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The tunneling magnetoresistancesTMRd of a hexagonal array of dipolar-coupled anisotropic magnetic
nanoparticles is studied using a resistor network model and a realistic micromagnetic configuration obtained by
Monte Carlo simulations. Analysis of the field-dependent TMR and the corresponding magnetization curve
shows that dipolar interactions suppress the maximum TMR effect, increase or decrease the field sensitivity
depending on the direction of applied field, and introduce strong dependence of the TMR on the direction of
the applied magnetic field. For off-plane magnetic fields, maximum values in the TMR signal are associated
with the critical field for irreversible rotation of the magnetization. This behavior is more pronounced in
strongly interacting systemssmagnetically softd, while for weakly interacting systemssmagnetically hardd the
maximum of TMRsHmaxd occurs below the coercive fieldsHcd, in contrast to the situation for noninteracting
nanoparticlessHc=Hmaxd or in-plane fields. The relation of our simulations to recent TMR measurements in
self-assembled Co nanoparticle arrays is discussed.
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I. INTRODUCTION

Intense research activity in the magnetic properties of or-
dered nanoparticle arrays1–3 is motivated on one hand by the
potential of these materials in advancing the magnetic stor-
age density limit to the range of 1 Tb/ in2, and on the other
hand by basic scientific interest to reveal the underlying
mechanism of magnetization reversal in a collection of inter-
acting magnetic nanoparticles. The hexagonal arrangement
of self-assembled nanoparticle arrays rules out the complica-
tions introduced by positional randomness in other
nanoparticle-based systemssferrofluids, granular metalsd and
makes the theoretical analysis simpler. The investigation of
the hysteretic behavior and the underlying magnetization re-
versal mechanism in nanoparticle arrays is a central issue in
the research effort on magnetic nanoparticle arrays. The re-
quirements for high packing densities inevitably introduce a
new aspect in the magnetization dynamics of these assem-
blies, namely, the collective behavior caused by particle in-
teractions. The insulating nature of the surrounding the nano-
particle material rules out any type of exchange forces
between them, because it prevents electron transfer between
neighboring nanoparticles. On the other hand, magnetostatic
interactions are always present and their effects have been
frequently demonstrated in experiments on self-assembled
arrays. In particular, reduction of the remanence at low
temperature,4 increase of the blocking temperature,5–7 in-
crease of the barrier distribution width,8 deviations of the
zero-field cooled magnetization curves from the Curie
behavior,3 difference between the in-plane and normal-to-
plane remanence,9 and increase of the blocking temperature
with frequency of applied field10 have been observed and
attributed to interparticle magnetostatic interactions. In addi-
tion to the experimental work, various numerical studies that
focused on the ground state configuration and the hysteresis
behavior of dipolar interacting nanoparticle arrays have ap-
peared. The interplay of dipolar interactions and perpendicu-

lar anisotropy was shown11 to induce a reorientation transi-
tion below a critical temperature and interaction-induced
shape anisotropy of a finite sample controls the magnetiza-
tion reversal mode. Dipolar interactions were found to de-
crease the coercive field of magnetic nanoparticle arrays in-
dependently of the array topologyssquare or hexagonald
despite the fact that the ground state configuration is deter-
mined by the array topology.12 The presence of an incom-
plete second layer with hexagonal structure does not destroy
the ferromagneticsFMd ordering of the ground state,13 while
even slight structural disorder within the array destroys that
ordering.14 On the other hand, higher ordersquadropolard
magnetostatic interactions were shown to stabilize the long
range order of the ground state in a nanoparticle array.15

Although great theoretical and experimental effort has
been made towards the understanding of the magnetic prop-
erties of self-assembled nanoparticle arrays, very little work
has been done on electronic transport in these systems. In a
recent work, Blacket al.2 demonstrated that the conductivity
of a Co nanoparticle self-assembled film is dominated by
spin-dependent tunneling, which leads to larges,10%d tun-
neling magnetoresistancesTMRd values at low temperature
s,20 Kd. In these experiments, a TMR signal with rich
structure was observed, which was attributed to the details of
the underlying magnetization reversal mechanism. Spin-
dependent transport measurements have been previously
used as an indirect probe of the micromagnetic structure in
spin valves,16 magnetic tunnel junctions,17 artificial ferro-
magnetic layers,18 and ferromagnetic rings.19 The basic idea
behind these experiments is that the spin-dependent scatter-
ing mechanism leads to a resistivity proportional to thesav-
eraged relative orientation of the magnetic moments of sepa-
rated magnetic regionsseither nanoparticles or magnetic
domains with different magnetization orientationd. Thus, re-
sistivity measurements could in principle reveal the underly-
ing magnetic correlations. Indeed, in the above-mentioned
experiments,16–19 the underlying micromagnetic structure
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was efficiently correlated to the magnetoresistance signal.
Resistor networksRNd models have been implemented in the
interpretation of magnetoresistance measurements in the
above-mentioned experiments16,18 and earlier experiments in
magnetic granular films.20–22 More recently, Inoue and
Maekawa23 have introduced a RN model that interpreted the
weak temperature-dependent TMR in Co-Al-O granular
films. The Inoue-Maekawa model combined the ideas of
Helman and Abeles21 on the electron hopping mechanism in
granular metals, according to which the intergranular con-
ductivity decays proportionally to the intergranular distance
with the model of Julliere24 on spin-dependent transport in is
proportionaly to the relative orientation of the magnetiza-
tions in the FM layers.

In conductivity measurements in self-assembled Co nano-
particle arrays,2 an exponential temperature dependence
ln G,−T−1 was found, which is characteristic of a thermally
activated tunnelingshoppingd process between nanoparticles
with negligible size dispersion. Furthermore, contributions to
the electric current from a cotunneling process were ruled
out.2 Based on these conclusions, we suggest that a RN com-
posed of resistors defined according to the Inoue-Maekawa
model would be appropriate to study charge transport in self-
assembled magnetic nanoparticle arrays.

In this paper, we study by numerical simulations the cor-
relations between the micromagnetic structure of hexagonal
arrays of dipolar interacting nanoparticles and the tunneling
magnetoresistance of the sample. To this end, Monte Carlo
sMCd simulations of the magnetic configuration at a finite
temperature and applied field are performed. The conductiv-
ity of the sample is obtained, at equilibrium, by numerical
solution of a RN model which incorporates the detailed mag-
netic configuration.

The remainder of the paper is organized as follows In Sec.
II, we describe the model of the magnetic structure and the
method of simulation. The RN model is also described in
that section. In Sec. III, we present numerical results and
discuss the dependence of the TMR on the applied field, the
interparticle distance, and the direction of applied field. A
discussion of our results and a summary of this work are
given in Sec. IV.

II. THE MODEL AND THE SIMULATION METHOD

Let us considerN identical spherical particles with diam-
eterD forming a two-dimensional triangular lattice in thexy
plane with lattice constantdùD. The size dispersion of the
nanoparticles can be neglected to a good approximation, as
for self-assembled samples a very narrow size distribution
ss<5%d has been achieved.2 The particles are single do-
main, with uniaxial anisotropy in a random direction, and
they interact via dipolar forces. The total energy of the sys-
tem is given as

E = go
i

sŜi · Ŝjd − 3sŜi · R̂ijdsŜj · R̂ijd
sRij /dd3 − ko

i

sŜi · êid2

− ho
i

sŜi · Ĥd, s1d

whereŜi is the magnetic moment directionsspind of particle

i, êi is the easy-axis direction, andRij is the center-to-center
distance between particlesi and j . Hats indicate unit vectors.
The energy parameters entering Eq.s1d are the dipolar en-
ergy g=m2/d3, where m=MsV is the particle moment, the
anisotropy energyk=K1V, and the Zeeman energyh=mH
due to the applied fieldH. The relative strength of the energy
parameters entering Eq.s1d, the thermal energyt=kBT, and
the treatment history of the sample determine the micromag-
netic configuration. However, the transition from single-
particle to collective behavior is determined solely by the
ratio of the dipolar to the anisotropy energyg/k=sp /2d
3sMs

2/K1dsD /dd3. The reported values3,5,9,10 for fcc or hcp
Co nanoparticles areg/k,0.2−0.4sD /dd3, while for the soft
«-Co phase, higher values are expected.3 These values define
the range of parameters to be used further on in our simula-
tions.

The magnetic configuration of the nanoparticle ensemble
under an applied fieldH and finite temperatureT was ob-
tained by a MC simulation, using the standard Metropolis
algorithm.25 At a given temperature and applied field, the
system was allowed to relax towards equilibrium using 103

MC steps per spin, and thermal averages were calculated
over the subsequent 104 steps. The results were averaged
over 2–10 independent random number sequences corre-
sponding to different realizations of thermal fluctuations.
Simulations were performed on a rectangularLx3Ly simu-
lation cell withLx/d=16 and Ly/d=8Î3. For the simulations
of the magnetic structure, we used free boundaries in thez
axis and periodic boundaries in thexy plane to avoid unde-
sirable demagnetizing effects due to free poles at the sample
boundaries. The dipolar interactions were summed to infinite
order in-plane, using the Ewald summation method for a
quasi-two-dimensional system.26

We proceed with the description of the RN model em-
ployed to study the TMR. For a given micromagnetic con-

figuration hŜij of the nanoparticle array, we define the con-
ductivity between two nanoparticlesi and j as2,23

si j = s0s1 + P2 cosui jdexps− Rij /a − Ec/kBTd, s2d

wheres0=2e2/h is the conductivity quantum,P is the spin

polarization of the conduction electrons, cosui j =sŜi ·Ŝjd, Ec

=e2/2C is the activation energy to charge a neutral nanopar-
ticle by addition of a single electron,C is the nanoparticle
capacitance relative to its surrounding medium, anda
=" /Î8m*sU−EFd is the decay length of the electron wave
function in the insulating barrier of heightU relative to the
Fermi energy. In all our simulations we assumeda=d, as a
sufficient requirement to allow charge transfer between
neighboring nanoparticles andP=0.34 as an appropriate
value for Co nanoparticles.2,27 As shown by Inoue and
Maekawa,23 consideration of the change in magnetic energy
of nanoparticles due to tunneling of carriers leads to anin-
creaseof the global resistance with applied field and it also
has a negligibly small contribution for Co nanoparticles at
temperatures aboveT<3 K. Since transport measurements
in Co nanoparticle arrays2 were performed at 4.5 K, we ex-
pect that the change in magnetic energy is not important, and
it has been neglected in Eq.s2d.
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Charge conservation on every node of the network im-
plies

o
j

si jsfi − f jd = 0, s3d

wherehfij are the electric potentials. We consider two elec-
trodes attached to the leftscathoded and rightsanoded side of
the sample along thex axis sFig. 1d. The width of the elec-
trodes defines approximately the region of the sample
through which the electric current flows and, consequently,
the fraction of the nanoparticles that determine the thermal
average value of TMR. In accordance with the experimental
setup,2 we have chosenw=10sdÎ3/2d for a sample withLy

=16sdÎ3/2d. However, an increase of the electrode width up
to w=Ly, did not modify our numerical results substantially,
provided that demagnetizing effects due to free boundaries
are negligible, namely, periodic boundaries are used and/or a
small dipolar coupling strengthsg/kø0.2d is assumed.
Nanoparticles in contact with the electrodes share the same
potential with them; thus, the boundary conditions are

fi = 0; i P C s4d

and

fi = f0; i P A, s5d

where f0 is the voltage applied across the sample. The
boundaries along they axis are free, namely, there is no
current flow across they-axis boundary. The effective con-
ductivity of the sample is obtained from the requirement that
the total power consumption in the network must be equal to
the sum of the power consumptions on all the resistors of the
network.28 Thus, the effective conductivity is given as

s =
1

2f0
2o

i,j
si jsfi − f jd2. s6d

For simplicity, we have takenf0=1; in other words, all po-
tentialshfij are scaled by the applied voltage. This assump-
tion does not affect our results since the interparticle conduc-
tivities fEq. s2dg are voltage independentsOhmic regimed.
The set ofN coupled linear equations in Eq.s3d with the
boundary conditions given by Eqs.s4d ands5d are solved for

the unknown potentialshfij by triangular decomposition29

and the sample conductivity is obtained from Eq.s6d. The
result depends obviously of the magnetic configuration,
which is used as input to obtain the interparticle conductivi-
tiesfEq. s2dg. Consequently, the sample conductivity depends
on the applied magnetic field. A thermal average is obtained
by averaging the conductivity values over a sequence of
equilibrium spin configurations produced by the MC algo-
rithm. Finally, the magnetoresistance of the sample is defined
by

MRsHd =
RsHd − Rs

Rs
=

ss − ssHd
ssHd

, s7d

whereRs andss denote the saturation values of the resistiv-
ity and conductivity, respectively.

III. NUMERICAL RESULTS

A. Dependence of magnetization and TMR on the dipolar
strength

1. In-plane magnetic field

We discuss first the variation of field-dependent TMR on
the dipolar strength for an in-plane magnetic field. In Figs. 2
and 3 we show the lower branch of the hysteresis loop and
the corresponding variation of TMR with applied field at a
temperature belowst /k=0.02d and abovest /k=0.15d the

FIG. 1. Sketch of the nanoparticle array used in our simulations
with attached electrodessC, Ad on opposite boundaries along thex
axis. The width of the electrodes shown isw=10sdÎ3d /2, and they
are coupled only to the outermost nanoparticle of each row.

FIG. 2. Dependence of the low-temperaturest /k=0.02d magne-
tization and TMR on the interparticle dipolar strength. The mag-
netic field is applied in-plane along thex axis. Only the lower
hysteresis branch is shown.
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blocking temperaturestb/k=0.13d. The blocking temperature
stbd for the noninteractingsg=0d nanoparticles has been ob-
tained as the temperature above which the remanence of the
sample is smaller than,1%. We should mention at this point
that the absence of true spin dynamics in the Metropolis MC
simulation algorithm causes the lack of a physical time scale
in the algorithm and consequently “time” is measured in MC
steps. The observation time in our simulations is 104 MC
steps per spin and corresponds to a physical time oftMC
,100 nssRef. 30d for noninteracting nanoparticles. This is
much shorter than a typical magnetometry observation time
tobs,100 s and consequently a much higher blocking tem-
perature is predicted by our simulationssTb<K1V/7.7kBd
than the typical experimental valuesTb<K1V/25kBd. How-
ever, Metropolis MC simulations mimic efficiently the role
of thermal fluctuations and they reproduce qualitatively the
trend of the experimental data as a function of temperature.30

For noninteracting nanoparticles with random anisotropy,
the well known result for the remanence at zero temperature
sMr /Ms=0.5d is reproduced. For interacting nanoparticles an
increase of the remanence with coupling strength is seen.
This trend is dictated by the ferromagnetic character of the
dipolar interactions on a hexagonal lattice, which also leads
to ferromagnetic long range ordering at the ground state, as
has been previously demonstrated by various authors.9,12–15

In addition, interactions cause a collective reversal of the
magnetic moments under an applied field, and as a conse-

quence of that, the coercive field decreases with the dipolar
strength. The effects of dipolar interactions can also be ob-
served in the MR curves. In particular, the maximum TMR
effect sHmaxd occurs at the coercive fieldsHmax=Hcd and a
clear downshift of the TMR peak position with increasing
dipolar strength is observed. The remanent TMR value de-
creases with interactions, which is explained by the fact that
the TMR value is a measure of the misalignment of the mag-
netic moments in the system. The FM character of dipolar
forces in the hexagonal lattice enhances the alignment of the
moments at zero field and consequently reduces the corre-
sponding TMR value.

Next, let us comment on the sensitivity of the MR curve;
namely, the absolute value of the slope with respect to the
applied field. In the weak coupling regimesg/kø0.2d an
increaseof the sensitivity with increasing dipolar strength is
observed, both below and above the coercive field. The same
trend is followed by the field-dependent susceptibility in the
magnetization curves. The underlying physical mechanism
that emerges from the above results is that in the weak cou-
pling limit, the moments rotate almost incoherently to the
applied field, with dipolar interactions acting as a perturba-
tion that partially aligns them during rotation. Under reduc-
tion of the applied field from negative saturation along thex
axis, dipolar interactions tend to align the moments along the
negativex axis until the field reaches a large positive value
enough to overcome the anisotropy barrier. Above this value,
reversal of the moments is obtained and the interactions
again facilitate the alignment of the moments along the posi-
tive x axis. Thus, the TMR sensitivity is enhanced both in the
rise and the fall of the TMR curves. When the dipolar cou-
pling increases the alignment of the moment during rotation
becomes more efficient and eventually, in the strong cou-
pling regimesg/k,1d, dipolar interactions dominate the ro-
tation process and they induce a collective rotation of the
moments, which causes an abrupt change of the magnetiza-
tion at the coercive field and the suppression of the TMR
signal. The data in Fig. 2 show that below the blocking tem-
perature, the anisotropy is the dominant mechanism deter-
mining the position and value of the TMR peak, even when
it is comparable to the dipolar strengthsg/k,1d, while in-
teractions modify mainly the sensitivity. On the other hand,
above the blocking temperaturesFig. 3d, the sensitivity of
TMR is not a monotonic function of the dipolar strength, but
it increaseswith dipolar strength forg/kø0.3 and it de-
creasesfor g/kù0.3, followed by a suppression of the over-
all TMR signal. In the high-temperature regime, the aniso-
tropy does not play any role and the observed behavior of the
TMR signal is due solely to the collective rotation of the
nanoparticles driven by dipolar interactions. The decrease of
sensitivity occurs mainly because of the strong suppression
of the TMR effect.

Finally, a comment on the role of boundary conditions.
The trends of the magnetization and TMR shown in Fig. 2
remain unchanged when free boundaries in thex and y di-
rections are assumed, provided that the dipolar coupling is
weak sg/kø0.2d, which is the case corresponding to the
most common transition metalsFe, Cod nanoparticles. For
stronger coupling sg/kù0.3d, demagnetization effects

FIG. 3. Dependence of the high-temperaturest /k=0.15d magne-
tization and TMR on the interparticle dipolar strength. The mag-
netic field is applied in-plane along thex axis. The blocking tem-
perature for the noninteracting nanoparticles is atstb/k=0.13d.
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modify the magnetic structure of the sample and, corre-
spondingly, the TMR curve. As a general characteristic, we
have seen that free boundaries lead to a slightly broader
TMR peak around the reversal field, arising from a wider
local field distribution introduced by the free sample bound-
aries.

2. Normal-to-plane magnetic field

A more dramatic dependence of the magnetic properties
on the dipolar strength is expected for an applied field nor-
mal to the plane of the array, because dipolar interactions
favor the in-plane ordering of the moments, while the ap-
plied field drives the moments normal to the plane. The com-
petition between these two orthogonal energy contributions
is revealed in the strong dependence of the magnetic proper-
ties on the dipolar strengthsFig. 4d. With increasing dipolar
strength, both the remanence and the coercivity are reduced
and the hysteretic behavior of the sample is gradually sup-
pressed and eventually lost in the strong coupling regime
sg/k,1.0d. Correspondingly, the sensitivity of the TMR
curve is constantly reduced with increasing coupling
strength, and the saturation field increases.

The competition between the in-plane anisotropysinduced
by the dipolar interactionsd and the normal-to-plane applied
field is best seen in the infinite coupling limitsg=1, k=0d
shown in Fig. 5. In this case the system is anhysteretic be-
cause the applied field is normal to the easy plane. At low

temperaturest /g=0.02d, the magnetization curve increases
linearly with the field until the valueh/g<16.5, when satu-
ration of the moments along the field is achieved. This is a
critical field for saturation normal to the plane, as can be
verified by the following argument. Consider the low-
temperature magnetization process. At zero field, the dipoles
located on a hexagonal lattice in thexy plane are in their
ground state; namely, they are FM ordered along thex axis
sFig. 1d. Upon application of an external field along thez
axis, the dipoles rotate coherently in thexz plane and the
moments assume the formmi =mssinu ,0 ,cosud, whereu is
the azimuth angle of the dipoles. The total energy of the
system is then given by the expression

E = − Nhcosu +
1

2
NgSo

i

1

sr i/dd3 − 3 sin2 uo
i

xi
2

sr i/dd5D .

s8d

The critical fieldsh0d for irreversible rotation of the moments
is obtained from the requirement that the first and second
derivatives of the total energy are equal to zero. The second
term of the sum in Eq.s8d can be numerically calculated12

and is equal to +5.517 09, while the term containing the first
sum makes a constant contribution to the energy and is irrel-
evant to the critical field. After some simple algebrak,31 one

FIG. 4. Low-temperaturest /k=0.02d magnetization and TMR
for a normal-to-planesz axisd magnetic field and various dipolar
strengths. Only the lower hysteresis branch is shown.

FIG. 5. Magnetization and TMR for dipolar coupled isotropic
sk=0d nanoparticles for temperatures close to zerost /g=0.02d, be-
low the ferromagnetic transitionst /g=0.5d, and above the ferro-
magnetic transitionst /g=2.0d. The magnetic field is normal to the
plane along thez axis.
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obtainsh0/g=3b<16.551, which is in very good agreement
with the simulation results in Fig. 5.

With increasing temperaturest /g=0.5d the critical field is
reduced and the transition to saturation is rounded due to
thermal fluctuations. As expected, moment disorder is maxi-
mized close to the critical field, and consequently the TMR
signal shows a peak around this field. This peak is rather
weak at very low temperaturest /g=0.02d because the mo-
ments rotate coherently. As temperature risesst /g=0.5d,
thermal fluctuations of the moments are introduced and a
double-peak structure of the TMR develops. With further
increase of temperaturest /g=2.0d, the pair of peaks merges
to a single one occurring at zero field. The single-peak be-
havior of TMR indicates that the system is above the critical
temperature for dipolar-induced FM ordering.

B. Dependence of magnetization and TMR on the magnetic
field direction

1. Variation of the azimuth angle of the magnetic field

The variation of the magnetization and TMR at low tem-
peraturest /k=0.02d with the azimuth anglesud of the mag-
netic field for an assembly with weak dipolar coupling
sg/k=0.1d is shown in Fig. 6 and for moderate coupling
sg/k=0.2d in Fig. 7. The applied field remains in all cases,
shown in Figs. 6 and 7 within thexz planesf=0d. The most
important feature in these plots is thelarge decrease of the

TMR sensitivity as the magnetic field approaches thez axis.
This trend is clearly seen even in the weak interaction regime
sFig. 6d. The strong dependence of the TMR curve on the
azimuth angle arises from the competition between the in-
plane anisotropy due to interactions and the off-plane direc-
tion of the field. In particular, when an in-planesx axisd field
is gradually reversed, dipolar interactions decrease the TMR
sensitivity by introducing an effective anisotropy barrier to
in-plane rotation of the moments, as discussed earlier. Con-
trary to this behavior, when the applied field makes an angle
with thexy plane, it acts against the Lorentz field that favors
the in-plane alignment of the moments. Consequently, the
saturation field is much higher and the TMR sensitivity is
reduced. For weakly coupled nanoparticlessFig. 6d, the ro-
tation of the moment is governed by the anisotropy energy,
as deduced from the almost constant value of the coercive
field and the TMR peak with the field direction. For moder-
ate couplingsFig. 7d, however, not only the sensitivity de-
creases more dramatically as the azimuth decreases, but a
shift of the coercivity and the TMR peak is seen. A new
feature that occurs for moderate couplingsFig. 7d is that the
field corresponding to the TMR maximumshmaxd can be
greater than the coercive fieldshcd, as occurs for an applied
field with azimuthu=150. The appearance of the TMR peak
in hexagonal arrays of nanoparticles at a field higher than the
coercive field is in contrast to the commonly met situation in
random assemblies of interacting nanoparticlessgranular sol-
idsd, in which the maximum signal is observed at the coer-

FIG. 6. Variation of the low-temperaturest /k=0.02d magnetiza-
tion and TMR curves with the direction of the magnetic field rela-
tive to thez axis sazimuthd. The field is rotated within thexz plane.
The nanoparticles are weakly coupledsg/k=0.1d.

FIG. 7. Variation of the high-temperaturest /k=0.02d magneti-
zation and TMR curves with the direction of the magnetic field
relative to thez axis sazimuthd. The field is rotated within thexz
plane. The nanoparticles have moderate dipolar strengthsg/k
=0.2d.
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cive field. As discussed above, in the case of a normal-to-
plane magnetic fieldsFig. 5d, strong dipolar forces can
suppress the hysteretic behavior and introduce a critical field
at which a TMR peak is observed. Taking this idea one step
further, we suggest that that the occurrence of a TMR peak is
associated with a critical field rather than with the coercive
field. We deduce from the TMR data shown in Fig. 7 that for
directions close to the normalsu=00d or close to the plane
su=900d, the critical field is close to the coercive, but the
deviation between the two is maximum aroundu=150. The
mechanism producing the deviation between the critical and
the coercive field is generated by the competition between
the three types of energies occurring in the two-dimensional
nanoparticle array and the different configurations that they
favor: the Zeeman energy that favors alignment along the
external field, the dipolar interactions that favor in-plane
alignment, and anisotropy that favors random alignment.

2. Variation of the polar angle of the magnetic field

Dipolar interactions in a hexagonal lattice induce an in-
plane anisotropy with three equivalent easy axes that coin-
cide with the symmetry axes of the lattice. The presence of
three equivalent in-plane easy axes reduces the anisotropy
barriers for in-plane rotation of the moments and renders the
system weakly anisotropic to in-plane rotations of the mag-
netization. In Fig. 8 we plot the magnetization and TMR for
various values of the polar anglesfd and for moderate dipo-

lar coupling sg/k=0.2d. The TMR curves for different in-
plane directions of the applied field nearly overlap, underlin-
ing the weak anisotropy of the sample to in-plane rotations
of the moments. It is only in the strong coupling limitg/k
,1 snot shown hered that the in-plane anisotropy is domi-
nant and vortices form during reversal of the magnetization,
giving rise to steps in the hysteresis curve and to jumps in
the TMR curve.

IV. DISCUSSION

Dipolar interaction effects on the MR have been exten-
sively studied experimentally32 and theoretically33 in mag-
netic granular metals, which typically consist of a random
assembly of magnetic nanoparticles in a metallic or insulat-
ing matrix. Comparing the present results with those for
granular metals, we could say that the most interesting dif-
ference between these two systems, is thatin self-assembled
arrays, an increase of the field sensitivity to an in-plane field
can be achieved by increasing the surface coveragefc
,sD /dd2,g2/3g, in contrast to what has been known for
random assemblies when the packing densityfx,sD /dd3

,gg is increased. We attribute this feature to the ferromag-
netic character of the dipolar interactions on the hexagonal
lattice, which induce a collective in-plane rotation of the mo-
ments. For a normal field, however, the trend of the sensitiv-
ity follows that of random assemblies and is reduced with
increasing coverage. Given that adjustment of the surface
coverage can be experimentally achieved by suitable choice
of the capping groups surrounding each nanoparticle,34 we
would expect that changes in the TMR signal with variation
of surface coverage could be observed.

In recent experiments, Blacket al.2 have measured the
TMR effect in self-assembled Co nanoparticle arrays. Small
samples of about 10310 nanoparticles were used to measure
the magnetoresistance under an in-plane magnetic field. In
these measurements, a rich structure in the field-dependent
TMR signal was observed and the authors attributed it to the
details of the magnetization reversal mechanism. Our simu-
lations with an in-plane magnetic fieldsFig. 2d and for g/k
,0.1–0.2 correspond to the parameters used in the experi-
ments of Blacket al.2 Our results for the hysteresis curves
are in good agreement with these experiments. Namely, a
remanence value aroundMr /Ms,0.5 is found and smooth
curves are predicted even for interacting samples, in accor-
dance with these experiments. Our simulated field-dependent
TMR curvessFig. 2d share the same overall characteristics
with the corresponding experimental curves;2 namely, the
sharp peak around the coercive field and the asymmetry of
the rising and falling parts of the curve. However, no evi-
dence of fine structure in the TMR signal is found, at least
within our approach, that treats exactly the magnetic moment
correlations within the coherent rotation model. Atomic scale
modeling of the magnetic structure of the nanoparticles,
would provide a more detailed description of the surface
scattering process of the carriers,35 and could possibly ex-
plain the details of the TMR signal in self-assembled arrays.

In conclusion, we have studied the field dependence of the
magnetization and tunneling magnetoresistance in a hexago-

FIG. 8. Weak variation of the magnetization and TMR curves
with the in-plane direction of the applied magnetic field. The tem-
perature is lowst /k=0.02d and the nanoparticles are coupled with
moderate dipolar strengthsg/k=0.2d.
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nal array of dipolar interacting magnetic nanoparticles with
random anisotropy. We showed that for an in-plane applied
field, increase of the surface coveragesdecrease of interpar-
ticle distanced increases the sensitivity of the TMR, through
enforcement of the interparticle dipolar interactions, whereas
with normal-to-plane field, the opposite effect is achieved.
We demonstrated the occurrence of peaks in the TMR asso-
ciated with a critical field for the reversible-irreversible tran-
sition, which are pronounced for strongly interacting dipolar
particlessg/k.0.2d, and an applied magnetic field around
the normal-to-plane direction. Finally, the TMR signal is
more sensitive to variations of the azimuth angle of the field
rather than the polar angle. As a final remark, our simulations

suggest that magnetoresistance measurements in ordered
nanoparticle arrays, as those prepared by self-assembly,
could shed light onto the magnetization reversal mechanism
and facilitate the quantification of the particle interaction
strength.
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