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A self-consistent theory of the current-induced switching of magnetization using nonequilibrium Keldysh
formalism is developed for a junction of two ferromagnets separated by a nonmagnetic spacer in the ballistic
limit. It is shown that the spin-transfer torques responsible for current-induced switching of magnetization can
be calculated from first principles in a steady state when the magnetization of the switching magnet is station-
ary. A steady state is achieved when the spin-transfer torque, proportional to bias voltage in the linear response
regime, is balanced by the torque due to anisotropy fields. The spin-transfer torque is expressed in terms of
one-electron surface Green functions for the junction cut into two independent parts by a cleavage plane
immediately to the left and right of the switching magnet. The surface Green functions are calculated using a
tight-binding Hamiltonian with parameters determined from a fit to anab initio band structure. This treatment
yields the spin transfer torques taking into account rigorously contributions from all the parts of the junction.
The spin-transfer torque has two components, one with the torque vectorTi in the plane containing the
magnetizations of the two magnetic layers and another with the torque vectorT' perpendicular to this plane.
It is shown that, in general,Ti andT' may be comparable in magnitude and they both tend to finite values
independent of the spacer thickness in the limit of a thick spacer.T' is shown to be small when the exchange
splitting of the majority- and minority-spin bands in both ferromagnets tends to infinity or in the case when the
junction has a plane of reflection symmetry at the center of the spacer. The torquesT' andTi are comparable
for a Co/Cu/Cos111d junction when the switching Co layer is one or two atomic planes thick.T' is <27% of
Ti even for a switching Co magnet of ten atomic planes. Depending on material parameters of the junction, the
relative sign ofT' andTi can be negative as well as positive. In particular,T' /Ti ,0 for Co/Cu/Cos111d with
switching Co magnet of one atomic plane andT' /Ti .0 for two atomic planes of Co. A negative sign of the
ratio T' /Ti has a profound effect on the nature of switching, particularly in the realistic case of easy-plane
sshaped anisotropy much larger than in-plane uniaxial anisotropy. To calculate the hysteresis loops of resistance
versus current, and hence to determine the critical current for switching, the microscopically calculated spin-
transfer torques are used as an input into the phenomenological Landau-Lifshitz equation with Gilbert damp-
ing. In the absence of an applied magnetic field, an ordinary hysteresis loop is the only possible switching
scenario whenT' /Ti .0. However, forT' /Ti ,0, a normal hysteretic switching occurs only at relatively low
current densities. When the current exceeds a critical value, there are no stable steady states and the system
thus remains permanently in a time dependent state. This is analogous to the observed precession of the
switching magnet magnetization caused by a dc current in the presence of an applied magnetic field. The
present calculations for Co/Cu/Cos111d show that the critical current for switching in the hysteretic regime is
<107 A/cm2, which is in good agreement with experiment.
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I. INTRODUCTION

Slonczewski1 proposed a new method of switching the
magnetization direction of a thin film by means of a spin-
polarized current. The current is spin-polarized by passing
through a thick layer of a ferromagnetic metal, whose mag-
netization is assumed to be pinned, subsequently passing
through a nonmagnetic metallic spacer layer and then
through a thin magnetic switching layer into a nonmagnetic
lead. Early related theoretical work is due to Berger.2 Switch-
ing of the magnetization is accompanied by a change in the
current-perpendicular-to-plane resistancesCPP GMRd and
the effect has been observed experimentally by studying hys-
teresis loops in resistance versus current plots for pillar
systems.3 Jumps in the hysteresis curve occur between steady
states of constant current and static magnetization, just as in
the Stoner-Wohlfarth4 theory of field-switching jumps occur
between equilibrium states. We have formulated a first-

principle theory of current-induced switching based on this
idea. As in the Stoner-Wohlfarth theory, we assume that the
switching magnet remains single domain during the switch-
ing process.

One of the main aims of this paper is to calculate hyster-
esis loops of resistance versus current from first principles
for a much more general situation than has been considered
previously. In previous treatments a uniaxial anisotropy field
was introduced in the switching magnet with its direction
parallel to the magnetization of the polarizing magnet.5,1 In
this case, there are only two steady states in which the mag-
netizations of the polarizing and switching magnets are ei-
ther parallel or antiparallel. It is for this reason that the
steady-state approach has not previously been further devel-
oped. However, in real experiments on pillar structures shape
anisotropy due to the variable shape of pillar cross sections
means that the direction of the anisotropy field in the switch-
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ing magnet is not simply related to the direction of the mag-
netization of the polarizing magnet. Furthermore, in some
experiments6,7 an external field is also applied so that more
general orientations of the magnetizations occur in the steady
states. It is, therefore, essential to consider a completely gen-
eral case when the uniaxial anisotropy field makes an arbi-
trary angleu with the polarizing magnetization. We also in-
clude the easy plane anisotropy, which is always large in
layered magnets, and investigate fully its consequences.

In a steady state there is a balance between the spin-
current torque, acting on the switching magnet due to the
spin-polarized current, and the torque due to anisotropy and
external fields. In our general first-principle treatment, two
components of the spin-current torque appear naturally, one
with the torque vectorTi in the plane containing the magne-
tizations of the two magnetic layerss“in-plane” torqued and
another with the torque vectorT' perpendicular to this plane
s“out-of-plane” torqued. Slonczewski1 considered onlyTi

and it is generally believed8 that T' is negligible. We start
the presentation of our results in Sec. VI by deriving from
the general Keldysh formalism the results of Slonczewski’s
original calculations,1 in which only Ti appears. It will be
seen that this result is not always valid but is just an artifact
of Slonczewski’s simple model. In fact, we shall show that in
some casesT' is dominant and that, even when small,T' is
essential since its importance is strongly enhanced in the
presence of easy-plane anisotropy.

To calculate hysteresis loops for this general scenario, we
need to solve the following problems:sid calculate micro-
scopically both the in-plane and out-of-plane components of
the spin-current torque;sii d determine the steady states which
form the continuous parts of the hysteresis curve;siii d inves-
tigate the stability of such states in order to determine critical
currents at which the jumps, and hence switching, occur; and
sivd calculate the resistance of the layered structure along the
steady-state paths.

Within our unified theory, all this can be done for a gen-
eral layered system with a fully realistic band structure.

A jump in the hysteresis curve occurs at a critical current
when one steady state becomes unstable and the system
seeks out another stable steady state. This is in analogy with
the Stoner-Wohlfarth4 theory of field-switching where one
deals with equilibrium states instead of the present nonequi-
librium steady states. As in that theory we do not concern
ourselves with the detailed dynamics of the switching. How-
ever, we identify in this paper certain cases in which one
steady state becomes unstable above a critical current but
there are no other stable steady states available. Under these
circumstances the magnetization of the switching layer re-
mains perpetually in a time-dependent state.

In order to study nonequilibrium steady states we use the
Keldysh formalism9–11 described in Sec. III. As pointed out
above, the steady state arises from a balance between spin-
current torque and anisotropy field torque. Hence it is essen-
tial to include anisotropy and/or external fields in the Hamil-
tonian of the system from the outset. It is also necessary to
treat correctly the on-site electron-electron interaction which
is responsible for the spontaneous magnetization of the po-
larizing and switching magnets. This is achieved by insisting
that the local exchange field is in the direction of the local

magnetization, which is the essential feature of self-
consistent field approximations such as unrestricted Hartree-
Fock sHFd and local spin densitysLSDAd. Such a treatment
respects the spin-rotational symmetry of the ferromagnet in
the absence of external fields. Beyond this we do not need to
introduce a self-consistent treatment of the Coulomb interac-
tion explicitly, although bulk LSDA calculations underlie the
band parameters and exchange splittings used in our calcu-
lations. In our Keldysh approach the direction of magnetiza-
tion in each atomic plane of the switching magnet is deter-
mined self-consistently in the steady state by the requirement
that the magnetization of a given atomic plane is parallel to
the exchange field in that plane. The relationship between
this approach and the more intuitive one of balancing torques
is discussed in Secs. II and V.

The treatment described above enables us to determine all
possible steady states of the system and the next step is to
investigate their stability. We do this by introducing the spin-
current torques, calculated microscopically as functions of
magnetization direction, and anisotropy torques into a
Landau-Lifshitz equation of motion for the magnetization
including Gilbert damping. We linearize the equation of mo-
tion about the steady-state solution to obtain the conditions
for stability.

Finally, we construct hysteresis curves from continuous
steady-state paths and jumps at points of instability.

II. THEORETICAL MODEL

The layer structure we consider is shown in Fig. 1. It
consists of a semi-infinite polarizing ferromagnet with mag-
netizationP, a nonmagnetic metallic spacer withN atomic
planes, a switching magnet withM atomic planes, and a
semi-infinite nonmagnetic lead of the same material as the
spacer. Each layer is described by a tight-binding model, in
general multiorbital withs, p, and d orbitals whose one-
electron parameters are fitted to first-principle bulk band
structure, as discussed previously.12 The Hamiltonian is,
therefore, of the form

H = H0 + Hint + Hanis, s1d

where the one-electron hopping termH0 is given by

H0 = o
kis

o
mm,nn

Tmm,nnskidckimms
† ckinns, s2d

whereckimms
† creates an electron in a Bloch state, with in-

plane wave vectorki and spins, formed from a given atomic

FIG. 1. Schematic picture of a magnetic layer structure for
current-induced switchingsmagnetic layers are darker, nonmagnetic
layers lighterd.
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orbital m in planem. Hint is an on-site interaction between
electrons ind orbitals which leads to an exchange splitting of
the bands in the ferromagnets and is neglected in the spacer
and lead. The magnetization of the polarizing magnet is as-
sumed to be pinned in thesz,xd-plane, making an angleu
with the z axis, as shown in Fig. 1.Hanis contains effective
fields in the switching magnet corresponding to uniaxialHu
and easy-planeHp anisotropies. It is given by

Hanis= − o
n

SnHA, s3d

whereSn is the operator for the total spin angular momentum
of planen and

HA = Hu + Hp. s4d

Hu andHp are given by

Hu = sezkSnldHu0ez s5d

Hp = − seykSnldHp0ey, s6d

where kSnl is a unit vector in the direction of the thermal
average ofSn, andex,ey,ez are unit vectors in the direction of
the axes shown in Fig. 1.Hu0,Hp0 measure the strengths of
the uniaxial and easy-plane anisotropies and have dimen-
sions of frequency. These quantities may be converted to a
field in tesla by multiplying them by" /2mB=5.69310−12.
We assume that anisotropy fields are uniform throughout the
switching magnet but it would be easy to generalize to in-
clude, for example, a surface anisotropy. The spin angular
momentum operatorSn is given by

Sn =
1

2
"o

kim

sckinm↑
† ,ckinm↓

† dssckinm↑,ckinm↓dT s7d

and the corresponding operator for spin angular momentum
current between planesn−1 andn is

jn−1 = −
i

2o
kimn

Tskidnn,n−1msckinn↑
† ,ckinn↓

† dssckin−1m↑,ckin−1m↓dT

+ H.c. s8d

Here,s=ssx,sy,szd, where the components are Pauli matri-
ces and Eq.s8d yields the charge current operator if1

2s is
replaced by a unit matrix multiplied by the electronic charge
e/", wheree is the electronic chargesnegatived.

All currents flow in they direction, perpendicular to the
layers, and the components of the vectorj correspond to
transport ofx, y, and z components of spin. The rate of
change ofSn in the switching magnet is given by

i"Ṡn = fSn,H0g + fSn,Hanisg s9d

since the spin operator commutes with the interaction Hamil-
tonianHint.

It is straightforward to show that

fSn,H0g = i"sjn−1 − jnd s10d

and

fSn,Hanisg = − i"sHA 3 Snd. s11d

In a steady state, the magnetization is time-independent so

that kṠnl=0. Hence

kjn−1l − kjnl = HA 3 kSnl. s12d

The left-hand side of Eq.s12d corresponds to the rate of
transfer of spin angular momentum to planen in the steady
state. Thus Eq.s12d shows explicitly how, in the steady state,
this spin-transfer torque is balanced by the torque due to
anisotropy fields. The concept of spin-transfer torque was
first introduced by Slonczewski.1

III. KELDYSH FORMALISM

In this section we show how to calculate the spin current
kjn−1l and spin densitykSnl in the nonequilibrium steady state
and verify that they are related by Eq.s12d. To produce a
spin-polarized current in the system we apply a biasVb be-
tween the polarizing magnet and the lead. To use the Keldysh
formalism9–11 to calculatekjn−1l andkSnl we consider an ini-
tial state at timet=−` in which the hopping integralTnn,n−1m

between planesn−1 andn is switched off. Then both sides
of the system are in equilibrium but with different chemical
potentialsmL on the left andmR on the right, wheremL
−mR=eVb. The interplane hopping is then turned on adiabati-
cally and the system evolves to a steady state. The cleavage
plane, across which the hopping is initially switched off, may
be taken in either the spacer or switching layer or in the lead.
Figure 1 shows the situation when the cleavage plane is be-
tween atomic planesn−1 andn in the switching magnet. In
principle, the Keldysh method is valid for arbitrary biasVb
but here we restrict ourselves to small bias corresponding to
linear response. This is reasonable since for larger bias elec-
trons would be injected into the switching magnet far above
the Fermi level and many-body processes neglected here
would be important. Furthermore, in metallic systems the
bias will never be large.

Following Keldysh9,10 we define a two-time matrix

GRL
+ st,t8d = ikcL

†st8dcRstdl, s13d

where R;sn,n ,s8d and L;sn−1,m ,sd, and we suppress
theki label. The thermal average in Eq.s13d is calculated for
the steady state of the coupled system. The matrixGRL

+ has
dimensions 2m32m wherem is the number of orbitals on
each atomic site, and is written so that them3m upper di-
agonal block contains matrix elements between↑ spin orbit-
als and them3m lower diagonal block relates to↓ spin.
2m32m hopping matricesTLR andTRL are written similarly
and in this case only the diagonal blocks are nonzero. If we
denoteTLR by T, thenTRL=T†. We also generalize the defi-
nition of s so that its components are now direct products of
the 232 Pauli matricessx,sy,sz and them3m unit matrix.
The thermal average of the spin current operator, given by
Eq. s8d, may now be expressed as

SELF-CONSISTENT THEORY OF CURRENT-INDUCED… PHYSICAL REVIEW B 71, 054407s2005d

054407-3



kjn−1l =
1

2o
ki

TrhfGRL
+ st,tdT − GLR

+ st,tdT†gsj. s14d

Introducing the Fourier transformG+svd of G+st ,t8d, which
is a function oft− t8, we have

kjn−1l =
1

2o
ki

E dv

2p
TrhfGRL

+ svdT − GLR
+ svdT†gsj. s15d

Again, the charge current is given by Eq.s15d with 1
2s re-

placed by the unit matrix multiplied bye/".
Similarly, the total spin angular momentum on atomic

planes on either side of the cleavage plane, in the nonequi-
librium state, is given by

kSn−1l = −
1

2
i"o

ki

E dv

2p
TrhGLL

+ svdsj, s16d

kSnl = −
1

2
i"o

ki

E dv

2p
TrhGRR

+ svdsj. s17d

Following Keldysh9,10 we now write

GAB
+ svd =

1

2
sFAB + GAB

a − GAB
r d, s18d

where the sufficesA andB are eitherR or L. FABsvd is the
Fourier transform of

FABst,t8d = − ikfcAstd,cB
†st8dg−l s19d

and Ga,Gr are the usual advanced and retarded Green
functions.13 Note that in Refs. 9 and 10 the definitions ofGa

andGr are interchanged and that in the Green function ma-
trix defined by these authorsG+ and G− should be inter-
changed.

Charge and spin current, and spin density, are related by
Eqs. s15d–s17d to the quantitiesGa, Gr, andFAB. The latter
are calculated for the coupled system by starting with decou-
pled left and right systems, each in equilibrium, and turning
on the hopping between planesL and R as a perturbation.
Hence we expressGa, Gr, andFAB in terms of retarded sur-
face Green functionsgL;gLL, gR;gRR for the decoupled
equilibrium system. The final result for the spin angular mo-
mentum on planen to the right of the cleavage plane is

kSnl = kSnl1 + kSnl2, s20d

where the two contributions to the spin angular momentum
kSnl1 and kSnl2 are given by

kSnl1 = −
"

4p
o
ki

E dv Im TrhAgRsjffsv − mLd + fsv − mRdg,

s21d

kSnl2 = −
"

2p
o
ki

E dv Im TrHSA −
1

2
DBgR

†sJffsv − mLd

− fsv − mRdg. s22d

HereA=f1−gRT†gLTg−1, B=f1−gR
†T†gL

†Tg−1, and fsv−md is

the Fermi function with chemical potentialm and mL−mR
=eVb. To obtainkSn−1l, defined by Eq.s16d, we must inter-
changeL andR, andT andT†, everywhere in Eqs.s20d–s22d.
In the linear-response case of small bias which we are con-
sidering, the Fermi functions in Eq.s22d are expanded to first
order in Vb. Hence the energy integral is avoided, being
equivalent to multiplying the integrand byeVb and evaluat-
ing it at the common zero-bias chemical potentialm0.

As shown in Fig. 1, the magnetizationP of the polarizing
ferromagnet is assumed to be fixed in thesz,xd plane and
makes an angleu with the z axis, which is the direction of
the uniaxial anisotropy field in the switching magnet. When a
bias is applied, spin-polarized current flows through the
switching magnet and exerts a torque on its magnetization.
This torque is in competition with the torque due to the an-
isotropy field and causes the spinkSnl in a given atomic
plane n to deviate from the anisotropy axis. In the steady
statekSnl settles in a definite direction specified by the angles
an, fn shown in Fig. 1. To determine these angles, we as-
sume the exchange fieldDn in plane n is in the direction
san,fnd and apply the self-consistency condition

Dn 3 kSnl = 0. s23d

This condition guarantees that the local magnetization is in
the direction of the exchange field, as it should be in the
unrestricted Hartree-Fock approximation mentioned in Sec.
I. As with anisotropy fields, the exchange fieldDn is defined
as an angular frequency so that"Dn is the energy to reverse
the spin on planen. More precisely, the spin-dependent part
of the on-site energy on planen is given by −s1/2d"sHA

+Dnds. We assume thatuDnu always takes its bulk value.
Following the method outlined for obtaining Eq.s20d,

similar expressions in terms of retarded surface Green func-
tions may be obtained for the spin currentskjn−1l and kjnl.
Writing againkjnl=kjnl1+kjnl2, we obtain

kjn−1l1 =
1

4p
o
ki

E dv Re TrhsB − Adsjffsv − mLd

+ fsv − mRdg, s24d

kjn−1l2 =
1

2p
o
ki

E dv Re TrHFgLTABgR
†T† − AB

+
1

2
sA + BdGsJffsv − mLd − fsv − mRdg. s25d

By considering the changes ingL,gR when the cleavage plane
is moved one atomic plane to the right, it is straightforward
to show that

kjn−1l − kjnl = sHA + Dnd 3 kSnl. s26d

This equation holds for a steady state with arbitrary ex-
change fieldsDn which do not necessarily satisfy the self-
consistency conditions23d. When the self-consistency condi-
tion s23d is satisfied, we recover the steady-state result
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kjn−1l − kjnl = HA 3 kSnl s27d

which was derived earlierfEq. s12dg purely from consider-
ations of the spin-rotational symmetry of the electron-
electron interactions. This verifies the consistency of the
Keldysh formalism combined with the unrestricted Hartree-
Fock approximation.

It follows from Eqs.s26d ands27d that all components of
spin current are conserved within the spacer and lead, where
HA=0,Dn=0, with or without self-consistency. Furthermore,
it follows from Eq. s27d that in the self-consistent steady
state the component of spin current in the direction of the
anisotropy fieldHA is conserved throughout the system, as of
course is the charge current. If Eq.s27d is summed over all
planes in the switching magnet, we obtain

kjspacerl − kj leadl = HA 3 kStotl, s28d

wherekjspacerl, kj leadl are the spin currents in the spacer and
lead, respectively, andkStotl is the total spin angular momen-
tum of the switching magnet. This shows how the total spin
transfer torque acting on the switching magnet is balanced by
the torque exerted by the anisotropy field on the total mo-
ment.

We have separated in Eq.s20d the spin angular momen-
tum kSnl into two partskSnl1 and kSnl2. It is clear thatkSnl2

is proportional to the applied biasVb to the first order and for
zero biassmL=mRd only kSnl1 remains. The spin transfer
torque kjnl−kjn−1l similarly splits into two partssEqs. s24d
ands25dd in such a way that Eq.s26d holds for each compo-
nent separately:

kjn−1li − kjnli = sHA + Dnd 3 kSnli, i = 1,2. s29d

Only the first partkjn−1l1−kjnl1 is nonzero at zero bias. It
corresponds to spin currents which mediate exchange cou-
pling, either between the two magnets across the spacer or
between atomic planes in the switching magnet. Conse-
quently, at zero bias the spin current in the lead is zero. It is
easy to verify that the expressions for interlayer exchange
coupling derived here, using the Keldysh formalism, agree
precisely with those obtained earlier by other methods.14

The results of this section show the great advantage of the
Keldysh formalism, even within the linear response regime.
Spin currents at zero bias, corresponding to exchange cou-
pling, transport spin and particle currents, and spin densities
are all calculated in a unified way. Relationships between
these quantities, such as Eq.s29d, are then easily derived. In
the standard linear response theory of Kubo zero-bias quan-
tities cannot be calculated and different response functions
would have to be introduced for calculating currents and spin
density response at finite bias.

IV. APPLICATION TO A SWITCHING MONOLAYER

In the general theory outlined in Sec. III the steady-state
spin orientation of each atomic planen of the switching mag-
net must be determined self-consistently. In this section we
first consider the simplest case of a single orbital on each site
and when the switching magnet is a single atomic plane. In

this case there is no interplane exchange coupling in the
switching magnet to consider and we assume that the spacer
is sufficiently thick for the zero-bias exchange coupling be-
tween the two ferromagnets to be negligible. For a given bias
Vb, the directionsa0,f0d of the steady-state orientation of
the switching magnet momentkSl is determined self-
consistently from Eq.s23d with the cleavage plane immedi-
ately to the left of the switching plane so thatkSnl=kSl. It is
convenient to determinesa0,f0d in two steps. The first step
locates a “universal path” on a unit sphere, independent of
Vb, on which the self-consistent solutions for any givenVb
must lie. In the second step the biasVb required to stabilize
the magnetization in a given directionsa0,f0d is determined
as a function ofa0, say. To establish this program, we write
Eq. s23d as

sHA + Dd 3 kSl = HA 3 kSl, s30d

whereD is the exchange field of the switching layer in the
directionsa0,f0d. Splitting kSl into two parts as in Eq.s20d,
this becomes

sHA + Dd 3 kSl1 + sHA + Dd 3 kSl2 = HA 3 kSl. s31d

Hence using Eq.s29d we have

kjspacerl1 − kj leadl1 + kjspacerl2 − kj leadl2=HA 3 kSl. s32d

The first two terms on the left correspond to exchange cou-
pling torque which, as discussed above, is assumed to be
negligible compared with the anisotropy torque. This is jus-
tified for thick spacers since the interlayer exchange coupling
tends to zero as the spacer thickness tends to infinity. The last
two terms on the left correspond to the spin transfer torque
T, which is proportional to biasVb, and the right-hand side of
Eq. s32d is −TA, whereTA is the torque exerted by the aniso-
tropy field on the switching magnet. We shall see that, in
contrast to the exchange coupling torque,T remains finite as
spacer thickness tends to infinity. Hence

T = kjspacerl2 − kj leadl2 = HA 3 kSl = − TA s33d

and, in particular,

THA = 0. s34d

The biasVb now cancels and this equation determines the
universal path described above. Equations33d determines the
bias required to stabilize any particular point on this path of
possible steady states.

We conclude this section with one example in which, for
simplicity, we retain only uniaxial anisotropy, this field being
chosen in thez direction. We use a single-orbital tight-
binding model whose lattice is taken to be simple cubic with
layering in thes010d direction. The nearest-neighbor hopping
parametert is taken to be the same throughout the system.
The on-site energy in the spacer and lead is taken asVsp, the
zero of energy being at the common Fermi level for zero
bias. In this example the on-site energyVsp is also taken for
majority spin in the ferromagnetssperfect matching in the
majority-spin channeld. The on-site energy for minority spin
in the ferromagnets is taken asVsp+"D, where "D is the
exchange splitting. The matching of spacer and majority spin
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bands is similar to the situation in Co/Cu. We takeVsp
=2.3,"D=0.7 in units of 2t. Furthermore, we take the
uniaxial field parameterHu0=1.8631010 s−1 which corre-
sponds to a field of 0.106 T. We also take a general value
u=2 rad of the angle between the polarizing magnet moment
and the direction of the uniaxial anisotropy axis of the
switching magnet. To determine the torqueT which appears
in Eq. s34d for the universal path, we need to calculate the
Green functionsgL ,gR which are required in Eq.s25d . This
is done by standard adlayering methods described
previously.12 At this stage, the anisotropy field is included in
the calculation of all the Green functions. Figure 2 shows the
calculated universal path off versusa for the specified pa-
rameters. The biasVb required to yield a steady-state mag-
netization at a given point of this path is plotted as a function
of a in Fig. 3, where we have assumed the band width 12t
=6 eV. Positive bias corresponds to a drop in voltage be-
tween the polarizing magnet and the lead. The correspon-
dence between the two curves in Figs. 2 and 3 is indicated by
the letters P and Q. The discussion of stability of these steady
states and the interpretation of Fig. 3 is postponed to Sec.
VII.

The method of calculating steady states used in this sec-
tion becomes more complicated when the switching magnet
contains several atomic planes since the momentskSnl of all
planes must be determined self-consistently. This entails the
inclusion of the exchange stiffness between atomic planes of
the switching magnet which is contained in Eq.s29d with i
=1. To address this problem, we introduce in the next section
the simplifications required to derive from first principles the
convenient “standard model” used by previous authors.1,5,8

V. THE STANDARD MODEL

In the Keldysh method used above it is essential to in-
clude the anisotropy fieldHA in the Hamiltonian to obtain a

nontrivial steady state. In the absence ofHA it follows from
Eq. s27d that in the steady state all components of spin cur-
rent are conserved everywhere so that there are no spin-
transfer torques. Hence the only steady state is the trivial one
in which the switching magnet is aligned parallel or antipar-
allel to the polarizing magnet. Previous authors1,8 did not
consider a steady state but calculated spin-transfer torque as
a one-electron problem with the exchange fields of the po-
larizing and switching magnets at a fixed assumed angle. In a
second independent step, these authors1,5 balance the spin-
transfer torque against the torque due to anisotropy field in
the context of a Landau-Lifshitz equation. This approach is
what we call the standard modelsSMd. In this section we
show how to arrive at the SM by making some simplifying
approximations in our self-consistent approach.

We begin with the monolayer switching magnet of Sec.
IV. In Eq. s33d the spin-transfer torqueT is calculated in the
presence ofHA and the spinkSl is the self-consistent mo-
ment. To obtain the SM we must neglectHA in the calcula-
tion of T and replacekSl by its nonself-consistent value in
the direction of the assumed exchange field of the switching
magnet. These approximations are both reasonable provided
the exchange field is much stronger than the anisotropy field,
which is satisfied for a ferromagnet such as Co. This follows
since the Green functions which determine bothT and kSl
depend on the total fieldD+HA. Thus in the SM the spin-
transfer torque is calculated as a function of the angle be-
tween the magnetizations without solving the self-
consistency problem. Furthermore, equating it to the
anisotropy torque as in Eq.s33d is equivalent to calculating a
steady state of the Landau-Lifshitz equation. The justification
of the SM for a switching magnet with more than one atomic
plane is more subtle.

The self-consistency conditions23d must be satisfied for
each plane in the switching magnet. It may be writtenfcf.
Eq. s30d for the monolayerg

sHA + Dnd 3 kSnl = HA 3 kSnl s35d

and, using againkSnl=kSnl1+kSnl2 and Eq.s29d, we obtain

kjn−1l1 − kjnl1 + kjn−1l2 − kjnl2=HA 3 kSnl. s36d

The first two terms contain the interlayer exchange coupling,
which is neglected as in the monolayer case, and interplane
exchange coupling within the switching magnet. To clarify
the argument, we write notionally this last contribution in
terms of local exchange stiffnessDn between atomic planes
n−1 andn. Hence from Eq.s36d

kjn−1l2 − kjnl2 = HA 3 kSnl + Dn−1sSn−1 3 Snd

− DnsSn 3 Sn+1d. s37d

On summing over all planesn in the switching magnet the
internal exchange coupling torques cancel and we have

kjspacerl2 − kj leadl2 = HA 3 o
n

kSnl. s38d

In the fully self-consistent solution of Eq.s35d the exchange
field Dn is parallel to the local momentkSnl but theDn are
not collinear. To proceed to the SM we must assume that all

FIG. 2. Universal path off vs a.

FIG. 3. BiasVb required to stabilize the switching magnet mo-
ment at an anglea on the universal path.
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theDn used to calculate the spin-transfer torque on the left of
Eq. s38d are equal, toD, say. Furthermore, we assume, as in
the case of the monolayer, that we can neglectHA in the
calculation of the spin-transfer torque and that allkSnl are in
the directionD with magnitude equal to the ground state
moment. In making the approximationDn<D we have
failed to satisfy Eq.s37d individually as is required for full
self-consistency.

To show that this is not serious for a ferromagnet such as
Co, consider the following argument. If we use the uniform
value ofD determined from Eq.s38d, as described, to calcu-
late the spin-transfer torque in Eq.s37d and assume allkSnl
are in the direction ofD, the last two terms of Eq.s37d are
zero and the equations are far from satisfied. However, since
the exchange stiffness constantsDn of a ferromagnet such as
Co are large one need only introduce small deviations ofDn
from the uniformD, and consequently small deviations of
kSnl from uniformity, to satisfy the self-consistent equation
s37d. This is true because the spin-transfer and anisotropy
torques are insensitive to these small deviations. The ability
of the SM to simulate the fully self-consistent solution accu-
rately has been verified numerically for a switching magnet
with two atomic planes using the single-orbital model of Sec.
IV.

VI. TWO COMPONENTS OF THE SPIN-TRANSFER
TORQUE IN THE STANDARD MODEL

In the calculation of the spin-transfer torqueT within the
standard model the anisotropy field is neglected so thatT
depends only on the anglec between the magnetizationP of
the polarizing magnet and the assumed exchange fieldD of
the switching magnet. As in Fig. 1, the magnetizationP of
the polarizing magnet is in thesz,xd plane, making an angle
u with the z axis, and, for convenience, we choose the ex-
change field of the switching magnet to be in thez direction
so thatc=u. The torqueT in the SM is given by

T = kjspacerl2 − kj leadl2 s39d

where the right-hand side is related to the total bias-induced
spin S2=on kSnl2 by Eq. s29d, summed overn, with HA ne-
glected andDn=D. It follows that

T = D 3 o
n

kSnl2 = D 3 S2. s40d

Here, kSnl2 is given by Eq.s22d with HA neglected in the
Green functionsgL, gR. The three components ofS2
=sS2x,S2y,S2zd are related to the three Pauli matrices
sx,sy,sz in Eq. s22d . Clearly, from Eq.s40d the z compo-
nent of torque is zero so that we can write

T = sTx,Ty,0d. s41d

The “in-plane” componentTi=Tx, where “in-plane” refers
to the sz,xd plane containingP and D, is given by Ti

=−DS2y and the “out-of-plane” componentT'=Ty is given
by T'=DS2x. The quantitiesS2x andS2y represent small de-
viations of the switching magnet moment from the direction
of its exchange field. These spin components are referred to

by previous authors15,16 as “spin accumulation.” In the self-
consistent steady-state treatment of Sec. IV such deviations
do not occur because the exchange field is always in the
direction of the local moment. In our view, time-independent
spin accumulationS2x,S2y in the ferromagnet is a nonphysical
concept which, however, we may define formally as the ratio
of torques Ti, T', to the exchange fieldD. It is remarkable
that, as shown in Sec. V, the SM in which this concept arises
provides a convenient and frequently accurate method for
calculating spin-transfer torque. Time-dependent spin accu-
mulation in the ferromagnet in a non-steady state could be a
valid concept. However, these time-dependent spins would
produce time-dependent exchange fields which would excite
the whole spin system. This would require a many-body
treatment going beyond the unrestricted Hartree-Fock ap-
proximation which is adequate for the steady state. Spin ac-
cumulation kSxl,kSyl,kSzl proportional to the bias exists in
the spacer even in the steady state and has real physical
significance. Calculation of this effect will be published in a
succeeding paper.

The spin transfer torque can be calculated either directly
from Eq. s39d or from Eq. s40d. However, the latter would
require calculatingkSnl2 for each atomic plane of the switch-
ing magnet so that the direct method is obviously preferable.

We begin with an exactly solvable one-band model which
we can connect with previous work.1 This model is related to
the one described at the end of Sec. IV, where the switching
magnet is a single atomic plane and there is perfect matching
between the spacer band and the majority spin bands in both
ferromagnets. To obtain analytical results in this first ex-
ample, we also assume that the exchange splittingD→`
both in the polarizing and switching magnets. In fact, once
the bottom of the minority-spin band is well above the Fermi
level, the results are rather insensitive to the magnitude ofD.
Such a system is sometimes referred to as a half-metallic
ferromagnet and is the first case considered by Slonczewski
in his original paper.1 In the limit D→` the SM model is
exact since the moment of the switching magnet cannot de-
viate from the exchange field and the self-consistency con-
dition s23d is automatically satisfied. We therefore calculate
the spin-transfer torque in the absence of anisotropy field.
Clearly, owing to the infinite exchange splitting, the only
spin current in the lead corresponds to thez component of
spin and thez-spin current is equal to the charge current
smultiplied by " /2ed. It turns out in this model that the
y-spin current in the spacer, which is equal to the torqueT'

since the corresponding current in the lead is zero, vanishes.
Thus only Slonczewski torqueTi survives and is given by

Ti = − ex
eV

8p
o
ki

t2sg0 − g0
*d2 sin c

u1 − t2g0sa + b coscdu2
. s42d

Here,g0=g0ski ,0d is the majority spin surface Green func-
tion for the semi-infinite ferromagnet, or equivalently for the
semi-infinite ferromagnet with an overlayer of the matching
spacer. The Green functiong0 is evaluated at energyv=0,
the common Fermi level of the unbiased system, also,t is the
hopping parameter introduced in Sec. IV anda and b are
given by
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a =
1

2
sg0 + ANd; b =

1

2
sg0 − ANd, s43d

whereAN=sin Nk'd/ ft sinsN+1dk'dg with

k'd = cos−1hfVs
↑ + 2tscoskxd + coskyddg/2tj s44d

and ki=skx,ky,0d; d is the interatomic distance,N is the
number of atomic planes in the spacer, andVs

↑ is the on-site
potential in the majority-spin band of the switching magnet.
The corresponding expression for the charge current is very
similar and we find that

Ti =
"

2ueu
tansc/2d 3 scharge currentd. s45d

This is precisely the Slonczewski result for the analogous
parabolic band model. It should be noted that the torqueTi

goes to zero forc→p since the charge current for a half-
metallic magnet contains a factor 1+cosc.

The interesting result thatT'=0 for this model may be
traced to an effective reflection symmetry of the system
about a plane at the center of the spacer. Although the
present system appears asymmetric the infinite exchange
splitting makes it equivalent to a symmetric system with a
semi-infinite switching magnet. More generally, we find, cer-
tainly for a one-band model with arbitrary parameters, that
they-spin component of the spin current in the spacer always
vanishes for a system with reflection symmetry. In general,
however, they-spin current in the lead is nonzero so that
T'Þ0 even for a symmetric system. The resultT'=0 for

the above model is, therefore, a very special one due to the

artifact of a very large exchange splitting in the ferromag-
nets.

In the second set of examples we consider several cases,
within the one-band model, where the exchange splittings in
the ferromagnets are finite. Simple formulas, such as Eq.
s42d, for the torques are no longer available and they must be
calculated numerically. In all the examples the calculated
torques are per surface atom. In all cases, we retain the ge-
ometry of the first example. Table I lists the parameters for
all the cases considered. All potentials in Table I are in units
of 2t and the Fermi energym0=0.

Figure 4sad shows the calculated torquesTi per surface
atom sin units of eVbd as a function of the anglec for the
models with parameter setssad–sdd of Table I.

In casesad Ti dominates, as expected from the large ex-
change splittingVs

↑−Vs
↓ in the switching magnet which ap-

proaches the infinite exchange splitting of our first exactly
solvable model. The angular dependence of both torques is
clearly dominated by a sinc factor fcf. Eq. s42d g although
some distortions are apparent. In casesbd Ti and T' are of
almost equal strength. This is the case where the two ferro-
magnets are of the same material and the bottom of the mi-
nority spin band is exactly at the Fermi level. This simulates
well the situation in Co/Cu and we shall see presently that in
realistic calculations for this system the torquesTi and T'

are again similar in magnitude. The parameters of casesbd
were used previously in Sec. IV as an example of a fully
self-consistent calculation of steady states. In casescd T' is
larger thanTi. It is interesting that this occurs for smaller
exchange splitting in the switching ferromagnet. In casessbd
and scd the angular dependence of the torques is hardly dis-
torted from the sinc form. In casessad, sbd, andscd the two
torquesTi,T' have the same sign. In casesdd they have op-
posite sign and almost equal magnitude. In examplessad–sdd
the switching magnet consists of one atomic plane. In case
sed shown in Fig. 5 we use the same parameters as in casescd
but the number of atomic planes in the switching magnet
varies between 1 and 10 and the anglec=p /2.

It can be seen from Fig. 5 that, contrary to popular belief,
the out-of-plane torqueT' dominates overTi for small thick-
nesses of the switching magnet and remains 50% ofTi at
M =10 atomic planes. For all thicknesses of the switching
magnet,Ti andT' have the same sign. We have already seen
in casesdd that this is not always the case.

So far we have kept the number of atomic planes in the
spacer at 20 but we must now highlight an important and
surprising result concerning the dependence of torque onN.

TABLE I. Parameters for one-band models.Vp
↑,Vp

↓ are on-site
potentials for majority and minority spin in the polarizing magnet;
Vs

↑,Vs
↓ are on-site potentials for majority and minority spin in the

switching magnet;Vsp is the on-site potential in the spacer and the
lead; andN andM are the numbers of atomic planes in the spacer
and switching magnet, respectively.

Case Vp
↑ Vp

↓ Vsp Vs
↑ Vs

↓ N M

sad 2.3 3.0 2.3 2.3 5.0 20 1

sbd 2.3 3.0 2.3 2.3 3.0 20 1

scd 2.3 3.0 2.3 2.8 3.0 20 1

sdd 2.1 3.0 2.8 2.1 5.0 20 1

sed 2.3 3.0 2.3 2.8 3.0 20 1–10

FIG. 4. Dependence of the spin-transfer
torques Ti sad and T' sbd on the anglec for the
model with parameter setssad–sdd of Table I. The
torques are in units of eVb.
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In Fig. 6 we show the torques for the parameter setsbd and
c=p /2 plotted as functions ofN.

It is clear that they both oscillate but tend to constant
values asN→` in our ballistic limit. In zero bias all spins of
the system lie in thesz,xd plane and it is, therefore, not
surprising that when charge current flows in nonzero bias
there are finitez-spin andx-spin currents for arbitrary spacer
thickness. The constant value ofy-spin current asN→`, this
being associated withT', may seem more surprising since
there is noy-spin density in zero bias. Of course, forcÞ0,
there is ay-spin current even in zero bias corresponding to
interlayer exchange coupling, but this effect is not associated
with charge transport and decays as 1/N2 with increasing
spacer thickness. The relationsTi=−DS2y, T'=DS2x derived
in the beginning of this section within the standard model
show that bias-induced in-plane spin density is related to
out-of-plane torque and vice versa. It is, therefore, inevitable
that both torques will exist.

As a final example of these spin-transfer torque calcula-
tions we consider a fully realistic multiorbital model of fcc
Co/Cus111d with tight-binding parameters fitted to the re-
sults of first-principles band structure calculations, as de-
scribed previously.12 Referring to Fig. 1, the polarizing mag-
net is a semi-infinite slab of Co, the spacer is 20 atomic
planes of Cu, the switching magnet containsM atomic
planes of Co withM =1 and 2, and the lead is semi-infinite
Cu. Figures 7sad and 7sbd show the angular dependences of
Ti,T' for the casesM =1 and M =2, respectively. For the
monolayer switching magnet, the torquesT' andTi are equl
in magnitude and they have the opposite sign. However, for

M =2, the torques have the same sign andT' is somewhat
smaller thanTi. A negative sign of the ratio of the two torque
components has important and unexpected consequences for
hysteresis loops as discussed in the next section. Finally, we
show in Fig. 8 the dependence ofT' andTi on the thickness
of the Co switching magnet. It can be seen that the out-of-
plane torqueT' becomes smaller thanTi for thicker switch-
ing magnets. This is the expected behavior since our polar-
izing magnet is semi-infinite Co, so that as the switching Co
magnet becomes thicker we approach the limit of a symmet-
ric junction for which they-component of the spin current
vanishes and the corresponding component in the lead is
usually small. However,T' is by no means negligibles27%
of Tid even for a typical experimental thickness of the
switching Co layer of ten atomic planes. It is also interesting
that beyond the monolayer thickness, the ratio of the two
torques is positive with the exception ofM =4.

VII. STABILITY OF STEADY STATES AND
HYSTERESIS LOOPS

In Sec. IV we calculated the steady-state orientation of the
magnetization of the switching magnet fully self-consistently
as a function of biasVb ssee Fig. 3d. These results allow us to
calculate the continuous portions of the hysteresis loops of
resistance versus bias, but to determine where jumps occur
we must investigate the stability of the steady states. This
cannot be done within the standard Keldysh formalism since
the dynamics of the system, including damping, lies outside

FIG. 5. Dependence of the spin-transfer torqueTi andT' on the
thickness of the switching magnetM for c=p /2 and the parameter
set scd of Table I. The torques are in units of eVb.

FIG. 6. Dependence of the spin-transfer torqueTi andT' on the
thickness of the spacerN for c=p /2 and the parameter setsbd of
Table I. The torques are in units of eVb.

FIG. 7. Dependence of the spin-transfer torqueTi and T' for
Co/Cu/Cos111d on the anglec. The torques per surface atom are in
units of eVb. sad is for M =1 andsbd for M =2 monolayers of Co in
the switching magnet.

FIG. 8. Dependence of the spin-transfer torqueTi and T' for
Co/Cu/Cos111d on the thickness of the switching magnetM for
c=p /3. The torques are in units of eVb.
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its scope. We therefore map the microscopic problem onto a
phenomenological time-dependent Landau-LifshitzsLL d
equation with Gilbert damping. An approach based on the
LL equation has been used previously1,5 but our treatment
differs in several important ways. First, we use as an input
microscopically determined torquesTi, T'. In previous work
only Ti was considered and its magnitude was an adjustable
parameter. Second, the importance of the steady state con-
cept in the context of the LL equation has not previously
been fully recognized. Finally, the consequences of easy
plane anisotropy have hardly been explored; we find that, in
fact, it can lead to completely new switching scenarios when
Ti and T' have the opposite sign. Even in the absence of
easy plane anisotropy,Ti andT' with the opposite sign may
lead to qualitatively different types of switching.

In Sec. VI the unit vector in the direction of the switching
magnet momentm was always taken in thez direction but to
discuss the LL equation we must considerm in a general
direction. The total spin-transfer torqueT may be written
quite generally as the sum of the two components in the
directions of the vectorsm3p andm3 sp3md, wherep is
a unit vector in the direction of the magnetization of the
polarizing magnet. Thus

T = T' + Ti, s46d

where

T' = g' sm 3 pd, s47d

Ti = gi m 3 sp 3 md. s48d

The modulus of both vector products in Eqs.s47d ands48d is
equal to sinc, wherec s0øcøpd is the angle betweenp
andm. Since in the SMT' andTi depend only on the angle
c, it follows that the coefficientsg',gi are functions only of
c. To determineg'scd,giscd, we return to the geometry of
Sec. VI withp=ssin c ,0 ,coscd andm=s0,0,1d. It follows
that

Ti = giscdssin c,0,0d, s49d

T' = g'scds0,sinc,0d. s50d

Thus the scalar quantities calculated in Sec. VI areTi

=gi sin c, T'=g' sin c. Hence the magnitudes and signs of
giscd, g'scd are determined. It is seen in Fig. 4 that the sinc
factor accounts for most of the angular dependence ofTi, T'

so that to a good approximationgi, g' are constants, propor-
tional to bias.

The LL equation takes the form

dm

dt
+ gm 3

dm

dt
= G s51d

with the reduced total torqueG given by

G = s− HA 3 kStotl + T' + Tid/ukStotlu, s52d

where kStotl is the total spin angular momentum of the
switching magnet andg is the Gilbert damping param-
eter. Following Sun,5 Eq. s51d may be written more conve-
niently as

s1 + g2d
dm

dt
= G − gm 3 G. s53d

We first consider steady-state solutions of this equation but
shall return to the full time-dependent equation when dis-
cussing stability of these states. In the steady state Eq.s51d
reduces to

− HA 3 kStotl + T' + Ti = 0 s54d

which is equivalent to Eq.s33d.
The magnetization unit vectorp of the polarizing magnet

is given by ssin u ,0 ,cosud and in the phenomeno-
logical treatment, based on the SM, the magnetization of the
switching magnet is uniform in the directionm
=ssin a cosf ,sin a sin f ,cosad ssee Fig. 1d. The proce-
dure for finding steady states is exactly analogous to that
described in Sec. IV for the microscopic approach. Thus the
universal path on the unit sphere consisting of pointssa ,fd
which correspond to possible steady states, independent of
bias, is again given by Eq.s34d . For givenu the torqueT
=T'+Ti is now defined explicitly as a function ofa andf
by Eqs.s47d ands48dd, the bias factor in the constantsg',gi

cancelling as before. Similarly, using Eq.s54d , we can plota
against biasVb for the actual steady state in the given bias as
in Fig. 3.

We now return to Eq.s51d to discuss stability of the
steady states. The torqueG is given by

G = Hu0hsmezdm 3 ez − hpsmeydm 3 ey + vm 3 sp 3 md

+ vrm 3 pj, s55d

where the relative strength of the easy plane anisotropyhp
=Hp0/Hu0, using the notation of Eqs.s5d and s6d. The last
two terms correspond toTi, with strength parameterv, and
T', with strength parameterrv. Clearly the reduced biasv is
proportional to the actual biasVb and inversely proportional
to the number of atomic planes in the switching magnet.
Comparing Eqs.s47d, s48d, and s55d we see thatr =g' /gi.
Thus if the scalar torquesTi,T' defined after Eq.s50d have
the same sign it follows thatr is positive. Conversely,r is
negative if the torques have opposite sign. We now linearize
Eq. s51d about a steady-state solutionm=m0, which satisfies
G=0, using the local coordinate axes shown in Fig. 9. Thus

FIG. 9. Local coordinate axes for the deviation of the magneti-
zationm from its steady-state orientationm0.
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m = m0 + jea + hef s56d

and the linearized Eq.s53d may be written in the form

dj

dt
= Aj + Bh;

dh

dt
= Cj + Dh, s57d

where A, B, C, and D are functions ofa0, f0, u and the
parametershp, v, r, andg. Following Sun,5 we have intro-
duced the natural dimensionless time variablet= tHu0/ s1
+g2d. The conditions for the steady state to be stable are

F = A + D ø 0; G = AD − BCù 0 s58d

excludingF=G=0.17 The damping parameterg appears inG
only as a factor 1+g2 and may be canceled in the condition
for stability Gù0. This condition becomes

Q2v2 + sQvr + cos 2a0dsQvr + cos2 a0d

+ hphQvrs1 – 3 sin2 f0 sin2a0d

+ cos 2a0s1 – 2 sin2 a0 sin2 f0dj

− hp
2sin2 a0 sin2 f0s1 – 2sin2 f0 sin2 a0d ù 0,

s59d

where Q=pm0=sin u sin a0 cosf0+cosu cosa0. Simi-
larly, the conditionFø0 becomes

− 2vs1 + grdQ − gscos 2a0 + cos2 a0d

− ghps1 – 3 sin2 f0 sin2 a0d ø 0. s60d

A number of general conclusions can be drawn from these
inequalities. However, we first consider the special case
when the magnetization of the polarizing magnet is in the
direction of the uniaxial anisotropy axis of the switching
magnetsu=0d. In this case the equationG=0, with G given
by Eq. s55d , shows immediately that possible steady states
are given bya0=0,p, corresponding to the switching layer
moment along the axis of the uniaxial anisotropy. These are
the only solutions whenhp=0. However, in the presence of
easy-plane anisotropyshpÞ0d there are additional steady
state directions of the switching layer moment given by
sin 2f0=2v /hp, cosa0=−vr cosf0/ scosf0+v sin f0d. In
the pure Slonczewski case ofT'=0 sr =0d it follows that
a0=p /2. The stability conditionss59d and s60d then reduce
to cos 2f0ø0 and hps1–3 sin2 f0dù1, respectively. For
practical biasesv /hp!1 and the solution forf0 satisfying

the first stability condition isf0<p /2−v /hp. The second
stability condition is then not satisfied. Thus foru=0,r =0 the
only stable steady states of interest are given bya0=0 or p.
It is easily seen that in this case the inequalitys59d is always
satisfied and the system becomes unstable when the left-hand
side of Eq.s60d changes sign atvc=−s1+ 1

2hpdg, correspond-
ing to Sun’s5 result in zero external field. This shows clearly
that the criterion for magnetization switching derived by
Slonczewski1 and Sun5 in their very special case is equiva-
lent to the instability of a steady state in our approach.

In another special case when we have only out-of-plane
torqueT', the switching criteria are clearly the same as in
the Stoner-Wohlfarth field-switching theory since the torque
T' is equivalent to one arising from an effective field of
magnitudeHu0vr fsee Eq.s55dg. The stability criteria are
then equivalent to the conditions for a minimum of an energy
function whose gradient gives all the effective fields. This
was previously recognized by Heideet al.16 Obviously this
energy does not involveg and the absence ofg in both
criteria is clearly seen when in the second criterions60d we
take the limitv→0, r →` with the T' parametervr finite.
As soon as the in-plane torque parameterv is nonzero, no
energy function exists and the stability criterions60d in-
volves the damping parameterg, showing its essentially dy-
namic nature. It is interesting that even when both spin-
transfer torques exist, the in-plane torque drops out of Eq.
s60d in the strong damping limitg→` and we return to a
Stoner-Wohlfarth situation.

In general, the system is neither in the Slonczewski-Sun
nor Stoner-Wohlfarth limit and our general stability analysis
based on the criterias59d ands60d is required. We shall first
apply it to discuss the stability of the steady-state paths
shown in Fig. 3 which correspond to the microscopic param-
eterssbd of Table I. In this case, the reduced parameters of
the present section, which reproduce accurately the micro-
scopically determined curves in Fig. 3, arehp=0 andr =1.
The torque ratior =1 is clear from the curves for casesbd in
Fig. 4. The corresponding steady-state paths are shown in
Fig. 10sad. In Fig. 10sbd we plot the steady-state paths for the
parameter setsdd of Table I, in which caser =−1 ssee Fig. 4d.
In Fig. 3 we plotted −Vb on the bias axis, whereVb is in
volts, in order to compare with the present reduced bias
v which is proportional to eVb and e is negative.sVb and
v have the same sign whenTi ,0 and opposite sign when
Ti .0.d

We have chosen for presentation purposes a valueg
=0.05 of the damping parameter which is somewhat larger

FIG. 10. Reduced biasv required to stabilize
the switching magnet moment at an anglea on
the universal path forr =1 sad and r =−1 sbd and
hp=0. Bold lines correspond to stable steady
states.
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than that suggested in Ref. 5. We recall that Figs. 3 and 10
correspond to the situation when the moment of the polariz-
ing magnet is atu=2 rad. We first discuss Fig. 10sad. Initially
with zero biasv the moment of the switching magnet is in
the direction of the uniaxial anisotropy field, i.e.,a0=0. Asv
increases positively,a0 increases until the stability criterion
s60d ceases to be satisfied. In Fig. 10 stable steady states are
indicated by heavy lines and unstable ones by thin lines. At
this value ofv, the point A in Fig. 10sad, the system seeks
another steady state which is stable at the same bias and
hence jumps to B. It is assumed that for finiteg the system
will home in on the stable state. Sun5 showed how this hap-
pens dynamically for the special case ofu=0. On further
increase of bias the system proceeds to C and, on reducing
the bias to zero, it moves to D wherea=p. The current-
induced switching process is thus completed with the mag-
netization switched between the two stable zero-bias orien-
tations sa=0 and pd in the uniaxial anisotropy field. To
reverse the process the bias is reversed and the system pro-
ceeds to E where it becomes unstable and jumps to F. Finally
a further negative increase ofv takes the system to G and, on
reducing the bias to zero, we return to O. If the resistance is
calculated for each steady state, using our Keldysh formal-
ism sor equivalently the Kubo formulad for charge current,
the corresponding hysteresis loop of resistance versus bias
can be plotted. We shall do this for later examples.

In the above example, the in-plane and out-of-plane
torques are of equal strength and of the same signsr =1d. The
instabilities at A and E are governed by the dynamical crite-
rion s60d. In the Stoner-Wohlfarth-like case discussed earlier
the system remains stable, as bias is increased, up to the
maximum at A8. The first criterions59d determines the insta-
bility at this point and similarly at E8.

Figure 10sbd shows the situation for the less usual case of
negativer, in particularr =−1 corresponding to parameter set
sdd. Starting ata0=0, with bias increasing from zero, an
instability occurs at A as before. However, there are now two
possible stable steady states to which the system might jump,
labeled by B8 and B. We cannot say to which point the jump
occurs without following the detailed dynamics of the sys-
tem with time-dependent solutions of the Landau-Lifshitz
equation. If the system jumps to B8 further increase of bias
leads towards G where the moment of the switching magnet
approaches alignment with that of the polarizing magnet.
However the bias is varied now, through positive and nega-
tive values, the system remains on the stable steady-state
branch GG8 and no switching to the point D can occur. If,

however, the system jumps from A to B, the bias can be
reduced to zero at D and a hysteresis loop can be completed
via E and F. On the other hand if on jumping to B the bias is
further increased, to reach the state C, a jump will occur to
C8 and the system is again trapped on the branch GG8.

The next example we consider employs a mapping of the
fully realistic microscopic torques for Co/Cus111d shown in
Fig. 7sbd onto the macroscopic model. In this case the
switching magnet consists of two atomic planes of cobalt
sM =2d. We recall that the nonmagnetic spacer consists of 20
atomic planes of Cu. A new feature of this example is that we
now introduce a strong easy-plane anisotropy withhp=100.
If we take Hu0=1.863109 s−1 corresponding to a uniaxial
anisotropy field of about 0.01 T, this value ofhp corresponds
to the shape anisotropy for a magnetization of
1.63106 A/m, similar to that of Co.5 We take againu
=2 rad and a realistic value ofg=0.01, which is in line with
the value quoted by Sun.5 The value ofr which gives a
reasonable fit to the microscopic torques shown in Fig. 7sbd
is r =0.65. We find that the strong easy-plane anisotropy
forces the switching magnet moment to rotate in thesx,zd
plane, which means that the universal paths in thesa ,fd
plane are almost straight lines withf=0 or p. The plot of
reduced biasv againsta is shown in Fig. 11 and again the
heavy portions of the curves indicate stable steady states.
The multiple loops of steady states in Fig. 11sad are a new
feature appearing forhpÞ0. However, in this case, they are
all unstable. The important parts of the curves are shown on
a larger scale in Fig. 11sbd. This clearly resembles Fig. 10sad
and instabilities now occur at the extremal points A8 and E8
instead of A and E as in Fig. 10sad. In general, the point A
lies further up the curve towards A8 the larger the product
ghp. This follows from Eq.s60d as long as the easy-plane
anisotropy is strong enough forusin f0 sin a0u,1/Î3 to be
satisfied. This stabilizing effect of easy-plane anisotropy has
the unwelcome consequence that the critical biasscurrentd
for switching is strongly increased by such anisotropy. The
corresponding hysteresis loop of resistance versus bias for
u=2 rad is shown in Fig. 12sad. We have also transferred the
key points from Fig. 11sbd. In Fig. 12sbd we show the hys-
teresis loop foru=3 rad, which is close tou=p assumed in
previous treatments.1,5 It is rather interesting that the critical
bias for switching is<0.2 mV both foru=2 andu=3 rad.
When this bias is converted to the current density using the
calculated ballistic resistance of the junction, we find that the
critical current for switching is<107 A/cm2, which is in
very good agreement with experiment.3 However, there is a

FIG. 11. Reduced biasv re-
quired to stabilize the Co switch-
ing magnet moment at an anglea,
with u=2, and realistic anisotropy
and damping parameters for
Co/Cu/Cos111d with M =2. The
value f<0 is obtained forv.0
andf<p is obtained forv,0.
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qualitative difference between the casesu=2 andu=3 rad.
For u=2 rad, switching is determined by the instability con-
dition s59d which is independent of the damping parameter
g. This means that switching is of the Stoner-Wohlfarth type.
On the other hand, foru=3 rad, we find that the instability is
determined by Eq.s60d ,which means that switching is of the
Slonczewski-Sun type.

The last example we consider employs again a mapping
of the fully realistic microscopic torques for Co/Cus111d
shown in Fig. 7sad onto the macroscopic model. In this case
the number of atomic planes in the switching magnet is
M =1. We use the same values ofhp, g, Hu0, andu as in the
previous example. The best fit to the microscopic torques in
Fig. 7sad givesr =−1.0. This example, besides being again a
realistic one, introduces the feature of negativer which we
met in the single-orbital model with parameter setsdd fsee
Figs. 4 and 10sbdg. The plot of reduced biasv againsta is
shown in Fig. 13 with stable steady states indicated as be-
fore. The low-bias part of the curves is plotted in Fig. 13sbd
on a larger scale.

The fact thatur u is comparable for Figs. 11 and 13sof the
order of 1d but the sign is changed, leads to all the bias
curves being essentially only reflected in thea axis. How-
ever, the change of sign ofr is seen to have a dramatic effect
on the stability of the steady states. The most striking effect
is the creation of a “bias-gap” with no stable steady states
for values of reduced biasuvu between about 0.7 and 10. For
r =−1 the bias-gap only exists in the presence of easy-plane
anisotropy. In this connection we may compare Fig. 13, with
parametersr =−1, hp=100, g=0.01, andu=2, with Fig.
10sbd correponding tor =−1, hp=0, g=0.05, andu=2. fThe
larger value ofg for Fig. 10sbd is not important; it was used
to push the point of instability A to larger bias and thus
clarify the figure.g Clearly there is no bias-gap in Fig. 10sbd
with hp=0. Another effect of largehp is to push the point of

instability G in Fig. 13sbd to much larger bias than the cor-
responding point in Fig. 10sbd, even with a smaller damping
parameterg. In fact, for the particular values ofg and hp
used for Fig. 13, G lies at a larger bias than E8. The resultant
hysteresis loop, shown in Fig. 14sad, is thus executed in the
same sense as that shown in Fig. 12sad. However, in Fig.
14sbd, corresponding tou=3 instead of 2, the sense is re-
versed.

In Fig. 12 as we change bias from B to C or from F to G
we are achieving saturation by aligning the switching magnet
parallel or antiparallel to the polarizing magnet. However, in
Fig. 14 as we increase bias from F the steady state becomes
unstable at the point G, for a critical bias, but there is no
stable state for the system to jump to with further increase of
bias fsee Fig. 13sbdg. To emphasize this point, the points G
and C are marked with an asterisk in Fig. 14sad. Thus for bias
larger than this critical one the system cannot home in on any
stable state and the moment of the switching magnet remains
perpetually in a time-dependent state. For much larger bias
the system can home in onto the stable multiple loop states
shown in Fig. 13sad. Thus there is a range of bias where only
the time-dependent state is possible. The bottom of the gap
occurs at the bias point G in Fig. 14sad. If the bias is then
reduced below this value the system will home in on a stable
steady state and the hysteresis loop can be completed.

We investigated the critical negative value ofr at which
the bias gap appears. For the parameters used above, the gap
is not present forr =−0.05 but is already well established for
r =−0.1. Thus when in-plane and out-of-plane spin-transfer
torques have opposite sign, and easy plane anisotropy is
large, only a small out-of-plane torque is required to produce
this unusual bias gap behavior. Since out-of-plane torque
corresponds to an effective field, we believe that this behav-
ior is closely related to the time-dependent motion of the
moment of the switching magnet which is observed in a

FIG. 12. Resistance of the
Co/Cu/Cos111d junction as a
function of applied bias withM
=2 monolayers of Co in the
switching magnet.sad is for u
=2 rad andsbd is for u=3 rad.

FIG. 13. Reduced biasv re-
quired to stabilize the Co switch-
ing magnet moment at an anglea,
with u=2, and realistic anisotropy
and damping parameters for
Co/Cu/Cos111d with M =1. The
value f<0 is obtained forv,0
andf<p is obtained forv.0.
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sufficiently large applied magnetic field.6 This alternative
mechanism for time-dependent motion of the switching mag-
net moment is under investigation.

Even in the absence of easy plane anisotropy, but with
large negativer, we have found a critical bias above which
only time-dependent solutions exist. However, for small
negativersur u!1d normal solutions can occursno bias gapd.
For intermediate values ofr, as discussed forr =−1 with
reference to Fig. 10sbd, switching may or may not occur.
Furthermore, in the case of pure in-plane torquesr =0d and
no easy plane anisotropy we find straightforward switching
of Slonczewski-Sun type forucosuu.1/3, while for ucosuu
,1/3 a more complicated hysteresis loop is found.

VIII. CONCLUSIONS

Our principal result is that spin-transfer torques respon-
sible for current-induced switching of magnetization can be
calculated quantitatively for real systems such as Co/Cu/Co
junction in the ballistic regime using nonequilibrium
Keldysh formalism. In fact, we argue that the spin-transfer
torque can be calculated self-consistently from first prin-
ciples only in a steady statesswitching magnet magnetization
does not moved, and this is precisely what the Keldysh for-
malism is designed for. In the small-biasslinear-responsed
regime higher-ordersmany-bodyd effects can be neglected
and our results for the spin-transfer torque are, therefore,
quite rigorous. Keldysh formalism provides an explicit for-
mula for the local spin current between any two atomic
planes of the junction in terms of one-electron surface Green
functions for the cut junction. The surface Green functions
are readily available and we calculate them using a tight-
binding Hamiltonian with parameters determined from a fit
to anab initio band structure. With the exception of Slonc-
zewski’s parabolic band calculation,1 our Keldysh formula-
tion is the only theory that yields the local spin current taking
into account rigorously contributions from all the parts of the
junction. As the following argument demonstrates, previous
theories,8,15 which consider only scattering of spin-polarized
electrons incident from the spacer on the spacer/switching
magnet interface, are incomplete. When the particle current
flows from the polarizing magnet toward the switching mag-
net it is clear that a spin-transfer torque acts on the switching
magnet. However, when the polarity of the applied bias is
reversed, the current incident from the right lead on the
switching magnet is unpolarized and, therefore, has no effect

on it. On the other hand, it is well-known experimentally3

that changing the polarity of the bias reverses the direction of
the spin-transfer torquesthe magnitude remains the samed.
This cannot be explained within a theory that treats only the
spacer/switching magnet interface. The ingredient that is
missing is strong reflection of electrons from the polarizing
magnet which results in a spin polarization of the reflected
electrons. Clearly only such reflected spin current flowing in
the direction opposite to that of the particle current can exert
torque on the switching magnet. It follows that multiple re-
flections of electrons from the polarizing and switching mag-
net are an essential feature of the problem. They are treated
rigorously to all orders in our theory. The fundamental ex-
perimental fact that the spin-transfer torque acting on the
switching magnet is proportional to the applied bias is ob-
tained naturally in our theory since the spin current anywhere
in the junction, given by Eq.s25d, is proportional to the
difference between the Fermi functions for the left and right
halves of the cut junction, i.e., proportional to the bias in the
low-bias slinear-responsed limit. These arguments indicate
that self-consistent treatment of the whole junction is crucial
for correct understanding of current-induced switching of
magnetization.

The spin-transfer torque calculated from our Keldysh for-
malism has two components, one with the torque vectorTi in
the plane containing the magnetizations of the two magnetic
layerss“in-plane” torqued and another with the torque vector
T' perpendicular to this planes“out-of-plane” torqued. It is
generally believed that the effective fieldlike componentT'

is always small. We find that this is not the case and our
calculations show that, in general, both the in-plane and out-
of-plane components tend to finite values independent of the
spacer thickness in the limit of a thick spacer. However, it is
true thatT' is strictly zero in the limit of an infinite ex-
change splitting between the majority and minority-spin
bands in both ferromagnets, and this is the case considered
initially by Slonczewski.1 In the realistic case of a finite ex-
change splitting,T' is nonzero and can be comparable with
Ti. The only other general case whenT' can be small occurs
for a junction with reflection symmetry about a plane at the
center of the spacer. Hence to observe an effect ofT' one
needs to break the reflection symmetry of the junction. For a
junction with polarizing and switching magnets made of the
same material, this is achieved by making the switching
magnet thinner than the polarizing magnet, and the strongest
effect is found for a switching magnet only a few atomic

FIG. 14. Resistance of the
Co/Cu/Cos111d junction as a
function of applied current, with
M =1 monolayer of Co in the
switching magnet.sad is for u
=2 rad andsbd is for u=3 rad rad.
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planes thick. Our calculations show thatT' andTi are com-
parable for a Co/Cu/Cos111d junction when the switching
Co layer is one or two atomic planes thick. Nevertheless, for
a good epitaxial junctionsballistic limitd, we find thatT' is
<27% of Ti even for a switching Co magnet as thick as ten
atomic planes. An alternative way to break the symmetry is
to use a junction with polarizing and switching magnets
made of different materials.

Another result we wish to highlight is that, depending on
material parameters of the junction, the relative sign ofT'

and Ti can be negative as well as positive. For example,
T' /Ti ,0 for Co/Cu/Cos111d with a switching Co magnet
of one atomic plane andT' /Ti .0 for two atomic planes of
Co. The negative sign of the ratioT' /Ti has a profound
effect on the stability of steady states and, hence, on the
nature of current-induced switching.

Finally, to determine the critical currents for switching
and to investigate the effect ofT', we have used the micro-
scopically calculated spin-transfer torques as an input into
the phenomenological Landau-Lifshitz equation with Gilbert
damping. Our general philosophy is that all steady states can
be calculated from first principles and loss of their stability,
determined from the Landau-Lifshitz equation, corresponds
to switching. This holds provided there is another stable
steady state at the same current density the system can switch
into. We showed that our criterion for instability of the
steady state leads to the same critical current for switching as
that obtained earlier by Sun5 in the special case ofT'=0 and
for the initial angleu between the polarizing and switching
magnet moments equal to 0 orp. However, we find that
qualitatively different switching scenarios can occur when
T' /TiÞ0, uÞ0, and in the presence of an easy-plane
sshaped anisotropy. In particular, when the easy-plane aniso-
tropy is strong, even a relatively smallT' s5–10% ofTid has
a strong effect on switching. In the absence of an applied
magnetic field, we find that an ordinary hysteresis loop is the
only possible switching scenario whenT' /Ti .0. However,

for T' /Ti ,0, a normal hysterestic switching occurs only at
relatively low current densities. When the current exceeds a
critical value, there are no stable steady states and the system
thus remains permanently in a time-dependent state. This is
analogous to the observed precession of the switching mag-
net magnetization caused by a dc current in the presence of
an applied magnetic field.6 In our case, the effective field like
termT', which causes this behavior, is proportional to the dc
current and, hence, complete loss of stability of the steady
state occurs only when this term is large enough, i.e., when
the dc current is above a critical value.

Our calculations for Co/Cu/Cos111d show that the criti-
cal current for switching in the hysteretic regime is
<107 A/cm2 both for Co switching magnets of one and two
atomic planes. This is in good agreement with experiment.3

We recall that the critical current for switching is obtained
using the spin transfer torques for a fully realistic
Co/Cu/Cos111d junction and assuming a uniaxial anisotropy
of 0.01 T and Gilbert dampingg=0.01. This is in line with
the values of the uniaxial anisotropy and Gilbert damping
quoted by Sun.5

We conclude by stressing that all the specific results we
have obtained are strictly valid for a perfect epitaxial junc-
tion, i.e., in the ballistic limit. However, the Keldysh formal-
ism we have described is valid also in the diffusive limit.
Generalization to the diffusive limit is, in principle, straight-
forward. For example, one could introduce random impuri-
ties in the lateral supercell geometry, determine the one-
electron surface Green functions in this geometry and then
perform configuration averaging of the spin current.
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