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Properties of the superconducting state in a two-band model
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Eliashberg theory is used to investigate the range of thermodynamic properties possible within a two-band
model fors-wave superconductivity and to identify signatures of its two-band nature. We emphasize dimen-
sionless BCS ratiothose for the energy gaps, the specific heat jump, and the negative of its slofig,rtbar
thermodynamic critical field.(0), and the normalized slopes of the critical field and the penetration depth
nearT.], which are no longer universal even in weak coupling. We also give results for temperature-dependent
guantities, such as the penetration depth and the energy gap. Results are presented both for microscopic
parameters appropriate to MgBnd for variations away from these. Strong coupling corrections are identified
and found to be significant. Analytic formulas are provided that show the role played by the anisotropy in
coupling in some special limits. Particular emphasis is placed on small interband coupling and on the opposite
limit of no diagonal coupling. The effect of impurity scattering is considered, particularly for the interband
case.
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[. INTRODUCTION dimensionalr band on its own would have a smaller value
of T, the critical temperature, although it has a higher value
The properties of the superconducting state of convenef the electron density of states at the Fermi energy.
tional, single-band, electron-phonon superconductors differ In the absence of tunneling data giving reliable informa-
markedly from BCS predictionsHowever, they are well- tion on the fundamental kernels entering the two-band
described within isotropic Eliashberg theory with a singleEliashberg equations, first-principle band structure calcula-
electron-phonon spectral densi#fF(w) for the average in- tions of aﬁF(w) in MgB, have been used to compute super-
teraction over the Fermi surface. This function is accuratelyconducting propertie§or example, Refs. 16—19To do this,
known from inversion of tunneling dafaln many cases, it is also necessary to know the Coulomb pseudopotential
o’F(w) has also been calculated from first-principle elec-repulsionsufj, which are different for various indices, j),
tronic band structure calculations extended to include théut these have also been calculated. Good agreement with
electron-phonon interaction, sometimes with the phonongxperiment is obtained in this way for the properties consid-
taken directly from inelastic neutron scattering measureered so far, more explicitly, the specific hé&>the penetra-
ments. In many cases, such results agree very well with thiéon deptht”-?®and the anisotropy in the two gaps, as well as
corresponding tunneling data. While it is to be noted that, intheir temperature dependence. For the penetration depth, im-
principle, the electron-phonon spectral density for the varipurity scattering can be important, and in- and out-of-plane
ous electrons on the Fermi surface is anisotropic leading torientations of the magnetic field are differént.
energy gap anisotropy? this feature often does not play a  In this paper, we use the band theory information on
prominent role because, in many instances, the eIectroniaﬁF(w) and,u:j in MgB, to calculate the critical temperature,
mean free path is much smaller than the coherence length. the energy gap with its anisotropy and temperature depen-
such circumstances, a Fermi surface average of the electrogence, and other thermodynamic properties, as well as the
phonon spectral density can be used. Nevertheless, corregenetration depth, giving particular emphasis to strong cou-
tions due to gap anisotropy have been identified and studiegling corrections. Further to our discussion of MgBve
in the past, often, but not always, in a separable anisotropicprovide a full listing of calculated dimensionless BCS ratios,
model® now modified by both the anisotropy and the strong coupling
The history of two-band superconductiity? and of  effects in MgB, and make comparison with experiment. We
MgB, [with T,=39 K (Ref. 13] in particulat*-22is some-  also consider effects of variations in microscopic parameters
what different. To our knowledge, as yet, there exists ncaway from those of MgB as well as impurity scattering—
inversiorf® of tunneling data from which the electron- intraband and interband. To this end, we reduce the two-band
phonon interaction is determined. In fact, it has been rféted Eliashberg equations, which fully account for retardation, in
that this may well never be possible in MgBecause of its the two-square-well approximatiofalso called thex?’
two-band nature, which requires a microscopic description irmode). This leads to simplerenormalizedBCS (RBCS
terms of four separate electron-phonon spectral functionforms, which, when compared to our full numerical Eliash-
aﬁF(w), wherei=o, 7 (or 1,2, with the two-dimensionalr  berg results, allow us to identify the strong coupling correc-
band having the largest electron-phonon coupling. The thredions that we find to be significant even for MgB
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When considering variations in microscopic parameterdience does not refer to a momentum-dependent order param-
away from those of MgB we place particular emphasis on eter. Likewise, “strong coupling” refers to the traditional
two limiting cases: the limit of small interband coupling and meaning of strong electron-phonon coupling and is not an
the opposite case, when the intraband coupling is zero angllusion to strong interband coupling.
the superconductivity is due to the interband coupling alone,

a case discussed in the early work of Skulal? We also
consider the special case when the intraband coupling in the Il. THEORY
second band is repulsive. The limit of small interband cou- The isotropic(within a band Eliashberg equations gener-
pling is particularly interesting because it allows us to under—jized to two bandgi=1,2) are written on the imaginary
stand how the off-diagonal terms lead to the integration of’Jl . 2134 '
: . . —axis ag>t3
otherwise two completely independent and honcommunicat-
ing superconducting bands with separate transition tempera- , S o
turesT;. In this regard, we find that?,F(w) and a3,F(w) Aillon)Zilin) = WTEm: 2;‘ [Nij(om =)
behave very differently, with 21 the most effective variable

at integrating the two systems and 12 the most effective at 1 (w0 B~ |on])] Ai(ioy)
changing the critical temperature. The presence of the off- @B T EmI T 5 A2 o)
diagonal interactions rapidly smear out the features of the m-=
second transition &y, i.e., the one with the smaller of the o Afliwy)
e + 72 () He—— (1)
j

two T values. More specifically, surprisingly small values
of the mass renormalization paramexgy, as compared with
A\11 and\,,, have a large effect on the regiontf. We also  and
find that relatively modest values of the interband impurity T
scattering rates lead to the significant integration of the two o, T . . W
bands. Even when the bands are well-integrated, in the sense Zllog =1+ w_nEm E Nij(iom = ion) Vol + Aiw,)
that little trace of a second sharp transitionTgf remains, J med
there still exist important modifications of the usual one- S (1)
band BCS results because of the two distinct bands. As an j R
example, the BCS dimensionless universal ratios now de-
pend on the ratio of the electronic density of states at theafvheret5=1/(27rri’]) and tﬁ=1/(2777'i_j) are the ordinary and
Fermi energy of the two bands. Simple analytic expressionparamagnetic impurity scattering rates, respectively, and
for these ratios are derived, which provide insight into the B
physics underlying two-band superconductivity and guidance N (i — i 0r) = ZJ Qa?F;i (Q) 40 3)
as to how these results are to be interpreted. preme o Q2+ (on-wn)?

In Sec. I, we give the two-band Eliashberg equations and
provide their reduction in the.?’ approximation, which is Equation(1) gives the gap;(iw,) and Eq.(2) the renormal-
needed to identify strong coupling corrections to renormalization Z;(iw,) at thenth Matsubara frequenciyw,, with w,
ized two-band BCSRBCS. Section Il deals with the de- =(2n-1)#T. Here, T is temperature anth=0,+1,+2,....
pendence ofT. on microscopic parameters, i.e., on theThe electron-phonon kernels atgF(Q) as a function of
e|ectl’0n-ph0n0n intel’action as We” as on impurities. Intra'phonon energﬁ and the Cou|omb repu'sions aﬁé, W|th a
and interband quantities are both of interest. We Considqﬁigh energy Cutoﬁwc needed for Convergence and usua”y
modifications of the dimensionless BCS ratios in th# taken to be about six to ten times the maximum phonon
model, as well as the zero-temperature value of the two gapfequency. For the specific case of MgBhese may be
and their anisotropy. MgBis considered in Sec. IV. The found in Ref. 19. The diagonal intraband elements of the
issue of strong coupling corrections in MgEand more gen-  electron-phonon interaction are largest, in the case of gB
erally in other related systems, is discussed. The limit ofyhijle the off-diagonal elements describing interband scatter-
small interband electron-phonon coupling is considered ifng are smaller, but still substantial.
Sec. V. We study, in particular, how the two otherwise sepa- |n what is called the two-square-well approximation or
rate bands become integrated when this interaction i§% modell12728we use in Eq(1):
switched on. The effect of interband impurity scattering is
also considered in the same context as it exhibits analogous , _ i for bothwy|, |y < w,
behavior to the case of the off-diagonal electron-phonon cou- Nij(iom —iop) = 0 i (4)

otherwise,
pling. In Sec. VI, we deal briefly with the less realistic case
of zero intraband electron-phonon coupling, where the supewhere
conductivity is due only to the interband piece. Conclusions
o?Fij(Q)

are found in Sec. VII. ?\ij(m= n) = 7\ij(0) == zf i do. 5)
0

M2 2, -~
\ wﬁ + AJ-Z(I wp)

o 2
Vi + Ao,

Finally, in light of the recent developments in other areas
of superconductivity and correlated electrons, we wish to
emphasize that our use of the term “gap anisotropy” here idleglecting the gap in the denominator on the right-hand side
in reference to the difference in the magnitudes of the twoof Eq. (2) for Z, we further approximatésee Ref. 28 for
gaps, each of which are isotropscwave in this work, and  detail9
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Ziw) =1+ 2\ (6) L e A

j 1.2 - * /n/",—_

: T

This result may now be used in E() to obtain - J;»/’:f,:..e ....... o]
A(T), o] < g o 10F o .

Ai(iwy) = (7 £ [ 1

e {0; |wn| > g ) ~ ,.-""/’n(/ -

E~ F "/ 1

where 0.8 |- -
., ]

T Ai(T) . / / 1

A==~ > 2Nl (8) (- 1

i mop<wg ] \’wm+AJ‘ 0.6 t_ A;;OS —_

where w, represents either the Debye frequency or some o L b L

00 0.1 02 03 04 05

other characteristic energy scale representing the phonons in ’ A
the system, at most the maximum phonon energy. Detailed 2

justification of using a single_ cutoff is found_in Re_f. _11. FIG. 1. Ratio ofT, to the pure, one-barit{° as a function of;
These results are used to derive various quantities within thg,. varying\y,: 0.6 (long-dashey 0.4 (short-dashed 0.2 (dotted

A" model, which we will call renormalized BCS or RBCS. anq 0.1(solid). Here,\y;=1 and\,,=0.5. Strong coupling Eliash-
We a|§0 solve the full Eliashberg equations for typical strongyerg calculations are given for comparison for the same parameters
coupling parameters and for the case of Mg&nd in order  and are shown as the points wixh,: 0.6 (solid circles, 0.4 (solid

to connect to the language most appropriate for this purpos@iangles, 0.2 (solid squares and 0.1(open circles
the measure of the characteristic boson frequeagy, is

defined to be

o tmTHe - MaThn g
2 (© °F B VS VT TS VU U
W = exp{— f In(w)mdw]_ 9) A22t+ N2y Nao+ Np1

MaJo @ With no impurities and for one ban@;,=X,;=\,,=0)

This i§ reasonzable for our case here asdhecalculated for kBch)o: 1. 130063—1&11_ (14)
the dlfferentaijF(w) spectra of MgB are almost the same
and other spectra used in this paper will have the same frédere we will be interested only in the ratio ®f [ Eq. (11)]
quency distribution in each channel only scaled in magnito T2 [Eq. (14)] and so the cutoffv, cancels, and the issue
tude. In general, this definition should be reasonably robusef the best choice for this quantity does not erisae Allen
as, unless\,y, \ip, and\,; are large, the first channal,;  and Dyne¥ ). Results forT,/ T2 based on Eqg11)—(14) as
should dominate the strong coupling effects. a function of\,, for various values of, are shown in Fig.
1, where they are compared with results of complete numeri-
cal evaluation of the two-band Eliashberg equatit)sand
(2). A Lorentzian model for the spectral densiti@n%F(w) is
used with zero Coulomb pseudopotent,a'éjl for simplicity.
A. Critical temperature T, Specifically, we use a truncated Lorentzian spectral density,
which is defined in Ref. 29, centered around 50 meV with
width 5 meV, truncated by 50 meV to either side of the cen-
tral point. Thew,, for this spectrum is 44.6 meV. This spec-
tral density is scaled in each of the four channels to give
1.13w, Mi1=1, \,,=0.5, and the range of values ®f, and \,; as
A=ln{ = — (10)  required for the figure. The curves, which are labeled in the
Ble figure caption, are for the renormalized BCS calculations and
or the corresponding Eliashberg calculations are presented as
points. We note that for small values ®§,; agreement be-
keTo= 113w ™, (11)  tween then? results and full Eliashberg calculation is excel-
lent. The agreement is somewhat less good arouypd0.5
but still acceptable. An interesting point to note about this
- — J_ — 2, figure is that the effect ofi, of \,, and\,, are quite differ-
A= Mgt A . (ill _EZZ)_ + ANk (12) ent. As\,, increases for fixed ,, T; increases. On the other
2(A 11N 22 = A 1oho1) hand, for small but fixed\,q, increasingh,, decreaseg.,
while the opposite behavior is found to hold for values\ gf
and larger than approximately 0.16. This behavior is different
. . from that expected in nonrenormalized BCS theory, where it
fll: M ;12: M is known that increasing the off-diagonal coupling from zero
1+N1+ N0 T+N+ Ao to some finite value always increaséswhatever its sign.

[ll. BCS RATIOS: THE A% MODEL AND STRONG
COUPLING

The critical temperature that results from the renormal
ized BCS equationf8) of the two-square-well approximation
takes the form

where
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Expanding Eq.(12) under the assumption that the off- L L A B B B

diagonal elements are small as compared with the diagonal L t3, varies ]

ones(Ni2, A1 <117 Moz, App) gives 105 ]

1 ; : 1 0.8 [ “‘.""-.\\\\\\‘~~_ t=ts i

A=—|1--24y - _ - (15) -] [ \\:;";::-_--_-;

A1y Az (M1i—Az2 A Qv 06 [ \\\ ]

N - \\ <

In BCS theory, thex;; would not be renormalized as in Eq. £ [ N\~ ti, varies ]

(13). Since the term in curly brackets is positivedecreases 0.4 - \\\\ ]

with the product of\1,\5; and hencd . increases. But in our [ N T 3

e — 02 ~—— -

case, th_e mult_lplymg term Nl_lz(1+)\11+_)\12)/)\11_ con- [ A, =1, Ay=Ag=0.02 ——7

tains\, in leading order and this factor on its own increases ool v 11 .
A and therefore decreases the critical temperature. These ex- 0.0 0.5 1.0 1.5

pectations are confirmed in our full Eliashberg numerical t;)r/Tco

work and are not captured in other BCS wotks example,
Refs. 30 and 31 It is clear then, that in our theory,, and
\,, do not enter the equation fdg, in the same way because

FIG. 2. Ratio ofT, with impurity scattering to that withouT,
as a function ofti’}/Tco for varying A, 0.5 (solid), 0.4 (short-

N1, provides a direct mass renormalization to the major in-dashed, and 0.3(long-dashe Here,\;;=1, A;,=X\»;=0.02. For
teraction term\y;. If mass renormalization is ignored, as in the lower three curve,;=0 andlt;, varies, and for the upper three
BCS theory, this asymmetry no longer arises. The work bycurves(which are almost indistinguishable from each ojlieis the

Mitrovi¢32 on functional derivatives findgT,/ 5a°F,;(w) to

reverse. In the middle set of three curv€s=t;,. These calcula-

be positive and the one for 12 to be negative, which contions have been done with the full Eliashberg equations using a
forms with our results. We note here that the disparity beLlorentziana®F(w) spectrum withTeo/ @, =0.11. The dotted lines

tween\;, and\,;, which will in turn affect theT, and other

are from the evaluation of E¢16) for the\,,=0.5 case and are for

properties, is related to the different values of the density of12=0 (upper dotted curyeandt;;=0 (lower dotted curvk (Note

states at the Fermi levé; in each of the two bands, i.e.,
)\12/)\21: Nz/ Nl'

Turning next to the effect of impurities of, the change
AT,=T,— T for small impurity scattering can be written in
the A% model as

AT, _ c
Teo N+ Moo+ 280N 2ho1 = Nyghoo)

(16)
where for ordinary impuritie$C*) and magnetic impurities
(C):

o
4

+[1 = A\ 1l(p5 N2 F proh2d)
+Ahpi(N 12 F ND)pTa+ AN o1 F Nppz}, (17)

{(1 = ANy (p3 M1 T Pih1d)

with

+ ti2/ TCO + tgl/ TCO

o= , =—" 18
P12 1+ N1+ Ao P21 14N+ Ay (18)

These equations have been derived for scattering across the

that the middle set of curves are the only physically realizable
cases. The others serve to make the mathematical pointjheatd
t5, affect T, quite differently)

middle set have,=t;;. Note that in showing the results
whent;, or t;, are varied separately, we are violating a re-
quirement that they must be linked together by the density of
states in the two bands. That is, as required for X,
likewise the impurity scattering rates must obg&y/t;,
=N,/N;. Our middle set of curves obey this constraint, but
we have ignored it for the other curves in order to illustrate
the general behavior of each individual type of scattering
separately. As found for the;'s, the effect oft}, and that of
t5, on T, are quite different. The quantity, represents scat-
tering from band 1 to band 2 and leads to pair breaking much
like paramagnetic impurities in the one-band case. We can
see this analytically in the simple case ©f,=\,,=0 for
which the two bands are decoupled and the critical tempera-
ture is a property of the first band alone. In this case, Egs.
(16)—(18) reduce té°

m

AT, .
Tco_ 4P12

(19

bands; within the bands, paramagnetic impurities will affectfor both normal or paramagnetic impurities in the linear ap-

T, but ordinary, nonmagnetic ones will not.

proximation for the impurity scattering rate. The initial linear

Results are given in Fig. 2. Except for the dotted lines, alldecrease ifT, with increasingp;, is seen in the lower set of
curves were obtained from numerical solutions of the linearthree curves of Fig. 2. A$;, is increased further, higher-

ized version of the Eliashberg equatiofi$ and (2) using a
Lorentzian model foraﬁF(w). The curves come in sets of
three for\,,=0.5 (solid curve, 0.4 (dashed, and 0.3(long-
dashegl The other parameters arg;;=1 and \j,=\y;
=0.02 (small interband coupling The lower set is fort},
=0 with tj, varying while the upper set has<12. The

order corrections start to be important and the curves show
saturation to a value that is larger the greater the value.of
Also note that formulg19) shows thafT. is independent of
py;- This expectation is confirmed in the upper set of three
curves of Fig. 2, wher@&_ has increased by no more than 3%
for t3,/Teo=1.5. This small increase is due to the smal}
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=\, used for the figure, while in Eq19) , we havel;, AL Y S A
=\,;=0. The middle set of curves, which apply fd,=t;,
and therefore satisfy the constraint imposed by having cho-
seni\;,=X\,;=0.02, exhibits, by comparison to the other two
cases, only a very small region that is linear in impurity o
scattering and these curves are intermediate to the other two A4 s ]
sets, as expected. They also saturate at higher valuég of \N 30— b '
<
¥,

and we find thaf . decreases by only 20—30 % for this case,

similar to the observation by Mitro& who was considering 20 T et 2
specifically the case of MgB* Finally, we comment on the - .
dotted curves, which are based on E4#$)—(18) valid in the 1ob P,
A% model and to first order itj;. The lowest curve applies to B
thet;=0 case and the upper onetfg=0. The slopes are in F ]
good agreement with the full Eliashberg results over a sig- 00 5 '0'5' = '1'0' = '1'5' Y
nificant range of interband impurity scatterinfy For the ' ' X ' '

middle set of curves the linear behavior applies only com- 12

paratively to a rather small region. In all cases there is still 5 3 Gap ratios for the uppei2A,/ksT,) and lower gap
. 0 , . 3.

some dlfferencg betweer?_and EI|ashb§rg results becr_:luse (24,/kgT,) as a function of, for varying Apy: 0.5 (solid), 0.1

of strong co_upllng corrections. As previously stated, inter-gotteq, ~0.5 (short-dashed and -1 (long-dashell Here,\;,=1,

band impurity scattering in two-band SuperconductIVItyMl:0_3. These calculations are done using the RBCS fornia@s

works like paramagnetic impurities in the ordinary Oneé'?bba”dand(m) in the text, the solid dots show Eliashberg calculations for
case. For this latter case, Schachinger, Daams, and C Ott?ne same set of parameters wikk,=0.1 (for comparison with the

have _found for_ the specma% case of Pb, the classic S_tr_onaotted curve Strong coupling corrections are significant and the
QOUp“ng material, that, the mOdel, oyerestmateg the M- rest of the curves in this figure would also be modified by strong
tial slope of the drop il value, with increasing impurity  ¢oypjing; much of this can be captured by the strong coupling cor-
scattering. The physics is simple. For strong C(-""”:’I'ng’rection formula given in the textNote that as\,, and\,, are finite,

2A/KkgT, is larger than its BCS value_i.e_., the gap is b_iggerthe points forx;,=0 are not physically realizable.
than expected on the basis of s This is because aB is

increased, that part of the inelastic scattering which corre-
sponds to the redlas opposed to virtuplprocesses, which — Npgy —— — — — -

are pair breaking, increases afid is reduced below the AU = ot (A11h22= Noshpo) INU=Npp= gy, (20)
value it would be without. As a result, the initial drop in the

T, value with increasing impurity content is not as large infrom which the gap ratio for the larger gag may be found:

strong as in weak coupling because the system has a larger _

gap that is more robust against impurities. The same applies 1137, 1+NpUlnu

to interband scattering in a two-band superconductor. The ! kT AT T— = : (21)
initial slope of the drop is faster in the’’ model than in the Bc ASERRISFS

Eliashberg calculation, as most recently shown byrne solution for the gap ratio2/ksT, can be corrected for

Mitrovié,f“?}g/ho has commented on prior work by GoluboV grong coupling effects by multiplying by a factag, in the
and Mazin;® where only unrenormalized BCS results Were yonominator of the logarithm of E¢21) with3

given and the drop ifT, was even faster. Mitrovialso pre-
sents functional derivatives for ordinary impurifiéand his . o
findings compliment our calculations here. In addition, as M]=1+12. O In oT ) (22
low-frequency phonons act like ordinary impurities, the pre- n ¢
vious work by Mitrovi on functional derivative® for the  As long as\,; is large and\,,, Ai5, and\,; are small, one
electron-phonon spectral functions also confirms our impuneeds only to correct the first channel for strong coupling
rity results by comparison with the behavior of the low- effects. Otherwise additional corrections for the other chan-
frequency part of the functional derivatives for 12 versus 21nels may exist but there would be no merit in such a com-
Finally, it has been of some interest among experimentalplexity of including these corrections over doing the full nu-
ists, looking at novel superconductors, to know the outcoménerical calculations with the Eliashberg equations. It is
of having a repulsive interaction in the second bdhe., expected that in real systems;, is large relative to the other
\»<0). As will be seen in the next section, a second energyarameters and hence dominates the strong coupling aspect
gap is still induced in this case due to the interband couplingpf the result. However, when the off-diagonal couplings are
however, a signature of this repulsive band would exist in thesignificant, the strong coupling corrections of the first chan-
case of impurity scattering, as strong interband scattering afiel can affect the second.

sufficient strength could drive thE, to zero3° Our first set of results for the two energy gaps is given in
, Fig. 3. The lines are based on the simpler equati@dsand
B. Energy gaps and gap ratios (21), and the solid dots are for the results of full Eliashberg

We turn next to the consideration of the energy gaps. Theolutions on the imaginary axis and analytically continued
transcendental equation far=A,/A; at T=0 in the A?  with Padé approximatégo the real axis, where the gap is
model is determined byAo=A(w=A,).! For clarity in the figure, only
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2L L B L B B curve, increasing with increasing off-diagonal while the
RBCS counterpartdashed curveis decreasing. However,
when the strong coupling correction formula is applied to the
RBCS result, the resulting cur«eot-dashegis now in rea-

1 sonable agreement with the Eliashberg calculation and fol-
] lows the evolution with increasing off-diagonalvery well.

. It is of interest to experimentalistélooking at novel ma-
P e R R terials suspected of harboring multiband superconductivity,
whether there may be a range of parameters that could pro-
duce a very large upper gap ratio with a large anisotropy in

LI B B BB B B

30 1 magnitude between the upper and lower gaps. It is possible
1 that it could occur in a regime whene,/\,;>1, as sug-

N A T BN I gested by the trend in our Fig. 3, while in the opposite re-

0.0 0.2 0.4 0.6 0.8 1.0 gime we will show that all results return to standard weak

Ao coupling BCS values. As previously mentioned, this ratio of
N2/ \»q is equivalent to the ratio of density of states in the
FIG. 4. Gap ratio A,/kgT. as a function of\1,=\5q, for Aqq two bands, sometimes denoted @s$n the literature, i.e.q

=1.3 and\,,=0.5. These curves provide a comparison between the= )\ ;,/\,;=N,/N;. We have gone tar=20 within the renor-
Eliashberg calculationsolid curve and the RBCS calculation malized BCS formalism and were not able to produce gap
(dashed curve along with the result from using the RBCS expres- ratios bigger than about 5 or so, for the parameters exam-
sion with the strong coupling correction formula given in the textined, and at the same time, the lower gap ratio was about 3.
(dot-dashed curve We conclude, therefore, that even with added strong coupling
one such set of results is shown for the case\gi=0.1.  €ffects, very large gap ratios tending towards 10 to 20 are
While magnitudes differ considerably between the renormaldifficult to obtain in conjunction with a large anisotropy in
ized BCS and strong couplifigomparing solid dots with the the two gaps. Repulsive potentials in the second band can
dotted curvel the general trends are the same. Specificallygive & large anisotropy, but they also lower the value of the
in Fig. 3,1, is varied withh;,;=1, A»;=0.3, and\,, fixed to  UPPer gap ratio. Later in Sec. VI, we will return to this issue
various values in turn. The upper curve appliedfeand the ~ ©f trying to obtain large gap ratios and large gap anisotropy,
lower curve of the same line type 1. While in all caseg\, ~ When we examine another extreme limit first considered by
increases with increasing,,, in one casesolid curve, the ~ Suhletal? _ _ _ _
lower gap decreases slightly. More importantly, the value of 10 conclude this section, we examine an approximate for-
the upper gap ratio increases above its BCS ratio 3.53 anfiula for the gap ratio in two-band superconductivity, which
can reach 4.6 in renormalized BCS, a feature that comedas been given and used by experimentatfsts, determine
from the two-band nature of the system. Comparing the dotLtS range of yalldlty in the fa.(?e of more exact calculations.
ted curves to the solid circles fav;, we note that the Eliash- The formula is an unrenormalized BCS formula and we have
berg results are always above theff counterpart, reflecting already seen tha_t renormalization and strong coupl_mg effects
well-known strong coupling corrections to the gap. This ap-c@n be substantial. For,,A15,M2; <A1, We can derive the

plies as well toA,, the lower gap. We now comment specifi- Primary (or large gap ratio as

cally on the other curves. To increase the anisotropy betweeor}A N No/ANZ (A

A; andA, for the parameter set considered here, we need td=1 3_53{1 ~ 12021 u] = 3_5;{1 - _2<_2> |n<_2)]

decrease the value af,. Note, however, that even when we KgTc¢ N21 Ni\Ay Ay

assume a repulsion in the second band, equal in size to the (23)

attraction\,=1 in the first bandlong-dashed curyea sub-

stantial gap is nevertheless induced in the second channehich is the same equation as given by lavareteal,3®

even forh1,=0. It is the finite value of,; that produces this where their use of the indices 1 and 2 are reversed with

gap. Recall thak,; describes the effect of band 1 on band 2respect to ours. In our formul@3) given here, thel and\’s

due to interband electron-phonon coupling. Turning on, asire coupled through E20) , but in the case of Ref. 38 the

well, some\,, increases the second gap further but not byratio of the density of states and the ratio of the gaps are

much. Finally, we mention that as,; increasegnot shown treated as independent parameters with the only constraint

herg, A; decreases while\, increases, i.e., the ratio of being thatu<1.

A,/A; goes up towards one and the anisotropy is reduced. In Fig. 5, we compare this approximate BCS formula with
In Fig. 3, the ratioh15/A5;=N>/N; is varying, while in  that of our exact renormalized *BCS formula for typiog

Fig. 4, we keep\15=\,; and illustrate more clearly the effect values used in the literature. The are set to zero as there is

of strong coupling Eliashberg results in comparison with theno such feature in the lavaroe¢ al. formula and thew™’s in

RBCS calculation, and also provide a comparison with thehat case would simply serve to change the effective value of

RBCS calculation corrected with the strong coupling formula\’s. We find that the approximate formu(dashed curve of

of Eq.(22) . One finds that the gap in the Eliashberg result isFig. 5 compares well with the renormalized BCS result in

quite enhanced over the RBCS result, even exhibiting a difthe limit of small\y, »; »; as required by the constraint of the

ferent qualitative behavior with the Eliashberg g@wlid  approximation, and breaks down foy,> 0.5, where the ap-
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8O T T dAC(T)| 1

=- =, 26
9 aT |1y (26)

wherey is the Sommerfeld constant for the two-band case.
In the A%’ model, the gap neaf,, for t=T/T,, can be

written as
2 _8(7TTC)2E ~
Al(t)——7§(3) Xl(l t), (27)
200\ _ 8(77Tc)2i _
A5t = 73 xZ(l t), (28)

where{(3)=1.202. Here,

_ (1 _A)\ZZ))\ll + )\12}\21A[1 +A2)\§1(1 - A)\zz)_s]
FIG. 5. Gap ratios for the uppegA,/kgT.) and lower gap 1= AT Ny oy v N Ay
(2A,/kgT,) as a function of;, for \;;=1.0,A5,=0.5,\,;=0.2. The (1= Ahg)h a1+ Nkt 2A+ A55 (1 = Akgy)]
solid curve is the exact BCS result, whereas the dashed curve illus- (29

trates the approximate formula of lavaroeteal. (Ref. 38. and

proximate formula tends to overestimate quite significantly (1= A1) oo+ Ao AL +APNZ,(1 - AN )%
the value of the two gaps. Strong coupling effects would X2~ - = — — o —
produce very significant deviations in addition. Not shown is (1= AN1)Ao2+ Noah g 2A+ AN/ (1 - Al ]

the case whera;, »; ,,were all taken to be very small and (30)
then in that case, as expected, there was excellent agreement : L

between the exact renormalized BCS calculation and the a@nd the strong coupling correction is introduced thratigh
proximate form. The fact that lavarore al3® obtained ex- T \2 [ on

cellent estimates of the two energy gaps for Mg8maybe nc=1+53 — || (3? ' (3
fortuitous in some sense, because it will be seen in the next ¢
section, where we discuss Mg detail, that the renormal- The specific heat jump &t is

ized BCS formula underestimates the correct gap values OBC

MgB, and strong coupling corrections of about 7-%GGre —

needed to obtain good agreement between the data and fuiTe

Eliashberg calculations. We conclude that their simple for- 3{(1 + N1+ M) (e x) + a1 + Ao+ )\21)(1/)(2)}
mula is helpful, but that it should be used with caution when =

considering systems where the parameters are no longer (2 X1+hag) +all + A2+ A2)

Win

small as then this formula will fail. (32
We find with this expression that anisotrofiye., N11# Ao
C. Specific heat jump reduces the jump ratio but increasing, or A, increases the

ratio, and the maximum obtainable is 1.43. Other work along

. The spe_cific heat is calculated from the free energy. Thge game fine is given in Refs. 30 and 31 where they do not
difference in free energiF =Fs—Fy between the supercon- qnsiger full renormalized BCS or strong coupling theories,
ducting state and the normal state is giveA by as we have done here.

o S When \y5, A5, —0, 1l ~1+0(\3) and 1h,~O0(,).
AF=- WTH_E_:OC 2| Ni(O)[ Ve + Afiwp) = [wpl] This is assuming ;;—\,, and\,, remain significant as com-
- pared with the value of the off-diagonal elements. In this
. . || case
X | Ziw,) - ZNiw ) —, (24 '
e A A ) AC _ (1 4N+ Npo) (33
whereS andN refer to the superconducting and normal state, e L@ +Agg+ A +a(l+hp+Np0) |

respectively, and indexes the number of bands. From this

' The physics of this f la is that, in this limit, th ifi
the difference in the specific heat is obtained, © physics of this Jormuia 1s that, in tuis 1mit, the Specriic

heat jump afl,, itself is determined only by the superconduc-
d?AF tivity of the dominant band, but it is normalized with the
a2’ (25 normal state specific heat belonging to the sum of both
bands. This has the effect of makiA@(T,)/ yT,. always less
and the negative of the slope of the difference in specific heahan the BCS value by a factor of (/+a"), where o
nearT. is given as =a(1+hp+ N/ (L+N11+N,). For MgB,, we expecta’

AC=-T
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=1, which means that in this case the normalized jump is H(0)  2A;1 [7{(3) 1+a U2
reduced to about half its BCS value. If we had included in  he(0) T

Eq. (33) the strong coupling correctionc, this would have |H (TIITe  keTcm
the effect of increasing the factor 1.43 to a larger value char- (42)

acteristic of strong coupling but the additional anisotropy . . .
parameters would still work to reduce the jump. Thus, in aStrong coupling factors could be introduced in E(S6),

two-band superconductor, the jump will be smaller than thaf38)’ and(40). Tfr:ey aLe notfgivin explic]ictlyr:]ere as they gri
: ' L ess important than those for the specific heat jump and the
for one band with the same strong coupling index slope of the penetration depth&t(see Table)l The limit of

D. Thermodynamic critical magnetic field nearly decoupled bandé\;s,As1<<\11=A22,Ap0) gives for

322 N’ raxs’

The thermodynamic critical magnetic field is calculatedthis quantity
f the f iff : =
rom the free energy difference hc(O):O.57&r’m. (42)
Ho(T) = V= 8mAF. (34) The square root, which accounts for two-band effects con-
As the temperature dependence of this quantity, normalizethins a correction proportional t@ u?. It can be understood
to its zero-temperature value, follows very closely a nearlyas follows. The slope &k found from formula(40) depends
guadratic behavior, the deviation functi@it) is often plot- only on band 1 buH.(0) involves both and hence this cor-

ted: rection comes solely frorhl(0) as seen in Eq(36) . If the
anisotropy between the two bands is latge 0, there is no
D(t) = H( _ (1-12), (35)  correction factor in(42) because the second band is elimi-
H.(0) nated fromH(0). If, on the other handy is near 1, the two
wheret=T/T bands have nearly equal gap value but still it is only band 1
At T=0 ¢ which contributes to the slope at and the dimensionless
ratio (42) can now be larger than its BCS value.
HZ(0) = 4mN;AZ(1 + o’ U?), (36)
Wherea*=N;/N1 and E. Penetration depth
x The London penetration de T) is evaluated frorh
Ni =Ni(0)(1 +Nji + ). (37) P pi.(T)
The zero-temperature critical magnetic field is modified : —2 E Az(iwn) 43
through the second term in E(B6) , which increases with T 2 z [l + AXiw) P2’ (43
. . * . . . |_( ) n=1 i 00| ('wn)w (iwp)
increasinga’ and with the square of the anisotropy ratip
which in this case is just the ratio of the independent gapyhere in three dimensions
values for the two separate bands. Further, the dimensionless P P
tio i 1 4w 8
ratio is _Ame _Bme”, o (44

)\2

00i

e _ <kBTc>2[1 +a'] -
Hﬁ(O) [l +a'u?] anduyg; is the Fermi velocity in the band labeled by the index
i. This last equation would be multiplied by a factor of 3/2 in

For almost decoupled bands, E88) becomes two dimensions.

yT2 016 1+a 39 For the penetration deptk (T) at T=0,
HiO 7 1+a'? 1 1 1

where the second factor on the right-hand side modifies the A7(0) 7 (ON3o1(1+\11+ A1) * A2o(L+Npo+ Np)
usual single-band BCS value of 0.168 for the presence of the

second band. Again, both” and u enter the correction. If (45)
there is no anisotropy=1, and therefore the bands must be 54 nearT,,
the same, we recover the one-band limiting value. For large
anisotropy wherei— 0, and ifa” is of order one, the ratio in 1 1
Eq. (39) is of order twice its one-band value because the 2 2 2

second band contributes very little to the zero-temperature MO 7 (TAooxa (L + X1+ As2)
condensation energy, but is still as equally important as the 1 }

=2(1 —t)|:

first band in its contribution tg/T;, the normal state specific (46)

+
2
heat. NeafT, NoazX2(1 + N2zt Aay)

H.(t) = kgTo)(1 - [N—i _;]1/2 40 where
c(t)_ 7§(3)(7T B c)( t) Xi X% ’ ( )

Win
0—1+l< )l(—), 47
which then gives the dimensionless ratio MO (o 13T, “0
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TABLE I. Universal dimensionless BCS ratios and their modification for strong coupB@y and two-band superconductivity. RBCS
stands for the renormalized BCS formula given in text. The percentage difference between the full Eligghasihg calculation and
RBCS, used to measure the amount of strong coupling correction, is given as % SC and defiEédshs —RBC$/Eliash|.

BCS Pb MgB MgB, MgB, MgB, MgB, Lor. Lor. Lor. Lor.
Ratio One band One band Eliash. Expt. RBCS % SC RBCS+SC Eliash. RBCS % SC RBCS+SC
T oy 0.0 0.128 0.051 0.076 0.0 0.052 0.15 0.0 0.15
2A1/kgT, 3.53 4.49 4.17 3.6-4% 3.86 7.4% 4.15 4.97 3.84 23% 5.14
20,/ kgT, 3.53 4.49 1.55 1.0-1% 140 9.7% 2.66 2.27 15%
Ayl Ay 1.00 1.00 0.37 0.30-0.82 036 2.7% 0.535 0.593 11%
AC/ T, 1.43 2.79 1.04 0.82-1.82 0.817 21% 1.02 2.08 1.07 49% 1.97
g -3.77 -12.68 -3.28 (2.37-4.3)¢ -8.32
yTﬁ/Hg(O) 0.168 0.132 0.225 0.183 0.247 9.8% 0.153 0.193 26%
h.(0) 0.576 0.465 0.581 0.518-0.667 0.629 8.3% 0.500 0.621 24%
y 0.5 0.311 1.25 1.220.547 1.50 20% 1.32 0.536 0.861 61% 0.569

3Reference 25.

bReferences 38 and 44-49.

‘References 25, 40, 48, and 50.

dEstimated from References 25, 40, and 48.

®Reference 40.

fEstimated from Refs. 25, 40, and 51.

9Estimated from data of Ref. 41 as presented in Ref. 17.
PEstimated from Ref. 42.

T.\2 [ wp for electron-phonon spectral densitiegF(w), read from

ﬂxL(Tc) =1-14 —/In 357 ) (48) graphs in Ref. 32, which were originally presented in Ref.
e 19. The Coulomb repulsion parametess and \jj, taken
Hence, defining/ (T)=1/A(T), we write the dimensionless from Ref. 19, were\,,=1.017, \,,=0.448, \,,=0.213,
BCS penetration depth ratipas Nme=0.155, 4, =0.210, , =0.172, 4, =0.095, andu.,
1 =0.069, withw,=750 meV. From these parameters,was

= ACE = 1(1 + aﬁ)|:i + ﬂg} (49) found to be 39.5 K. As discussed in our theory introduction,
Iy (To|Te 2 X1 ox2l we usedw,,=66.4 meV, calculated from the?,F(w) spec-

where ,3=U|2:2(1+)\11+)\12)/U|2:1(1+)\22+)\21)- g is expected trum, to form our strong coupling indeX./ w,,. The other

to be of order 1 unless there is a great disparity in the twci‘hree channels haay, =62 mev, which is not so different,
. o Ithough as argued previously, the main strong coupling ef-
Fermi velocities. For MgB we use the values af-;=4.40 ug guea previously ; g couping

; fects will come from the 11 channel, and hence the choice of
X 10° m/s andvg,=5.35x 10.5 m/s reported in Ref. 18 anq 66.4 meV for this parameter. From the solution of the Eliash-
for our other model calculations, we take them to be equiva

L berg equations, we can evaluate Ez¢) for the free energy
lent, for simplicity. For the nearly decoupled case difference between the superconducting and normal state,

yL(0) 1 and evaluate the superfluid density or the inverse square of
W = 5(1+a,3)- (50)  the penetration depth from E@¢43) . In Fig. 6, which has

L elite three framesthe top is the specific heat, middle, the penetra-
For « and 3 equal to one, we see that the normalized slope ofion depth, and bottom, the critical magnetic field deviation
the penetration depth is twice its one-band BCS value of 1/2function of formula (35)], we compare Eliashberg results
Shoulda, B, or both be much larger than 1, then the slope(solid curve with experimental resultsolid and open
can be even larger, which reflects the fact that only the domicircles, triangles, and squajes

Wi

nant band determines the sloplebut both bands contribute ~ In all cases, the agreement with experiment is very good
to y,(0). Information onvg; and N;(0) is contained in the and certainly as good as obtained in conventional one-band
slope. cases. In each case, we also present a second set of theoret-

ical results(dashed curvefor which all microscopic param-
eters remain those of MgBexcept that we have half the
value of the off-diagonal spectral functiong,F(w) and
aglF(w), which changes th&. only by about 1 K. It is clear
We now continue beyond renormalized BCS formulas tothat doing this reduces greatly the quality of the fit one ob-
evaluate quantities based on the full two-band Eliashbergains with the experimental data. This can be taken as evi-
formalism and we begin with the specific case of Mgld  dence that the electronic structure, first-principle calculations
strong coupling effects. Equatiori$) and (2) were solved of electron-phonon spectral functions are accurate. It also

IV. MgB ,: INTEGRATED BANDS AND STRONG
COUPLING
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~< r 0.0 PR PRI M N CLix
= 0R 0.0 0.2 0.4 0.6 0.8 1.0
0.0 [ T/T,
0.02 |-
. 0.00 :&mq% o FIG. 7. Gap ratios for the uppe2A,/kgT.) and lower gap
= RN 4 (2A,/kgT,) as a function ofl /T.. Shown as the solid curves are the
QA -0.02F ' \K P predictions for the gap ratios given by our full Eliashberg calcula-
C "‘ & tions for MgB,, the dashed curves are the Eliashberg calculations
-0.04 C e RS, for the case of reducing the off-diagonds by half and the dotted
—008 Lvel o 11, TTo ol curves show the classic BCS temperature dependences to illustrate
00 02 04 06 08 1.0 the deviation of the temperature dependence of the Eliashberg two-

T/Tc band calculation for MgR The open circles are the data from la-
varoneet al. (Ref. 38, where we have use®.=38.3 K to obtain
FIG. 6. Upper frame: Electronic specific heat for Mg the their quoted upper gap ratio value of 4.3. The solid dots are the data
superconducting state normalized to the normal state as a functio®f Gonnelliet al. (Ref. 44.

of T/T.. The points are the experimental results of Wahgl. (Ref. . . .
25) and the solid curve is the result for the Eliashberg calculationfunction for the Eliashberg calculation occursTafT.=0.6

using the parameters given in the literatqRef. 32. The dashed @nd has a value of —0.054. In the experimental data, the
curve llustrates the case where thg and\,; parameters, used for Minima occur at aboul/T.=0.6 and 0.65, with values of
the solid curve, have been halved. The jump due to the lower gapbout —0.05 and —0.045, respectively. For reference, the one-
begins to appear in this case. Middle frarfiet0)/\(T)]? vs T/T.. band BCS value is —0.037 and strong coupling makes this
Curves are those resulting from the same set of parameters as di¢alue even smaller and can even push it to a positive value;
cussed for the upper frame, with the; taken from Ref. 18. The hence anisotropy is compensating for the strong coupling
data, shown for comparison, have been taken from Ref. 17. Neffects and is making this value larger and more negative.
impurity scattering has been used to obtain a better fit. Lower In Fig. 7, we present the temperature dependence of the
frame: The deviation functio®(t) for the thermodynamic critical two gap ratios for MgB. Once again the solid curve is the
field. Line labels are as above and the dafaen and solid circles  full Eliashberg calculation using the parameters given for
are formed from thed (T) data given by Wangt al. (Ref. 25 and  MgB, with no adjustments. The ratit,/A, increases from
Bouquetet al. (Ref. 40, respectively. 2.7 atT=0 to about 3.5 aff,. The temperature-dependent
behavior shown here was also found by Cabal.® Brink-
shows that variation of parameters by a factor of 2 or sananet al,*® and Golubowet al*® A comparison with some of
away from the computed ones can lead to significant changdbke more recent experiments is given by the open and closed
in superconducting properties, and, in this instance, featuresircles, with the data taken from lavaroeeal3® and Gon-
of the second transition, due to the lower gap, begin to aprelli et al,** respectively. Similar data are found in other
pear. The specific heat curve was computed before in Refseference$>*’In the case of the data by lavaroeeal, the
15 and 16 and the penetration depth in Refs. 17 and 26. Istatement ofl, was ambiguous and so we used their quoted
these cases, our calculatiofs®lid curve$ confirm previous value of the upper gap ratio of 4.3 along with their quoted
ones and demonstrate that our calculational procedure igalue of the upper gap being 7.1 meV to determifie
working correctly. For the penetration depth we did not in-=38.3 K used for the scaling of the data for the plot pre-
troduce impurity scattering. Impurities can affect the penetrasented here. The Gonneé#t al. data are presented based on
tion depth and were included in Ref. 17. The three sets ofhe T, of 38.2 K given in their paper. There is a very reason-
penetration depth data are for cledsolid circle$! and able agreement of the data with the calculation; once again,
triangles?) and dirty samplessolid square® ) as discussed along with Fig. 6, this shows a consistency of a number of
in Ref. 17. To our knowledge, the deviation function has notsets of data from several different types of experiments with
been computed and compared with experiment before. Thine one set of parameters fixed from band structure for
data are from Refs. 2%open circley and Ref. 40(solid  MgB,. Thus overall, the agreement between theory and ex-
circles, and again agreement with calculation, with no freeperiment is excellent and validates the two-band nature of
parameters, is very good. The minimum in the deviationsuperconductivity in this material. The dotted curves in Fig.
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7 are presented to show that the two-band calculations do
show deviation from a classic BCS temperature dependence
(which was used in the original presentations of the
dat&®44). In particular, Gonnellet al. argued that the devia-
tion of their lower gap data at temperatures above 2®K
T/T.=0.65, herg from the BCS temperature dependence is
an additional signature of the two-band nature of the mate-
rial. However, we find no such dramatic suppression in the
two-band calculations at this temperature and only with the
dashed curve, where we have taken the off-diagonal
electron-phonon coupling to be half of the usual value for
MgB, do we find an inflection point around 0.35. We were
not able to induce a suppression of the lower gap in the
vicinity of T, by varying the MgB parameters slightly about
their accepted values. However, such behavior can be found
in other regimes of the parameter space not relevant to
MgB,, and this feature and the issue raised by Goneébil.

will be discussed further in the next section. To end, note that
an inflection point is also seen in the penetration depth at
aboutT/T,~0.35, as described first by Golubet al'’ and

also found herdsolid curve of middle frame of Fig.)6

More results from our calculations as well as comparison o.o0 T 0'5 o o.o0 - 0'5 o
with data are presented in Table I. In the first column, we : A ' ' A ’
include, for comparison, the one-band BCS values for the 12 12

various dimensionless r.atlos. The S:t_rong coupling |nde)§ 'S" FIG. 8. Various BCS ratios as discussed in the text, shown as a
first, f(_)llowed by the major gap to critical temperature ratio, fnction of \ ., wherehy=A, (i.6., @=1), A;=1.3, and,,=0.5.

the minor gap ratio, the anisotropy,/A,, the normalized  the sjig curves are those for the full Eliashberg calculation for a
spgcmzc heat jump and the negative of its slopeTat | orentzian model of®Fjj(w) spectra and the short-dashed curves
¥Tc/HZ(0), and the inverse of the normalized slopelafor  are for the renormalized BCS formulas developed from x#eé

the critical magnetic field and for the penetration depth. In-model and given in the text. For the frame with the gap ratios, the
cluded in the second column, also for comparison, are thapper gap is given by the solid curve and the lower gap is given by
same indices for Pb, the prototype single-band strong couhe long-dashed curve, the upper and lower short-dashed curves are
pler. We remind the reader that in many conventional superfor the upper and lower gaps, respectively, in RBCS. The first frame
conductors, strong coupling corrections are large and that thgives the effectivel ./ wy, for the Eliashberg spectrum based on the
data cannot be understood without introducing them, andefinition given in the text.

these are to be differentiated from those corrections due to

anisotropy. The third column gives the results of our two-columns were obtained for our Lorentzian spectral density
band calculations for Mg This is followed by a column model (Lor.) with A;;=1.3, A5,=0.5, A\1,=),,=0.2, and,ui*j
giving experimental values. It is clear that the agreement0. This was devised to have a strong coupling index
between theory and experiment is good. Note that we havé./w,,~0.15, which is slightly larger than Pb and well
not attempted to make a complete survey of all experimentsyithin the range of realistic values for electron-phonon su-
but have tried to present as many as reasonable, with ngerconductors. It is clear that strong coupling corrections are
judgement about the quality of the data or samples, whiclmow even more significant and cannot be ignored in a com-
might have improved over time. In addition, for the quanti- plete theory.

ties related to slopes, i.eg, h(0), andy, we have tried to More information on strong coupling effects as well as on
estimate these ourselves from the graphs in papers and $go-band anisotropy is given in Fig. 8, where we show the
this should be viewed as rough estimates as the values migh@ame BCS ratios as considered in Table I. In all eight frames,
change with a more rigorous analysis of the original datawe have used our model Lorentziari?jF(w) spectra. The
Also shown are the results when our renormalized BCS forsolid curves are results of full Eliashberg calculations as a
mulas of the preceding section are implemented using MgBfunction of \;,=\,4, with A4 fixed at 1.3 and\,, at 0.5. The
parameters? which allows us to define a measure of strongdashed curves are for comparison and are based on%ur
coupling corrections, entered in column 6 as percentages. formulas, i.e., give renormalized BCS results without use of
is seen that MgBis an intermediate coupling case. The nextthe strong coupling correction formulas. They, of course, can
column shows the results when the analytical expressions fdadiffer very significantly from one-band universal BCS values
strong coupling corrections to renormalized BCS, given inbecause of the two-band anisotropy. We see that these effects
the text, are applied. This improves the agreement with thean be large and that on comparison between the solid and
full Eliashberg results as compared to RBCS. Some discrepiashed curves, the strong coupling effects can also be sig-
ancies remain due in part to additional modifications intro-nificant. AS\{,=\,, is increased from zero, with;; andA,»
duced by the coupling of a strong coupling band with a weakemaining fixed, theT, increases and this leads to the in-
coupling one through the off-diagonalj’s. The next four crease inl./ wy, from about 0.15 ak,,=\,;=0 to over 0.2 at
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M>=MNp1=1. For all the indices considered here, we note that F A '='1' 'A' '='°'5' 'tL;(')' "3
their values aflf./w,,=0.2 are close to the values that they I T I
would have in a one-band casend the remaining aniso- Q C s
tropy in the);’s play only a minor role(Of course, this is a o= ®or . E
qualitative statement since it is well known that the shape of >~ C AN i ]
o?F(w) for fixed T,/ wy, can also affect somewhat the value A > E
of BCS ratiost ) This is expected since in this case the fluc- £ 4,; | T
tuation off the average of any;; is becoming smaller. For o 0.0 kl"l‘""nl_.j.' I I
RBCS, all ratios have returned to the one-band case at = 08F N \ ™ -
=\,;=1 except fory which remains 6% larger. We now com- E F AN ]

L7 . - ~< 0.6 - \ N -
ment on select indices separately. The normalized specific = £ \ N N ]
heat jump afT; in the A’ model is given by formulg32) § 04 | b VN s
with 7c=1. For Ajp=\,; small, x;*=1+0(\2,) and x,' = oz2F \\\ R =
=0+0(\{,). These conditions mean thatC/yT, rises 00k o
slightly as\;,=\,; increases, and eventually reaches 1.43. 0.01 | E
By contrast, the solid curve includes, in addition, strong cou- 0.00 -3
pling effects that increase the value of the jump ratio rather = £ 3
rapidly. For 2\, ,/kgT,, the lower gaps have the same value = -oo01F E
for N1,=N\»;=0 as it is determined only by,,. This is not so —0.02 F E
for the upper gaps. The dashed curve takes on its BCS value E . 3
of 3.53, but the solid curvéan Eliashberg calculatiorhas —008 b e,
strong coupling effects as described in Fig.(Bhis means 00 02 04 06 08 1.0
that A,/ A, is smaller for the solid curve as compared to the T/T,,

dashed one in the lower left-hand framAs \;,=\,; in-
creases, the long-dashed and lower short-dashed curves be-FIG. 9. Upper frame: Specific heat in the superconducting state
gin to deviate because the former starts to acquire stron@ormalized to the normal stat€g(T)/yT, vs T/Teo, Where Ty is
coupling corrections of its own through the off-diagonz. the T, for only the A;; channel, with all others zero. Shown are
While the solid curve also increases, the anisotropy betweeft/rves for various off-diagonal's with 1,=1 andi»,=0.5. Three
1 and 2 decreases. The short-dashed curves show differefit'ves are shown fax;,=\,,=0.0001(solid), 0.01 (short-dashed
behavior. The ratio &,/kgT, starts at 3.53, rises slightly to- and 0-1(ong-dashell Also shown are\;,=0.1 andhz,=0.01(i.e.,
wards 4, before tending towards 3.53 again. Now, the aniso?=19 _(gglt-dfashegan:)\12-0.%1 .3"3)‘2170'1 ('/'e" @=0.1 (/dOt'
tropy betweem\, andA; decreases mainly because itself ted. Middle frame: The superflui en,s@‘(o) )‘.(T).] VS T/ Teo
fises towards 3.53. The behavior qﬂ_leg(o) (dashed for the same parameters. Lower frame: The dewa}tl_on funddicin

c ¢ plotted vsT/ T, The dot-dashed curve has been divided by 10 from
curve) can be understood from E(8) . Wh”e A/ T, as W its original value in order to display it on the same scale as the other
have seen, does change somewhat Wif¥A,;, a more im- oo
portant change is the? factor in the denominator of Eq.
(38), which rapidly decreases this ratio towards its BCS
value of 0.168 asl increases towards 1. The behavior of
h.(0) given by Eq.(41) is more complex. The numerator in
the square root goes towards &+ asu®>— 1, more rapidly
than the denominator, which involves thé. Here, the nu-
merator and denominator compete and consequdmntd)
first increases before showing a slow decrease to its BC orentzian model for the spectral densitieﬁF(w) with
value. Finally,y in formula (49) decreases with increasing N

L . A13=1 and\,,=0.5 fixed for all curves. The solid curves are
off-diagonal\ because of the square bracket in the denom|for A1p=Ap;=0.0001, short-dashed for 0.01, and long-dashed

nator. It is clear from these comparisons between EIiashber]%r 0.1. In the top two frames, the two separate transitions are

and RB.CS calculations that, in gen.e_ral, both s_trong CO.Up“n%asin identified in the curves with solid line type. Because of
and anisotropy effects play a significant role in the dimen-

sionless ratios, and both need to be accounted for. the very small value oky,=),, the composite curve is ob-
viously the summation of two subsystems, which are almost

completely decoupled. However, already fgb=X,,;=0.01,
V. THE LIMIT OF NEARLY SEPARATE BANDS which remains very small as compared with the valua gf
and even,,, the second transitioshort-dashed curyee-
When\1,=A\,1=0, there exist two transition temperatures comes significantly smeared. The two subsystems have un-
T.1 and T, associated withh1; and \,,, separately, and for dergone considerable integration. In particular, the second
several properties, but not all, the superconducting state ispecific heat jump is rounded, becoming more kneelike.
the straight sum of the two bands as they would be in isolaAlso, the sharp edge or kink in the solid curve for the super-
tion. Here, we wish to study how the integration of the twofluid density is gone in the short-dashed curve. Thus, to ob-
bands proceeds as;, and/or\,; is switched on. Our first serve clearly two distinct systems, the off-diagonal need

results related to this issue are shown in Fig. 9, which has
three frames. The top frame deals with the normalized spe-
cific heatCg(T)/yT as a function of temperature; the middle,
the normalized inverse square of the penetration depth
[NL(0)/N\ (T)]?% and the bottom gives the critical field devia-
jon functionD(t) of Eqg.(35) . In all cases, we have used our
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to be very small. Onck;,=\,,=0.1(long-dashed curyethe L L L L L B
integration of the two subsystems is very considerable if not i ]
complete. This does not mean, however, that superconduct- 0.8 |- 7
ing properties become identical to those for an equivalent i ]
one-band system. As long as thgF(w) are not all the same, 0.8 - ]
there will be anisotropy and this will change properties as i ]
compared with isotropic Eliashberg one-band results. Note 0.4 .
that in the solid Eliashberg curve of Fig. 6, a point of inflec- 'l i 1
tion remains, as commented on by Golubetvall’ In the = oz .
case of the deviation functiofiower frame, the solid curve = [ N - 3
shows a sharp cusp that is related to the lower transition < 0.0 [ e e
temperature of the decoupled bands but not quite at that > [ ]
value as this function is composed from subtracting 1 S sk ]
—(T/T,)? from H,(T)/H.(0). However, two distinct pieces of = [ ]
the curve exist and notably nedy the curve has a very 0.6 L 3
different curvature from what is normally encountered. In [ ]
particular, the temperature dependence of the solid curve is 0.4 3
concave down at high temperature in contrast to the usual [ ]
case of concave up. As the bands are coupled through larger 02k N
and larger interband'’s, the curve moves to a shape more [ .
consistent with one-band behavior. However, the curve re- PN PR R VI B I NN N\
mains negative due to the anisotropy, while usually strong 0.0 0.2 0.4 0.6 0.8 1.0
coupling would drive the curve positive with an overall T/T,,

concave-down curvatufewhich is illustrated by the dotted
curve for which the first band dominates, as we describe FIG. 10. Upper frame: Individual contributions from each band
below. to the superfluid density\(0)/\; »(T)]? as a function of /T,

The other curves in these figures, dot-dashed and dotteﬁ’,hereTco is the T, for the )\1_1 channel_ alone, With all others zero.
are for =10 with A;,=0.1 and\,;=0.01, anda=0.1 with Shown are curves for various off-dlagomah with Nq1=1, \p»
A,=0.01 and\,;=0.1, respectively. For=10, the second =05 @ndX;,=0.0001. The three pairs of curves are foj
band with the smaller of the two diagonal values\dias 10 ~ =09-0001(solid), 0.01 (short-dashed and 0.1(long-dashel The
times the density of states as compared to band 1 with th urves, Whlgh go to zero at a lower temperature, correspond to
larger \ value. This large disparity in density of states can MO)/AT)I%, while those that go tfo zero close fo 1 are for

. . . N(0)/\y(T)]%. Lower frame: Now the\,, is held fixed at 0.0001
have drastic effects on superconducting properties, and fu[ijOI the Ay, Is varied. The three pairs of curves are fig,

ther modify both the ob§erved temperature ‘?"?pe”def‘ce a.”z%.OOOl(solid), 0.1 (short-dashex] and 0.2(long-dashed Here,
the value of the BCS ratios. The second specific heat jump ify . 240 of the density of states has been taken to be 1 for

the dash-dot_ted curve, although smeared, is quite large Ednvenience of illustrating the curves on the same scale.
compared with that in the solid or even the dashed curve.

Also, it is to be noted that beyond the temperature of thehe dotted curve for which values af, and \,, are inter-
lower maximum inCg(T)/ 4T, the curve shows only a very changed as compared to the dash-dotted cufyés hardly
modest increase, reflecting the low value of the electroni@ffected becausa;, is small and it is this parameter that
density of states in band 1, and the ratio of the jumfap  affectsT, more. The two parametehs,; and\,; do not play

the normal state is now quite reduced. The low density ofn€ Same role iff or for that matter in the integration pro-
states in band 1 is also reflected in the low value of the?€SS Of the two bands. This is made clear in Fig. 10, which
penetration depth curv@niddle frame, dash-dotted cupvia deals only W'th. the penetration depth..What IS ShOW’.‘ are the
the temperature region aboVe,. Finally, we note that while separate contributions to the superfluid density coming from

we have chosen a large valuewfor illustration here, MgB ;P;n:évc))\ bi\rsdgocl)rll glrllc;:\asﬁ:‘%:ré dar:tcji)gzélzez%rsfhg]t g;se tiosp
— i 1M1=V, 21 . 21
gicszgntuléfg t\évglfehalltgye;hguaeb% vshsrgggir&tsgavr\llguld tend toincreased, the superfluid density associated with the second
. i . . band remains significant even above the second transition
A very different behavior is obtained whewn=0.1, for

hich he ol i density of in th db temperatureT,, which is well defined in the solid curve.
which case the electronic density of states in the second baffis is the opposite behavior of what is seen in the lower

|s_reduced by a factor of 10 as qompared to the first band._hﬂame whereh,, remains at 0.0001 ans,, is increased. In

this case, the dotted curve applies and looks much more likghis caseT, changes significantly but the superfluid density

a standard one-band case with very significant strong cougssociated with the second band remains negligible above
pling effectsAC(T,)/yT.=2.4. The influence of band 2 has T_,. Note finally that the relative size of the superfluid den-
been greatly reduced. Finally, we note that the introductiorsity in each band will vary withe andug;, neither of which

of the off-diagonal elements can charifje In particular, the  have been properly accounted for in this figure, as we wished
dot-dashed curve ends at a considerably reduced value & illustrate solely the effect ok,, andA,; on the issue of
critical temperature as compared with the other curves. Thigtegration of the bands and modification Tf

is consistent with Fig. 1, where we saw that increasing The changes, with the off-diagonal elemeRis and A5,

for small values of\,; decreased.. On the other hand, for in the temperature dependence of the upper and lower gaps
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FIG. 11. Upper frame: Upper and lower gap ratio&; 3/kgTco, c0

vs T/ T, WhereTy is the T, for the A1, channel alone, with all’s
zero. Shown are curves for various off-diagonal with A1;=1 and
N2»>=0.5. Three pairs of curves are shown fo[,=\,;=0.0001

(solid), 0.01 (short-dashed and 0.1(long-dashefd Lower frame:  ~ - .
Same as for upper frame except now are shawg=0.1 and\,; B%SOT SSOV\;]n agachrvesJor%/arqu%—(;ﬂ gquzl tohO.(_Xsolqu),
=0.01 (i.e., =10 (dot-dashefland A1,=0.01 andX,;=0.1 (i.e., 01(s ort-_ ashexl 0.2 (long-dashey an X (.)t' as eplin units
2=0.1) (dotted. of Te. Notice that the value of the jump &t first dips and then

rises with impurity scattering. Middle frameA2 5/ kgTeo Vs T/ Teo.
are closely correlated with those just described for the superthe upper three curves correspond th;XgTco and the lower
fluid density. This is documented in Fig. 11, which has twothree to A,/kgTeo, With the curves labeled the same way as in the
frames. In all case&;;=1 and\,,=0.5. In the top frame, upper frame. Only the first three impurity cases are shown for clar-
M 12=\,; equal to 0.0001solid), 0.01(short-dashegd and 0.1  ity. The other progresses in the same manner withTtheeducing
(long-dashell The various pairs of curves apply to the upperfurther and the gaps moving closer to a common value. Bottom
and lower gap ratios. Note the long tails in the short-dasheétame: The deviation functioD(t) vs T/T¢, again with the curves
curve (lower gap, still small but extending td=T,. For the labeled the same way as in the top frame.
long-dashed curve, the lower and upper gaps now have very
similar temperature dependences, but these are not yet idemagnetic field. What is varied in the various curves is the
tical to BCS. We have already seen in Fig. 7, for the specifiénterband impurity scattering rat§,=t;, (taken to be equal
case of MgB, that the lower gap falls below BCS at tem- in value, i.e.,a=1). The solid curve, which clearly shows
peratures abovd/T.=0.7, which is expected when it is two transitions, is fotj,=0. It is to be noted first, that in all
viewed as an evolution out of two separate gaps, withTwo cases, off-diagonal impurity scattering changes the value of
values, due to increasing the off-diagonal coupling. In thethe critical temperature, reducing it to less than 0.8 of its
lower frame, we show results far=10 (dot-dasheflanda  pure value in the case of the dot-dashed curve. This decrease
=0.1 (dotted. Again, as expected, the two dash-dottedin T, does not translate, however, into a steady decrease in
curves show distinct temperature dependences, while for thge specific heat jump &af.. We see that while the jump
dotted curves they are very similar. initially decreases with increasing,=t;,; eventually it in-

A very similar story emerges when interband impurity creases and is largest for the dot-dashed curve. Both Wa-
scattering is considered. Results are given in Figs. 12 and 1&nabe and Kit® and Mishonovet al.3! using only an un-
Figure 12 has three frames. Hedg =1, A»,=0.5, and\;,  renormalized BCS model, find an increase with impurity
=\2;=0.0001, with our Lorentzian electron-phonon spectralscattering and no initial decrease as is found in the full
fUﬂCtiOﬂSaﬁF(w) described previously. The top frame deals Eliashberg calculation. This is a clear illustration that, at
with the temperature dependence of the normalized supeminimum, a renormalized BCS formula needs to be used to
conducting state electronic specific he@g(T)/yT. The  capture the qualitative trend, and full Eliashberg theory is
middle frame gives the gap ratios Af andA, and thus the required if one wishes to be quantitative. It is also clear that
curves come in pairs, with; > A,. The bottom frame shows as interband impurity scattering increases, the jump in the
the deviation functiorD(t) for the thermodynamic critical specific heat at the second transition, seen in the solid curve,

FIG. 12. Top frame: Specific heat in the superconducting state
normalized to the normal stat€g(T)/yT, vs T/Ty, WhereTy is
the T, for the pure case. Herey;1=1, \,,=0.5, andA;5=\y;
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temperaturdin this case the cusp feature in the solid cyrve
and once the two bands are fairly well integrated, then like
paramagnetic impurities, the effect here is to keep the mini-
mum at the same temperature but change its value. A key
difference though is that, in the case of paramagnetic impu-
rities in one-band superconductors, the extremum in the
curve moves from positiveand strong couplingto negative
(and weak couplingbecause the gap is being reduced to-
wards zero. Here, with the two bands, the impurities do not
reduceT,, and hence the gap, to zero, but rather to a finite

value related to the washing out of the anisotropy between
the two bands, and hence the extremum in this case will
move from negativéwhere it is positioned due to large an-
0.0 0.5 0.0 0.5 1.0 isotropy) to smaller values, reflecting this.
T/Teo Next we turn to the results given in Fig. 13, which shows
the temperature dependence of the superfluid density for
FIG. 13. Effect of impurity scattering on the superfluid density yarious values of impurity parameters. Agaiy;=1, o
[\g(0)/N\(T)]? plotted vsT/ T, whereTg, andxp(O) are for the PUre =05 and\;,=A,;=0.0001 with the Lorentzian spectra.
case. Each frame shows the effect of the different type of impurityy/hat js jllustrated in these four frames is how very different
scattering, keeping all other impurity terms equal to zero. The specy, o offect oft!, th, th, andt}, are. The solid curve is for
tsrgﬁg fﬂa”i'stzﬂsc:srzéli;1(’):‘5128‘%5@ 222;‘%‘0)‘2|;'tg£801'e:|2§ reference and is the pure case. Once again, for the case of
framett./T=0 2(short-dashe)d§nd 2. 0(long-dash PPET e varyingt}, andt;,, we have violated the constraint that their
111/ Teo=0. . g-dashed In the up . . . . .
per right frame],/ T,=0.2 (short-dashedand 0.4(long-dashel ratio must be fixed by the ratio of the density of states. This
In the lower left framet,/To=0.02 (short-dashexand 0.1(long- we can do theoret|cal!y to decouple .and, therefore, |Ilqstrate
dashedl In the lower right framet},/ T, =0.2 (short-dashexand the effects of these different scattering channels, but in real
2.0 (long-dashe systems, they would be constrained and the net result would
be a combination of the effects from both channels. The top
is rapidly washed out and little remains of this anomaly inleft frame shows the effect on the superfluid density of in-
the dot-dashed curve. Even the long-dashed curve shoveasing the impurity scattering in the first bafidtraband
little structure in this region, in analogy to what we found to Scattering. Such impurities reduce the superfluid density in
hold for the case of increasing the off-diagonal electronand 1 while leaving band 2 unaltered. In the lower right-
phonon elements. Note, however, there remains a point dtand frame itis the superfluid density in the second band that
inflection that has moved to higher temperature. Such a shité réduced, leaving the first unchangdd.is unaffected by
of the inflection point can also be brought about by increasintraband impurity scattering in isotropgwave supercon-
ing the off-diagonal’s as seen in Fig. 9. ductors due to Anderson’s theorem. The top right-hand frame
The temperature dependence of the gap ratiogldle ~ Shows that increasing, reduces the critical temperature as
frame of Fig. 12 also mirror what we found in Fig. 11. The Well as reduces the superfluid density in band one without,
dashed curves exhibit quite distinct temperature dependencB§wever, having much effect on the second band. The kink
betweenA; and A,, while this is no longer the case for the associated with the rise of the second band is hardly changed
pair of long-dashed curves. Note that, as compared to th@Sti, iS not the integrating variable, rather it i, which
solid curve, the anisotropy in the gaps for the long-dashedtegrates the bands rapidly as seen in the lower left-hand
curve has been reduced considerably. The upper gap has deame. However, in this case, the critical temperature is
creased and the lower increased even more. The washing di@rdly changed and there is little change to the curve above
of the gap anisotropy by off-diagonal impurity scattering is T/ Teo=0.7.
expected and has been studied theoretigady and
experimentally* For carbon_ doping, the gaps are seen t0 \, THE LIMIT OF PURE OFF-DIAGONAL COUPLING
merge at about 13% for whicF. has been reduced to about
20 K with the large gap reducing to its BCS value and the While the two-band nature in MgB driven by the
smaller gap moving upwards only very little in contrast to electron-phonon interaction, is well established, there have
our model calculations for which the lower gap changes relabeen many reports of possible two-band superconductivity in
tively more and isotropy is reached at about a 30% reductioother systems, including the conventioral5 compound
in T.. Of course, as one dopes, the electronic density of statdsb;Sn>¢ With T.=18 K and a main gap®,~ 4.9T., there
and the electron-phonon parameters also ch&hgagd one is specific heat evidence for a second gap afQ.®ther
needs to include these in addition to any interband scatteringystems are Nb$&” Y ,C; and LgC;,°8 and possibly a sec-
Finally, the effect of interband ordinary impurity scatter- ond nonsuperconducting band in CeGgiiIn the triplet
ing on the deviation function, shows a behavior similar tospin state superconductor,BuQ,,® a small gap is induced
that found for paramagnetic impurities in one-bandin the second band. As two-band superconductivity is likely
superconductor® Initially, as in the other properties, the to be a widespread phenomenon, not confined to electron-
impurities smear the structure related to the second transitiophonon systems, it seems appropriate to investigate further
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an extended range of parameter space forxfis and in l
9 P p Milﬂ 10.0 N Ay;=0.A,=0

particular the possibility that the off-diagonal elements are
the dominant mechanism for superconductivity.

In the limit of pure off-diagonal coupling, wherg;;
=N5,=0, Eq.(12) for the couplingA, which determines,
from Eq.(11) , simplifies to

1

A= ———, (5
VA12A21
and the ratio of the gap @, given in Eq.(21) becomes
2A
L =354 exp A-— |. (52)
KeTe Ao1

The ratioflzllez a" can be taker=1 and Eq.(20) for the
gap anisotropyu=A,/A; written as

*

/

d-1="24lnu. (53)
A

0.0 0.5 1.0 1.5 2.0

This equation gives in terms of " and A. Since by its
definition 0<u=1, u In u is negative so a condition on ob-

taining a solution of Eq(53) is that FIG. 14. Upper frame: Gap ratios for the upg2A,/kgT.) and

lower gap(2A,/kgT,) as a function of\,, for varying A»1: 0.01
1 (solid), 0.1 (dotted, and 0.3(dashegl Here,A11=0, A\5,=0. This is
—. (54 for comparison with Suhét al. (Ref. 9. Lower frame: Gap aniso-
tropy, u=A,/ A4, vs \q, for the same parameters and curve labels as
the upper frame. Note that,= \,; is plotted. WithA1,<\,4, the
roles are simply reversed with<22 and A, would become the
large gap, etc.

aA’-1<0 or o<

c

For a trial solution ofu=0.1, this would give ¥ «" < 100.
For a"=60, as an exampleA=4.46 and 2,/kgT.=9.7,
which is very large. This occurs fof./w,~ 1072, using
IN(1.13w,,/T)=A, which is in the weak coupling regime.
However, to achieve an upper gap ratio value greater than 11 .

or so, will correspond an unrealistically small valuetgf w, AC _ Aa (57)
(of order 101°, for example. In Fig. 14, we show results in YT T l@+a)?|

the upper frame for &; ,/kgT, versus\;, for various A,
values. In the lower frame, we showversusii,. The dif- and

ference between Fig. 14 and Fig. 3 s_hows.that large values of ALl [723) . [1ral?

2A;/kgT, are more naturally obtained in the pure off- h(O)=——\/ %A +a)\/ ——;, (58)
diagonal regime and are associated as well with small values Tem V32 ata

of u and the weak coupling regime. This latter feature im-gnd

plies that there will be no further strong coupling corrections .
to an already large gap ratio. We have also calculated the yi(0 _1(1+ep)(l+a)
thermodynamics and superfluid density in this regime, for a V(T[T 4 o +pa
range of parameters, but have found these properties to show ) ) .
quite ordinary behavior and have discovered no new physicdvhere B=ve,(1+X15)/vg (1 +)h,0). The ratio for the zero-

For the sake of brevity, we present none of these results bigmperature critical field of Eq38) does not change its form
instead note that in this limit thg's are and so is not repeated here. These ratios behave, qualita-

tively, no differently from what we found in Sec. Ill. A dif-

: (59

1 :21 1 1 ference worth noting is the following. In linear order, the
X1= > 1+—=|=<1+—|, (55) effect of interband impurity scattering of, takes the form
A2 @ (16)<19):
— 2
— AT e A
_l )\12 _1 * _C:—_pizlll __21] y (60)
X2—2[1+f21] _2(1+a)’ (56) Teo 8 A2

_ which is always negative and larger for paramagnetic than
with @ =\1,/ Ny, and hence, the various dimensionless rafor normal impurities. It can also be very large fof,> 1.
tios are This is another distinction between pure off-diagonal cou-
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pling and MgB,, for example. In obtaining Eq60), we have  grated and the second transition smears. We have found that

used the fact thakyo/ Nyy=pyal pay ANA N1/ Aoy > 1. the two parameters,;, and \,;, have very different effects
on the smearing of the second transition and Tan A,
VII. CONCLUSIONS largely modifiesT,, reducing it, whereak,, alters the lower-

temperature region around the second transition. Only very

We have calculated the thermodynamics, gap anisotropgmall values of\,;, as compared with\;; and \,,, are
and penetration depth for a two-band Eliashberg supercomeeded to cause large changes in the region ardgndt
ductor. For the parameters appropriate to MgBhich are  was found that a small amount of interband impurity scatter-
obtained from first-principle band structure calculations ofing can also significantly smear the second transition, and so
the electron-phonon spectral functions, we find good agreereduce the distinction between the two bands. However, even
ment with the existing experimental data. We reduce thavhen the two bands are well integrated and a sharp second
Eliashberg equations to a renormalized BCS form by applitransition is no longer easily discernible, this does not imply
cation of the two-square-well approximation. Comparison ofthat the superconducting properties become those of a one-
these results with those from the full Eliashberg equationsand superconductor. Anisotropy remains and this affects
allows us to determine strong coupling corrections, which weproperties.
find to be significant in MgB When the parameters for the  In view of the possible widespread occurrence of two-
electron-phonon interaction are moved away from those spesand superconductivity, even for systems with exotic mecha-
cific to MgB,, the strong coupling corrections can becomenisms not necessarily due to the electron-phonon interaction,
much larger, and superconducting properties reflect this factye deemed it of interest to consider the case of zero intra-
as well as the change in anisotropy between the band&and coupling);;=A»=0, with superconductivity due only
Within the A%’ approximation, we derive simple analytic ex- to the interbanc;, and\,;, which need not have the same
pressions for the various dimensionless BCS ratios thatalue. When these are very different, the resulting gaps are
would be universal in the one-band case, but are not in thequite different from each other and the ratio®f to T. can
two-band one. They depend on the anisotropy and particusecome large particularly in the weak coupling limit. This is
larly on the ratio of the electronic density of states in the twoa distinguishing feature of pure off-diagonal coupling. An-
bands. The anisotropy in the ratio of the two gaps at zermther distinguishing feature is the possibility of a rapid re-
temperature is investigated and is found to increase,as  duction of T, towards zero by interband impurity scattering,
reduced and made repulsive, in which case the existence ak compared with the case for which the diagonal elements
superconductivity in the first band, and the off-diagonal couplay the leading role.
pling to it, induces a gap in a band, which would, on its own,
not be superconducting.

We have paid particular attention to the limit of nearly
decoupled bands, i.e., small interband coupling, with the su- E.J.N. acknowledges funding from NSERC, the Govern-
perconductivity originating fromk;; and\,, in the first and ment of Ontario, and the University of Guelph. J.P.C. ac-
second band, respectively. Whim,, A»,;— 0, there are two knowledges support from NSERC and the CIAR. In addi-
transitions afl.; andT,, and two specific heat jumps. As the tion, we thank E. Schachinger and J. Wei for helpful
interband coupling is turned on, the two bands become intediscussions.
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