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Eliashberg theory is used to investigate the range of thermodynamic properties possible within a two-band
model fors-wave superconductivity and to identify signatures of its two-band nature. We emphasize dimen-
sionless BCS ratiosfthose for the energy gaps, the specific heat jump, and the negative of its slope nearTc, the
thermodynamic critical fieldHcs0d, and the normalized slopes of the critical field and the penetration depth
nearTcg, which are no longer universal even in weak coupling. We also give results for temperature-dependent
quantities, such as the penetration depth and the energy gap. Results are presented both for microscopic
parameters appropriate to MgB2 and for variations away from these. Strong coupling corrections are identified
and found to be significant. Analytic formulas are provided that show the role played by the anisotropy in
coupling in some special limits. Particular emphasis is placed on small interband coupling and on the opposite
limit of no diagonal coupling. The effect of impurity scattering is considered, particularly for the interband
case.
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I. INTRODUCTION

The properties of the superconducting state of conven-
tional, single-band, electron-phonon superconductors differ
markedly from BCS predictions.1 However, they are well-
described within isotropic Eliashberg theory with a single
electron-phonon spectral densitya2Fsvd for the average in-
teraction over the Fermi surface. This function is accurately
known from inversion of tunneling data.2 In many cases,
a2Fsvd has also been calculated from first-principle elec-
tronic band structure calculations extended to include the
electron-phonon interaction, sometimes with the phonons
taken directly from inelastic neutron scattering measure-
ments. In many cases, such results agree very well with the
corresponding tunneling data. While it is to be noted that, in
principle, the electron-phonon spectral density for the vari-
ous electrons on the Fermi surface is anisotropic leading to
energy gap anisotropy,3–6 this feature often does not play a
prominent role because, in many instances, the electronic
mean free path is much smaller than the coherence length. In
such circumstances, a Fermi surface average of the electron-
phonon spectral density can be used. Nevertheless, correc-
tions due to gap anisotropy have been identified and studied
in the past,7 often, but not always, in a separable anisotropic
model.8

The history of two-band superconductivity9–12 and of
MgB2 fwith Tc.39 K sRef. 13dg in particular14–22 is some-
what different. To our knowledge, as yet, there exists no
inversion23 of tunneling data from which the electron-
phonon interaction is determined. In fact, it has been noted24

that this may well never be possible in MgB2 because of its
two-band nature, which requires a microscopic description in
terms of four separate electron-phonon spectral functions
ai j

2Fsvd, wherei =s ,p sor 1,2d, with the two-dimensionals
band having the largest electron-phonon coupling. The three-

dimensionalp band on its own would have a smaller value
of Tc, the critical temperature, although it has a higher value
of the electron density of states at the Fermi energy.

In the absence of tunneling data giving reliable informa-
tion on the fundamental kernels entering the two-band
Eliashberg equations, first-principle band structure calcula-
tions of ai j

2Fsvd in MgB2 have been used to compute super-
conducting propertiessfor example, Refs. 16–19d. To do this,
it is also necessary to know the Coulomb pseudopotential
repulsionsmi j

* , which are different for various indicessi , jd,
but these have also been calculated. Good agreement with
experiment is obtained in this way for the properties consid-
ered so far, more explicitly, the specific heat,16,25the penetra-
tion depth,17,26and the anisotropy in the two gaps, as well as
their temperature dependence. For the penetration depth, im-
purity scattering can be important, and in- and out-of-plane
orientations of the magnetic field are different.17

In this paper, we use the band theory information on
ai j

2Fsvd andmi j
* in MgB2 to calculate the critical temperature,

the energy gap with its anisotropy and temperature depen-
dence, and other thermodynamic properties, as well as the
penetration depth, giving particular emphasis to strong cou-
pling corrections. Further to our discussion of MgB2, we
provide a full listing of calculated dimensionless BCS ratios,
now modified by both the anisotropy and the strong coupling
effects in MgB2, and make comparison with experiment. We
also consider effects of variations in microscopic parameters
away from those of MgB2, as well as impurity scattering—
intraband and interband. To this end, we reduce the two-band
Eliashberg equations, which fully account for retardation, in
the two-square-well approximationsalso called theluu

modeld. This leads to simplerenormalizedBCS sRBCSd
forms, which, when compared to our full numerical Eliash-
berg results, allow us to identify the strong coupling correc-
tions that we find to be significant even for MgB2.
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When considering variations in microscopic parameters
away from those of MgB2, we place particular emphasis on
two limiting cases: the limit of small interband coupling and
the opposite case, when the intraband coupling is zero and
the superconductivity is due to the interband coupling alone,
a case discussed in the early work of Shulet al.9 We also
consider the special case when the intraband coupling in the
second band is repulsive. The limit of small interband cou-
pling is particularly interesting because it allows us to under-
stand how the off-diagonal terms lead to the integration of
otherwise two completely independent and noncommunicat-
ing superconducting bands with separate transition tempera-
turesTci. In this regard, we find thata12

2 Fsvd and a21
2 Fsvd

behave very differently, with 21 the most effective variable
at integrating the two systems and 12 the most effective at
changing the critical temperature. The presence of the off-
diagonal interactions rapidly smear out the features of the
second transition atTc2, i.e., the one with the smaller of the
two Tci values. More specifically, surprisingly small values
of the mass renormalization parameterl21, as compared with
l11 andl22, have a large effect on the region ofTc2. We also
find that relatively modest values of the interband impurity
scattering rates lead to the significant integration of the two
bands. Even when the bands are well-integrated, in the sense
that little trace of a second sharp transition atTc2 remains,
there still exist important modifications of the usual one-
band BCS results because of the two distinct bands. As an
example, the BCS dimensionless universal ratios now de-
pend on the ratio of the electronic density of states at the
Fermi energy of the two bands. Simple analytic expressions
for these ratios are derived, which provide insight into the
physics underlying two-band superconductivity and guidance
as to how these results are to be interpreted.

In Sec. II, we give the two-band Eliashberg equations and
provide their reduction in theluu approximation, which is
needed to identify strong coupling corrections to renormal-
ized two-band BCSsRBCSd. Section III deals with the de-
pendence ofTc on microscopic parameters, i.e., on the
electron-phonon interaction as well as on impurities. Intra-
and interband quantities are both of interest. We consider
modifications of the dimensionless BCS ratios in theluu

model, as well as the zero-temperature value of the two gaps
and their anisotropy. MgB2 is considered in Sec. IV. The
issue of strong coupling corrections in MgB2, and more gen-
erally in other related systems, is discussed. The limit of
small interband electron-phonon coupling is considered in
Sec. V. We study, in particular, how the two otherwise sepa-
rate bands become integrated when this interaction is
switched on. The effect of interband impurity scattering is
also considered in the same context as it exhibits analogous
behavior to the case of the off-diagonal electron-phonon cou-
pling. In Sec. VI, we deal briefly with the less realistic case
of zero intraband electron-phonon coupling, where the super-
conductivity is due only to the interband piece. Conclusions
are found in Sec. VII.

Finally, in light of the recent developments in other areas
of superconductivity and correlated electrons, we wish to
emphasize that our use of the term “gap anisotropy” here is
in reference to the difference in the magnitudes of the two
gaps, each of which are isotropics wave in this work, and

hence does not refer to a momentum-dependent order param-
eter. Likewise, “strong coupling” refers to the traditional
meaning of strong electron-phonon coupling and is not an
allusion to strong interband coupling.

II. THEORY

The isotropicswithin a bandd Eliashberg equations gener-
alized to two bandssi =1,2d are written on the imaginary
axis as12,1,3,4

DisivndZisivnd = pTo
m

o
j

fli jsivm − ivnd

− mi j
* svcdusvc − uvmudg

D jsivmd
Îvm

2 + D j
2sivmd

+ po
j

stij
+ − tij

−d
D jsivnd

Îvn
2 + D j

2sivnd
s1d

and

Zisivnd = 1 +
pT

vn
o

m
o

j

li jsivm − ivnd
vm

Îvm
2 + D j

2sivmd

+ po
j

stij
+ + tij

−d
vn

Îvn
2 + D j

2sivnd
, s2d

where tij
+ =1/s2pti j

+d and tij
− =1/s2pti j

−d are the ordinary and
paramagnetic impurity scattering rates, respectively, and

li jsivm − ivnd ; 2E
0

` Va2FijsVd
V2 + svn − vmd2dV. s3d

Equations1d gives the gapDisivnd and Eq.s2d the renormal-
ization Zisivnd at thenth Matsubara frequencyivn, with vn

=s2n−1dpT. Here, T is temperature andn=0, ±1, ±2, . . ..
The electron-phonon kernels areai j

2FsVd as a function of
phonon energyV and the Coulomb repulsions aremi j

* , with a
high energy cutoffvc needed for convergence and usually
taken to be about six to ten times the maximum phonon
frequency. For the specific case of MgB2, these may be
found in Ref. 19. The diagonal intraband elements of the
electron-phonon interaction are largest, in the case of MgB2,
while the off-diagonal elements describing interband scatter-
ing are smaller, but still substantial.

In what is called the two-square-well approximation or
luu model,11,27,28we use in Eq.s1d:

li jsivm − ivnd = Hli j for bothuvnu,uvmu , vo

0 otherwise,
s4d

where

li jsm= nd = li js0d ; li j = 2E
0

` a2FijsVd
V

dV. s5d

Neglecting the gap in the denominator on the right-hand side
of Eq. s2d for Z, we further approximatessee Ref. 28 for
detailsd
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Zisivnd = 1 +o
j

li j . s6d

This result may now be used in Eq.s1d to obtain

Disivnd = HDisTd, uvnu , vo

0, uvnu . vo
s7d

where

DisTd =
pT

Zi
o

m,uvmu,vo

o
j

D jsTd
Îvm

2 + D j
2
fli j − mi j

* g, s8d

where vo represents either the Debye frequency or some
other characteristic energy scale representing the phonons in
the system, at most the maximum phonon energy. Detailed
justification of using a single cutoff is found in Ref. 11.
These results are used to derive various quantities within the
luu model, which we will call renormalized BCS or RBCS.
We also solve the full Eliashberg equations for typical strong
coupling parameters and for the case of MgB2, and in order
to connect to the language most appropriate for this purpose,
the measure of the characteristic boson frequency,vln, is
defined to be

vln = expF 2

l11
E

0

`

lnsvd
a2F11svd

v
dvG . s9d

This is reasonable for our case here as thevln calculated for
the differentai j

2Fsvd spectra of MgB2 are almost the same
and other spectra used in this paper will have the same fre-
quency distribution in each channel only scaled in magni-
tude. In general, this definition should be reasonably robust
as, unlessl22, l12, and l21 are large, the first channell11
should dominate the strong coupling effects.

III. BCS RATIOS: THE luu MODEL AND STRONG
COUPLING

A. Critical temperature Tc

The critical temperature that results from the renormal-
ized BCS equations8d of the two-square-well approximation
takes the form

A = lnS1.13"vo

kBTc
D s10d

or

kBTc = 1.13"voe
−A, s11d

where

A =
l̄11 + l̄22 − Îsl̄11 − l̄22d2 + 4l̄12l̄21

2sl̄11l̄22 − l̄12l̄21d
s12d

and

l̄11 =
l11 − m11

*

1 + l11 + l12
, l̄12 =

l12 − m12
*

1 + l11 + l12
,

l̄22 =
l22 − m22

*

1 + l22 + l21
, l̄21 =

l21 − m21
*

1 + l22 + l21
. s13d

With no impurities and for one bandsl12=l21=l22=0d

kBTc
00 = 1.13voe

−1/l̄11. s14d

Here we will be interested only in the ratio ofTc f Eq. s11dg
to Tc

00 fEq. s14dg and so the cutoffvo cancels, and the issue
of the best choice for this quantity does not enterssee Allen
and Dynes27 d. Results forTc/Tc

00 based on Eqs.s11d–s14d as
a function ofl21 for various values ofl12 are shown in Fig.
1, where they are compared with results of complete numeri-
cal evaluation of the two-band Eliashberg equationss1d and
s2d. A Lorentzian model for the spectral densitiesai j

2Fsvd is
used with zero Coulomb pseudopotentialmi j

* for simplicity.
Specifically, we use a truncated Lorentzian spectral density,
which is defined in Ref. 29, centered around 50 meV with
width 5 meV, truncated by 50 meV to either side of the cen-
tral point. Thevln for this spectrum is 44.6 meV. This spec-
tral density is scaled in each of the four channels to give
l11=1, l22=0.5, and the range of values ofl12 and l21 as
required for the figure. The curves, which are labeled in the
figure caption, are for the renormalized BCS calculations and
the corresponding Eliashberg calculations are presented as
points. We note that for small values ofl21 agreement be-
tween theluu results and full Eliashberg calculation is excel-
lent. The agreement is somewhat less good aroundl21=0.5
but still acceptable. An interesting point to note about this
figure is that the effect onTc of l21 andl12 are quite differ-
ent. Asl21 increases for fixedl12, Tc increases. On the other
hand, for small but fixedl21, increasingl12 decreasesTc,
while the opposite behavior is found to hold for values ofl21
larger than approximately 0.16. This behavior is different
from that expected in nonrenormalized BCS theory, where it
is known that increasing the off-diagonal coupling from zero
to some finite value always increasesTc whatever its sign.

FIG. 1. Ratio ofTc to the pure, one-bandTc
00 as a function ofl21

for varying l12: 0.6 slong-dashedd, 0.4 sshort-dashedd, 0.2 sdottedd,
and 0.1ssolidd. Here,l11=1 andl22=0.5. Strong coupling Eliash-
berg calculations are given for comparison for the same parameters
and are shown as the points withl12: 0.6 ssolid circlesd, 0.4 ssolid
trianglesd, 0.2 ssolid squaresd, and 0.1sopen circlesd.
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Expanding Eq.s12d under the assumption that the off-
diagonal elements are small as compared with the diagonal

onessl̄12,l̄21!l̄11− l̄22,l̄22d gives

A .
1

l̄11

F1 −
l̄12l̄21

l̄22
H 1

l̄11 − l̄22

−
1

l̄11
JG . s15d

In BCS theory, thel̄i j would not be renormalized as in Eq.
s13d. Since the term in curly brackets is positive,A decreases

with the product ofl̄12l̄21 and henceTc increases. But in our

case, the multiplying term 1/l̄11;s1+l11+l12d /l11 con-
tainsl12 in leading order and this factor on its own increases
A and therefore decreases the critical temperature. These ex-
pectations are confirmed in our full Eliashberg numerical
work and are not captured in other BCS workssfor example,
Refs. 30 and 31d. It is clear then, that in our theory,l12 and
l21 do not enter the equation forTc in the same way because
l12 provides a direct mass renormalization to the major in-
teraction terml11. If mass renormalization is ignored, as in
BCS theory, this asymmetry no longer arises. The work by
Mitrović32 on functional derivatives findsdTc/da2F21svd to
be positive and the one for 12 to be negative, which con-
forms with our results. We note here that the disparity be-
tweenl12 andl21, which will in turn affect theTc and other
properties, is related to the different values of the density of
states at the Fermi levelNi in each of the two bands, i.e.,
l12/l21=N2/N1.

Turning next to the effect of impurities onTc, the change
DTc=Tc−Tc0 for small impurity scattering can be written in
the luu model as

DTc

Tc0
=

C±

l̄11 + l̄22 + 2Asl̄12l̄21 − l̄11l̄22d
, s16d

where for ordinary impuritiessC+d and magnetic impurities
sC−d:

C± = −
p2

4
hs1 − Al̄22dsr12

± l̄11 7 r21
± l̄12d

+ f1 − Al̄11gsr21
± l̄22 7 r12

± l̄21d

+ Al̄21sl̄12 7 l̄11dr12
± + Al̄12sl̄21 7 l̄22dr21

± j, s17d

with

r12
± =

t12
± /Tc0

1 + l11 + l12
, r21

± =
t21
± /Tc0

1 + l22 + l21
. s18d

These equations have been derived for scattering across the
bands; within the bands, paramagnetic impurities will affect
Tc but ordinary, nonmagnetic ones will not.

Results are given in Fig. 2. Except for the dotted lines, all
curves were obtained from numerical solutions of the linear-
ized version of the Eliashberg equationss1d and s2d using a
Lorentzian model forai j

2Fsvd. The curves come in sets of
three forl22=0.5 ssolid curved, 0.4 sdashedd, and 0.3slong-
dashedd. The other parameters arel11=1 and l12=l21
=0.02 ssmall interband couplingd. The lower set is fort21

+

=0 with t12
+ varying while the upper set has 1↔2. The

middle set havet12
+ = t21

+ . Note that in showing the results
when t12

+ or t21
+ are varied separately, we are violating a re-

quirement that they must be linked together by the density of
states in the two bands. That is, as required for theli j ’s,
likewise the impurity scattering rates must obeyt12

+ / t21
+

=N2/N1. Our middle set of curves obey this constraint, but
we have ignored it for the other curves in order to illustrate
the general behavior of each individual type of scattering
separately. As found for theli j ’s, the effect oft12

+ and that of
t21
+ on Tc are quite different. The quantityt12

+ represents scat-
tering from band 1 to band 2 and leads to pair breaking much
like paramagnetic impurities in the one-band case. We can
see this analytically in the simple case ofl12=l21=0 for
which the two bands are decoupled and the critical tempera-
ture is a property of the first band alone. In this case, Eqs.
s16d–s18d reduce to33

DTc

Tc0
= −

p2

4
r12

± s19d

for both normal or paramagnetic impurities in the linear ap-
proximation for the impurity scattering rate. The initial linear
decrease inTc with increasingr12

+ is seen in the lower set of
three curves of Fig. 2. Ast12

+ is increased further, higher-
order corrections start to be important and the curves show
saturation to a value that is larger the greater the value ofl22.
Also note that formulas19d shows thatTc is independent of
r21

± . This expectation is confirmed in the upper set of three
curves of Fig. 2, whereTc has increased by no more than 3%
for t21

+ /Tc0=1.5. This small increase is due to the smalll12

FIG. 2. Ratio ofTc with impurity scattering to that withoutTc0

as a function ofti j
+ /Tc0 for varying l22: 0.5 ssolidd, 0.4 sshort-

dashedd, and 0.3slong-dashedd. Here, l11=1, l12=l21=0.02. For
the lower three curvest21

+ =0 andt12
+ varies, and for the upper three

curvesswhich are almost indistinguishable from each otherd it is the
reverse. In the middle set of three curves,t12

+ = t21
+ . These calcula-

tions have been done with the full Eliashberg equations using a
Lorentziana2Fsvd spectrum withTc0/vln=0.11. The dotted lines
are from the evaluation of Eq.s16d for thel22=0.5 case and are for
t12
+ =0 supper dotted curved and t21

+ =0 slower dotted curved. sNote
that the middle set of curves are the only physically realizable
cases. The others serve to make the mathematical point thatt12

+ and
t21
+ affect Tc quite differently.d
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=l21 used for the figure, while in Eq.s19d , we havel12
=l21=0. The middle set of curves, which apply fort12

+ = t21
+

and therefore satisfy the constraint imposed by having cho-
senl12=l21=0.02, exhibits, by comparison to the other two
cases, only a very small region that is linear in impurity
scattering and these curves are intermediate to the other two
sets, as expected. They also saturate at higher values ofTc
and we find thatTc decreases by only 20–30 % for this case,
similar to the observation by Mitrović, who was considering
specifically the case of MgB2.

34 Finally, we comment on the
dotted curves, which are based on Eqs.s16d–s18d valid in the
luu model and to first order intij

+. The lowest curve applies to
the t21

+ =0 case and the upper one tot12
+ =0. The slopes are in

good agreement with the full Eliashberg results over a sig-
nificant range of interband impurity scatteringtij

+. For the
middle set of curves the linear behavior applies only com-
paratively to a rather small region. In all cases there is still
some difference betweenluu and Eliashberg results because
of strong coupling corrections. As previously stated, inter-
band impurity scattering in two-band superconductivity
works like paramagnetic impurities in the ordinary one-band
case. For this latter case, Schachinger, Daams, and Carbotte35

have found for the specific case of Pb, the classic strong
coupling material, that theluu model overestimates the ini-
tial slope of the drop inTc value, with increasing impurity
scattering. The physics is simple. For strong coupling,
2D /kBTc is larger than its BCS value i.e., the gap is bigger
than expected on the basis of itsTc. This is because asT is
increased, that part of the inelastic scattering which corre-
sponds to the realsas opposed to virtuald processes, which
are pair breaking, increases andTc is reduced below the
value it would be without. As a result, the initial drop in the
Tc value with increasing impurity content is not as large in
strong as in weak coupling because the system has a larger
gap that is more robust against impurities. The same applies
to interband scattering in a two-band superconductor. The
initial slope of the drop is faster in theluu model than in the
Eliashberg calculation, as most recently shown by
Mitrović,34 who has commented on prior work by Golubov
and Mazin,33 where only unrenormalized BCS results were
given and the drop inTc was even faster. Mitrović also pre-
sents functional derivatives for ordinary impurities34 and his
findings compliment our calculations here. In addition, as
low-frequency phonons act like ordinary impurities, the pre-
vious work by Mitrović on functional derivatives32 for the
electron-phonon spectral functions also confirms our impu-
rity results by comparison with the behavior of the low-
frequency part of the functional derivatives for 12 versus 21.

Finally, it has been of some interest among experimental-
ists, looking at novel superconductors, to know the outcome
of having a repulsive interaction in the second bandsi.e.,
l22,0d. As will be seen in the next section, a second energy
gap is still induced in this case due to the interband coupling;
however, a signature of this repulsive band would exist in the
case of impurity scattering, as strong interband scattering of
sufficient strength could drive theTc to zero.30

B. Energy gaps and gap ratios

We turn next to the consideration of the energy gaps. The
transcendental equation foru;D2/D1 at T=0 in the luu

model is

l̄12u −
l̄21

u
+ sl̄11l̄22 − l̄21l̄12d ln u = l̄22 − l̄11, s20d

from which the gap ratio for the larger gapD1 may be found:

lnS1.13D1

2kBTc
D = A −F1 + l̄12u ln u

l̄11 + l̄12u
G . s21d

The solution for the gap ratio 2D1/kBTc can be corrected for
strong coupling effects by multiplying by a factorhD in the
denominator of the logarithm of Eq.s21d with36

hD = 1 + 12.5S Tc

vln
D2

lnS vln

2Tc
D . s22d

As long asl11 is large andl22, l12, andl21 are small, one
needs only to correct the first channel for strong coupling
effects. Otherwise additional corrections for the other chan-
nels may exist but there would be no merit in such a com-
plexity of including these corrections over doing the full nu-
merical calculations with the Eliashberg equations. It is
expected that in real systems,l11 is large relative to the other
parameters and hence dominates the strong coupling aspect
of the result. However, when the off-diagonal couplings are
significant, the strong coupling corrections of the first chan-
nel can affect the second.

Our first set of results for the two energy gaps is given in
Fig. 3. The lines are based on the simpler equationss20d and
s21d, and the solid dots are for the results of full Eliashberg
solutions on the imaginary axis and analytically continued
with Padé approximates1 to the real axis, where the gap is
determined byD0=Dsv=D0d.1 For clarity in the figure, only

FIG. 3. Gap ratios for the uppers2D1/kBTcd and lower gap
s2D2/kBTcd as a function ofl12 for varying l22: 0.5 ssolidd, 0.1
sdottedd, −0.5 sshort-dashedd, and −1slong-dashedd. Here,l11=1,
l21=0.3. These calculations are done using the RBCS formulass20d
ands21d in the text, the solid dots show Eliashberg calculations for
the same set of parameters withl22=0.1 sfor comparison with the
dotted curved. Strong coupling corrections are significant and the
rest of the curves in this figure would also be modified by strong
coupling; much of this can be captured by the strong coupling cor-
rection formula given in the text.sNote that asl22 andl21 are finite,
the points forl12=0 are not physically realizable.d
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one such set of results is shown for the case ofl22=0.1.
While magnitudes differ considerably between the renormal-
ized BCS and strong couplingscomparing solid dots with the
dotted curvesd, the general trends are the same. Specifically
in Fig. 3,l12 is varied withl11=1, l21=0.3, andl22 fixed to
various values in turn. The upper curve applies toD1 and the
lower curve of the same line type toD2. While in all casesD1
increases with increasingl12, in one casessolid curved, the
lower gap decreases slightly. More importantly, the value of
the upper gap ratio increases above its BCS ratio 3.53 and
can reach 4.6 in renormalized BCS, a feature that comes
from the two-band nature of the system. Comparing the dot-
ted curves to the solid circles forD1, we note that the Eliash-
berg results are always above theirluu counterpart, reflecting
well-known strong coupling corrections to the gap. This ap-
plies as well toD2, the lower gap. We now comment specifi-
cally on the other curves. To increase the anisotropy between
D1 andD2 for the parameter set considered here, we need to
decrease the value ofl22. Note, however, that even when we
assume a repulsion in the second band, equal in size to the
attractionl11=1 in the first bandslong-dashed curved, a sub-
stantial gap is nevertheless induced in the second channel
even forl12=0. It is the finite value ofl21 that produces this
gap. Recall thatl21 describes the effect of band 1 on band 2
due to interband electron-phonon coupling. Turning on, as
well, somel12 increases the second gap further but not by
much. Finally, we mention that asl21 increasessnot shown
hered, D1 decreases whileD2 increases, i.e., the ratio of
D2/D1 goes up towards one and the anisotropy is reduced.

In Fig. 3, the ratiol12/l21=N2/N1 is varying, while in
Fig. 4, we keepl12=l21 and illustrate more clearly the effect
of strong coupling Eliashberg results in comparison with the
RBCS calculation, and also provide a comparison with the
RBCS calculation corrected with the strong coupling formula
of Eq. s22d . One finds that the gap in the Eliashberg result is
quite enhanced over the RBCS result, even exhibiting a dif-
ferent qualitative behavior with the Eliashberg gapssolid

curved, increasing with increasing off-diagonall while the
RBCS counterpartsdashed curved is decreasing. However,
when the strong coupling correction formula is applied to the
RBCS result, the resulting curvesdot-dashedd is now in rea-
sonable agreement with the Eliashberg calculation and fol-
lows the evolution with increasing off-diagonall very well.

It is of interest to experimentalists,37 looking at novel ma-
terials suspected of harboring multiband superconductivity,
whether there may be a range of parameters that could pro-
duce a very large upper gap ratio with a large anisotropy in
magnitude between the upper and lower gaps. It is possible
that it could occur in a regime wherel12/l21@1, as sug-
gested by the trend in our Fig. 3, while in the opposite re-
gime we will show that all results return to standard weak
coupling BCS values. As previously mentioned, this ratio of
l12/l21 is equivalent to the ratio of density of states in the
two bands, sometimes denoted asa in the literature, i.e.,a
;l12/l21=N2/N1. We have gone toa=20 within the renor-
malized BCS formalism and were not able to produce gap
ratios bigger than about 5 or so, for the parameters exam-
ined, and at the same time, the lower gap ratio was about 3.
We conclude, therefore, that even with added strong coupling
effects, very large gap ratios tending towards 10 to 20 are
difficult to obtain in conjunction with a large anisotropy in
the two gaps. Repulsive potentials in the second band can
give a large anisotropy, but they also lower the value of the
upper gap ratio. Later in Sec. VI, we will return to this issue
of trying to obtain large gap ratios and large gap anisotropy,
when we examine another extreme limit first considered by
Suhl et al.9

To conclude this section, we examine an approximate for-
mula for the gap ratio in two-band superconductivity, which
has been given and used by experimentalists,38 to determine
its range of validity in the face of more exact calculations.
The formula is an unrenormalized BCS formula and we have
already seen that renormalization and strong coupling effects
can be substantial. Forl22,l12,l21!l11, we can derive the
primary sor larged gap ratio as

2D1

kBTc
. 3.53F1 −

l12

l21
u2ln uG = 3.53F1 −

N2

N1
SD2

D1
D2

lnSD2

D1
DG ,

s23d

which is the same equation as given by Iavaroneet al.,38

where their use of the indices 1 and 2 are reversed with
respect to ours. In our formulas23d given here, theu andl’s
are coupled through Eq.s20d , but in the case of Ref. 38 the
ratio of the density of states and the ratio of the gaps are
treated as independent parameters with the only constraint
being thatu!1.

In Fig. 5, we compare this approximate BCS formula with
that of our exact renormalized BCS formula for typicalli j
values used in the literature. Themi j

* are set to zero as there is
no such feature in the Iavaroneet al. formula and them* ’s in
that case would simply serve to change the effective value of
l’s. We find that the approximate formulasdashed curve of
Fig. 5d compares well with the renormalized BCS result in
the limit of smalll12,21,22, as required by the constraint of the
approximation, and breaks down forl12.0.5, where the ap-

FIG. 4. Gap ratio 2D1/kBTc as a function ofl12=l21, for l11

=1.3 andl22=0.5. These curves provide a comparison between the
Eliashberg calculationssolid curved and the RBCS calculation
sdashed curved, along with the result from using the RBCS expres-
sion with the strong coupling correction formula given in the text
sdot-dashed curved.
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proximate formula tends to overestimate quite significantly
the value of the two gaps. Strong coupling effects would
produce very significant deviations in addition. Not shown is
the case wherel12,21,22were all taken to be very small and
then in that case, as expected, there was excellent agreement
between the exact renormalized BCS calculation and the ap-
proximate form. The fact that Iavaroneet al.38 obtained ex-
cellent estimates of the two energy gaps for MgB2 is maybe
fortuitous in some sense, because it will be seen in the next
section, where we discuss MgB2 in detail, that the renormal-
ized BCS formula underestimates the correct gap values of
MgB2 and strong coupling corrections of about 7–10% are
needed to obtain good agreement between the data and full
Eliashberg calculations. We conclude that their simple for-
mula is helpful, but that it should be used with caution when
considering systems where the parameters are no longer
small as then this formula will fail.

C. Specific heat jump

The specific heat is calculated from the free energy. The
difference in free energyDF=FS−FN between the supercon-
ducting state and the normal state is given by1

DF = − pT o
n=−`

+`

o
i

Nis0dfÎvn
2 + Di

2sivnd − uvnug

3 FZi
Ssivnd − Zi

Nsivnd
uvnu

Îvn
2 + Di

2sivnd
G , s24d

whereSandN refer to the superconducting and normal state,
respectively, andi indexes the number of bands. From this,
the difference in the specific heat is obtained,

DC = − T
d2DF

dT2 , s25d

and the negative of the slope of the difference in specific heat
nearTc is given as

g = − UdDCsTd
dT

U
Tc

1

g
, s26d

whereg is the Sommerfeld constant for the two-band case.
In the luu model, the gap nearTc, for t=T/Tc, can be

written as

D1
2std =

8spTcd2

7zs3d
hC

x1
s1 − td, s27d

D2
2std =

8spTcd2

7zs3d
1

x2
s1 − td, s28d

wherezs3d.1.202. Here,

x1 =
s1 − Al̄22dl̄11 + l̄12l̄21Af1 + A2l̄21

2 s1 − Al̄22d−3g

s1 − Al̄22dl̄11 + l̄12l̄21f2A + A2l̄22/s1 − Al̄22dg
s29d

and

x2 =
s1 − Al̄11dl̄22 + l̄21l̄12Af1 + A2l̄12

2 s1 − Al̄11d−3g

s1 − Al̄11dl̄22 + l̄21l̄12f2A + A2l̄11/s1 − Al̄11dg
,

s30d

and the strong coupling correction is introduced through39

hC = 1 + 53S Tc

vln
D2

lnS vln

3Tc
D . s31d

The specific heat jump atTc is

DC

gTc

= 1.43F s1 + l11 + l12dshC/x1d + as1 + l22 + l21ds1/x2d
s1 + l11 + l12d + as1 + l22 + l21d

G .

s32d

We find with this expression that anisotropysi.e., l11Þl22d
reduces the jump ratio but increasingl12 or l21 increases the
ratio, and the maximum obtainable is 1.43. Other work along
the same line is given in Refs. 30 and 31 where they do not
consider full renormalized BCS or strong coupling theories,
as we have done here.

When l12,l21→0, 1/x1,1+Osl̄12
2 d and 1/x2,Osl̄12

4 d.
This is assumingl̄11− l̄22 andl̄22 remain significant as com-
pared with the value of the off-diagonal elements. In this
case,

DC

gTc
= 1.43F s1 + l11 + l12d

s1 + l11 + l12d + as1 + l22 + l21d
G . s33d

The physics of this formula is that, in this limit, the specific
heat jump atTc itself is determined only by the superconduc-
tivity of the dominant band, but it is normalized with the
normal state specific heatg belonging to the sum of both
bands. This has the effect of makingDCsTcd /gTc always less
than the BCS value by a factor of 1/s1+a*d, where a*

=as1+l22+l21d / s1+l11+l12d. For MgB2, we expect a*

FIG. 5. Gap ratios for the uppers2D1/kBTcd and lower gap
s2D2/kBTcd as a function ofl12 for l11=1.0,l22=0.5,l21=0.2. The
solid curve is the exact BCS result, whereas the dashed curve illus-
trates the approximate formula of Iavaroneet al. sRef. 38d.
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*1, which means that in this case the normalized jump is
reduced to about half its BCS value. If we had included in
Eq. s33d the strong coupling correctionhC, this would have
the effect of increasing the factor 1.43 to a larger value char-
acteristic of strong coupling but the additional anisotropy
parameters would still work to reduce the jump. Thus, in a
two-band superconductor, the jump will be smaller than that
for one band with the same strong coupling index

D. Thermodynamic critical magnetic field

The thermodynamic critical magnetic field is calculated
from the free energy difference:

HcsTd = Î− 8pDF. s34d

As the temperature dependence of this quantity, normalized
to its zero-temperature value, follows very closely a nearly
quadratic behavior, the deviation functionDstd is often plot-
ted:

Dstd ;
HcsTd
Hcs0d

− s1 − t2d, s35d

wheret=T/Tc.
At T=0

Hc
2s0d = 4pN1

*D1
2s1 + a*u2d, s36d

wherea* =N2
* /N1

* and

Ni
* = Nis0ds1 + lii + li jd. s37d

The zero-temperature critical magnetic field is modified
through the second term in Eq.s36d , which increases with
increasinga* and with the square of the anisotropy ratiou,
which in this case is just the ratio of the independent gap
values for the two separate bands. Further, the dimensionless
ratio is

gTc
2

Hc
2s0d

=
pskBTcd2f1 + a*g
6D1

2f1 + a*u2g
. s38d

For almost decoupled bands, Eq.s38d becomes

gTc
2

Hc
2s0d

= 0.168
1 + a*

1 + a*u2 , s39d

where the second factor on the right-hand side modifies the
usual single-band BCS value of 0.168 for the presence of the
second band. Again, botha* and u enter the correction. If
there is no anisotropy,u=1, and therefore the bands must be
the same, we recover the one-band limiting value. For large
anisotropy whereu→0, and ifa* is of order one, the ratio in
Eq. s39d is of order twice its one-band value because the
second band contributes very little to the zero-temperature
condensation energy, but is still as equally important as the
first band in its contribution togTc, the normal state specific
heat. NearTc

Hcstd =Î 32p

7zs3d
spkBTcds1 − tdFN1

*

x1
2 +

N2
*

x2
2G1/2

, s40d

which then gives the dimensionless ratio

hcs0d ;
Hcs0d

uHc8sTcduTc

=
2D1

kBTc

1

p
Î7zs3d

32
Î 1 + a*u2

x1
−2 + a*x2

−2 .

s41d

Strong coupling factors could be introduced in Eqs.s36d,
s38d, ands40d. They are not given explicitly here as they are
less important than those for the specific heat jump and the
slope of the penetration depth atTc ssee Table Id. The limit of

nearly decoupled bandssl̄12,l̄21!l̄11− l̄22,l̄22d gives for
this quantity

hcs0d = 0.576Î1 + a*u2. s42d

The square root, which accounts for two-band effects con-
tains a correction proportional toa*u2. It can be understood
as follows. The slope atTc found from formulas40d depends
only on band 1 butHcs0d involves both and hence this cor-
rection comes solely fromHcs0d as seen in Eq.s36d . If the
anisotropy between the two bands is largeu→0, there is no
correction factor ins42d because the second band is elimi-
nated fromHcs0d. If, on the other hand,u is near 1, the two
bands have nearly equal gap value but still it is only band 1
which contributes to the slope atTc and the dimensionless
ratio s42d can now be larger than its BCS value.

E. Penetration depth

The London penetration depthlLsTd is evaluated from1

1

lL
2sTd

=
T

2o
n=1

`

o
i

1

looi
2

Di
2sivnd

Zisivndfvn
2 + Di

2sivndg3/2, s43d

where in three dimensions

1

looi
2 =

4pnie
2

mic
2 =

8pe2

3c2 NivFi
2 s44d

andvFi is the Fermi velocity in the band labeled by the index
i. This last equation would be multiplied by a factor of 3/2 in
two dimensions.

For the penetration depthlLsTd at T=0,

1

lL
2s0d

=
1

hlL

2 s0dloo1
2 s1 + l11 + l12d

+
1

loo2
2 s1 + l22 + l21d

,

s45d

and nearTc,

1

lL
2std

= 2s1 − tdF 1

hlL

2 sTcdloo1
2 x1s1 + l11 + l12d

+
1

loo2
2 x2s1 + l22 + l21d

G , s46d

where

hlL
s0d = 1 + 1.3S Tc

vln
D2

lnS vln

13Tc
D , s47d

E. J. NICOL AND J. P. CARBOTTE PHYSICAL REVIEW B71, 054501s2005d

054501-8



hlL
sTcd = 1 – 16S Tc

vln
D2

lnS vln

3.5Tc
D . s48d

Hence, definingyLsTd=1/lL
2sTd, we write the dimensionless

BCS penetration depth ratioy as

y ;
yLs0d

uyL8sTcduTc

=
1

2
s1 + abdF 1

x1
+

ab

x2
G−1

, s49d

where b=vF2
2 s1+l11+l12d /vF1

2 s1+l22+l21d. b is expected
to be of order 1 unless there is a great disparity in the two
Fermi velocities. For MgB2, we use the values ofvF1=4.40
3105 m/s andvF2=5.353105 m/s reported in Ref. 18 and
for our other model calculations, we take them to be equiva-
lent, for simplicity. For the nearly decoupled case

yLs0d
uyL8sTcduTc

=
1

2
s1 + abd. s50d

For a andb equal to one, we see that the normalized slope of
the penetration depth is twice its one-band BCS value of 1/2.
Shoulda, b, or both be much larger than 1, then the slope
can be even larger, which reflects the fact that only the domi-
nant band determines the slopeyL8 but both bands contribute
to yLs0d. Information onvFi and Nis0d is contained in the
slope.

IV. MgB 2: INTEGRATED BANDS AND STRONG
COUPLING

We now continue beyond renormalized BCS formulas to
evaluate quantities based on the full two-band Eliashberg
formalism and we begin with the specific case of MgB2 and
strong coupling effects. Equationss1d and s2d were solved

for electron-phonon spectral densitiesai j
2Fsvd, read from

graphs in Ref. 32, which were originally presented in Ref.
19. The Coulomb repulsion parametersmi j

* and li j , taken
from Ref. 19, werelss=1.017, lpp=0.448, lsp=0.213,
lps=0.155,mss

* =0.210,mpp
* =0.172,msp

* =0.095, andmps
*

=0.069, withvc=750 meV. From these parameters,Tc was
found to be 39.5 K. As discussed in our theory introduction,
we usedvln=66.4 meV, calculated from thea11

2 Fsvd spec-
trum, to form our strong coupling indexTc/vln. The other
three channels hadvln.62 meV, which is not so different,
although as argued previously, the main strong coupling ef-
fects will come from the 11 channel, and hence the choice of
66.4 meV for this parameter. From the solution of the Eliash-
berg equations, we can evaluate Eq.s24d for the free energy
difference between the superconducting and normal state,
and evaluate the superfluid density or the inverse square of
the penetration depth from Eq.s43d . In Fig. 6, which has
three framesfthe top is the specific heat, middle, the penetra-
tion depth, and bottom, the critical magnetic field deviation
function of formula s35dg, we compare Eliashberg results
ssolid curved with experimental resultsssolid and open
circles, triangles, and squaresd.

In all cases, the agreement with experiment is very good
and certainly as good as obtained in conventional one-band
cases.1 In each case, we also present a second set of theoret-
ical resultssdashed curved for which all microscopic param-
eters remain those of MgB2 except that we have half the
value of the off-diagonal spectral functionsa12

2 Fsvd and
a21

2 Fsvd, which changes theTc only by about 1 K. It is clear
that doing this reduces greatly the quality of the fit one ob-
tains with the experimental data. This can be taken as evi-
dence that the electronic structure, first-principle calculations
of electron-phonon spectral functions are accurate. It also

TABLE I. Universal dimensionless BCS ratios and their modification for strong couplingsSCd and two-band superconductivity. RBCS
stands for the renormalized BCS formula given in text. The percentage difference between the full EliashbergsEliash.d calculation and
RBCS, used to measure the amount of strong coupling correction, is given as % SC and defined asusEliash. –RBCSd /Eliash.u.

Ratio

BCS Pb MgB2 MgB2 MgB2 MgB2 MgB2 Lor. Lor. Lor. Lor.

One band One band Eliash. Expt. RBCS % SC RBCS+SC Eliash. RBCS % SC RBCS+SC

Tc/vln 0.0 0.128 0.051 0.076a 0.0 0.052 0.15 0.0 0.15

2D1/kBTc 3.53 4.49 4.17 3.6–4.6b 3.86 7.4% 4.15 4.97 3.84 23% 5.14

2D2/kBTc 3.53 4.49 1.55 1.0–1.9b 1.40 9.7% 2.66 2.27 15%

D2/D1 1.00 1.00 0.37 0.30–0.42b 0.36 2.7% 0.535 0.593 11%

DC/gTc 1.43 2.79 1.04 0.82–1.32c 0.817 21% 1.02 2.08 1.07 49% 1.97

g −3.77 −12.68 −3.28 −s2.37–4.31dd −8.32

gTc
2/Hc

2s0d 0.168 0.132 0.225 0.183e 0.247 9.8% 0.153 0.193 26%

hcs0d 0.576 0.465 0.581 0.518–0.667f 0.629 8.3% 0.500 0.621 24%

y 0.5 0.311 1.25 1.22,g 0.547h 1.50 20% 1.32 0.536 0.861 61% 0.569

aReference 25.
bReferences 38 and 44–49.
cReferences 25, 40, 48, and 50.
dEstimated from References 25, 40, and 48.
eReference 40.
fEstimated from Refs. 25, 40, and 51.
gEstimated from data of Ref. 41 as presented in Ref. 17.
hEstimated from Ref. 42.

PROPERTIES OF THE SUPERCONDUCTING STATE IN… PHYSICAL REVIEW B 71, 054501s2005d

054501-9



shows that variation of parameters by a factor of 2 or so
away from the computed ones can lead to significant changes
in superconducting properties, and, in this instance, features
of the second transition, due to the lower gap, begin to ap-
pear. The specific heat curve was computed before in Refs.
15 and 16 and the penetration depth in Refs. 17 and 26. In
these cases, our calculationsssolid curvesd confirm previous
ones and demonstrate that our calculational procedure is
working correctly. For the penetration depth we did not in-
troduce impurity scattering. Impurities can affect the penetra-
tion depth and were included in Ref. 17. The three sets of
penetration depth data are for cleanssolid circles41 and
triangles42 d and dirty samplesssolid squares43 d as discussed
in Ref. 17. To our knowledge, the deviation function has not
been computed and compared with experiment before. The
data are from Refs. 25sopen circlesd and Ref. 40ssolid
circlesd, and again agreement with calculation, with no free
parameters, is very good. The minimum in the deviation

function for the Eliashberg calculation occurs atT/Tc=0.6
and has a value of −0.054. In the experimental data, the
minima occur at aboutT/Tc=0.6 and 0.65, with values of
about −0.05 and −0.045, respectively. For reference, the one-
band BCS value is −0.037 and strong coupling makes this
value even smaller and can even push it to a positive value;
hence anisotropy is compensating for the strong coupling
effects and is making this value larger and more negative.1

In Fig. 7, we present the temperature dependence of the
two gap ratios for MgB2. Once again the solid curve is the
full Eliashberg calculation using the parameters given for
MgB2 with no adjustments. The ratioD1/D2 increases from
2.7 at T=0 to about 3.5 atTc. The temperature-dependent
behavior shown here was also found by Choiet al.,16 Brink-
manet al.,18 and Golubovet al.19 A comparison with some of
the more recent experiments is given by the open and closed
circles, with the data taken from Iavaroneet al.38 and Gon-
nelli et al.,44 respectively. Similar data are found in other
references.45–47In the case of the data by Iavaroneet al., the
statement ofTc was ambiguous and so we used their quoted
value of the upper gap ratio of 4.3 along with their quoted
value of the upper gap being 7.1 meV to determineTc
=38.3 K used for the scaling of the data for the plot pre-
sented here. The Gonnelliet al. data are presented based on
theTc of 38.2 K given in their paper. There is a very reason-
able agreement of the data with the calculation; once again,
along with Fig. 6, this shows a consistency of a number of
sets of data from several different types of experiments with
the one set of parameters fixed from band structure for
MgB2. Thus overall, the agreement between theory and ex-
periment is excellent and validates the two-band nature of
superconductivity in this material. The dotted curves in Fig.

FIG. 6. Upper frame: Electronic specific heat for MgB2 in the
superconducting state normalized to the normal state as a function
of T/Tc. The points are the experimental results of Wanget al. sRef.
25d and the solid curve is the result for the Eliashberg calculation
using the parameters given in the literaturesRef. 32d. The dashed
curve illustrates the case where thel12 andl21 parameters, used for
the solid curve, have been halved. The jump due to the lower gap
begins to appear in this case. Middle frame:fls0d /lsTdg2 vs T/Tc.
Curves are those resulting from the same set of parameters as dis-
cussed for the upper frame, with thevFi taken from Ref. 18. The
data, shown for comparison, have been taken from Ref. 17. No
impurity scattering has been used to obtain a better fit. Lower
frame: The deviation functionDstd for the thermodynamic critical
field. Line labels are as above and the datasopen and solid circlesd
are formed from theHcsTd data given by Wanget al. sRef. 25d and
Bouquetet al. sRef. 40d, respectively.

FIG. 7. Gap ratios for the uppers2D1/kBTcd and lower gap
s2D2/kBTcd as a function ofT/Tc. Shown as the solid curves are the
predictions for the gap ratios given by our full Eliashberg calcula-
tions for MgB2, the dashed curves are the Eliashberg calculations
for the case of reducing the off-diagonall’s by half and the dotted
curves show the classic BCS temperature dependences to illustrate
the deviation of the temperature dependence of the Eliashberg two-
band calculation for MgB2. The open circles are the data from Ia-
varoneet al. sRef. 38d, where we have usedTc=38.3 K to obtain
their quoted upper gap ratio value of 4.3. The solid dots are the data
of Gonnelli et al. sRef. 44d.
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7 are presented to show that the two-band calculations do
show deviation from a classic BCS temperature dependence
swhich was used in the original presentations of the
data38,44d. In particular, Gonnelliet al.argued that the devia-
tion of their lower gap data at temperatures above 25 Ksor
T/Tc=0.65, hered from the BCS temperature dependence is
an additional signature of the two-band nature of the mate-
rial. However, we find no such dramatic suppression in the
two-band calculations at this temperature and only with the
dashed curve, where we have taken the off-diagonal
electron-phonon coupling to be half of the usual value for
MgB2 do we find an inflection point around 0.35. We were
not able to induce a suppression of the lower gap in the
vicinity of Tc by varying the MgB2 parameters slightly about
their accepted values. However, such behavior can be found
in other regimes of the parameter space not relevant to
MgB2, and this feature and the issue raised by Gonnelliet al.
will be discussed further in the next section. To end, note that
an inflection point is also seen in the penetration depth at
aboutT/Tc,0.35, as described first by Golubovet al.17 and
also found heressolid curve of middle frame of Fig. 6d.

More results from our calculations as well as comparison
with data are presented in Table I. In the first column, we
include, for comparison, the one-band BCS values for the
various dimensionless ratios. The strong coupling index is
first, followed by the major gap to critical temperature ratio,
the minor gap ratio, the anisotropyD2/D1, the normalized
specific heat jump and the negative of its slope atTc,
gTc

2/Hc
2s0d, and the inverse of the normalized slope atTc for

the critical magnetic field and for the penetration depth. In-
cluded in the second column, also for comparison, are the
same indices for Pb, the prototype single-band strong cou-
pler. We remind the reader that in many conventional super-
conductors, strong coupling corrections are large and that the
data cannot be understood without introducing them, and
these are to be differentiated from those corrections due to
anisotropy. The third column gives the results of our two-
band calculations for MgB2. This is followed by a column
giving experimental values. It is clear that the agreement
between theory and experiment is good. Note that we have
not attempted to make a complete survey of all experiments,
but have tried to present as many as reasonable, with no
judgement about the quality of the data or samples, which
might have improved over time. In addition, for the quanti-
ties related to slopes, i.e.,g, hcs0d, andy, we have tried to
estimate these ourselves from the graphs in papers and so
this should be viewed as rough estimates as the values might
change with a more rigorous analysis of the original data.
Also shown are the results when our renormalized BCS for-
mulas of the preceding section are implemented using MgB2
parameters,52 which allows us to define a measure of strong
coupling corrections, entered in column 6 as percentages. It
is seen that MgB2 is an intermediate coupling case. The next
column shows the results when the analytical expressions for
strong coupling corrections to renormalized BCS, given in
the text, are applied. This improves the agreement with the
full Eliashberg results as compared to RBCS. Some discrep-
ancies remain due in part to additional modifications intro-
duced by the coupling of a strong coupling band with a weak
coupling one through the off-diagonalli j ’s. The next four

columns were obtained for our Lorentzian spectral density
model sLor.d with l11=1.3, l22=0.5, l12=l21=0.2, andmi j

*

=0. This was devised to have a strong coupling index
Tc/vln,0.15, which is slightly larger than Pb and well
within the range of realistic values for electron-phonon su-
perconductors. It is clear that strong coupling corrections are
now even more significant and cannot be ignored in a com-
plete theory.

More information on strong coupling effects as well as on
two-band anisotropy is given in Fig. 8, where we show the
same BCS ratios as considered in Table I. In all eight frames,
we have used our model Lorentzianai j

2Fsvd spectra. The
solid curves are results of full Eliashberg calculations as a
function ofl12=l21, with l11 fixed at 1.3 andl22 at 0.5. The
dashed curves are for comparison and are based on ourluu

formulas, i.e., give renormalized BCS results without use of
the strong coupling correction formulas. They, of course, can
differ very significantly from one-band universal BCS values
because of the two-band anisotropy. We see that these effects
can be large and that on comparison between the solid and
dashed curves, the strong coupling effects can also be sig-
nificant. Asl12=l21 is increased from zero, withl11 andl22
remaining fixed, theTc increases and this leads to the in-
crease inTc/vln from about 0.15 atl12=l21=0 to over 0.2 at

FIG. 8. Various BCS ratios as discussed in the text, shown as a
function of l12, wherel21=l12 si.e., a=1d, l11=1.3, andl22=0.5.
The solid curves are those for the full Eliashberg calculation for a
Lorentzian model ofa2Fij svd spectra and the short-dashed curves
are for the renormalized BCS formulas developed from theluu

model and given in the text. For the frame with the gap ratios, the
upper gap is given by the solid curve and the lower gap is given by
the long-dashed curve, the upper and lower short-dashed curves are
for the upper and lower gaps, respectively, in RBCS. The first frame
gives the effectiveTc/vln for the Eliashberg spectrum based on the
definition given in the text.
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l12=l21=1. For all the indices considered here, we note that
their values atTc/vln=0.2 are close to the values that they
would have in a one-band case,1 and the remaining aniso-
tropy in theli j ’s play only a minor role.sOf course, this is a
qualitative statement since it is well known that the shape of
a2Fsvd for fixed Tc/vln can also affect somewhat the value
of BCS ratios.1 d This is expected since in this case the fluc-
tuation off the average of anyli j is becoming smaller. For
RBCS, all ratios have returned to the one-band case atl12
=l21=1 except fory which remains 6% larger. We now com-
ment on select indices separately. The normalized specific
heat jump atTc in the luu model is given by formulas32d
with hC=1. For l12=l21 small, x1

−1.1+Osl̄12
2 d and x2

−1

.0+Osl̄12
4 d. These conditions mean thatDC/gTc rises

slightly as l12=l21 increases, and eventually reaches 1.43.
By contrast, the solid curve includes, in addition, strong cou-
pling effects that increase the value of the jump ratio rather
rapidly. For 2D1,2/kBTc, the lower gaps have the same value
for l12=l21=0 as it is determined only byl22. This is not so
for the upper gaps. The dashed curve takes on its BCS value
of 3.53, but the solid curvesan Eliashberg calculationd has
strong coupling effects as described in Fig. 4.sThis means
that D2/D1 is smaller for the solid curve as compared to the
dashed one in the lower left-hand frame.d As l12=l21 in-
creases, the long-dashed and lower short-dashed curves be-
gin to deviate because the former starts to acquire strong
coupling corrections of its own through the off-diagonall’s.
While the solid curve also increases, the anisotropy between
1 and 2 decreases. The short-dashed curves show different
behavior. The ratio 2D1/kBTc starts at 3.53, rises slightly to-
wards 4, before tending towards 3.53 again. Now, the aniso-
tropy betweenD2 andD1 decreases mainly becauseD2 itself
rises towards 3.53. The behavior ofgTc

2/Hc
2s0d sdashed

curved can be understood from Eq.s38d . While D1/Tc, as we
have seen, does change somewhat withl12=l21, a more im-
portant change is theu2 factor in the denominator of Eq.
s38d, which rapidly decreases this ratio towards its BCS
value of 0.168 asu increases towards 1. The behavior of
hcs0d given by Eq.s41d is more complex. The numerator in
the square root goes towards 1+a* , asu2→1, more rapidly
than the denominator, which involves thex’s. Here, the nu-
merator and denominator compete and consequentlyhcs0d
first increases before showing a slow decrease to its BCS
value. Finally,y in formula s49d decreases with increasing
off-diagonall because of the square bracket in the denomi-
nator. It is clear from these comparisons between Eliashberg
and RBCS calculations that, in general, both strong coupling
and anisotropy effects play a significant role in the dimen-
sionless ratios, and both need to be accounted for.

V. THE LIMIT OF NEARLY SEPARATE BANDS

Whenl12=l21=0, there exist two transition temperatures
Tc1 and Tc2 associated withl11 and l22, separately, and for
several properties, but not all, the superconducting state is
the straight sum of the two bands as they would be in isola-
tion. Here, we wish to study how the integration of the two
bands proceeds asl12 and/or l21 is switched on. Our first

results related to this issue are shown in Fig. 9, which has
three frames. The top frame deals with the normalized spe-
cific heatCSsTd /gT as a function of temperature; the middle,
the normalized inverse square of the penetration depth
flLs0d /lLsTdg2; and the bottom gives the critical field devia-
tion functionDstd of Eq. s35d . In all cases, we have used our
Lorentzian model for the spectral densitiesai j

2Fsvd with
l11=1 andl22=0.5 fixed for all curves. The solid curves are
for l12=l21=0.0001, short-dashed for 0.01, and long-dashed
for 0.1. In the top two frames, the two separate transitions are
easily identified in the curves with solid line type. Because of
the very small value ofl12=l21, the composite curve is ob-
viously the summation of two subsystems, which are almost
completely decoupled. However, already forl12=l21=0.01,
which remains very small as compared with the value ofl11
and evenl22, the second transitionsshort-dashed curved be-
comes significantly smeared. The two subsystems have un-
dergone considerable integration. In particular, the second
specific heat jump is rounded, becoming more kneelike.
Also, the sharp edge or kink in the solid curve for the super-
fluid density is gone in the short-dashed curve. Thus, to ob-
serve clearly two distinct systems, the off-diagonall’s need

FIG. 9. Upper frame: Specific heat in the superconducting state
normalized to the normal state,CSsTd /gT, vs T/Tc0, whereTc0 is
the Tc for only the l11 channel, with all others zero. Shown are
curves for various off-diagonall’s with l11=1 andl22=0.5. Three
curves are shown forl12=l21=0.0001ssolidd, 0.01sshort-dashedd,
and 0.1slong-dashedd. Also shown arel12=0.1 andl21=0.01si.e.,
a=10d sdot-dashedd andl12=0.01 andl21=0.1 si.e., a=0.1d sdot-
tedd. Middle frame: The superfluid densityfls0d /lsTdg2 vs T/Tc0

for the same parameters. Lower frame: The deviation functionDstd
plotted vsT/Tc0. The dot-dashed curve has been divided by 10 from
its original value in order to display it on the same scale as the other
curves.
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to be very small. Oncel12=l21=0.1slong-dashed curved, the
integration of the two subsystems is very considerable if not
complete. This does not mean, however, that superconduct-
ing properties become identical to those for an equivalent
one-band system. As long as theai j

2Fsvd are not all the same,
there will be anisotropy and this will change properties as
compared with isotropic Eliashberg one-band results. Note
that in the solid Eliashberg curve of Fig. 6, a point of inflec-
tion remains, as commented on by Golubovet al.17 In the
case of the deviation functionslower framed, the solid curve
shows a sharp cusp that is related to the lower transition
temperature of the decoupled bands but not quite at that
value as this function is composed from subtracting 1
−sT/Tcd2 from HcsTd /Hcs0d. However, two distinct pieces of
the curve exist and notably nearTc the curve has a very
different curvature from what is normally encountered. In
particular, the temperature dependence of the solid curve is
concave down at high temperature in contrast to the usual
case of concave up. As the bands are coupled through larger
and larger interbandl’s, the curve moves to a shape more
consistent with one-band behavior. However, the curve re-
mains negative due to the anisotropy, while usually strong
coupling would drive the curve positive with an overall
concave-down curvature,1 which is illustrated by the dotted
curve for which the first band dominates, as we describe
below.

The other curves in these figures, dot-dashed and dotted,
are for a=10 with l12=0.1 andl21=0.01, anda=0.1 with
l12=0.01 andl21=0.1, respectively. Fora=10, the second
band with the smaller of the two diagonal values ofl has 10
times the density of states as compared to band 1 with the
larger l value. This large disparity in density of states can
have drastic effects on superconducting properties, and fur-
ther modify both the observed temperature dependence and
the value of the BCS ratios. The second specific heat jump in
the dash-dotted curve, although smeared, is quite large as
compared with that in the solid or even the dashed curve.
Also, it is to be noted that beyond the temperature of the
lower maximum inCSsTd /gT, the curve shows only a very
modest increase, reflecting the low value of the electronic
density of states in band 1, and the ratio of the jump atTc to
the normal state is now quite reduced. The low density of
states in band 1 is also reflected in the low value of the
penetration depth curvesmiddle frame, dash-dotted curved in
the temperature region aboveTc2. Finally, we note that while
we have chosen a large value ofa for illustration here, MgB2
hasa=1.37 which, by the above arguments, would tend to
accentuate the features due to the second band.

A very different behavior is obtained whena=0.1, for
which case the electronic density of states in the second band
is reduced by a factor of 10 as compared to the first band. In
this case, the dotted curve applies and looks much more like
a standard one-band case with very significant strong cou-
pling effectsDCsTcd /gTc.2.4. The influence of band 2 has
been greatly reduced. Finally, we note that the introduction
of the off-diagonal elements can changeTc. In particular, the
dot-dashed curve ends at a considerably reduced value of
critical temperature as compared with the other curves. This
is consistent with Fig. 1, where we saw that increasingl12
for small values ofl21 decreasesTc. On the other hand, for

the dotted curve for which values ofl12 and l21 are inter-
changed as compared to the dash-dotted curve,Tc is hardly
affected becausel12 is small and it is this parameter that
affectsTc more. The two parametersl12 andl21 do not play
the same role inTc or for that matter in the integration pro-
cess of the two bands. This is made clear in Fig. 10, which
deals only with the penetration depth. What is shown are the
separate contributions to the superfluid density coming from
the two bands. In all cases,l11=1 andl22=0.5. In the top
frame,l12=0.0001 andl21 is varied. It is clear that asl21 is
increased, the superfluid density associated with the second
band remains significant even above the second transition
temperatureTc2, which is well defined in the solid curve.
This is the opposite behavior of what is seen in the lower
frame wherel21 remains at 0.0001 andl12 is increased. In
this case,Tc changes significantly but the superfluid density
associated with the second band remains negligible above
Tc2. Note finally that the relative size of the superfluid den-
sity in each band will vary witha andvFi, neither of which
have been properly accounted for in this figure, as we wished
to illustrate solely the effect ofl12 and l21 on the issue of
integration of the bands and modification ofTc.

The changes, with the off-diagonal elementsl12 andl21,
in the temperature dependence of the upper and lower gaps

FIG. 10. Upper frame: Individual contributions from each band
to the superfluid densityfls0d /l1,2sTdg2 as a function ofT/Tc0,
whereTc0 is theTc for the l11 channel alone, with all others zero.
Shown are curves for various off-diagonall21 with l11=1, l22

=0.5, and l12=0.0001. The three pairs of curves are forl21

=0.0001 ssolidd, 0.01 sshort-dashedd, and 0.1slong-dashedd. The
curves, which go to zero at a lower temperature, correspond to
fls0d /l2sTdg2, while those that go to zero close to 1 are for
fls0d /l1sTdg2. Lower frame: Now thel21 is held fixed at 0.0001
and the l12 is varied. The three pairs of curves are forl12

=0.0001 ssolidd, 0.1 sshort-dashedd, and 0.2slong-dashedd. Here,
the ratio of the density of statesa has been taken to be 1 for
convenience of illustrating the curves on the same scale.
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are closely correlated with those just described for the super-
fluid density. This is documented in Fig. 11, which has two
frames. In all casesl11=1 andl22=0.5. In the top frame,
l12=l21 equal to 0.0001ssolidd, 0.01sshort-dashedd, and 0.1
slong-dashedd. The various pairs of curves apply to the upper
and lower gap ratios. Note the long tails in the short-dashed
curveslower gapd, still small but extending toT=Tc. For the
long-dashed curve, the lower and upper gaps now have very
similar temperature dependences, but these are not yet iden-
tical to BCS. We have already seen in Fig. 7, for the specific
case of MgB2, that the lower gap falls below BCS at tem-
peratures aboveT/Tc.0.7, which is expected when it is
viewed as an evolution out of two separate gaps, with twoTc
values, due to increasing the off-diagonal coupling. In the
lower frame, we show results fora=10 sdot-dashedd anda
=0.1 sdottedd. Again, as expected, the two dash-dotted
curves show distinct temperature dependences, while for the
dotted curves they are very similar.

A very similar story emerges when interband impurity
scattering is considered. Results are given in Figs. 12 and 13.
Figure 12 has three frames. Here,l11=1, l22=0.5, andl12
=l21=0.0001, with our Lorentzian electron-phonon spectral
functionsai j

2Fsvd described previously. The top frame deals
with the temperature dependence of the normalized super-
conducting state electronic specific heatCSsTd /gT. The
middle frame gives the gap ratios ofD1 andD2 and thus the
curves come in pairs, withD1.D2. The bottom frame shows
the deviation functionDstd for the thermodynamic critical

magnetic field. What is varied in the various curves is the
interband impurity scattering ratet12

+ = t21
+ staken to be equal

in value, i.e.,a=1d. The solid curve, which clearly shows
two transitions, is fort12

+ =0. It is to be noted first, that in all
cases, off-diagonal impurity scattering changes the value of
the critical temperature, reducing it to less than 0.8 of its
pure value in the case of the dot-dashed curve. This decrease
in Tc does not translate, however, into a steady decrease in
the specific heat jump atTc. We see that while the jump
initially decreases with increasingt12

+ = t21
+ ; eventually it in-

creases and is largest for the dot-dashed curve. Both Wa-
tanabe and Kita30 and Mishonovet al.,31 using only an un-
renormalized BCS model, find an increase with impurity
scattering and no initial decrease as is found in the full
Eliashberg calculation. This is a clear illustration that, at
minimum, a renormalized BCS formula needs to be used to
capture the qualitative trend, and full Eliashberg theory is
required if one wishes to be quantitative. It is also clear that
as interband impurity scattering increases, the jump in the
specific heat at the second transition, seen in the solid curve,

FIG. 11. Upper frame: Upper and lower gap ratios, 2D1,2/kBTc0,
vs T/Tc0, whereTc0 is theTc for thel11 channel alone, with alll’s
zero. Shown are curves for various off-diagonall’s with l11=1 and
l22=0.5. Three pairs of curves are shown forl12=l21=0.0001
ssolidd, 0.01 sshort-dashedd, and 0.1slong-dashedd. Lower frame:
Same as for upper frame except now are shown:l12=0.1 andl21

=0.01 si.e., a=10d sdot-dashedd and l12=0.01 andl21=0.1 si.e.,
a=0.1d sdottedd.

FIG. 12. Top frame: Specific heat in the superconducting state
normalized to the normal state,CSsTd /gT, vs T/Tc0, whereTc0 is
the Tc for the pure case. Here,l11=1, l22=0.5, and l12=l21

=0.0001. Shown are curves for varyingt12
+ = t21

+ equal to 0.0ssolidd,
0.01sshort-dashedd, 0.2slong-dashedd, and 0.5sdot-dashedd in units
of Tc0. Notice that the value of the jump atTc first dips and then
rises with impurity scattering. Middle frame: 2D1,2/kBTc0 vs T/Tc0.
The upper three curves correspond to 2D1/kBTc0 and the lower
three to 2D2/kBTc0, with the curves labeled the same way as in the
upper frame. Only the first three impurity cases are shown for clar-
ity. The other progresses in the same manner with theTc reducing
further and the gaps moving closer to a common value. Bottom
frame: The deviation functionDstd vs T/Tc0, again with the curves
labeled the same way as in the top frame.
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is rapidly washed out and little remains of this anomaly in
the dot-dashed curve. Even the long-dashed curve shows
little structure in this region, in analogy to what we found to
hold for the case of increasing the off-diagonal electron-
phonon elements. Note, however, there remains a point of
inflection that has moved to higher temperature. Such a shift
of the inflection point can also be brought about by increas-
ing the off-diagonall’s as seen in Fig. 9.

The temperature dependence of the gap ratiossmiddle
frame of Fig. 12d also mirror what we found in Fig. 11. The
dashed curves exhibit quite distinct temperature dependences
betweenD1 andD2, while this is no longer the case for the
pair of long-dashed curves. Note that, as compared to the
solid curve, the anisotropy in the gaps for the long-dashed
curve has been reduced considerably. The upper gap has de-
creased and the lower increased even more. The washing out
of the gap anisotropy by off-diagonal impurity scattering is
expected and has been studied theoretically33,53 and
experimentally.54 For carbon doping, the gaps are seen to
merge at about 13% for whichTc has been reduced to about
20 K with the large gap reducing to its BCS value and the
smaller gap moving upwards only very little in contrast to
our model calculations for which the lower gap changes rela-
tively more and isotropy is reached at about a 30% reduction
in Tc. Of course, as one dopes, the electronic density of states
and the electron-phonon parameters also change,55 and one
needs to include these in addition to any interband scattering.

Finally, the effect of interband ordinary impurity scatter-
ing on the deviation function, shows a behavior similar to
that found for paramagnetic impurities in one-band
superconductors.35 Initially, as in the other properties, the
impurities smear the structure related to the second transition

temperaturesin this case the cusp feature in the solid curved,
and once the two bands are fairly well integrated, then like
paramagnetic impurities, the effect here is to keep the mini-
mum at the same temperature but change its value. A key
difference though is that, in the case of paramagnetic impu-
rities in one-band superconductors, the extremum in the
curve moves from positivesand strong couplingd to negative
sand weak couplingd because the gap is being reduced to-
wards zero. Here, with the two bands, the impurities do not
reduceTc, and hence the gap, to zero, but rather to a finite
value related to the washing out of the anisotropy between
the two bands, and hence the extremum in this case will
move from negativeswhere it is positioned due to large an-
isotropyd to smaller values, reflecting this.

Next we turn to the results given in Fig. 13, which shows
the temperature dependence of the superfluid density for
various values of impurity parameters. Again,l11=1, l22
=0.5, and l12=l21=0.0001 with the Lorentzian spectra.
What is illustrated in these four frames is how very different
the effect oft11

+ , t22
+ , t12

+ , and t21
+ are. The solid curve is for

reference and is the pure case. Once again, for the case of
varying t12

+ and t21
+ , we have violated the constraint that their

ratio must be fixed by the ratio of the density of states. This
we can do theoretically to decouple and, therefore, illustrate
the effects of these different scattering channels, but in real
systems, they would be constrained and the net result would
be a combination of the effects from both channels. The top
left frame shows the effect on the superfluid density of in-
creasing the impurity scattering in the first bandsintraband
scatteringd. Such impurities reduce the superfluid density in
band 1 while leaving band 2 unaltered. In the lower right-
hand frame it is the superfluid density in the second band that
is reduced, leaving the first unchanged.Tc is unaffected by
intraband impurity scattering in isotropics-wave supercon-
ductors due to Anderson’s theorem. The top right-hand frame
shows that increasingt12

+ reduces the critical temperature as
well as reduces the superfluid density in band one without,
however, having much effect on the second band. The kink
associated with the rise of the second band is hardly changed
as t12

+ is not the integrating variable, rather it ist21
+ which

integrates the bands rapidly as seen in the lower left-hand
frame. However, in this case, the critical temperature is
hardly changed and there is little change to the curve above
T/Tc0.0.7.

VI. THE LIMIT OF PURE OFF-DIAGONAL COUPLING

While the two-band nature in MgB2, driven by the
electron-phonon interaction, is well established, there have
been many reports of possible two-band superconductivity in
other systems, including the conventionalA15 compound
Nb3Sn.56 With Tc=18 K and a main gap 2DM ,4.9Tc, there
is specific heat evidence for a second gap at 0.8Tc. Other
systems are NbSe2,

57 Y2C3 and La2C3,
58 and possibly a sec-

ond nonsuperconducting band in CeCoIn5.
59 In the triplet

spin state superconductor Sr2RuO4,
60 a small gap is induced

in the second band. As two-band superconductivity is likely
to be a widespread phenomenon, not confined to electron-
phonon systems, it seems appropriate to investigate further

FIG. 13. Effect of impurity scattering on the superfluid density
fl0s0d /lsTdg2 plotted vsT/Tc0, whereTc0 andl0s0d are for the pure
case. Each frame shows the effect of the different type of impurity
scattering, keeping all other impurity terms equal to zero. The spec-
trum parameters arel11=1, l22=0.5, andl12=l21=0.0001. The
solid curve in all cases is for the pure case ofti j

+ =0. In the upper left
frame:t11

+ /Tc0=0.2 sshort-dashedd and 2.0slong-dashedd. In the up-
per right frame:t12

+ /Tc0=0.2 sshort-dashedd and 0.4slong-dashedd.
In the lower left frame:t21

+ /Tc0=0.02 sshort-dashedd and 0.1slong-
dashedd. In the lower right frame:t22

+ /Tc0=0.2 sshort-dashedd and
2.0 slong-dashedd.
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an extended range of parameter space for theli j ’s and in
particular the possibility that the off-diagonal elements are
the dominant mechanism for superconductivity.

In the limit of pure off-diagonal coupling, wherel11
=l22=0, Eq. s12d for the couplingA, which determinesTc
from Eq. s11d , simplifies to

A =
1

Îl̄12l̄21

, s51d

and the ratio of the gap toTc given in Eq.s21d becomes

2D1

kBTc
= 3.54 expFA −

u

l̄21
G . s52d

The ratiol̄12/ l̄21=a* can be takenù1 and Eq.s20d for the
gap anisotropyu=D2/D1 written as

a*u2 − 1 =
Îa*

A
u ln u. s53d

This equation givesu in terms of a* and A. Since by its
definition 0,uø1, u ln u is negative so a condition on ob-
taining a solution of Eq.s53d is that

a*u2 − 1 , 0 or a* ø
1

u2 . s54d

For a trial solution ofu=0.1, this would give 1,a* ,100.
For a* =60, as an example,A=4.46 and 2D1/kBTc.9.7,
which is very large. This occurs forTc/vln,10−2, using
lns1.13vln /Tcd=A, which is in the weak coupling regime.
However, to achieve an upper gap ratio value greater than 11
or so, will correspond an unrealistically small value ofTc/vln
sof order 10−10, for exampled. In Fig. 14, we show results in
the upper frame for 2D1,2/kBTc versusl12 for various l21
values. In the lower frame, we showu versusl12. The dif-
ference between Fig. 14 and Fig. 3 shows that large values of
2D1/kBTc are more naturally obtained in the pure off-
diagonal regime and are associated as well with small values
of u and the weak coupling regime. This latter feature im-
plies that there will be no further strong coupling corrections
to an already large gap ratio. We have also calculated the
thermodynamics and superfluid density in this regime, for a
range of parameters, but have found these properties to show
quite ordinary behavior and have discovered no new physics.
For the sake of brevity, we present none of these results but
instead note that in this limit thex’s are

x1 =
1

2F1 +
l̄21

l̄12

G =
1

2
F1 +

1

a* G , s55d

x2 =
1

2F1 +
l̄12

l̄21

G =
1

2
s1 + a*d, s56d

with a* = l̄12/ l̄21, and hence, the various dimensionless ra-
tios are

DC

gTc
= 1.43F 4a*

s1 + a*d2G , s57d

and

hcs0d =
D1

Tc

1

p
Î7zs3d

32
s1 + a*dÎ1 + au2

a + a*2 , s58d

and

yL8s0d
uyLsTcduTc

=
1

4

s1 + abds1 + a*d
a* + ba

, s59d

where b=vF2
2 s1+l12d /vF1

2 s1+l21d. The ratio for the zero-
temperature critical field of Eq.s38d does not change its form
and so is not repeated here. These ratios behave, qualita-
tively, no differently from what we found in Sec. III. A dif-
ference worth noting is the following. In linear order, the
effect of interband impurity scattering onTc takes the form
s16d–s18d:

DTc

Tc0
= −

p2

8
r12

± F1 7Î l̄21

l̄12

G2

, s60d

which is always negative and larger for paramagnetic than
for normal impurities. It can also be very large forr12

± @1.
This is another distinction between pure off-diagonal cou-

FIG. 14. Upper frame: Gap ratios for the uppers2D1/kBTcd and
lower gaps2D2/kBTcd as a function ofl12 for varying l21: 0.01
ssolidd, 0.1 sdottedd, and 0.3sdashedd. Here,l11=0, l22=0. This is
for comparison with Suhlet al. sRef. 9d. Lower frame: Gap aniso-
tropy,u=D2/D1, vs l12 for the same parameters and curve labels as
the upper frame. Note thatl12ùl21 is plotted. Withl12,l21, the
roles are simply reversed with 1↔2 and D2 would become the
large gap, etc.
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pling and MgB2, for example. In obtaining Eq.s60d, we have

used the fact thatl̄12/ l̄21=r12/r21 and l̄12/ l̄21.1.

VII. CONCLUSIONS

We have calculated the thermodynamics, gap anisotropy
and penetration depth for a two-band Eliashberg supercon-
ductor. For the parameters appropriate to MgB2, which are
obtained from first-principle band structure calculations of
the electron-phonon spectral functions, we find good agree-
ment with the existing experimental data. We reduce the
Eliashberg equations to a renormalized BCS form by appli-
cation of the two-square-well approximation. Comparison of
these results with those from the full Eliashberg equations
allows us to determine strong coupling corrections, which we
find to be significant in MgB2. When the parameters for the
electron-phonon interaction are moved away from those spe-
cific to MgB2, the strong coupling corrections can become
much larger, and superconducting properties reflect this fact,
as well as the change in anisotropy between the bands.
Within the luu approximation, we derive simple analytic ex-
pressions for the various dimensionless BCS ratios that
would be universal in the one-band case, but are not in the
two-band one. They depend on the anisotropy and particu-
larly on the ratio of the electronic density of states in the two
bands. The anisotropy in the ratio of the two gaps at zero
temperature is investigated and is found to increase asl22 is
reduced and made repulsive, in which case the existence of
superconductivity in the first band, and the off-diagonal cou-
pling to it, induces a gap in a band, which would, on its own,
not be superconducting.

We have paid particular attention to the limit of nearly
decoupled bands, i.e., small interband coupling, with the su-
perconductivity originating froml11 andl22 in the first and
second band, respectively. Whenl12,l21→0, there are two
transitions atTc1 andTc2 and two specific heat jumps. As the
interband coupling is turned on, the two bands become inte-

grated and the second transition smears. We have found that
the two parameters,l12 and l21, have very different effects
on the smearing of the second transition and onTc. l12
largely modifiesTc, reducing it, whereasl21 alters the lower-
temperature region around the second transition. Only very
small values ofl21, as compared withl11 and l22, are
needed to cause large changes in the region aroundTc2. It
was found that a small amount of interband impurity scatter-
ing can also significantly smear the second transition, and so
reduce the distinction between the two bands. However, even
when the two bands are well integrated and a sharp second
transition is no longer easily discernible, this does not imply
that the superconducting properties become those of a one-
band superconductor. Anisotropy remains and this affects
properties.

In view of the possible widespread occurrence of two-
band superconductivity, even for systems with exotic mecha-
nisms not necessarily due to the electron-phonon interaction,
we deemed it of interest to consider the case of zero intra-
band coupling,l11=l22=0, with superconductivity due only
to the interbandl12 andl21, which need not have the same
value. When these are very different, the resulting gaps are
quite different from each other and the ratio ofD1 to Tc can
become large particularly in the weak coupling limit. This is
a distinguishing feature of pure off-diagonal coupling. An-
other distinguishing feature is the possibility of a rapid re-
duction ofTc towards zero by interband impurity scattering,
as compared with the case for which the diagonal elements
play the leading role.
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