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Recent experiments on URu2Si2 show that the low-pressure hidden order is nonmagnetic but it breaks time
reversal invariance. Restricting our attention to local order parameters of 5f2 shells, we find that the best
candidate for hidden order is staggered order of eitherTz

b or Txyzoctupoles. Group theoretical arguments for the
effect of symmetry-lowering perturbationssmagnetic field, mechanical stressd predict behavior in good overall
agreement with observations. We illustrate our general arguments on the example of a five-state crystal field
model which differs in several details from models discussed in the literature. The general appearance of the
mean field phase diagram agrees with the experimental results. In particular, we find thatsad at zero magnetic
field, there is a first-order phase boundary between octupolar order and large-moment antiferromagnetism with
increasing hydrostatic pressure;sbd arbitrarily weak uniaxial pressure induces staggered magnetic moments in
the octupolar phase; andscd a new phase with different symmetry appears at large magnetic fields.
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I. INTRODUCTION

The nature of the so-called “hidden order” of theT,T0
<17 K phase of URu2Si2 has long been debated.1 Taking
strictly on-site local order parameters only, U4+→5f2 shells
can carry magnetic dipole, electric quadrupole, magnetic oc-
tupole, and even higher multipole order parameters. The full
local symmetry is described byG=D4h ^ Gt whereD4h is the
tetragonal point group andGt=hÊ,T̂j is the two-element

group generated by the time reversal operator2 T̂. The clas-
sification of the 12 most obvious3 local order parameters is
given in Table I. Being expressed as Stevens equivalents, all
order parameters are even under space inversion. The nota-
tion “g” and “u” in Table I refers to their parity under time
reversal.

About 30 years of work on one of the most intensely stud-
ied f-electron systems has not brought clarification: the order
is still “hidden.”1 As we are going to describe, theoretical
progress has long been held up by the ambiguity of experi-
mental findings on apparently heterogeneous samples. How-
ever, crucial recent experiments6,7 allow to infer what the
equilibrium properties of ideal samples of URu2Si2 would
be.

From the earliest neutron scattering experiments,8 the is-
sue has been complicated by the observation of apparent
f-electron micromagnetism. Ascribing the magnetic mo-
ments to the bulk of the sample, the observations indicated
two-sublatticeQ=s0,0,1d antiferromagnetism of U 5f-shell
moments ofOs0.01mBd directed along the tetragonal fourfold
axisz in the low-T sT,T0d phase. Though the nominal value
of the ordered momentm was two orders of magnitude lower
than the paramagnetic moment, this seemed to conform to
the general idea that micromagnetism is the canonical behav-
ior of f-electron systems on the borderline between the non-
magnetic sheavy fermiond Kondo state and Ruderman–
Kittel–Kasuya–Yosida magnetism.9 According to this view,
URu2Si2 might have been put in the same class as UPt3 or
CeAl3.

10

Many previous ideas about URu2Si2 were based on the
assumption that antiferromagnetism with micromoments is a

static phenomenon, and it is an intrinsic feature of the
T,T0 phase. Since the ordering of small moments could not
account for the large thermal anomalies at the 17 K transi-
tion, it was assumed that the staggered dipole momentm is a
secondary order parameter, being induced by the primary
ordering of an unidentified full-amplitude order parameterc
sthe hidden orderd. This would require that antiferromag-
netism has the same symmetry as the hidden order, i.e.,c
should break time reversal invariance and share the spatial
character ofm under the symmetry classification according
to the tetragonal point group11 D4h. With these assumptions,
the Landau free energy functional would contain a term
−mc, generatingmÞ0 whenever the primarycÞ0. This is a
scenario which we are going to discard, for the reasons given
below, and further in Sec. II.

The intimate connection between hidden order and micro-
magnetism looked always somewhat suspicious because the
variability s0.017−0.04dmB of the antiferromagnetic moment
was too large to be associated with nominally good-quality
samples, and because the onset of micromagnetism did not
exactly coincide withT0. Susceptibility and NMR under
pressure give an insight: though the sample-averaged sublat-
tice magnetization grows with pressure, it seems to arise
from the increase in the number of magnetic sites, not from
changing the magnetic moment at a given site.12 This points
to the possibility that the apparent micromagnetism is an
attribute of heterogeneous samples and should be understood
as ordinary antiferromagnetism of a smalls,1%d volume
fraction in samples which for some reason always include a
minority phase.13

The argument was clinched by high-pressuremSR experi-
ments: hidden order is nonmagnetic, and antiferromagnetism
of at leastOs0.1mBd ionic moments appears at a first-order
transition atptr<0.6 GPasRef. 6d. There are two thermody-
namic phases, a nonmagnetic phase withkclÞ0 and
kml=0 and the antiferromagnetic phase withkmlÞ0 and
kcl=0. At ambient pressure, the magneticskmlÞ0d phase is
slightly less stable than the phase with hidden order.14 How-
ever, large-amplitude antiferromagnetism is stabilized at hy-
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drostatic pressuresp.0.6 GPa following a first-order
nonmagnetic-to-magnetic transition. In a range of low hydro-
static pressures, the nature of the low-temperature phase re-
mains the same as in ambient conditions:cÞ0 andm=0.
The situation is, of course, different if we apply fields which
lower the symmetry of the system: magnetic fieldB or
uniaxial stresss.

In the following sections, we discuss the effect of uniaxial
stress, and of magnetic field, on the ordered phases of
URu2Si2. We will deduce that the low-pressure zero-field
order must be staggered octupolar order of eitherB1u or B2u
octupoles sSec. IId. The overall appearance of the
temperature-magnetic field phase diagram will be explained
sSec. IIId. Finally, the general arguments will be illustrated
by the results obtained from a new crystal field modelsSec.
IV d.

II. OCTUPOLAR ORDER

In this section, we argue that the experimental evidence
presented in Refs. 6 and 7 unambiguously shows that the
“hidden order” of URu2Si2 is alternating octupolar order
with Q=s0,0,1d. Here we restrict our attention to the strictly
local son-sited order parameters15 listed in Table I. Two-site
quadrupole-spin and three-site spin-spin correlators could
appear in the same symmetry class as on-site octupoles;16 the
present argument does not differentiate these cases.

Let us recall the hydrostatic pressure-temperature phase
diagram obtained from high-pressuremSR experiments6 fa
phase diagram of the same shape results from our mean field
theory, see Fig. 5sadg. Hidden orderkclÞ0 is the attribute of
the low-pressure, low-temperature phasefp,ptr, T,T0spdg.
Though all samples show some micromagnetism, it can be
safely concluded that this is an extrinsic effect, and in a
perfect sample hidden order should be nonmagnetic. Antifer-
romagnetism of at leastOs0.1mBd ionic moments appears at
a first-order transition atptr<0.6 GPa. Atp,ptr the hidden
order onset temperatureT0spd and atp.ptr the Néel tem-
peratureTNspd are critical temperatures for the hidden order-
to-paramagnetic and the antiferromagnetic-to-paramagnetic
transitions, respectively; these meet the first-order phase
boundary at a bicritical point. It follows thatm andc are of
different symmetry, and the Landau free energy cannot con-
tain a termmc. The symmetry ofc must be in any case
different fromA2ufQ=s0,0,1dg.

Regarding the absence of magnetism as an established
fact, we can also excludeEu smagnetic moments perpendicu-
lar to the tetragonalz axisd. The remaining choices for the
order parameterc are quadrupolarsB1g, B2g, or Egd, octupo-
lar sB1u or B2ud, hexadecapolesA2gd, or triakontadipolesA1ud
ssee Table Id. Quadrupole and hexadecapole moments are
time reversal invariant while octupoles and triakontadipoles
change sign under time reversal.

An important recent experiment allows to decide the time
reversal character of the hidden order. Yokoyamaet al.7 car-
ried out magnetic neutron scattering measurement in the
presence of uniaxial stress applied to a single crystal sample
either along, or perpendicular to, the tetragonal axis. Stress
s i s001d does not produce significant change in magnetic
moments. However, for stresss' s001d the staggered mo-
ment increases approximately linearly, reaching,0.25mB at
s=0.4 GPa. In contrast to hydrostatic pressure, no threshold
value is needed to induce a magnetic moment; it appears as
soon as the stresss is finite.

Mechanical stress is time reversal invariant, thus it can
produce magnetic moments only from an underlying state
which itself breaks time reversal invariance. This limits the
choice of hidden order toB1u or B2u soctupolard, or A1u stria-
kontadipolesd. We emphasize that the choice of octupolar
order is essentially different from the previously assumed
quadrupolar order17–19 which does not break time reversal
invariance. Additional evidence in favor of the time reversal
invariance breaking character ofc comes from NMR
measurements.20

We will show that the properties of URu2Si2 can be de-
scribed well with the assumption of octupolar order. This
would make URu2Si2 the third well-argued case of primary
octupolar order in anf-electron systemfthe first two cases
being NpO2 sRef. 21d and Ce1−xLaxB6 sRef. 22dg. Within the
limits of our argument, eitherB1u or B2u would reproduce the
basic effect of stress-induced large-amplitude antiferromag-
netism. On the other hand, we rule outA1u triakontadipoles
as order parameters.

First, we consider stress applied in thes100d direction.
s i s100d lowers the symmetry to orthorombicD2h ssee Ap-
pendixd. UnderD2h, A2u

tetr→B1u
orth andB2u

tetr→B1u
orth, so the order

parametersTz
b andJz become mixedsTable IVd. A state with

spontaneousTz
b octupolar order carriesJz magnetic dipole

moments as well,23 accounting for the observations.7

An alternative way to derive this is by inspecting the rel-
evant terms of the Landau potential for the undistorted te-
tragonal phasesthe operators in the equations below have the
meaning given in Table Id. ChoosingB2u octupolar order
parameter, consider the mixed third-order invariant

IsA2u ^ B1g ^ B2ud = c1Jzs0dTz
bsQdO2

2s− Qd

+ c2JzsQdTz
bs− QdO2

2s0d. s1d

Generally,c1Þ0 andc2Þ0. For our present purpose, the
second term matters. A uniform stresss i s100d induces uni-
form sq=0d O2

2 quadrupole density24 which couples the stag-
geredsq=Qd B2u octupole order parameter to theJz dipole
density withq=−Q, i.e., the same spatial modulation. Neu-
tron scattering shows that stress-induced antiferromagnetism

TABLE I. Symmetry classification of the local order parameters
sRef. 4d for B=0 fD4h notationssRef. 2d, overline means symme-
trization sRef. 5dg.

Sym sgd Operator Symsud Operator

A1g E A1u JxJyJzsJx
2−Jy

2d
A2g JxJysJx

2−Jy
2d A2u Jz

B1g O2
2 B1u Txyz=JxJyJz

B2g Oxy=JxJy B2u Tz
b=JzsJx

2−Jy
2d

Eg hOxz,Oyzj Eu hJx,Jyj
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has the same simple two-sublattice structure withQ
=s0,0,1d that was previously ascribed to micromagnetism,
thus the periodicity of the hidden octupolar order must be the
same.

The actual stress dependence of antiferromagnetic polar-
ization depends on microscopic details. Figure 1 illustrates
the general behavior for a crystal field model which we de-
scribe in detail later.

Stress applied along thez axis inducesO2
0 which trans-

forms according to the identity representationA1g; thus it
does not appear in the invariants and is not predicted to in-
duce magnetism. This is in qualitative accordance with the
observation that fors i s001d the induced moments are an
order of magnitude smaller than fors i s100d. We believe that
the fact that these moments are not exactly zero is due to
nonideality of the sample, as micromagnetism itself is.

The situation is less clear on varying the direction of
stress in thes' s001d plane. Experiments find that the
stress-induced antiferromagnetic moment is essentially the
same fors i s110d as for s i s100d.7 Taken in itself, stress-
induced antiferromagnetism would be as easy to understand
for s i s110d as it was fors i s100d. Namely, the invariant
expansion of the Landau potential contains also

IsA2u ^ B2g ^ B1ud

= c3Jzs0dTxyzsQdOxys− Qd + c4JzsQdTxyzs− QdOxys0d.

s2d

s i s110d induces uniformOxy quadrupolar polarization. As-
suming that the hiddensoctupolard order is Txyzs−Qd, it is
coupled toJzsQd, the same kind of antiferromagnetism as we
found before. An alternative way to arrive at the same result
is by observing thats i s110d lowers the symmetry to ortho-
rhombic, under whichTxyz and Jz belong to the same irrep
sAppendix, Table IVd.

We have to emphasize, though, that assuming a homoge-
neous system we have an explanation either for the effect at
s i s100d swith Tz

b octupolar orderd or for s i s110d swith Txyz

octupolar orderd, but not for both. Under tetragonal symme-
try, Tz

b andTxyz belong to different irreps, and therefore these
orders cannot coexist. At the level of our present argument,
the problem cannot be resolved. We believe that it is not
merely a difficulty with our model but it points to a genuine
feature of URu2Si2. We speculate that theTz

b andTxyz orders
are sufficiently near in energy, and so samples tend to con-
tain domains of both.

We note that theA1u triakontadipoleJxJyJzsJx
2−Jy

2d ssee
Table Id would not give rise to stress-induced magnetism and
is therefore not a suitable choice as order parameter.

It is worth pointing out that our present scenario offers an
explanation why micromagnetism is always present. This
may seem paradoxical since if it were connected with a mi-
nority phase only, it would be reasonable to expect that some
preparation techniques give single-phase samples, i.e., com-
pletely nonmagnetic ones. However, we ascribe antiferro-
magnetism also to the polarization of the primary octupolar
phase in a stress field. It can be assumed that the environ-
ment of impurities and crystal defects always contains re-
gions with the local stress oriented perpendicularly to the
tetragonal main axis; thus there is always some local antifer-
romagnetism.

III. MAGNETIC FIELD

There have been extensive studies of the effect of an ex-
ternal magnetic field on the phase diagram of URu2Si2.

25,26

The system is relatively insensitive to fields applied in the
x-y plane, while fieldsB i ẑ have substantial effect: hidden
order can be suppressed completely withBcr,1=34.7 T. The
phase boundary in theB-T plane is a critical line; thus hidden
ordersor its suitable modificationd breaks a symmetry also at
BÞ0. At somewhat higher fields, an ordered phase appears
in the field rangeBcr,2=35.8 T,B,Bcr,3=38.8 T. One pos-
sibility is that it is the reentrance of theB,Bcr,1 hidden
order; however, we are going to argue that the high-field
order has different symmetry than the low-field order.

The difference between the previously suggested quadru-
polar order,17 and our present suggestion of octupolar order,
is sharp atB=0 sRef. 27d. However, aBÞ0 magnetic field
mixes order parameters which are of different parity under
time reversalsTable IId. The reason is that switching on a
field B i ẑ lowers the point group symmetry fromD4h ^ Gt to

TABLE II. Symmetry classification of the lowest rank local or-
der parameters forB i ẑ snotations as forC4v

2d.

Symmetry Basis operators

A1 1, Jz

A2 JxJysJx
2−Jy

2d, JxJyJzsJx
2−Jy

2d
B1 O2

2, Tz
b

B2 Oxy, Txyz

E hJx,Jyj, hOxz,Oyzj

FIG. 1. Stress-induced magnetic moment in the octupolar phase,
based on the crystal field model described in Sec. IV. Thick line,
kMzl staggered magnetization; thin line,kTz

bl octupolar moment, as
a function of the uniaxial pressures i s100d ss in arbitrary unitsd.
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an eight-element group isomorphicsbut not identicald to C4v
sRef. 2d.

Switching on a fieldB i ẑ, geometrical symmetry is low-
ered fromD4h to C4h. However, the relevant symmetry is not
purely geometrical. Though taken in itself, reflection in the
xzplaneŝv,x is not a symmetry operationsit changes the sign

of the fieldd; combining it with time reversalT̂ gives the

symmetry operationT̂ŝv,x. The same holds for all vertical
mirror planes andC2' ẑ axes; thus the full symmetry group
consists of eight unitary and eight non-unitary symmetry
operations:2

GsBzd = C4h + T̂ŝv,xC4h. s3d

We may resort to a simpler description observing that

G̃ = C4 + T̂ŝv,xC4 s4d

is an important subgroup ofGsBzd, and we can base a sym-

metry classification on it. The multiplication table ofG̃ is the
same as that ofC4v, and therefore the irreps can be given
similar labels. It is in this indirect sense that the symmetry in
the presence of a fieldB i ẑ can be regarded asC4v sa con-
vention used in Ref. 5d. The symmetry classification of the
local order parameters valid inB i ẑ is given in Table II. The
results make it explicit that the magnetic field mixes dipoles
with quadrupoles, quadrupoles with certain octupoles, etc.

In a field B i ẑ, there can exist ordered phases with four
different local symmetries:A2, B1, B2, andE. The zero-field
B2u-type Tz

b octupolar order evolves into theB1-type Tz
b-O2

2

mixed octupolar-quadrupolar order. If the octupolar order is
staggered, it mixes with similarly staggered quadrupolar or-
der: this follows from the first line of Eq.s1d.28 The character
of the low-field phase is indicated in the ground-state phase
diagram in Fig. 2sall numerical results are derived from a
crystal field model described in Sec. IV but the validity of
our general arguments is not restricted to that particular

modeld. The gradual suppression of octupolar order under
field applied in a high-symmetry direction is a well-known
phenomenon; a similar result was derived forf3 ions in Ref.
29. In our calculation, the octupolar phase is suppressed at
Bcr,1<34.7 T sFig. 2d.

Although we are not familiar with experimental results for
the combined effect of hydrostatic pressure and magnetic
field, it should follow from our scheme that a critical surface
is bounding the phase with staggeredB1 octupolar-
quadrupolar order until at sufficiently high pressures, the
critical surface terminates by a bicritical line. The high-
pressure low-field phase has alternatingJz order like in the
zero-field case. Hydrostatic pressure does not change the
symmetry of the system, but it can change the numerical
values of the coefficients in the expansion of the Landau free
energy in terms of invariants. Therefore, generally speaking,
we expect continuity with the results found forp=1 atm up
to a threshold value of the pressure where a first-order tran-
sition to a phase with different symmetry may take place.

Let us return to the case ofBi ẑ field effects at ambient
pressure. The story of the gradual suppression of theB1
octupolar-quadrupolar phase is closed by itself; it might have
happened that there is only one ordered phase, surrounded on
all sides by the disorderedsA1d phase. However, as shown in
Table II, there are order parameters of differentsA2,B2,Ed
symmetries; it depends on microscopic details whether such
orders are induced by sufficiently high fields. If they are,
they cannot coexist withB1, so the corresponding domains in
theBz-T plane must be either disjoint from theB1, or, if they
are pressed against each other, separated by a first-order
phase boundary. Our Fig. 2 illustrates the former case, where
an E phase with mixed quadrupolar-dipolar orderssee Table
II d is separated from the low-fieldB1 phase by a narrow
stretch of the disordered phase. We observe that this model
result bears a close resemblance to the phase diagram deter-
mined by high-field experiments.25,26We note that high-field
transport experiments add more phase boundaries to those
determined by static experiments.1 However, it is often found
that transport anomalies delineate regions which, while
showing interesting differences in the dominant conduction
mechanism, still belong to the same thermodynamic phase.
Therefore, we take the view that the boundaries shown in
Fig. 2 are the most robust features of the phase diagram, and
the first step should be identifying the nature of these.

An interesting possibility to recover a phase diagram of
the same shape would be to identify the high-field phase as
the “reentrance” of the low-fieldB1 phase. This possibility
was suggested in Ref. 1. However, our present model study
does not predict reentrance.

IV. CRYSTAL FIELD MODEL

The previous arguments were based on a symmetry clas-
sification of the order parameters, and the conclusions are
independent of the details of the microscopic models that
allow the emergence of the ordered phasessin particular,
zero-field octupolar orderd which we postulate. However,
many physical propertiessforemost the temperature depen-
dence of the susceptibility, but also the specific heatd were

FIG. 2. The high-field part of theT=0 phase diagram of the
multipolar modelfB in units of TsTesladg. Vertical axis:kTz

bl for the
low-field phase andkOzxl for the high-field phase. The field-
induced mixing of the order parameters is shown within the shaded
areas. The overall appearance of theT-B sinset, T in units of Kd
phase diagram is very similar.sThe critical temperature of theE
phase is scaled up threefold.d

A. KISS AND P. FAZEKAS PHYSICAL REVIEW B71, 054415s2005d

054415-4



fitted with apparent success by making different assumptions
about the nature of the zero-field hidden orderseither qua-
drupolar order of 5f2 shells17,18,30or nonconventional density
waves31d. Therefore, it is important to show that our work is
not in conflict with findings for which alternative explana-
tions had been suggested but offers fits to the results of stan-
dard measurements, which are at least comparable to, and in
some cases better than, previous results.

Here we assume that equilibrium phases other than the
superconducting phase can be described in terms of localized
f electrons, with stable 5f2 shells. We note that for many
other interestingf-electron systemsse.g., CeB6 and Pr-filled
skutteruditesd the localized-electron description of multipolar
ordering works well, in spite of the fact that for certain
physical quantities, consideration of the itinerant aspects of
f-electron behavior is indispensable.

It is generally agreed32 that the crystal field ground state is
a singlet, and that the salient feature of the level scheme is
three low-lying singlets. Three singlets are sufficient to ac-
count for low-energy phenomena. It is found that further two
states have to be taken into account to get a satisfactory fit
for the susceptibility up to room temperature. We note that
the nature of the high-field ordered phase has not been dis-
cussed in previous crystal field theories.

The backbone of our crystal field model is the inclusion of
the same three singlets as in the works of Santini and
co-workers,17,18,30but in different orderfTable III, Fig. 3sadg.
The ground state is theut1l singlet, andut2l an excited state
lying at D2=100 K. ut1l and ut2l are connected by a matrix
element ofJz, as observed by neutron inelastic scattering.8

The lower-lying singletut4l is connected to the ground state
by an octupolar matrix element: this feature allows the exis-
tence of induced octupolar order as the strongest instability
of the systemfFig. 3sbdg. We remark that while other level
schemes may also allow octupolar order if one assumes a
stronger octupole-octupole interaction, our assumption
seems most economical.

Finally, as in previous schemes, at least two further states
are needed to fit magnetization data up to 300 K. We found it
useful to insert one of the doubletssud±ld. This is an alterna-
tive to models with five singlets.17,30As we are going to see,
fits to standard macroscopic measurements are no worse in
our scheme than in previous ones. However, our scheme has
the advantage that it accounts for the high-field observations.
We show the field dependencesB i ẑd of the crystal field lev-
els in Fig. 4. The salient feature is the crossing of thesmildly
field dependentd singlet ground state with one of the levels
derived from the splitting of the doublet at a field strength
lying between the critical fieldsBcr,2 andBcr,3. The crossing
levels are connected by matrix elements ofE operators

sTable IId. Consequently, we find a high-fieldE phase where
hJx,Jyj-type transverse dipolar order is mixed with
hOzx,Oyzj-type quadrupolar orderssee Fig. 2d.

Commenting on differences between our crystal field
schemesTable III where we usea=0.98,b=0.22d and previ-
ously suggested ones, we note that unambiguous determina-
tion is very difficult even if an intense experimental effort is
undertaken, as in the recent case of Pr-filled skutterudites. By
and large we agree with Nagano and Igarashi,33 who argue
that the crystal field potential of URu2Si2 is not known in
sufficient detail yet. We complied with constraints which ap-
pear well founded, as, e.g., the neutron scattering evidence
by Broholmet al.,8 but otherwise we adjusted the model to
get low-field octupolar order for which we found model-
independent arguments. Level positions were adjusted to get
good overall agreement with observations but we did not
attempt to fine-tune the model, neither did we check for al-
ternative schemes with less straightforward parametrization.

We use the mean field decoupled Hamiltonian

HMF = D1ut4lkt4u + D2ut2lkt2u + D3 o
a=+,−

udalkdau − gmBBJz

+ loctkTz
blTz

b − lquadkOzxlOzx, s5d

where g=4/5, and theoctupolar mean field coupling con-
stantloct is meant to include the effective coordination num-
ber; similarly for the quadrupolar coupling constantlquad.
We assume alternating octupolar order and uniformOzx

TABLE III. Tetragonal crystal field states used in the model.

State Form Symmetry EnergyfKg

ut2l 1/Î2su4l− u−4ld A2 100

ud±l au±3l−Î1−a2u71l E 51

ut4l 1/Î2su2l− u−2ld B2 45

ut1l bsu4l+ u−4ld+Î1−2b2u0l A1 0

FIG. 3. In the low-field regime the minimum model consists of
three singlets.sad The field-dependence of the levels.sbd Relevant
multipole matrix elements.
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order; the result would be the same if the high-field quadru-
polar order is also alternating. We do not introduce indepen-
dentO2

2 or hJx,Jyj couplings, neverthelesskO2
2lÞ0 in theB1

phase andkJxlÞ0 in theE phase.
At B=0, the only nonvanishing octupolar matrix element

is C=kt1uTz
but4l<8.8. Octupolar order is driven by the large

C: assumingloct=0.336 K we get the critical temperature
T0sB=0d=17.2 K for Tz

b-type antiferro-octupolar order. Us-
ing a similar estimate, we findloc

Np<0.2 K for NpO2 which
orders at 25 K.21 The order-of-magnitude correspondence
between two documented cases of octupolar order shows that
our present estimate of the octupolar coupling strength is not
unreasonable.

Equations5d was solved for all temperatures and fieldsBz.
We find that the octupolar phase is bounded by a critical line
of familiar shapesFig. 2, insetd, which has its maximumT0

=17.2 K at Bz=0, and drops to zero atBcr,1=34.7 T. The
transition remains second order throughout; we did not hit
upon a tricritical point, though we are aware of no reason of
why it should not have appeared.

Similarly, the ground-state amplitude of the octupolar or-
der is a monotonically decreasing function ofBz sFig. 2d.

The restricted model with three singletssFig. 3d offers
two basic choices. In the absence of symmetry-lowering
fields, the Landau expansion of the free energy in terms of
the order parameters is

F = aOsT,pdkTz
bl2 + bOsT,pdkTz

bl4 + aMsT,pdkJzl2

+ bMsT,pdkJzl4 + ¯ . s6d

Note that because of the tetragonal symmetry, the free energy
expansion does not contain the termkTz

blkJzl. It follows that
the possible ordered phases can besAd kTz

blÞ0 andkJzl=0
or sBd kTz

bl=0 and kJzlÞ0. This is in agreement with the
experimental finding6 that sAd is the low-pressure phase and
sBd is the high-pressure phase, and they are separated by a
first-order boundary.

This canonical casesqualitatively agreeing with the sche-
matic phase diagram shown in Ref. 6d is illustrated in Fig.
5sad. It was derived from Eq.s5d using anad hoc model
assumption about the pressure dependence of the crystal field
splittings D1 and D2 fFig. 5sbdg.34 The shape of the phase
boundaries, and in particular the slope of the first-order line,
could be fine-tuned by adjusting the pressure dependence of
the crystal field parameters, but the overall appearance of the
phase diagram: two critical lines meeting at a bicritical point,

FIG. 4. sad The magnetic field dependence of the single-ion
levels in the extended five-state model used up to high values ofT
andB. sbd Additional multipole matrix elements due to the addition
of the doublet state to the crystal field levels, which are relevant for
the high-field phase.

FIG. 5. sad The pressure dependence of the critical temperature
of the octupolar and the dipolar antiferromagnetic phases
fT0spd and TNspd, respectivelyg. The first-order boundary between
the two ordered phases is an interpolation through the calculated
points.sbd Model assumption about the pressure dependence of the
crystal field splittingsD1 andD2.
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which is also the end-point of a first-order boundary, is ge-
neric.

The stress dependence of the induced antiferromagnetic
moment sFig. 1d was determined in a similar calculation,
adding the term −sO2

2 to the Landau potential, and solving
the self-consistency equations forkJzl and kTz

bl. s in this
calculation has the character of uniaxial stress, but an addi-
tional set of experimental data would be needed to determine
its absolute scale.

Next, we consider the results of some standard low-field
measurements. This was not the primary purpose of our work
but rather serves as a check. The quadrupolar model17 ob-
tained a reasonably good fit for the temperature dependence
of the linear and nonlinear susceptibility in a range of tem-
perature, and we have to prove that our model yields a com-
parably good description on a completely different micro-
scopic basis.

The octupolar transition shows up as a discontinuity of
the linear susceptibilitysFig. 6d. This character of thex1
anomaly is expected from general arguments.35 While the
low-temperature behavior, including the regime aroundT0, is
satisfactorily described by the three-state modelsFig. 3d, fit-
ting the susceptibility up to room temperaturefFig. 6sadg
requires the five-state modelsFig. 4d. One of the hallmarks
of the hidden-order transition of URu2Si2 is the strong jump
of the nonlinear susceptibilityx3 sRef. 36d. The shape of the
calculated anomalysFig. 7d corresponds rather well to the
experimental result.

Next we discuss the high-field behavior atB.Bcr,1, and
interpret the disjoint high-field phase observed in
experiments25,26as a mixed quadrupolar-dipolar phasestheE
phase in Fig. 2d. We exploit the field dependence of the ionic
levels in the five-level modelsTable III, Fig. 4d. The single-
ion levelst1 andd− would cross atBcross=37.3 T. Sinceut1l
andud−l are connected byE operators includingOzx fsee Fig.
4sbdg, a range of fields centered onBcross is certain to favor
hOzx,Oyzj quadrupolar order and simultaneoushJx,Jyj dipo-
lar order. We chose a weak quadrupolar interactionlquad
=0.054 K in Eq.s5d; this gives quadrupolar order between
the critical fieldsBcr,2=35.8 T andBcr,3=38.8 T. The ampli-
tude of quadrupolar order is not smallsFig. 2d but the order-
ing temperature is lows,1 Kd because the coupling is weak.
TheE phase shows up as the steep part of the magnetization
curve in Fig. 8. Forlquad=0 we would have a jumplike meta-
magnetic transition atB=Bcross.

We are aware of an unsatisfactory feature of the calcu-
lated magnetization curve. Though it is clear that our theory
involves three critical fields:Bcr,1, Bcr,2, andBcr,3, at the low-
est of these the anomaly is so weak that it does not show up
on the scale of Fig. 8. We get a single-step metamagnetic
transition distributed over the width of the high-field quadru-
polar phase. The overall height of the step is right, but we do
not recover the three-step structure of the transition observed
by Sugiyamaet al.37

V. DISCUSSION AND CONCLUSION

There have been many attempts to explain the nonsuper-
conducting phases of URu2Si2. Though the behavior off

electrons in this system certainly has itinerant aspects, or
perhaps URu2Si2 is on the verge of a localized-to-itinerant
transition, arguing on the basis of a simple localized electron
model can lead to useful results. Namely, crystal field theory
conforms to a general symmetry classification of the equilib-
rium phases, which is expected to apply to a wider range of
models, including suitably defined Kondo lattice, or Ander-
son lattice, models. Our main interest lies in cross effects
such as the mixing of order parameters in the presence of
external magnetic field, or mechanical stress. Our conclu-
sions rely on symmetry reasoning, and only numerical details
depend on the choice of the crystal field model which we use
to illustrate the general arguments.

The identification of the low-pressure, low-temperature
hidden order of URu2Si2 is of basic interest. Starting from
the high-temperature tetragonal phase, a symmetry-breaking
transition can lead to an ordered phase with the following
choices for the local order parameter:A2u and Eu dipoles,
B1g, B2g, andEg quadrupoles,B1u andB2u octupoles, anA2g
hexadecapole, and anA1u triakontadipole.4

FIG. 6. Linear susceptibility per sitesin mB/Td on extended
temperature scalesad, and in the vicinity of the octupolar transition
sbd. The dashed line gives the single-ion result.
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It was always clear that the primary order parameter of
URu2Si2 cannot be dipolar. The possibility of quadrupolar
ordering has been extensively discussed.17 Higher multipoles
have been mentioned in a general context,16,38 but have not
been studied in detail.

A recentmSR study6 finds that the symmetry of hidden
order is different fromA2usQd which is the symmetry of the
high-pressure antiferromagnetic phasesthe same structure
was ascribed to the supposed “micromagnetism” of URu2Si2,
which is now understood to be extrinsicd. The present experi-
mental status is that the intrinsic low-pressure behavior of
URu2Si2 is purely nonmagnetic. Furthermore, a number of
recent experiments prove that the hidden order breaks time
reversal invariance, so it cannot be quadrupolar.7,20,38In par-
ticular, Yokoyamaet al.7 found that uniaxial stressswhich is
time reversal invariantd induces large-amplitude antiferro-
magnetism, which breaks time reversal invariance. It is clear
that stress must have acted on a medium which itself was
noninvariant under time reversal: it must have been the oc-
tupolar phase.39

We emphasize that stress-induced antiferromagnetism
arises only if the stress is uniaxial and perpendicular to the
s001d direction. For tetragonal symmetry, octupolessB1u and
B2ud and dipolessA2u andEud are of different symmetry and

therefore they do not mix. It follows that hydrostatic pressure
cannot induce antiferromagnetism unless the pressure is high
enough to lead to a completely differentspurely dipolard
phase via a first-order phase transition. This was found in
Ref. 6. In contrast, uniaxial pressure perpendicular to the
tetragonal main axis lowers the symmetry to orthorombic,
allowing the mixing of dipoles and octupoles.

We postulated that the hidden order isTz
b staggered octu-

polar ordersSec. IId. Uniaxial pressures i s100d leads to the
appearance ofJz dipolar order of the same periodicity. The
model works the same way if we postulateTxyz staggered
octupole order, in which case a stresss i s110d givesJz anti-
ferromagnetism. Since the octupolesTz

b and Txyz belong to
different one-dimensional irreps of the tetragonal symmetry
sB2u and B1u, respectivelyd, in our theory a homogeneous
system can show only one of the stress-induced effects. We
hypothesized that the observed near equivalence of the stress
effect in s100d and s110d directions7 reflects the presence of
both kinds of order in a multidomain structure.

The same assumption aboutTz
b octupolar order explains

the behavior in applied magnetic fieldsSec. IIId. A field
B i s001d mixesTz

b octupoles withO2
2 quadrupoles. Symmetry

breaking is well defined in the presence of magnetic field,
and the transition to hidden ordersnow a mixed octupolar-
quadrupolar orderd remains second order up to a critical field
Bcr,1 whereT0sBd→0.

We illustrated the symmetry arguments on the example of
a crystal-field modelsSec. IVd. The model has two versions:
low-energy phenomena can be described by using three low-
lying singlets, while for high energiessor fields, or tempera-
turesd we need five statessthe previous three singlets plus a
doubletd. The three singlets are the same as in Santini’s work,
but their sequence was chosen to give an octupolar matrix
element between the ground state and the first excited state.
The presence of the doublet level is not essential at low fields
sand low temperaturesd but it splits in a magnetic field
B i s001d, and for a range of high fields, even weak quadru-
polar coupling can give quadrupolar order which competes
with the low-field octupolar order. We argued that the high-
field order observed between 35 T and 38 TsRefs. 25 and
26d is of quadrupolar nature, with a symmetry different from
that of the low-field order.

To conclude, we presented arguments showing that octu-
polar order of eitherB2u or B1u symmetry is the zero-field
hidden order of URu2Si2 at ambient conditions. We limited
the discussion to strictly on-site order parameters in a local-
ized electron model with stable 5f2 valence. However, within
this restriction our scenario is compatible with the present
knowledge about the phase diagram in the temperature-
pressure-field space. The time reversal invariance breaking
nature of the order is manifest in the effect that uniaxial
pressure applied in certain directions can induce large-
amplitude antiferromagnetism.

ACKNOWLEDGMENTS

The authors are greatly indebted to Yoshio Kuramoto for
inspiring discussions, valuable advice, and continuing en-
couragement. The authors were supported by the Hungarian

FIG. 7. The temperature dependence of the nonlinear suscepti-
bility x3 in the vicinity of the octupolar transition. The dashed line
is an interpolation through the calculated points.

FIG. 8. The magnetization curve atT=0 sM in units of mBd.

A. KISS AND P. FAZEKAS PHYSICAL REVIEW B71, 054415s2005d

054415-8



National Grants Nos. OTKA T038162, T037451, and
TS040878. A.K. acknowledges support by the Hungarian-
Japanese Joint Project “Competition and Frustration in Mul-
tipolar Ordering Phenomena.”

APPENDIX: ORTHOROMBIC SYMMETRY

Quadrupolar moments couple to external stress. For in-
stance, applying stresss i s100d, O2

2 quadrupolar moments
are induced whiles i s110d inducesOxy. At the same time,
the application of uniaxial stress lowers the symmetry from
the tetragonalD4h to one of its subgroups, changing the sym-
metry classification of all order parameters. This effect is
described below.

When we apply uniaxial pressure in directions100d, the
previousC4, S4, C29, andsv cease to be symmetry operations
and the residual symmetry is described by the groupD2h.
The corresponding classification of the order parameters is
given in Table IV. We observe that under the new symmetry,
the Tz

b octupolar and theJz dipolar moments mix with each
other, and this means that if the system possesses spontane-
ous staggeredTz

b octupolar order, applyings i s100d stress
induces staggeredJz dipolar moments.

When the uniaxial pressure is applied ins110d directions,
it inducesOxy quadrupoles. NowC4, S4, C28, andsd have to
be omitted from the symmetry group which is again theD2h
point group, only comprising of different elements than in
the s i s100d case. For the presents i s110d case, the symme-

try classification of the order parameters is shown in Table
IV. Now theTxyzoctupolar moment mixes with theJz dipolar
momentsif Txyz is staggered, so isJzd.

When we apply uniaxial pressure along the tetragonal
main axiss001d, there is no symmetry reduction, the original
D4h symmetry classification of the order parameterssTable Id
remains valid. Neither theTxyz nor theTz

b octupolar moments
can induceJz magnetic moments, since they all correspond
to different irreducible representations of theD4h point
group. An analogous statement holds for the staggered mo-
ments.
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