiparticle counterpart up to almost 175 meV where the
two curves cross again. These differences have their origin in
the energy dependence of the superconducting quasiparticle
density of stategsolid line, bottom frame of Fig.)3and have
nothing to do with the boson structure. For a comparison of
Top(@) (optics and 7,;(w) (ARPES based completely on
experiment, the reader is refered to Kaminekial *
When the underlyind®y(w) is more structured, as is the
o 700 2000 100 200 case for the YBC@Qgs spectrum(dotted curve in Fig. 8 the
o (meV) correspondence betweefy, () and r&,l)(w) is not as good
as is seen in the two bottom frames of Fig. 6. There is a small
FIG. 6. Comparison of opticak,y(w) (dashed lines quasipar-  additional oscillation in the model case, not present in the
ticle, 7,,(w) (solid lines, and modelr,o4(w) (dotted lineg scat-  self-energy. Nevertheless, the agreement between them is
terlng_rlates vaw for a}ltemperature of =10 K. For easier compari- still much closer than is the case for the optical ateshed
zg”m;gpr(e“’)o/fr ";‘gsduﬁnswo%igﬁr“’;/ i/l ’\"’A‘r;’ fzt‘;wvcit;h‘iﬁ’?ng\’/pi:?&es curve). Note, however, that for the superconducting state the
normal (left-hand framé and the superconducst?ng stdregght-hand dlsagreement_ betweemqp(w) (solid Cur\./e anq TmOdEKw)
framg. The two bottom frames give the results for the model (dotteq curves|§ now much greater anq, In.partlcular, a !arge
I2y(w) determined from optics for YBCEys as shown in the top peak is seen m_the model curve which is not there in the
frame of Fig. 3(dotted curve: _dotted curve. Tr_us peak can be related to the broad shoulder
in the quasiparticle density of states which follows the loga-

. . N . ._rithmic singularity(dotted line, bottom frame of Fig.)3
For comparison with the quasiparticle self energy it is

useful to userk (T, ) given by

100

() (meV)

200

150

100}

02 d woy(T, o) VI. CONCLUSION
Tmogel T:0) = 3 2~ - (20 N
Amdo| o%(T,w) + o5(T,w) We have analyzed the relationship between the boson

structure seen in the quasiparticle self-enefigy it real or
than 7,3(T, ). Its imaginary part is given by the KK- imaginary pant measured in ARPES experiments and the
transform corresponding structure seen in the optical memory function
determined in the infrared conductivity measurements. Start-

a(w) =_lfw do’ Tr_nlode(va’) (21) ing first with the real part of the self-energy &function
T) o' -0 peak atw=wg in the quasiparticle-boson spectral density

. i I2x(w) shows up as a logarithmic-like peak @t wg in the
In Fig. 6 we show results fof;,4e(w) based on the nu- ormg state. In the superconducting state a gap develops in
merical results of Fig. 5 and compare directly with the imagi-the quasiparticle density of states and this introduces further
nary part of the self-energ¥,(w) obtained directly from  stryctures in quasiparticle quantities. This effectively shifts
Eliashberg calculations, namely Bfw)=-Imw(w+i0%) of  to higher energy the normal state boson structure, broadens
Eq. (16). By definition of the self-energyw(w+i0")=w it, and can make it appear more prominent. Forsamave
-3 (w+i0%). In the two top frames of Fig. 6 we show results gap the shift would beé\, (gap amplitudg but for d-wave it
for the MMP form(solid line in the top frame of Fig.)2and is somewhat less because a distribution of gap values is in-
in the two bottom frames the YBGQsform (dotted curve in -~ volved. By contrast, for the memory function the boson
the top frame of Fig. Bfor I%y(w) is used. In each case we structure in the optical mass renormalization isyatg in
present two frames, the left-hand frame is for the normathe normal state rather than @t and it is much less promi-
state and the other frame for the superconducting state. Allent. Only a very small peak results, which greatly reduces
results are at temperatuiie=10 K. For ease of comparison the value of such measurements for determining boson struc-
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ture as was attempted recently in Ref. 8. Again, the bosotransform is very close to the real part of the quasiparticle
structure shifts in the superconducting state and can also apelf energy. We propose that it is this quantity that should be
pear more prominent as a result of the additional modulatiomsed in comparison between ARPES and optical experimen-
brought about by the opening of a gap. These modificationgal data. The comparison will be close in isotropic systems
however, have nothing to do with the structuresdg(w).  and in the anisotropic case, the model quantity gives an av-
The two effects are not additive and require a full nonlinearerage over all directions in the Brillouin zone. In the super-
Eliashberg analysis to disentangle in detail as we have prasonducting state no such simple comparison between ARPES
vided here. When extended rather th&function spectra are and optics is possible. This needs to be kept in mind when
used, the situation is even more complex. For example, analyzing experimental data, particularly in studies aimed at
rather broad peak it’y(w), as in the MMP form for spin deriving boson structure from such data. This fact does not
fluctuations produces no peak at all, even in the supercorseem to have always been appreciated in analysis of experi-
ducting state. mental data, where features, at least partially associated with
So far we have described only the real part of the selfthe superconducting quasiparticle density of states, have
energy and equivalent optical quantity. Much the same caheen assigned to boson structure.
be said about scattering rates. Fos-&unction 12y(w), the The model spectral densitfx(w) consisting of a MMP
quasiparticle scattering rate jumps from zero to a finite valudorm with superimposed thé-peak was used to demonstrate
at w=wg and remains unchanged after that. On the othethat optics as well as ARPES just pick up the sharp structures
hand, the optical scattering rate starts from zer@atz and  and do not give direct information on a possible coupling to
increases gradually toward the same finite value which i@ smooth background. Nevertheless, it may well be that it is
only attains at very highw. Thus, the signature of a precisely this coupling of the quasiparticles to such a back-
&-function is not singular as it is for the quasiparticle case. ground which is primarily responsible for superconductivity.
We have also found that in the normal state a new model
scattering rate can be introduced which we denote
Trmodel T» ) and define as[ w7, (T, w)]/dw. It is completely
determined from optical data and has the advantage that it Research supported by the Natural Sciences and Engi-
follows much more closely the dependence of the quasi- neering Research Council of Cana@SERQ and by the
particle scattering rate than doe§;(T,w) itself. Its KK-  Canadian Institute for Advanced Resea(ChAR).
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