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We report the theoretical investigations on the colossal magnetocaloric effect using a simple model that
couples the lattice entropy and magnetic entropy through the magnetoelastic deformation. Analytical expres-
sions were obtained for the thermodynamic magnetic state equation as well as for the total entropy and heat
capacity. The coupled magnetic lattice model predicts high isothermal entropy changes due to the lattice
contribution for external magnetic field change, overcoming the magnetic entropy change limit.
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INTRODUCTION

Nowadays theoretical and experimental investigations on
the new magnetocaloric materials constitute one of the areas
of larger interest in condensed matter physics.1 The historical
mark in this research area was the discovery of the giant
magnetocaloric effect in the Gd5sSixGe1−xd4 alloys in 1997
by Pecharsky and Gschneidner.2 Using alloys from this
pseudobinary system, the giant magnetocaloric effect can be
produced in a large temperature interval from,20 to
,290 K by adjusting the Si:Ge ratio, and can be utilized as
refrigerant material in magnetic refrigerator.3 More recently,
other giant magnetocaloric materials were discovered, e.g.,
MnAs1−xSbx by Wadaet al.,4,5 MnFeP0.45As0.55 by Teguset
al.,6 and LasFe1−xSixd and its hydrides.7,8 The origin of the
giant magnetocaloric effect in the above materials is due to a
first order magnetic phase transition which leads to a high
changesdiscontinuityd in the order parametersmagnetiza-
tiond and therefore a high change in the isothermal magnetic
entropy changeDS and in the adiabatic temperature change
DTad. These two thermodynamic quantities depend on tem-
perature and are measured upon magnetic field change.

Theoretical microscopic models have been applied with
success to explain the so-called conventional magnetocaloric
effect sassociated with second order magnetic phase transi-
tiond. For example, the anomalous magnetocaloric peak in
sDy1−zErzdAl2 in the concentration range 0.15,z,0.5 was
fully explained using a Hamiltonian that includes the crys-
talline electrical field interaction.9 The influence of the giant
quadrupolar interaction leads the YbAs compound to cool
upon magnetizing and warm upon demagnetizing in the tem-
perature range between 33 to 84 Ksanomalous magnetoca-
loric effectd.10 The experimental data11 of DTad and DS in
ErCo2 and Er0.8Y0.2Co2 were explained considering the lo-
calized and itinerant magnetic contributions to the entropy.12

Nevertheless, the theoretical investigations on the giant mag-
netocaloric materialssnonconventional magnetocaloric ef-
fectd are just beginning. As far as we know, the first thermo-
dynamic discussion about the magnetocaloric effect,
generated by the first order magnetic transition, was qualita-
tively accomplished by Pecharsky and co-workers.13 Re-

cently, studies considering a proper magnetic state equation
sthat takes into account the microscopic parameters and the
possibility of the ferromagnetic-paramagnetic first order
transitiond were used to adjustsin a self-consistent wayd the
giant magnetocaloric effect measured in Gd5sSixGe1−xd4

sRef. 14d, MnAs1−xSbx sRef. 15d, and MnFeP0.45As0.55 sRef.
16d.

One of the main characteristics of the giant magnetoca-
loric materials, cited above, is the coexistence of the first
order magnetic phase transition with a high variation in the
lattice parameter or in the volume of the crystalline cell. The
variation of the lattice parameter drives a variation in the
lattice-elastic energy which, in the equilibrium condition,
must be counterbalanced by the exchange energy among the
magnetic ions swhich Néel called exchange
magnetostriction17d. In the materials with relevant exchange
magnetostriction, it is expected to find a strong dependence
of the exchange parameter with the volumesor lattice param-
eterd. In the mean field approachswhere the exchange param-
eter is proportional to the Curie temperatured we can describe
that behavior using the linear dependence of the Curie tem-
perature on the lattice deformation, as was proposed in the
Bean and Rodbell model.18 In the context of the magnetoca-
loric effect the lattice entropy plays a role as important as the
magnetic entropy, since in the adiabatic process the increase
sor decreased in magnetic entropysdue to a change in exter-
nal magnetic fieldd forces a decreasesor increased in lattice
entropy when we neglect all other entropy change contribu-
tions. In general, the lattice is treated in the Debye assump-
tion, where the Debye temperature is considered constant19

or, in some models, as an implicit temperature function,20

which is a good theoretical framework to deal with the con-
ventional magnetocaloric effect. Nevertheless, for giant mag-
netocaloric materialsswhere high cell deformation occursd
the more detailed analysis of lattice vibrations is of great
importance because of its bearing on with the crystalline cell
deformation. As the Curie temperature changes with the lat-
tice parameters it is expected that the Debye temperature is
also influenced by the lattice parameters. In this paper we
extend the Bean and Rodbell model, including a phenomeno-
logical linear lattice deformation dependence of the Debye
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temperature. The general magnetic Gibbs energy was con-
structed, and from it analytical expressions for the magnetic
state equation, heat capacity, and entropy were obtained and
applied in the study of the magnetocaloric quantitiesDTad
andDS. The goal of the systematic study of the magnetoca-
loric quantities as a function of model parameters, presented
in this work, is not to adjust a particular magnetocaloric ma-
terial, but to bring about a more detailed understanding of the
role of lattice entropy when it depends on the magnetic state
through lattice deformation, in a self-consistent way.

The strong motivation for this work was to understand
the theoretical physical origin of the recently discovered
colossal magnetocaloric effect in MnAs by Gamaet al.21

Measurements on MnAs under pressure obtained values up
to DS=267 J/skg Kd, far greater than the magnetic limit
arising from the assumption of magnetic field independence
of the lattice entropy contribution to the magnetocaloric
effect.

THEORY

The total entropy of the magnetic material will be consid-
ered constituted by the magnetic and lattice components
which in general depend on temperature, magnetic field, and
volume:

SsT,H,Vd = SMsT,H,Vd + SLsT,H,Vd. s1d

In an isobaric process, the total entropy and the free energy
changes are given by

dS= S ]S

]T
D

H,V
dT+ S ]S

]H
D

T,V
dH + S ]S

]V
D

T,H
dV, s2d

dF = S ]F

]T
D

H,V
dT+ S ]F

]H
D

T,V
dH + S ]F

]V
D

T,H
dV

= − SdT− MdH − PdV, s3d

whereM is the magnetization. Since the free energy is a state
function, the amount by which the state variables change
must be independent of the path taken, so mathematically
relation s3d corresponds to an exact differential which leads
to the following Maxwell relations:

S ]P

]H
D

T,V
= S ]M

]V
D

T,H
, s4d
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T,H
= S ]P

]T
D
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, s5d

S ]M

]T
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H,V
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]H
D
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. s6d

Putting Eq.s6d into relation s2d, we got for an isochoric-
isothermal process, that the total entropy change due to the
change in external magnetic field fromH1 to H2 is given by

DS= S ]M

]T
D

H

dH <
1

DT
E

H1

H2

fMsT + DTd − MsTdgdH.

s7d

We mustbear in mindthat the above relation represents the
total isothermal entropy change if the total entropy does not
depend on volume change, since it was obtained keeping
fixed the volume, see relations6d. Therefore, if the total en-
tropy depends on the volume change, the proper way to write
DS is given by

DS<
1

DT
E

H1

H2

fMsT + DTd − MsTdgdH

+ hSfVsH2dg − SfVsH1dgj. s8d

The second term in relations8d can have great importance for
a magnetocaloric material which presents a strong magneto-
elastic interaction, and can be neglected otherwise. Note that
if we were using the full Gibbs free energy, the Maxwell
relations expressed in relationss4d–s6d would be at constant
pressure, as is usually encountered in experimental condi-
tions. But in the case of theoretical calculations, it is far
easier to use the Helmholtz free energy for the deformation
term, as we did above. In this case the Maxwell relations are
expressed at constant volume, and to take into account this
condition, it is necessary to add the second part of Eq.s8d. If
this is not done, the calculations will result in an incorrect
amount for the entropy variation, as will be better discussed
below.

We propose a simple model to understand the limitation
of relation s7d. From now on, we will call this model as the
coupled-magnetic-lattice modelsCMLM d. The CMLM is
based on the Bean and Rodbell model.18 Basically, the Bean
and Rodbell model consider the dependence of the exchange
interaction on the interatomic distance. This dependence is
phenomenologically described by considering the depen-
dence of the critical magnetic phase transition temperature
on the volume change in the following way:

TC = T0s1 + bvd. s9d

Here v=sV−V0d /V0 is the volume changescell deforma-
tiond, b=dsTC/T0d /dsV/V0d measures the slope of the criti-
cal temperature curve on the volume change andT0 is the
ordering temperature in the absence of the lattice deforma-
tion. In CMLM the lattice entropy is connected to the mag-
netic lattice through the Debye temperatureQ dependence
on deformation

Q = Q0s1 − gvd, s10d

whereQ0 is the Debye temperature in the absence of lattice
deformation andg is the Grüneisen parameter, Refs. 22, 23,
and 24.

The generalized magnetic Gibbs free energy, per volume,
for the CMLM is written as

G = − HMss −
1

2
NkBTCs2 +

1

2K
v2 − TsSM + SLd + Pv,

s11d

whereN is the number of magnetic ions per unit volume,kB
is the Boltzmann’s constant, ands=M /Ms is the normalized
magnetization at absolute temperatureT and magnetic field
H. The pressure and the compressibility are represented byP
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and K, respectively. Note that we are considering magnetic
ions of spin1

2 for simplicity, soMs=NmB.
The lattice and magnetic entropysfor spin 1

2d are given by

SL = − 3 R lnF1 − expS−
Q

T
DG + 12RS T

Q
D3E

0

Q/T x3dx

expsxd − 1

+
V0a

K
v, s12d

SM = RFlns2d − lns1 − sd −
s1 + sd

2
lnS1 + s

1 − s
DG , s13d

whereR is the gas universal constant anda is the thermal
expansion coefficient. This coefficient appears since the lat-
tice entropy is not evaluated at constant volume, therefore,
the thermodynamic relationCP−CV=a2VT/K, between heat
capacity at constant pressure and volume is taken into ac-
count.V is the molar volume of the materialsatomic weight/
densityd.

For T.Q, the lattice entropy can be approximated by the
expression

SL = 3Rfln T − ln Q + 4/3g +
V0a

K
v. s14d

Figure 1 displays the lattice entropy vs temperature, without
thermal expansion, using relations12d for Q=200 K sfull
lined. The dotted line represents the entropy considering the
approximate relations14d. In this figure we are considering
g=0. Note that forT.Q=200 K both expressions present
almost the same results.

The deformation that minimizes relations11d is given by

v =
1

A
FS h

3b
Ds2 + Sa +

3RKg

V0
DT − PKG s15d

whereA=f1−s3RKg2/V0dTg andh=s3/2dNkBKT0b2.
Substituting relations15d into relations11d and taking the

derivative with respect tos, an analytical expression for the
magnetic state equation is obtained:

s = tanhFmBH

kBT
+

T0

T
s1 + bvdsG . s16d

Note that the argument in the hyperbolic tangent is not linear
in s sincev depends ons, see relations15d. In this way, a
first order magnetic phase transition occurs forh.1 in the
absence of pressure, as well described in literature.14 In our
CMLM, the magnetic state equation is connected to the lat-
tice through the Grüneisen parameter.

From the total entropy, in the assumptions stated above,
an analytical expression is obtained for the total heat capac-
ity:

C = RSmBH + kBT0

kBT
DD +

1

A
F 3Rg

1 − gv
+

V0a

K
G

3FSa +
3RKg

V0
DT −

2hs

3b
DG + 3R, s17d

where

D =
FmBH + kBT0FS1 −

bPK

A
Ds +

h

3A
s3GGsech2SmBH

kBT
+

T0

T
s1 + bvdsD

kBFT − T0S2hs2

3A
+ bv + 1Dsech2SmBH

kBT
+

T0

T
s1 + bvdsDG .

Note that the temperature and magnetic field,. depen-
dence of the heat capacity as well as the total,. entropy
must be calculated self-consistently with the magnetic state
equation, relations16d, since these thermodynamic quantities
depend on the magnetization. From the total entropy, the

magnetocaloric effect is directly determined by the following
relations:

DS= SsH,Td − SsH = 0,Td s18d
and

FIG. 1. Temperature dependence of lattice entropy forQD

=200 K, full line. The dotted line represents the approximation for
lattice entropy given by relations14d, with a=0.
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DT = T2 − T1, s19d

where the entropy changeDS is considered in an isothermic
process and the temperature changeDT is obtained in an
adiabatic process by solving the adiabatic equation
SsH ,T1d=SsH=0,T2d.

Using our model magnetic state equations16d with the
total entropy it is easy to check the Maxwell relations6d, and
to obtain the analytical volumetric contribution to the total
entropy change

fSsv2d − Ssv1dg = 3R lnS1 − gv1

1 − gv2
D +

V0a

K
sv2 − v1d

= SLsv2d − SLsv1d, s20d

wherevi =fVsHid−V0g /V0.
Systematic parametric investigations were performed

on the spontaneoussH=0d temperature dependence of the
magnetization as shown in Fig. 2. Four sets of model param-
eters were considered, namely, set 1sh=0,g=0d, set 2
sh=1.2,g=0d, set 3sh=1.2,g=0.5d, and set 4sh=1.2,g=
−0.5d. Set 1 gives the simple Brillouin function shape, dotted
line, whereT0=300 K andP=0 were taken for all curves.
Set 2 introduces the magnetoelastic effect on the magnetic
state equation and leads to a first order magnetic phase
transition with an increase in the Curie temperature. Fixing
h=1.2, the role of theg parameter is to reduce or increase
the Curie temperature, depending on the negative or positive
signal, respectively, maintaining the first order magnetic
character of the phase transitions.

Figure 3 shows the deformation versus temperature
curves, obtained from relations15d, for the same sets of pa-
rameters considered above. Note that for set 1,v=aT, and
we used for all numerical study the thermal expansion coef-
ficient a=0.000017 K−1, which is the value for copper, see
the dotted line in Fig. 3. There is not any particular interest in
the adopteda valuesand other copper parametersd, and it is
only considered here for numerical studies. The highest de-

formation change, in the ordered ferromagnetic phase occurs
for set 4 since these model parameters lead to the most
abrupt order-disorder transition, as can be observed in Fig. 2.
From relations15d, in the paramagnetic phasess=0d a criti-
cal g=gC=−aV0/3RK appears. Forg.gC the deformation
increases with the temperature and forg,gC the deforma-
tion decreases with temperature, i.e., the negative thermal
expansion occurs. The sets 1–3 lead to normal deformations
and set 4 leads to the negative thermal expansion, as shown
in Fig. 3.

Figure 4 shows the curves ofDS versus temperature for a
magnetic field change from zero to 5 T. The highest peak in
DS occurs for the parameters from set 4, as expected, since,
as higher the derivative of magnetization with temperature is,
higher is the change in the entropy with magnetic field
change, as stated by the Maxwell relation. Comparison
among the curve obtained with set 1sdotted curves with
second order transitiond, with the other curves, evidences the

FIG. 2. Magnetization versus temperature for different model
parameters sets considered in the text.

FIG. 3. Temperature dependence of the deformation for differ-
ent model parameters sets considered in the text.

FIG. 4. Total entropy change versus temperature, for magnetic
field changes from zero to 5 T, for different model parameters sets
considered in the text.
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importance of the first order phase transition in attaining high
magnetocaloric effect. Nevertheless, the area under the
curves in Fig. 4 concentrates at Curie temperature when the
DS peaks increase. This area is given here in Joule per mol
units and represents the system cooling power, which is con-
served within the numerical accuracy of our calculations
sarea,22.7 J/mol for all curvesd. In practical interest, it is
desired a high cooling power in as spread temperature range
as possible, and an optimum composite refrigerant material
can be simulated in order to achieve this goal, Refs. 15, 25,
and 26.

In order to investigate the influence of the lattice entropy
on the total entropy change, relations17d, the model param-
eters set 5sh=1.2,g=−5.0d, andQ=150 K were considered
for magnetic field change from zero to 10 T, see Fig. 5 solid
curve. An outstanding result emerges, in which the peak
value ofDSexceeds the maximum magnetic entropy change,
in our caseDSM

max=R lns2J+1d=R lns2d<5.76 J/mol K. In
a given material, when the maximum value of the entropic
magnetocaloric effect exceeds the maximum magnetic en-
tropy change, we called this effect the colossal magnetoca-
loric effect sCMCEd. The origin of the CMCE in our model
calculation comes from the lattice entropy. The inset of Fig.
5 showsv versus temperature, forH=0 andH=10 T. As the
temperature increases and reaches the Curie temperature, an
abrupt decrease inv occurs, as well as in the Debye tem-
perature, see relations10d. When the Debye temperature de-
creases the lattice entropy increases. Since the external mag-
netic field increases the first order Curie temperature, a shift
takes place in thev vs T curve ssee the inset of Fig. 5d and
consequently occurs a shift in the temperature where the lat-
tice entropy increases, which leads to the CMCE.

The DS vs T, dotted curve in Fig. 5, was calculated using
the same parameters considered for the solid curve in Fig. 5,
but not including the entropy change associated with the
volumetric effect, relations20d, i.e., the dottedDSvs T curve
was calculated using relations7d which comes directly from

Maxwell relations6d consideringV=const. Comparison be-
tween these two curves shows that the volume change is
responsible for approximately half of the total entropy
change, for the considered model parameters.

Figure 6 shows the adiabatic temperature change vs
temperature, see relations19d, obtained using the same
parameters considered in the construction of theDS solid
curve in Fig. 5. It is worth noticing that the maximum value
DTmax<3 K occurs around the Curie temperature. The co-
lossal values inDS does not lead, necessarily, to high values
in DT since, in our case, the shift in the total entropy change
discontinuity due to the magnetic field change takes place in
a narrow temperature window as displayed in the inset of
Fig. 6. The temperature window appears since the magnetic
field affects the transition temperature. This behavior usually
occurs in materials which have first order magnetic phase
transitions fe.g., the paramagnetic-ferromagnetic transition
temperature in Gd5sSi1.72Ge2.28d is linearly shifted from 250
to 300 K by an increasing magnetic field from zero to 10 T,
Ref. 27g.

FINAL COMMENTS

Using a simple model, the importance of the coupling
between magnetic and crystal lattice in the study of the mag-
netocaloric effect was highlighted. Generally, the giant mag-
netocaloric materials present discontinuity in lattice param-
eters which can lead to large changes in cell volume and/or
crystallographic structure at a critical first order magnetic
phase transition temperature.3,4,6 In our parametric study the
deformation is very high, reaching values aroundv=1,1%
sat the discontinuity transition temperatured. It is not our aim,
in this work, to fit a realistic material but only to investigate
a model to deal with magnetocaloric materials which present
high magnetoelastic effect. However, there are some mag-
netic systems that deserve to be investigated using the pro-

FIG. 5. Total entropy change versus temperature, for magnetic
field changes from zero to 10 T, for model parameters from set 5.
The inset shows the deformation versus temperature forH=0 and
H=10 T.

FIG. 6. Adiabatic temperature change versus temperature, for
magnetic field changes from zero to 10 T, for model parameters
from set 5. The inset shows the total entropy versus temperature for
H=0 andH=10 T.
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posed model. The linear thermal-expansion measurements, in
the giant magnetocaloric material Gd5sSi1.8Ge2.2d, showed
that a large volume contraction ofv=0.4% takes place spon-
taneously at the first order magnetic transition temperature
TC=240 K sRef. 28d. The compound MnAs, for example,
presents a ferromagnetic-paramagnetic first order phase tran-
sition, at aboutTC=310 K, accompanied by giant volume
change of aboutv=2% sRef. 29d. For these materials, very
careful magnetocaloric investigations must be performed
both from experimental and theoretical points of view. If the
lattice is sensitive to the magnetic field, as considered in our
CMLM study, the calculation of the magnetocaloric potential
DS from the magnetic Gibbs energy must be done with care,
being sure to take account the total entropy of the system.
From the theoretical point of view, the model used to adjust
the values ofDS andDT must incorporate the relevant mag-
netic and lattice parameters, especially the temperature and
magnetic field dependence of the structural lattice param-
eters, as recently investigated in the Gd5Ge4 system by Pe-
chaskyet al.30

The CMCE predicted in our theoretical model comes
from the coupling between the crystalline and magnetic lat-
tices and shows, quantitatively, the limitation of theDS cal-

culation when one uses the Maxwell relation without taking
account of the extra terms arising when the magnetoelastic
effects are considered. A model to properly describe the en-
tropy exchange between coupled magnetic and crystal lat-
tices, in an adiabatic magnetic field change and in first order
magnetic-volumetric transition process, is of fundamental
importance to understand and improve giant magnetocaloric
materials.31 Our analytical CMLM contemplates, in a simple
way, the existence of CMCE.
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