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Self-consistent theory of current-induced switching of magnetization
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A self-consistent theory of the current-induced switching of magnetization using nonequilibrium Keldysh
formalism is developed for a junction of two ferromagnets separated by a nonmagnetic spacer in the ballistic
limit. It is shown that the spin-transfer torques responsible for current-induced switching of magnetization can
be calculated from first principles in a steady state when the magnetization of the switching magnet is station-
ary. A steady state is achieved when the spin-transfer torque, proportional to bias voltage in the linear response
regime, is balanced by the torque due to anisotropy fields. The spin-transfer torque is expressed in terms of
one-electron surface Green functions for the junction cut into two independent parts by a cleavage plane
immediately to the left and right of the switching magnet. The surface Green functions are calculated using a
tight-binding Hamiltonian with parameters determined from a fit t@hannitio band structure. This treatment
yields the spin transfer torques taking into account rigorously contributions from all the parts of the junction.
The spin-transfer torque has two components, one with the torque VEgtior the plane containing the
magnetizations of the two magnetic layers and another with the torque Viectoerpendicular to this plane.

It is shown that, in generall; and T, may be comparable in magnitude and they both tend to finite values
independent of the spacer thickness in the limit of a thick spdceis shown to be small when the exchange
splitting of the majority- and minority-spin bands in both ferromagnets tends to infinity or in the case when the
junction has a plane of reflection symmetry at the center of the spacer. The tdrgaesi T, are comparable

for a Co/Cu/C¢111) junction when the switching Co layer is one or two atomic planes tfickis =27% of

T, even for a switching Co magnet of ten atomic planes. Depending on material parameters of the junction, the
relative sign ofT | andT, can be negative as well as positive. In particulgr/ T;<0 for Co/Cu/C¢111) with

switching Co magnet of one atomic plane ahd/T,>0 for two atomic planes of Co. A negative sign of the

ratio T, /T, has a profound effect on the nature of switching, particularly in the realistic case of easy-plane
(shape anisotropy much larger than in-plane uniaxial anisotropy. To calculate the hysteresis loops of resistance
versus current, and hence to determine the critical current for switching, the microscopically calculated spin-
transfer torques are used as an input into the phenomenological Landau-Lifshitz equation with Gilbert damp-
ing. In the absence of an applied magnetic field, an ordinary hysteresis loop is the only possible switching
scenario whefm | /T;>0. However, forT , /T;<0, a normal hysteretic switching occurs only at relatively low
current densities. When the current exceeds a critical value, there are no stable steady states and the system
thus remains permanently in a time dependent state. This is analogous to the observed precession of the
switching magnet magnetization caused by a dc current in the presence of an applied magnetic field. The
present calculations for Co/Cu/d 1) show that the critical current for switching in the hysteretic regime is
~10" A/cm?, which is in good agreement with experiment.
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[. INTRODUCTION principle theory of current-induced switching based on this

SlonczewskKi proposed a new method of switching the idea. As in the Stoner-Wohlfarth theory, we assume that the
magnetization direction of a thin film by means of a spin-switching magnet remains single domain during the switch-
polarized current. The current is spin-polarized by passingng process.
through a thick layer of a ferromagnetic metal, whose mag- One of the main aims of this paper is to calculate hyster-
netization is assumed to be pinned, subsequently passirggis loops of resistance versus current from first principles
through a nonmagnetic metallic spacer layer and theffior a much more general situation than has been considered
through a thin magnetic switching layer into a nonmagnetigreviously. In previous treatments a uniaxial anisotropy field
lead. Early related theoretical work is due to Berg8witch-  was introduced in the switching magnet with its direction
ing of the magnetization is accompanied by a change in thearallel to the magnetization of the polarizing maghetn
current-perpendicular-to-plane resistan€@PP GMR and this case, there are only two steady states in which the mag-
the effect has been observed experimentally by studying hysietizations of the polarizing and switching magnets are ei-
teresis loops in resistance versus current plots for pillather parallel or antiparallel. It is for this reason that the
systems’ Jumps in the hysteresis curve occur between steadsteady-state approach has not previously been further devel-
states of constant current and static magnetization, just as mped. However, in real experiments on pillar structures shape
the Stoner-Wohlfarththeory of field-switching jumps occur anisotropy due to the variable shape of pillar cross sections
between equilibrium states. We have formulated a firstimeans that the direction of the anisotropy field in the switch-
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ing magnet is not simply related to the direction of the mag-
netization of the polarizing magnet. Furthermore, in some
experimentd” an external field is also applied so that more
general orientations of the magnetizations occur in the steady
states. It is, therefore, essential to consider a completely gen-
eral case when the uniaxial anisotropy field makes an arbi-
trary angled with the polarizing magnetization. We also in-
clude the easy plane anisotropy, which is always large in
layered magnets, and investigate fully its consequences. FIG. 1. Schematic picture of a magnetic layer structure for

In a steady state there is a balance between the SpiRyrrent-induced switchingnagnetic layers are darker, nonmagnetic
current torque, acting on the switching magnet due to thgyyers jightey.

spin-polarized current, and the torque due to anisotropy and
external fields. In our general first-principle treatment, two L hich is th ial f if
components of the spin-current torque appear naturally, ong@gnetization, -which is the essential feature of seli-

with the torque vectoT, in the plane containing the magne- consistent field approximations such as unrestricted Hartree-

another with the torque vectdr, perpendicular to this plane espects the spin-rotational symmetry of the ferromagnet in
(“out-of-plane” torque. Slonczewski considered onlyT, the absence of external fields. Beyond this we do not need to

and it is generally believédthat T, is negligible. We start introduce a self-consistent treatment of the Coulomb interac-
the presenta’[ion of our results in Sec. VI by deriving fromtion eXpIiCitIy, although bulk LSDA calculations underlie the
the general Keldysh formalism the results of Slonczewski'dband parameters and exchange splittings used in our calcu-
original calculationg, in which only T, appears. It will be lations. In our Keldysh approach the direction of magnetiza-
seen that this result is not always valid but is just an artifaction in each atomic plane of the switching magnet is deter-
of Slonczewski's simple model. In fact, we shall show that inmined self-consistently in the steady state by the requirement
some case¥ | is dominant and that, even when small, is  that the magnetization of a given atomic plane is parallel to
essential since its importance is strongly enhanced in ththe exchange field in that plane. The relationship between

presence of easy-plane anisotropy. this approach and the more intuitive one of balancing torques
To calculate hysteresis loops for this general scenario, wi discussed in Secs. Il and V. .
need to solve the following problemsé) calculate micro- The treatment described above enables us to determine all

scopically both the in-plane and out-of-plane components oPossible steady states of the system and the next step is to
the spin-current torquéii) determine the steady states which investigate their stability. We do this by introducing the spin-
form the continuous parts of the hysteresis cufiig} inves- ~ current torques, calculated microscopically as functions of
tigate the stability of such states in order to determine criticamagnetization direction, and anisotropy torques into a
currents at which the jumps, and hence switching, occur; anbandau-Lifshitz equation of motion for the magnetization
(iv) calculate the resistance of the layered structure along thi@cluding Gilbert damping. We linearize the equation of mo-

steady-state paths. tion about the steady-state solution to obtain the conditions
Within our unified theory, all this can be done for a gen-for stability. _ _
eral layered system with a fully realistic band structure. Finally, we construct hysteresis curves from continuous

A jump in the hysteresis curve occurs at a critical currentsteady-state paths and jumps at points of instability.
when one steady state becomes unstable and the system
seeks out another stable steady state. This is in analogy with Il. THEORETICAL MODEL
the Stoner-Wohlfarththeory of field-switching where one
deals with equilibrium states instead of the present nonequizsists of a semi-infinite polarizing ferromagnet with mag-

librium steady states. A.‘S in that theory we do_ no_t CONCeIMhatizationP, a nonmagnetic metallic spacer wikh atomic
ourselves with the detailed dynamics of the switching. How- lanes. a s’,witching magnet withl atomic planes, and a

ever, we identify in this paper certain cases in which on emi-infinite nonmagnetic lead of the same material as the
steady state becomes unstable above a critical current b éb

The layer structure we consider is shown in Fig. 1. It

there are no other stable steady states available. Under theg acer. Each layer is described by a tight-binding model, in

circumstances the magnetization of the switching layer re
mains perpetually in a time-dependent state.

In order to study nonequilibrium steady states we use th
Keldysh formalisnt-1! described in Sec. lIl. As pointed out
above, the steady state arises from a balance between spin- H =Hg+ Hine + Haniss (1)
current torque and anisotropy field torque. Hence it is essen- . o
tial to include anisotropy and/or external fields in the Hamil- WNere the one-electron hopping tefg is given by
tonian of the system from the outset. It is also necessary to _ +
treat correctly the on-site electron-electron interaction which Ho=2 >, Tm“’”V(k”)ckumwckunw’ 2)
is responsible for the spontaneous magnetization of the po-
larizing and switching magnets. This is achieved by insistingvhere Clum,m creates an electron in a Bloch state, with in-
that the local exchange field is in the direction of the localplane wave vectdk, and spine, formed from a given atomic

&neral multiorbital withs, p, and d orbitals whose one-
electron parameters are fitted to first-principle bulk band
structure, as discussed previouSlyThe Hamiltonian is,
fherefore, of the form

kyor mu,nv
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orbital x in planem. H;,; is an on-site interaction between [ShHanidd = —iA(HA X Sy). (11
electrons ind orbitals which leads to an exchange splitting of
the bands in the ferromagnets and is neglected in the spacgy 5 steady state, the magnetization is time-independent so
and lead. The magnetization of the polarizing magnet is ast'hat<én>:0 Hence
sumed to be pinned in the,x)-plane, making an anglé '
with the z axis, as shown in Fig. 1H,,s contains effective
fields in the switching magnet corresponding to uniaigl (-2 = =Ha X (Sp. (12
and easy-planél, anisotropies. It is given by

The left-hand side of Eq(12) corresponds to the rate of

Hanis= -2 SiHa, (3 transfer of spin angular momentum to plamén the steady
n state. Thus Eq.12) shows explicitly how, in the steady state,
wheresS, is the operator for the total spin angular momentumthiS Spin-transfer torque is balanced by the torque due to
of planen and anisotropy fields. The concept of spin-transfer torque was
first introduced by Slonczewski.
Ha=Hy+H,. (4)
H, andH, are given by ll. KELDYSH FORMALISM
Hy = (eXSi)Hye; (5) In this section we show how to calculate the spin current
- (in-1» @and spin densityS,,) in the nonequilibrium steady state
Hp == (e(S)Hpo8y, (6) and verify that they are related by E(l2). To produce a

— . ) o spin-polarized current in the system we apply a bigde-
where(S,) is a unit vector in the direction of the thermal yeen the polarizing magnet and the lead. To use the Keldysh
average 05, ande,.ey.e, are unit vectors in the direction of formalisnf-21to calculate(j,_,) and(S,) we consider an ini-
the axes shown in Fig. H,Hp measure the strengths of ig state at timei=—o in which the hopping integral.,, 1
the uniaxial and easy-plane anisotropies and have dimefkeryeen planes-1 andn is switched off. Then both sides
sions of frequency. These quantities may be converted 10 & he system are in equilibrium but with different chemical
field in tesla by multiplying them byi/2ug=5.69x 107%2, potentials w,_ on the left andug on the right, wheres,

We_ assume that anisot_ropy fields are uniform throughout .the,uR=eVb- The interplane hopping is then turned on adiabati-
switching magnet but it would be easy to generalize 10 ina|ly and the system evolves to a steady state. The cleavage
clude, for example, a surface anisotropy. The spin angulgbjane, across which the hopping is initially switched off, may

momentum operatdg, is given by be taken in either the spacer or switching layer or in the lead.
1 Figure 1 shows the situation when the cleavage plane is be-
Sn= 12 (Cf i 00) O (i et o ral) " (7)  tween atomic planes—1 andn in the switching magnet. In
2 k! ” principle, the Keldysh method is valid for arbitrary bisg

and the coresponcing aperatr fo spin angular momentuft 1S e ESitourseves to smal bis corespondng
current between planeas-1 andn is P : 9

trons would be injected into the switching magnet far above
the Fermi level and many-body processes neglected here

. i
Jn—1:‘§2 T(kn)nv,n—lu(cl”nwClunw)"'(ck“n—lm’Can—lm)T would be important. Furthermore, in metallic systems the
Kjpsr bias will never be large.
+H.c. (8) Following Keldysi:1°we define a two-time matrix
Here,o=(oy,0y,0,), where the components are Pauli matri- o gt
ces and Eq(8) yields the charge current operator%iir is Gru(t,t') =icL(t)cr(D)), (13
replaced by a unit matrix multiplied by the electronic charge
el#, wheree is the electronic chargéegative. where R=(n,»,0’) andL=(n-1,u,0), and we suppress

All currents flow in they direction, perpendicular to the thek; label. The thermal average in E@.3) is calculated for
layers, and the components of the vecfocorrespond to the steady state of the coupled system. The mafjx has
transport ofx, y, and z components of spin. The rate of dimensions &hx2m wherem is the number of orbitals on

change ofS, in the switching magnet is given by each atomic site, and is written so that the< m upper di-
. agonal block contains matrix elements betwéespin orbit-
i%S, =[S Hol + [SnHanisl (9) als and themXxm lower diagonal block relates t¢ spin.

. . ) . . ~2mXx2m hopping matrice§, g and Tk, are written similarly
since the spin operator commutes with the interaction Hamilynq in this case only the diagonal blocks are nonzero. If we
toma_nHim.. denoteT g by T, thenTg, =T'. We also generalize the defi-

It is straightforward to show that nition of ¢ so that its components are now direct products of
—ix the 2X 2 Pauli matricesry, oy, 0, and themX m unit matrix.
[SwHol = (-1~ Jn) (10 The thermal average of thye spin current operator, given by
and Eqg. (8), may now be expressed as
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: 1 + +
in-0= 52 THGR(LOT - Glrt.OT o} (19)
ki
Introducing the Fourier transfori@*(w) of G*(t,t"), which
is a function oft-t’, we have

Lt
<Jn—1>_ 2%

do + +
| SeriGi @ TGl Tal. 15
Again, the charge current is given by Ed5) with %o- re-
placed by the unit matrix multiplied bg/#.

Similarly, the total spin angular momentum on atomic
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the Fermi function with chemical potentiadl and w —ug
=eV,,. To obtain(S,_,), defined by Eq(16), we must inter-
changel andR, andT andT", everywhere in Eqg20—22).
In the linear-response case of small bias which we are con-
sidering, the Fermi functions in ER2) are expanded to first
order in V,. Hence the energy integral is avoided, being
equivalent to multiplying the integrand B\, and evaluat-
ing it at the common zero-bias chemical potentigl

As shown in Fig. 1, the magnetizatiédhof the polarizing
ferromagnet is assumed to be fixed in tt#wx) plane and
makes an angl® with the z axis, which is the direction of
the uniaxial anisotropy field in the switching magnet. When a

planes on either side of the cleavage plane, in the nonequiias is applied, spin-polarized current flows through the

librium state, is given by

w

(Sep=-tinS [ 22

TG, , 16
2" | 2m H{G[ (w)a} (16)
1. dw .

(Sy=- EmE > THGrew)a?}. (17)

Ki m

Following KeldysH:1°we now write
1

Gpg(w) = é(FAB +Gag~ Gpp), (18)

where the sufficeé\ andB are eitherR or L. Fpg(w) is the
Fourier transform of

Fag(t,t') = —i{[cat),ch(t)]) (19)

and G&,G" are the usual advanced and retarded Gree
functions®® Note that in Refs. 9 and 10 the definitions®t

andG' are interchanged and that in the Green function ma-

trix defined by these author&* and G~ should be inter-
changed.

Charge and spin current, and spin density, are related
Egs. (15—17) to the quantitiesz?, G', andF,g. The latter

switching magnet and exerts a torque on its magnetization.
This torque is in competition with the torque due to the an-
isotropy field and causes the spi8,) in a given atomic
planen to deviate from the anisotropy axis. In the steady
state(S,)) settles in a definite direction specified by the angles
an, ¢, shown in Fig. 1. To determine these angles, we as-
sume the exchange field, in planen is in the direction
(e, @) and apply the self-consistency condition
A, X(Sy=0. (23
This condition guarantees that the local magnetization is in
the direction of the exchange field, as it should be in the
unrestricted Hartree-Fock approximation mentioned in Sec.
I. As with anisotropy fields, the exchange field is defined
as an angular frequency so thak,, is the energy to reverse
the spin on plan@&. More precisely, the spin-dependent part

Bf the on-site energy on plane is given by «1/2)A(Hp

+A,)o. We assume thdiA,| always takes its bulk value.
Following the method outlined for obtaining ERO0),
similar expressions in terms of retarded surface Green func-

btions may be obtained for the spin curreKis ;) andj,).

Writing again(jn)=(jn)1+ ()2 we obtain

are calculated for the coupled system by starting with decou-

pled left and right systems, each in equilibrium, and turning

on the hopping between planésand R as a perturbation.
Hence we expres&?, G, andF,g in terms of retarded sur-
face Green functiong, =g, ,, gr=0grg for the decoupled

equilibrium system. The final result for the spin angular mo-

mentum on plana to the right of the cleavage plane is

(S = (S +(Sw2 (20)

where the two contributions to the spin angular momentum

(Sy1 and(S,), are given by

h
(S1=- n 2 dw Im TH{AgroH f(w - p) + flo = uR)],
I
(21
__Hh 1ot
(Sh)2=- 2_2 do Im Try A= > Boro ([f(w— u)
T K
- flw—-up)]. (22)

Here A=[1-ggT g T1™%, B=[1-gLTg/T]™%, andf(w-pw) is

>

ki

1
(17,3 | doRe THB-A0){f(w- )

+ o -], (24)

1
ln12==—2 | dwRe TrﬂgLTABgLTT—AB

21 kH
1
oA+ B)}O’}[f(w—m)—f(w—,up)]- (25

By considering the changes @p,gg When the cleavage plane
is moved one atomic plane to the right, it is straightforward
to show that

(n-0 = = (Ha+ Ap) X(Sp). (26)
This equation holds for a steady state with arbitrary ex-
change fieldsA, which do not necessarily satisfy the self-
consistency conditiof23). When the self-consistency condi-
tion (23) is satisfied, we recover the steady-state result
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(Jn-0 = =HaAX (S (27)  this case there is no interplane exchange coupling in the

_ _ _ _ switching magnet to consider and we assume that the spacer
which was derived earliefEq. (12)] purely from consider- s gygficiently thick for the zero-bias exchange coupling be-
ations of the spin-rotational symmetry of the electron-yyeen the two ferromagnets to be negligible. For a given bias

electron interagtions. Th_is verifies the consi.stency of the\/b, the direction(ayg, ¢) Of the steady-state orientation of
Keldysh formalism combined with the unrestricted Hartree- o switching magnet momentS) is determined self-

Fock approximation. consistently from Eq(23) with the cleavage plane immedi-

It follows from Eqgs.(26) and(27) that all components of o - :
spin current are conserved within the spacer and lead, wheraeteIy to the left of the switching plane so thg)=(S). Itis

HA=0,A,=0, with or without self-consistency. Furthermore, ::onvenlen‘t‘ o deter:’mneﬁg,d)o) n two stﬁps. T_h(; first 3tep ¢
it follows from Eg. (27) that in the self-consistent steady '0Cat€s @ “universal path™ on a unit sphere, independent o

state the component of spin current in the direction of the/t» 0N Which the self-consistent solutions for any givén

anisotropy fieldH 5 is conserved throughout the system, as ofmust lie. In.the. sec_:ond step the W@ requwgd to stap|l|ze
course is the charge current. If EQ7) is summed over all the magnetization in a given directidny, ¢) is determined
planes in the switching magnet, we obtain as a function ofag, say. To establish this program, we write

Eqg. (23) as
<jspace> - <j|ead> = HA X <Stot>1 (28)

where jspacer: (iead are the spin currents in the spacer andwhereA is the exchange field of the switching layer in the
lead, respectively, an(B,,;) is the total spin angular momen- direction (a, o). Splitting (S) into two parts as in E¢20),

tum of the switching magnet. This shows how the total spin

(Ha+A) X(S)=Hp X (S), (30)

transfer torque acting on the switching magnet is balanced b his becomes
the ttorque exerted by the anisotropy field on the total mo- (Ha+A) X (S);+ (Ha+A) X (S),=Hp X (S). (31)
ment. .
We have separated in E(RO) the spin angular momen- Hence using Eq(29) we have
tum (S Into two parts(Sy, and(Sy;. It is clear thakSy, Gispacels ~ Gead * Gispacedz = Gfeadz=Ha X (S). (32

is proportional to the applied bia, to the first order and for _
zero bias(u =ug) only (S,); remains. The spin transfer The first two terms on the left correspond to exchange cou-
torque () (i, similarly splits into two partSEgs. (24) pling torque which, as discussed above, is assumed to be

and(25)) in such a way that Eq26) holds for each compo- negligible compared with the anisotropy torque. This is jus-
nent separately: tified for thick spacers since the interlayer exchange coupling

tends to zero as the spacer thickness tends to infinity. The last
i == Ha+A) X(Syi, i=1,2. (29 two terms on the left correspond to the spin transfer torque
i . S . T, which is proportional to bia¥),, and the right-hand side of
Only the first part(j,-1)1~ (w1 is nonzero at zero bias. It g, (39) is —T, whereT, is the torque exerted by the aniso-
corresponds to spin currents which mediate exchange Coypy field on the switching magnet. We shall see that, in
pling, either between the two magnets across the spacer @pnirast to the exchange coupling torqligemains finite as

between atomic _planes in_ the switphing magnet. Cons_eépacer thickness tends to infinity. Hence
quently, at zero bias the spin current in the lead is zero. It is

easy to verify that the expressions for interlayer exchange T =(jspacer2 = Ulead2 =Ha X (S) == Tx (33
coupling derived here, using the Keldysh formalism, agree . :
precisely with those obtained earlier by other methidds. and, in particular,

The results of this section show the great advantage of the TH,=0. (39

Keldysh formalism, even within the linear response regime. he biasV. | d thi ion d . h
Spin currents at zero bias, corresponding to exchange cod"€ P1asVy now cancels and this equation determines the

pling, transport spin and particle currents, and spin densitie _niversal _path descri_b_ed above. E_quatﬂaﬁ) _determin_es the
are all calculated in a unified way. Relationships betweerP!aS required to stabilize any particular point on this path of

these quantities, such as Eg9), are then easily derived. In poi\s/ible ste;a((jjy sr:jates. . ith le in which. f
the standard linear response theory of Kubo zero-bias quan- e conclude this section with one example in which, for
tities cannot be calculated and different response function§MPliCity, we retain only uniaxial anisotropy, this field being

would have to be introduced for calculating currents and spirﬁghods_en in éhvlez r(:lirectlion_. We ulfe a sbinglfa—orlbital bt_ight_-h
density response at finite bias. inding model whose lattice is taken to be simple cubic wit

layering in the(010) direction. The nearest-neighbor hopping
parametett is taken to be the same throughout the system.
IV. APPLICATION TO A SWITCHING MONOLAYER The on-site energy in the spacer and lead is _takédggshe
zero of energy being at the common Fermi level for zero
In the general theory outlined in Sec. Il the steady-statebias. In this example the on-site eneidy, is also taken for
spin orientation of each atomic planef the switching mag- majority spin in the ferromagnetgerfect matching in the
net must be determined self-consistently. In this section wenajority-spin channgl The on-site energy for minority spin
first consider the simplest case of a single orbital on each siti the ferromagnets is taken a4,+%A, where#A is the
and when the switching magnet is a single atomic plane. Iexchange splitting. The matching of spacer and majority spin
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6-\_4‘/ " nontrivial steady state. In the absencetbf it follows from

P Eqg. (27) that in the steady state all components of spin cur-
rent are conserved everywhere so that there are no spin-

4_
e / transfer torques. Hence the only steady state is the trivial one
2 Q . . . y o ;
g in which the switching magnet is aligned parallel or antipar-

allel to the polarizing magnet. Previous authérslid not

./P’ consider a steady state but calculated spin-transfer torque as
05 I 5 % a one-electron problem with the exchange fields of the po-
anglea: larizing and switching magnets at a fixed assumed angle. In a

second independent step, these aufifobmlance the spin-
transfer torque against the torque due to anisotropy field in
bands is similar to the situation in Co/Cu. We taWg, the context of a Landau-Lifshitz equation. This approach is
=2.34#A=0.7 in units of 2. Furthermore, we take the What we call the standard modé&M). In this section we
uniaxial field parameteH ,=1.86x 10'°s™* which corre- show how to arrive at the SM by making some simplifying
sponds to a field of 0.106 T. We also take a general valu@pproximations in our self-consistent approach.
0=2 rad of the angle between the polarizing magnet moment We begin with the monolayer switching magnet of Sec.
and the direction of the uniaxial anisotropy axis of thelV. In Eq. (33) the spin-transfer torque is calculated in the
switching magnet. To determine the torqlievhich appears presence oH, and the spiS) is the self-consistent mo-
in Eq. (34) for the universal path, we need to calculate thement. To obtain the SM we must neglegj, in the calcula-
Green functiong_,gr which are required in Eq25) . This  {jon of T and replaceS) by its nonself-consistent value in
is ‘.’O“el sz hs.ta”dard r‘]"‘d'aYe“”g n}etlzqu_ ?%SC(;'PG e direction of the assumed exchange field of the switching
Fhrg\gglli:suﬁtiorz toflZIISttﬁgeé:e:namsn?:ttEgﬁz II:ei ulrse ISCSEO\?VS 't?] magnet. These approximations are both reasonable provided
-9 %he exchange field is much stronger than the anisotropy field,

calculated universal path @ versusa for the specified pa- L " .
: ; - ] _which is satisfied for a ferromagnet such as Co. This follows
rameters. The bia¥, required to yield a steady-state mag since the Green functions which determine bdtland (S)

netization at a given point of this path is plotted as a function . i 4
of a in Fig. 3, where we have assumed the band width 129€Pend on the total field+H,. Thus in the SM the spin-
=6 eV. Positive bias corresponds to a drop in voltage pelransfer torque is calculated as a function of the angle be-
tween the polarizing magnet and the lead. The corresporf€€n the magnetizations without solving the self-
dence between the two curves in Figs. 2 and 3 is indicated b§onsistency problem. Furthermore, equating it to the
the letters P and Q. The discussion of stability of these stead§iSOtropy torque as in E(33) is equivalent to calculating a
states and the interpretation of Fig. 3 is postponed to sedteady state of the Landau-Lifshitz equation. The justification
VII. of the SM for a switching magnet with more than one atomic

The method of calculating steady states used in this se®/ane is more subtle. o L
tion becomes more complicated when the switching magnet 1he Self-consistency conditiof23) must be satisfied for
contains several atomic planes since the momésof all ~ €ach plane in the switching magnet. It may be writieh
planes must be determined self-consistently. This entails tth' (30) for the monolayer
inclusic_m o_f the exchange. stif_fness beftwee.n atomic planes of (Ha+ A, X (S,)=Hx X (S) (35
the switching magnet which is contained in E89) with i , ) _ i
=1. To address this problem, we introduce in the next sectioRNd: USiNg againS,)=(Sy1+(Sy), and Eq.(29), we obtain
the simplifications required to derive from first principles the (1= U1+ (o2 = Go=Ha X (Sy). (36)
convenient “standard model” used by previous authér. " " " "

FIG. 2. Universal path ot vs «.

The first two terms contain the interlayer exchange coupling,
V. THE STANDARD MODEL which is neglected as in the monolayer case, and interplane
In the Keldysh method used above it is essential to in€xchange coupling within the switching magnet. To clarify

terms of local exchange stiffnegs, between atomic planes

0ot ' ' n-1 andn. Hence from Eq(36)
0005 p N (Jn-02 = (n2=HaX(Sp +Dp-1(Sy-1 X S)
g = Di(Sy X Spe)- (37)
s 0 . . o
= Q Q On summing over all planes in the switching magnet the
d sl | internal exchange coupling torques cancel and we have
<jspace>2 - <j|ead>2 =Hp X E <Sn> (38
-0.01 '1 7 :'; n
angle o

In the fully self-consistent solution of E¢35) the exchange
FIG. 3. BiasV, required to stabilize the switching magnet mo- field A, is parallel to the local momen(S,) but theA,, are
ment at an angler on the universal path. not collinear. To proceed to the SM we must assume that all
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the A, used to calculate the spin-transfer torque on the left oby previous authot§6 as “spin accumulation.” In the self-
Eqg. (38) are equal, ta\, say. Furthermore, we assume, as inconsistent steady-state treatment of Sec. IV such deviations
the case of the monolayer, that we can negldgtin the  do not occur because the exchange field is always in the
calculation of the spin-transfer torque and that§l) are in  direction of the local moment. In our view, time-independent
the directionA with magnitude equal to the ground state spin accumulatiors,,,S,, in the ferromagnet is a nonphysical
moment. In making the approximatioA,~A we have concept which, however, we may define formally as the ratio
failed to satisfy Eq(37) individually as is required for full of torques T;, T, to the exchange field. It is remarkable
self-consistency. that, as shown in Sec. V, the SM in which this concept arises
To show that this is not serious for a ferromagnet such agrovides a convenient and frequently accurate method for
Co, consider the following argument. If we use the uniformcalculating spin-transfer torque. Time-dependent spin accu-
value of A determined from Eq(38), as described, to calcu- mulation in the ferromagnet in a non-steady state could be a
late the spin-transfer torque in E@®7) and assume allS,)  valid concept. However, these time-dependent spins would
are in the direction ofA, the last two terms of Eq37) are produce time-dependent exchange fields which would excite
zero and the equations are far from satisfied. However, sincée whole spin system. This would require a many-body
the exchange stiffness constaBtsof a ferromagnet such as treatment going beyond the unrestricted Hartree-Fock ap-
Co are large one need only introduce small deviationd,pf ~Proximation which is adequate for the steady state. Spin ac-
from the uniformA, and consequently small deviations of cumulation(S,)(S,),(S, proportional to the bias exists in
(S,) from uniformity, to satisfy the self-consistent equation the spacer even in the steady state and has real physical
(37). This is true because the spin-transfer and anisotrop§ignificance. Calculation of this effect will be published in a
torques are insensitive to these small deviations. The abilitpucceeding paper.
of the SM to simulate the fully self-consistent solution accu-  The spin transfer torque can be calculated either directly
rately has been verified numerically for a switching magnefrom Eq. (39) or from Eq. (40). However, the latter would
with two atomic planes using the single-orbital model of Secrequire calculatingS,), for each atomic plane of the switch-
IV. ing magnet so that the direct method is obviously preferable.
We begin with an exactly solvable one-band model which
we can connect with previous wotkLhis model is related to
the one described at the end of Sec. IV, where the switching
magnet is a single atomic plane and there is perfect matching
In the calculation of the spin-transfer torgiliewithin the  between the spacer band and the majority spin bands in both
standard model the anisotropy field is neglected so That ferromagnets. To obtain analytical results in this first ex-
depends only on the anglebetween the magnetizatidhof ~ ample, we also assume that the exchange splitfing
the polarizing magnet and the assumed exchange Aiedd  both in the polarizing and switching magnets. In fact, once
the switching magnet. As in Fig. 1, the magnetizat®mf  the bottom of the minority-spin band is well above the Fermi
the polarizing magnet is in th,x) plane, making an angle level, the results are rather insensitive to the magnitudk. of
# with the z axis, and, for convenience, we choose the ex-Such a system is sometimes referred to as a half-metallic
change field of the switching magnet to be in theirection ~ ferromagnet and is the first case considered by Slonczewski

VI. TWO COMPONENTS OF THE SPIN-TRANSFER
TORQUE IN THE STANDARD MODEL

so thaty=6. The torqueT in the SM is given by in his original papet.In the limit A— the SM model is
) ) exact since the moment of the switching magnet cannot de-
T ={jspacer2 = {liead’2 (39 viate from the exchange field and the self-consistency con-

where the right-hand side is related to the total bias-inducegition (23) is automatically satisfied. We therefore calculate

spin S,=3, (S, by Eq.(29), summed oven, with H , ne- thle S?in-tra_nsfer tor:qu_e fi_n_the abr;sence ofl_anisotr?]py fi?Id.
glected andA, = A. It follows that Clearly, owing to the infinite exchange splitting, the only

spin current in the lead corresponds to theomponent of
T=AX 2 (S),=AXS,. (400  spin and thez-spin current is equal to the charge current
n (multiplied by #/2e). It turns out in this model that the
. ) , y-spin current in the spacer, which is equal to the tordque
Here, (Sy). is given by Eq.(22) with H, neglected in the  gjnce the corresponding current in the lead is zero, vanishes.

Green functionsg,, gr. The three components 08,  Thys only Slonczewski torqud, survives and is given by
=(S5x. Sy, Sy, are related to the three Pauli matrices

0y, 0y,0, in Eq. (22) . Clearly, from Eq.(40) the z compo- eV t2(go — go)? Sin ¢
nent of torque is zero so that we can write == exgzkt |1 -t%gy(a+b cos )|’ (42)
Il
T=(T,T,0). (41)

Here, go=go(k;,0) is the majority spin surface Green func-
The “in-plane” componentT,=T,, where “in-plane” refers tion for the semi-infinite ferromagnet, or equivalently for the
to the (z,x) plane containingP and A, is given by T,  semi-infinite ferromagnet with an overlayer of the matching
=-AS,, and the “out-of-plane” componenT , =T, is given  spacer. The Green functiag is evaluated at energy=0,

by T,=AS,. The quantitiesS,, andS,, represent small de- the common Fermi level of the unbiased system, dl&othe
viations of the switching magnet moment from the directionhopping parameter introduced in Sec. IV aacand b are

of its exchange field. These spin components are referred wiven by
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TABLE |. Parameters for one-band mode\s},,V}, are on-site  artifact of a very large exchange splitting in the ferromag-
potentials for majority and minority spin in the polarizing magnet; nets.

V_l,Vé are on-site potentials for majority and minority spin in the  In the second set of examples we consider several cases,
switching magnetys, is the on-site potential in the spacer and the within the one-band model, where the exchange splittings in
lead; andN andM are the numbers of atomic planes in the spacerthe ferromagnets are finite. Simple formulas, such as Eq.
and switching magnet, respectively. (42), for the torques are no longer available and they must be
calculated numerically. In all the examples the calculated
N M torques are per surface atom. In all cases, we retain the ge-
ometry of the first example. Table | lists the parameters for
all the cases considered. All potentials in Table | are in units
of 2t and the Fermi energy,=0.

Figure 4a) shows the calculated torqud$ per surface
atom (in units of e\{) as a function of the anglé for the
models with parameter seta)—(d) of Table I.

In case(a) Ty dominates, as expected from the large ex-
change splittingv. -V} in the switching magnet which ap-
proaches the infinite exchange splitting of our first exactly

Case V, Vi Vo VIV

(@ 2.3 3.0 2.3 2.3 5.0 20
(b) 2.3 3.0 2.3 2.3 3.0 20
(c) 2.3 3.0 2.3 2.8 3.0 20
(d) 2.1 3.0 2.8 2.1 5.0 20
(e) 2.3 3.0 2.3 2.8 3.0 20 1-10

a= l(Go"‘AN); b= l(go—AN), (43)  solvable model. The angular dependence of both torques is
2 2 clearly dominated by a siw factor [cf. Eq. (42) ] although
whereAy=sin Nk, d/[t sin(N+ 1)k, d] with some distortions are apparent. In cdbeT, and T, are of

almost equal strength. This is the case where the two ferro-
k,d=cosY{[V! + 2t(cosk.d + cos k) ]2t} (44) magnets are of the same material and the bottom of the mi-
_ Lo . L . nority spin band is exactly at the Fermi level. This simulates
and k”—(kx,ky,O)', dis thg interatomic distancel is the well the situation in Co/Cu and we shall see presently that in
numbe;r O.f atomic pla_nes In the spacer, alid_s th_e on-sité  reqjistic calculations for this system the torquesand T,
potential in the majority-spin band of the switching magnet._ ., again similar in magnitude. The parameters of ¢ase

The corresponding expression for the charge current is VerYere used previously in Sec. IV as an example of a fully

similar and we find that self-consistent calculation of steady states. In dasd, is
3 larger thanT,. It is interesting that this occurs for smaller
Ty= ﬁtar(lﬂ/Z) X (charge current (45 exchange splitting in the switching ferromagnet. In cabes
and (c) the angular dependence of the torques is hardly dis-
This is precisely the Slonczewski result for the analogougorted from the siny form. In case<a), (b), and(c) the two
parabolic band model. It should be noted that the tordye torquesT,, T, have the same sign. In caéd they have op-
goes to zero fory— 7 since the charge current for a half- posite sign and almost equal magnitude. In exam(@egd)
metallic magnet contains a factor 1+cgs the switching magnet consists of one atomic plane. In case
The interesting result thafl | =0 for this model may be (e) shown in Fig. 5 we use the same parameters as in(case
traced to an effective reflection symmetry of the systembut the number of atomic planes in the switching magnet
about a plane at the center of the spacer. Although thearies between 1 and 10 and the angtew/2.
present system appears asymmetric the infinite exchange It can be seen from Fig. 5 that, contrary to popular belief,
splitting makes it equivalent to a symmetric system with athe out-of-plane torqu&, dominates oveT, for small thick-
semi-infinite switching magnet. More generally, we find, cer-nesses of the switching magnet and remains 509 cdt
tainly for a one-band model with arbitrary parameters, thaM =10 atomic planes. For all thicknesses of the switching
they-spin component of the spin current in the spacer alwaysnagnet,T, andT, have the same sign. We have already seen
vanishes for a system with reflection symmetry. In generalin case(d) that this is not always the case.
however, they-spin current in the lead is nonzero so that So far we have kept the number of atomic planes in the
T, #0 even for a symmetric system. The resdlt =0 for ~ spacer at 20 but we must now highlight an important and
the above model is, therefore, a very special one due to thgurprising result concerning the dependence of torquil.on

(b)
' ' @ seta
B et bl |
Ah setc
#0% set d
] FIG. 4. Dependence of the spin-transfer
torques T, (&) and T, (b) on the angley for the
1 model with parameter seta)—(d) of Table I. The
torques are in units of gy
I 2 3
angle y
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0.003 T T T T (a) (b)
0,003 T T T T T T T
0025
0.0025 ol iy 1 oo T,
0.002f o0l
o oy °
Spo0is 5 Boony T
=4 =} Q
8 oo01f = -0 =
0.000s; - T
0 W0 I 3 3 ] 3
0 2 4 6 0 angle ¥ angle ¥

8 1

switching magnet thickness M
_ FIG. 7. Dependence of the spin-transfer torgyeand T, for

FIG. 5. Dependence of the spin-transfer tordyandT, onthe  Co/Cu/Cd111) on the angley. The torques per surface atom are in

thickness of the switching magnkt for ¢=/2 and the parameter nits of e\, (a) is for M=1 and(b) for M=2 monolayers of Co in
set(c) of Table I. The torques are in units of gV the switching magnet.

In Fig. 6 we show the torques for the parameter(bgtand M=2, the torques have the same sign andis somewhat

y=1/2 plotted as functions . : ; .
It is clear that they both oscillate but tend to constantsma”er tharil;. A negative sign of the ratio of the two torque

. T . . components has important and unexpected consequences for
values as\ — o« in our ballistic limit. In zero bias all spins of P P P 4

L o hysteresis loops as discussed in the next section. Finally, we
the system lie in thez,x) plane and it is, therefore, not. show in Fig. 8 the dependencedf andT, on the thickness

df the Co switching magnet. It can be seen that the out-of-
plane torquer | becomes smaller thaF for thicker switch-
ing magnets. This is the expected behavior since our polar-
izing magnet is semi-infinite Co, so that as the switching Co
magnet becomes thicker we approach the limit of a symmet-
ric junction for which they-component of the spin current
anishes and the corresponding component in the lead is
usually small. HowevelT | is by no means negligibl27%
of T,) even for a typical experimental thickness of the
switching Co layer of ten atomic planes. It is also interesting
Fhat beyond the monolayer thickness, the ratio of the two
‘?orques is positive with the exception bf=4.

there are finitee-spin andx-spin currents for arbitrary spacer
thickness. The constant valueyetpin current adl — oo, this
being associated witfi |, may seem more surprising since
there is noy-spin density in zero bias. Of course, fgr= 0,
there is ay-spin current even in zero bias corresponding to
interlayer exchange coupling, but this effect is not associate
with charge transport and decays as\Ni Mith increasing
spacer thickness. The relatiomg=—-AS,,, T, =AS,, derived
in the beginning of this section within the standard model
show that bias-induced in-plane spin density is related t
out-of-plane torque and vice versa. It is, therefore, inevitabl
that both torques will exist.

As a final example of these spin-transfer torque calcula-
tions we consider a fully realistic multiorbital model of fcc VII. STABILITY OF STEADY STATES AND
Co/Cu111) with tight-binding parameters fitted to the re- HYSTERESIS LOOPS
sults of first-principles band structure calculations, as de-
scribed previously? Referring to Fig. 1, the polarizing mag-
net is a semi-infinite slab of Co, the spacer is 20 atomi
planes of Cu, the switching magnet contailk atomic
planes of Co withM=1 and 2, and the lead is semi-infinite

In Sec. IV we calculated the steady-state orientation of the
dnagnetization of the switching magnet fully self-consistently
as a function of bia¥,, (see Fig. 3 These results allow us to
calculate the continuous portions of the hysteresis loops of
Cu. Figures ) and 7b) show the angular dependences of resistance_ versus bias, but to _determine where jumps oceur
T,T, for the casesM=1 and M=2, respectively. For the we must investigate the stability of the steady states. Th|s
cannot be done within the standard Keldysh formalism since

monolayer switching magnet, the torques andT, are equl . . ) . ; .
in magnitude and they have the opposite sign.HHowever, fofhe dynamics of the system, including damping, lies outside

0.005 T T T T T

W‘“J\'WW%O‘M
°~°°4'WJV-A('-W
T
0003 .
g 1
g oo in—planc
8 0.002 @ out-of—plane| |
0001} .
O 1520 2% % B T R S S T S ST
spacer thickness N switching Co thickness M
FIG. 6. Dependence of the spin-transfer torgyandT, on the FIG. 8. Dependence of the spin-transfer torgyeand T, for
thickness of the spacét for ¢y==/2 and the parameter séi) of Co/Cu/Cd111) on the thickness of the switching magridt for
Table I. The torques are in units of gV y=ml3. The torques are in units of gV
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so that to a good approximati@p, g, are constants, propor-
tional to bias.
The LL equation takes the form

d
My ymx Do (51)

with the reduced total torquE given by

X I'=(=HaX (S + T, +T)/[(Siop (52)
FIG. 9. Local coordinate axes for the deviation of the magneti-where (S, is the total spin angular momentum of the
zationm from its steady-state orientationg. switching magnet andy is the Gilbert damping param-

eter. Following Suf, Eqg. (51) may be written more conve-
its scope. We therefore map the microscopic problem onto aiently as
phenomenological time-dependent Landau-LifshizL ) g
equation with Gilbert damping. An approach based on the am_
LL equation has been used previodsiyout our treatment @+ dt =I-ymxT. (53)
differs in several important ways. First, we use as an input
microscopica”y determined torqué’§ T,.In previous work We first consider Steady-state solutions of this equation but
only T, was considered and its magnitude was an adjustabighall return to the full time-dependent equation when dis-
parameter. Second, the importance of the steady state cofUssing stability of these states. In the steady state(5|.
cept in the context of the LL equation has not previouslyreduces to
been fully recognized. Finally, the consequences of easy
plane anisotropy have hardly been explored; we find that, in
fact, it can lead to completely new switching scenarios when
T, and T, have the opposite sign. Even in the absence of'
easy plane anisotropy,; and T, with the opposite sign may
lead to qualitatively different types of switching.

In Sec. VI the unit vector in the direction of the switching
magnet moment was always taken in thedirection but to
discuss the LL equation we must considerin a general
direction. The total spin-transfer torque may be written
quite generally as the sum of the two components in th
directions of the vectors1 X p andm X (p X m), wherep is
a unit vector in the direction of the magnetization of the
polarizing magnet. Thus

—“HAX(Sep+T, +T=0 (54)

hich is equivalent to Eq(33).
The magnetization unit vectqr of the polarizing magnet
is given by (sin#,0,cosf) and in the phenomeno-
logical treatment, based on the SM, the magnetization of the
switching magnet is uniform in the directionm
=(sin @ cos ¢, sin a sin ¢,cosa) (see Fig. L The proce-
dure for finding steady states is exactly analogous to that
éjescribed in Sec. IV for the microscopic approach. Thus the
universal path on the unit sphere consisting of poiatse)
which correspond to possible steady states, independent of
bias, is again given by Ed34) . For given§é the torqueT
=T, +T, is now defined explicitly as a function ef and ¢
T=T,+T,, (46) by Egs.(47) and(498)), the bias factor in the constargs,g;
cancelling as before. Similarly, using E&4) , we can plotx

where against biad/, for the actual steady state in the given bias as
T,=9, (MmXp), (47) in Fig. 3.
We now return to Eq.51) to discuss stability of the
Ty=g, mxX (pxm). (48)  steady states. The torqligis given by
The modulus of both vector products in E¢47) and(48) is I' = Hy{(me)m X e,— h,(me,)m X e, +vm X (p X m)

equal to sinyg, where s (0< <) is the angle betweep
andm. Since in the SMTI'; and T, depend only on the angle

i, it follows that the coefficientg , ,g, are functions only of |\ here the relative strength of the easy plane anisotigpy
. To determineg, (1),9,(4), we return to the geometry of =H/Hyo, Using the notation of Eq¢5) and (6). The last
Sec. VI withp=(sin ,0,cosy) andm=(0,0,1. It follows  two terms correspond t®,, with strength parameter, and
that T, with strength parametep. Clearly the reduced biasis
T,=g,(¢)(sin ¢,0,0), (49) proportional to the actual bia#, and inversely proportional
to the number of atomic planes in the switching magnet.
_ : Comparing Eqgs(47), (48), and (55) we see thatr=g, /qg,.
T.=9.(#)(0,sin,0). (50 Thus if the scalar torques,, T, defined after Eq(50) ha\‘/‘e
Thus the scalar quantities calculated in Sec. VI dje the same sign it follows that is positive. Conversely; is
=gy sin ¢, T, =g, sin . Hence the magnitudes and signs of negative if the torques have opposite sign. We now linearize
0,(¥), 9. (¢) are determined. Itis seen in Fig. 4 that the gin  Eqg. (51) about a steady-state solutiom=mjg, which satisfies
factor accounts for most of the angular dependencg,of,  I'=0, using the local coordinate axes shown in Fig. 9. Thus

+urm X p}, (55
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reduced bias v
reduced bias v

FIG. 10. Reduced bias required to stabilize
the switching magnet moment at an angleon
the universal path for=1 (a) andr=-1 (b) and
hp,=0. Bold lines correspond to stable steady
states.

angle o angle o

(56)

and the linearized Eq53) may be written in the form

m=mg+ &e, + 7€,

% permy Yoceroy,
dr dr

where A, B, C, and D are functions ofag, ¢g, 6 and the
parameterd, v, r, andy. Following Surt;, we have intro-
duced the natural dimensionless time variabtetH /(1
+92). The conditions for the steady state to be stable are

G=AD-BC=0 (59)

excludingF=G=0." The damping parameterappears irG
only as a factor 142 and may be canceled in the condition
for stability G= 0. This condition becomes

Q%2+ (Qur + cos 2up)(Qur + cog ayp)
+ho{Qur(1 -3 sirf ¢y sirfay)
+C0S 2ng(1 —2 sirt ag Sir? )}
~ hisir? aq Sin? ¢o(1 — 25sirf ¢ Sir? ag) =0,

(57)

F=A+D<=0;

(59
where Q=pmy=sin 6 sin ay COS Py+COSH COSay.  Simi-
larly, the conditionF=<0 becomes

= 20(1 + yr)Q - y(cos 2xy+ cOF ayp)
— yhy(1 -3 sirf ¢y sin? ag) < 0. (60)

the first stability condition is¢y~ 7/2-v/h,. The second
stability condition is then not satisfied. Thus #@+ 0 =0 the

only stable steady states of interest are giverupyO or 7.

It is easily seen that in this case the inequal9) is always
satisfied and the system becomes unstable when the left-hand
side of Eq.(60) changes sign atc:—(1+%hp)y, correspond-

ing to Sun’$ result in zero external field. This shows clearly
that the criterion for magnetization switching derived by
SlonczewskKi and Suf in their very special case is equiva-
lent to the instability of a steady state in our approach.

In another special case when we have only out-of-plane
torqueT ,, the switching criteria are clearly the same as in
the Stoner-Wohlfarth field-switching theory since the torque
T, is equivalent to one arising from an effective field of
magnitudeH qur [see Eq.(55)]. The stability criteria are
then equivalent to the conditions for a minimum of an energy
function whose gradient gives all the effective fields. This
was previously recognized by Heidg al.l® Obviously this
energy does not involvey and the absence of in both
criteria is clearly seen when in the second criter{68) we
take the limitv — 0, r — oo with the T, parametewr finite.

As soon as the in-plane torque parametds nonzero, no
energy function exists and the stability criterig0) in-
volves the damping parametgr showing its essentially dy-
namic nature. It is interesting that even when both spin-
transfer torques exist, the in-plane torque drops out of Eq.
(60) in the strong damping limity—co and we return to a
Stoner-Wohlfarth situation.

In general, the system is neither in the Slonczewski-Sun
nor Stoner-Wohlfarth limit and our general stability analysis

A number of general conclusions can be drawn from thes®ased on the criteriéb9) and(60) is required. We shall first

inequalities. However, we first consider the special cas@pply it to discuss the stability of the steady-state paths
when the magnetization of the polarizing magnet is in theshown in Fig. 3 which correspond to the microscopic param-
direction of the uniaxial anisotropy axis of the switching €ters(b) of Table 1. In this case, the reduced parameters of

magnet(6=0). In this case the equatidi=0, with I" given

by Eq. (55) , shows immediately that possible steady state

are given byay=0,, corresponding to the switching layer

moment along the axis of the uniaxial anisotropy. These ar

the only solutions whei,=0. However, in the presence of
easy-plane anisotropyh,#0) there are additional steady

the present section, which reproduce accurately the micro-
copically determined curves in Fig. 3, dig=0 andr=1.
he torque ratio =1 is clear from the curves for cage) in

Eig. 4. The corresponding steady-state paths are shown in
ig. 10@). In Fig. 1Qb) we plot the steady-state paths for the

parameter sdid) of Table I, in which case=-1 (see Fig. 4.

In Fig. 3 we plotted ¥V, on the bias axis, wher¥,, is in

state directions of the switching layer moment given byyits”in order to compare with the present reduced bias
Sin 2¢o=2v/hy, coSag=-vr cOS o/ (COS v SiN o). IN 4, wwhich is proportional to ey and e is negative.(V, and

the pure Slonczewski case 8f, =0 (r=0) it follows that  ; have the same sign whéfj<0 and opposite sign when
ap=m/2. The stability condition£59) and (60) then reduce T,>0.)

to cos 2pp<0 and hy(1-3 sirf ¢g) =1, respectively. For We have chosen for presentation purposes a value
practical biase®/h,<1 and the solution fokp, satisfying =0.05 of the damping parameter which is somewhat larger
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60
ok FIG. 11. Reduced bias re-
quired to stabilize the Co switch-
_520- ing magnet moment at an angie
B with #=2, and realistic anisotropy
§ and damping parameters for
Baor Co/Cu/Cd111) with M=2. The
ol value ¢=0 is obtained forv >0
and ¢= 7 is obtained for <0.
o

angle o

than that suggested in Ref. 5. We recall that Figs. 3 and 1Bowever, the system jumps from A to B, the bias can be
correspond to the situation when the moment of the polarizfeduced to zero at D and a hysteresis loop can be completed
ing magnet is at=2 rad. We first discuss Fig. (4. Initially via E and F. On the other hand if on jumping to B the bias is
with zero biasy the moment of the switching magnet is in further increased, to reach the state C, a jump will occur to
the direction of the uniaxial anisotropy field, i.eq=0. Asy ~ C’ and the system is again trapped on the branch.GG
increases positivelyy, increases until the stability criterion ~ The next example we consider employs a mapping of the
(60) ceases to be satisfied. In Fig. 10 stable steady states ditély realistic microscopic torques for Co/ClL1) shown in
indicated by heavy lines and unstable ones by thin lines. AFig. 7(b) onto the macroscopic model. In this case the
this value ofv, the point A in Fig. 10a), the system seeks Sswitching magnet consists of two atomic planes of cobalt
another steady state which is stable at the same bias arilfl=2). We recall that the nonmagnetic spacer consists of 20
hence jumps to B. It is assumed that for finitehe system atomic planes of Cu. A new feature of this example is that we
will home in on the stable state. Sushowed how this hap- now introduce a strong easy-plane anisotropy vk 100.
pens dynamically for the special case #£0. On further If we take H,,=1.86x 10° s* corresponding to a uniaxial
increase of bias the system proceeds to C and, on reduciraisotropy field of about 0.01 T, this valuelgf corresponds
the bias to zero, it moves to D where=7. The current- to the shape anisotropy for a magnetization of
induced switching process is thus completed with the magl.6x 10° A/m, similar to that of Co. We take againd
netization switched between the two stable zero-bias orier=2 rad and a realistic value 9/=0.01, which is in line with
tations («=0 and ) in the uniaxial anisotropy field. To the value quoted by SuhThe value ofr which gives a
reverse the process the bias is reversed and the system preasonable fit to the microscopic torques shown in Fig) 7
ceeds to E where it becomes unstable and jumps to F. Finalig r=0.65. We find that the strong easy-plane anisotropy
a further negative increase oftakes the system to G and, on forces the switching magnet moment to rotate in thez)
reducing the bias to zero, we return to O. If the resistance iplane, which means that the universal paths in theg)
calculated for each steady state, using our Keldysh formalplane are almost straight lines with=0 or . The plot of
ism (or equivalently the Kubo formu)afor charge current, reduced biag againsta is shown in Fig. 11 and again the
the corresponding hysteresis loop of resistance versus bideavy portions of the curves indicate stable steady states.
can be plotted. We shall do this for later examples. The multiple loops of steady states in Fig.(dlare a new

In the above example, the in-plane and out-of-planefeature appearing fdn,# 0. However, in this case, they are
torques are of equal strength and of the same igrd). The  all unstable. The important parts of the curves are shown on
instabilities at A and E are governed by the dynamical crite-a larger scale in Fig. 1h). This clearly resembles Fig. (&)
rion (60). In the Stoner-Wohlfarth-like case discussed earlierand instabilities now occur at the extremal pointsahd E
the system remains stable, as bias is increased, up to tliestead of A and E as in Fig. 8. In general, the point A
maximum at A. The first criterion(59) determines the insta- lies further up the curve towards’Ahe larger the product
bility at this point and similarly at E Y. This follows from Eq.(60) as long as the easy-plane

Figure 1@b) shows the situation for the less usual case ofanisotropy is strong enough f¢sin ¢q sin ag| <1/y3 to be
negativer, in particularr =—1 corresponding to parameter set satisfied. This stabilizing effect of easy-plane anisotropy has
(d). Starting atay=0, with bias increasing from zero, an the unwelcome consequence that the critical H@asren)
instability occurs at A as before. However, there are now twdor switching is strongly increased by such anisotropy. The
possible stable steady states to which the system might jumpprresponding hysteresis loop of resistance versus bias for
labeled by B and B. We cannot say to which point the jump #=2 rad is shown in Fig. 12). We have also transferred the
occurs without following the detailed dynamics of the sys-key points from Fig. 1(b). In Fig. 12b) we show the hys-
tem with time-dependent solutions of the Landau-Lifshitzteresis loop ford=3 rad, which is close t@=m assumed in
equation. If the system jumps to’ Burther increase of bias previous treatments® It is rather interesting that the critical
leads towards G where the moment of the switching magndtias for switching is=0.2 mV both for#=2 and #=3 rad.
approaches alignment with that of the polarizing magnetWhen this bias is converted to the current density using the
However the bias is varied now, through positive and negaealculated ballistic resistance of the junction, we find that the
tive values, the system remains on the stable steady-stateitical current for switching is~10" A/cm?, which is in
branch GG and no switching to the point D can occur. If, very good agreement with experiméntiowever, there is a
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@ (b)
o = 19F ——>
5“‘5 g FIG. 12. Resistance of the
2'2 18 | 7 Co/Cu/Cd111) junction as a
= % 18k J function of applied bias withM
8175 8 =2 monolayers of Co in the
g .g L5 7 switching magnet.(a) is for @
g S 17— ] =2 rad and(b) is for =3 rad.

L6s— > S 3 yy 165 = $ +
Bias (x 10™ V) Bias (x 10 v)

gualitative difference between the cases2 and#=3 rad. instability G in Fig. 13b) to much larger bias than the cor-
For #=2 rad, switching is determined by the instability con- responding point in Fig. 18), even with a smaller damping
dition (59) which is independent of the damping parameterparametery. In fact, for the particular values of and h;

v. This means that switching is of the Stoner-Wohlfarth type.used for Fig. 13, G lies at a larger bias than Ehe resultant
On the other hand, fof=3 rad, we find that the instability is hysteresis loop, shown in Fig. @&}, is thus executed in the
determined by Eq(60) ,which means that switching is of the same sense as that shown in Fig(al2However, in Fig.

Slonczewski-Sun type. 14(b), corresponding t¥=3 instead of 2, the sense is re-
The last example we consider employs again a mappingersed.
of the fully realistic microscopic torques for Co/Cl1) In Fig. 12 as we change bias from B to C or from F to G

shown in Fig. 7a) onto the macroscopic model. In this case we are achieving saturation by aligning the switching magnet
the number of atomic planes in the switching magnet igparallel or antiparallel to the polarizing magnet. However, in
M=1. We use the same valuestyf v, H,, andé as in the  Fig. 14 as we increase bias from F the steady state becomes
previous example. The best fit to the microscopic torques imnstable at the point G, for a critical bias, but there is no
Fig. 7(a) givesr=-1.0. This example, besides being again astable state for the system to jump to with further increase of
realistic one, introduces the feature of negativehich we  bias[see Fig. 18)]. To emphasize this point, the points G
met in the single-orbital model with parameter ¢8t [see and C are marked with an asterisk in Fig(&)4 Thus for bias
Figs. 4 and 1()]. The plot of reduced bias againste is  larger than this critical one the system cannot home in on any
shown in Fig. 13 with stable steady states indicated as bestable state and the moment of the switching magnet remains
fore. The low-bias part of the curves is plotted in Fig(d3 perpetually in a time-dependent state. For much larger bias
on a larger scale. the system can home in onto the stable multiple loop states
The fact thafr| is comparable for Figs. 11 and 18f the ~ shown in Fig. 18a). Thus there is a range of bias where only
order of 1 but the sign is changed, leads to all the biasthe time-dependent state is possible. The bottom of the gap
curves being essentially only reflected in theaxis. How-  occurs at the bias point G in Fig. (8. If the bias is then
ever, the change of sign ofis seen to have a dramatic effect reduced below this value the system will home in on a stable
on the stability of the steady states. The most striking effecsteady state and the hysteresis loop can be completed.
is the creation of a “bias-gap” with no stable steady states We investigated the critical negative valueroat which
for values of reduced bids| between about 0.7 and 10. For the bias gap appears. For the parameters used above, the gap
r=-1 the bias-gap only exists in the presence of easy-planis not present for=—0.05 but is already well established for
anisotropy. In this connection we may compare Fig. 13, withr=-0.1. Thus when in-plane and out-of-plane spin-transfer
parametersr=-1, h,=100, y=0.01, and#=2, with Fig. torques have opposite sign, and easy plane anisotropy is
10(b) correponding ta=-1, h,=0, y=0.05, and¢=2.[The large, only a small out-of-plane torque is required to produce
larger value ofy for Fig. 10b) is not important; it was used this unusual bias gap behavior. Since out-of-plane torque
to push the point of instability A to larger bias and thus corresponds to an effective field, we believe that this behav-
clarify the figure] Clearly there is no bias-gap in Fig. @ ior is closely related to the time-dependent motion of the
with h,=0. Another effect of largé, is to push the point of moment of the switching magnet which is observed in a

(a) (b)
60
40' FIG. 13. Reduced bias re-

L quired to stabilize the Co switch-
220 ing magnet moment at an angie
f 01- with #=2, and realistic anisotropy
g | and damping parameters for
B2 Co/Cu/C¢111) with M=1. The

k- value ¢=0 is obtained forv <0

L and ¢ = 7 is obtained for > 0.

-5 1 2 3

angle o angle o,
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a T . .

?01.75- 1 = 18- f"f . Co/Cu/Cd¢111) junction as a
Pl 2 sl i ] function of applied current, with
8 ry M=1 monolayer of Co in the
g L7 1 g L7 7 switching magnet.(a) is for 6
& 3 16q ] =2 rad andb) is for 6=3 rad rad.
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sufficiently large applied magnetic fiefdThis alternative on it. On the other hand, it is well-known experimentélly
mechanism for time-dependent motion of the switching magthat changing the polarity of the bias reverses the direction of
net moment is under investigation. the spin-transfer torquéhe magnitude remains the same
Even in the absence of easy plane anisotropy, but withThis cannot be explained within a theory that treats only the
large negativer, we have found a critical bias above which spacer/switching magnet interface. The ingredient that is
only time-dependent solutions exist. However, for smallmissing is strong reflection of electrons from the polarizing
nega_Lt|ver(|r|<_<1) normal solutions can occuyno bias gap  magnet which results in a spin polarization of the reflected
For intermediate values af, as discussed for=—1 with  glectrons. Clearly only such reflected spin current flowing in
reference to Fig. 1@), switching may or may not occur. e direction opposite to that of the particle current can exert
Furthermore, in the case of pure in-plane tordue0) and  orque on the switching magnet. It follows that multiple re-
no easy plane anisotropy we find straightforward switchingqections of electrons from the polarizing and switching mag-
of Slonczewski-Sun type fdeos ¢ > .1/ 3, wh'|le for|cos net are an essential feature of the problem. They are treated
<1/3 a more complicated hysteresis loop is found. rigorously to all orders in our theory. The fundamental ex-
perimental fact that the spin-transfer torque acting on the
switching magnet is proportional to the applied bias is ob-
tained naturally in our theory since the spin current anywhere
Our principal result is that spin-transfer torques responin the junction, given by Eq(25), is proportional to the
sible for current-induced switching of magnetization can bedifference between the Fermi functions for the left and right
calculated quantitatively for real systems such as Co/Cu/Chbalves of the cut junction, i.e., proportional to the bias in the
junction in the ballistic regime using nonequilibrium low-bias (linear-responselimit. These arguments indicate
Keldysh formalism. In fact, we argue that the spin-transferthat self-consistent treatment of the whole junction is crucial
torque can be calculated self-consistently from first prin-for correct understanding of current-induced switching of
ciples only in a steady statswitching magnet magnetization magnetization.
does not move and this is precisely what the Keldysh for-  The spin-transfer torque calculated from our Keldysh for-
malism is designed for. In the small-bigknear-responge  malism has two components, one with the torque vetion
regime higher-ordefmany-body effects can be neglected the plane containing the magnetizations of the two magnetic
and our results for the spin-transfer torque are, therefordayers(“in-plane” torque and another with the torque vector
quite rigorous. Keldysh formalism provides an explicit for- T, perpendicular to this plan€out-of-plane” torqué. It is
mula for the local spin current between any two atomicgenerally believed that the effective fieldlike componé&nt
planes of the junction in terms of one-electron surface Greeis always small. We find that this is not the case and our
functions for the cut junction. The surface Green functionscalculations show that, in general, both the in-plane and out-
are readily available and we calculate them using a tightof-plane components tend to finite values independent of the
binding Hamiltonian with parameters determined from a fitspacer thickness in the limit of a thick spacer. However, it is
to anab initio band structure. With the exception of Slonc- true thatT, is strictly zero in the limit of an infinite ex-
zewski's parabolic band calculatidmur Keldysh formula- change splitting between the majority and minority-spin
tion is the only theory that yields the local spin current takingbands in both ferromagnets, and this is the case considered
into account rigorously contributions from all the parts of theinitially by Slonczewski In the realistic case of a finite ex-
junction. As the following argument demonstrates, previouschange splittingT | is nonzero and can be comparable with
theories®*> which consider only scattering of spin-polarized T,. The only other general case wh&n can be small occurs
electrons incident from the spacer on the spacer/switchinfpr a junction with reflection symmetry about a plane at the
magnet interface, are incomplete. When the particle currententer of the spacer. Hence to observe an effeck obne
flows from the polarizing magnet toward the switching mag-needs to break the reflection symmetry of the junction. For a
net it is clear that a spin-transfer torque acts on the switchingunction with polarizing and switching magnets made of the
magnet. However, when the polarity of the applied bias issame material, this is achieved by making the switching
reversed, the current incident from the right lead on themagnet thinner than the polarizing magnet, and the strongest
switching magnet is unpolarized and, therefore, has no effectffect is found for a switching magnet only a few atomic

VIIl. CONCLUSIONS
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planes thick. Our calculations show thit and T, are com-  for T, /T;<0, a normal hysterestic switching occurs only at
parable for a Co/Cu/Qa11) junction when the switching relatively low current densities. When the current exceeds a
Co layer is one or two atomic planes thick. Nevertheless, focritical value, there are no stable steady states and the system
a good epitaxial junctiorballistic limit), we find thatT, is  thus remains permanently in a time-dependent state. This is
~27% of T, even for a switching Co magnet as thick as tenanalogous to the observed precession of the switching mag-
atomic planes. An alternative way to break the symmetry isset magnetization caused by a dc current in the presence of
to use a junction with polarizing and switching magnetsan applied magnetic fielln our case, the effective field like
made of different materials. ) termT ,, which causes this behavior, is proportional to the dc
Another result we wish to highlight is that, depending on¢rrent and, hence, complete loss of stability of the steady

material parameters of the junction, the relative signfef  gtate occurs only when this term is large enough, i.e., when
and T, can be negative as well as positive. For examplethe dc current is above a critical value

T,/T<0 fof Co/Cu/C¢11) with a switching.Co magnet Our calculations for Co/Cu/Gall) show that the criti-
of one atomic plane and, /T, >0 for two atomic planes of cal current for switching in the hysteretic regime is

Co. The negative sign of the ratid, /T, has a profound = _;5"s; 2 hoth for Co switching magnets of one and two

effect on the stability of steady states and, hence, on thgmtomic lanes. This is in good agreement with experiment
nature of current-induced switching. P ' 9 9 P ‘

Finally, to determine the critical currents for switching Wg recall that .the critical current for switching is obtaingd
and to investigate the effect df,, we have used the micro- using the spin tra}nsfer torques_, for a f'uIIy reallstlc
scopically calculated spin-transfer torques as an input inth/CU/CQMD Jyncnon and. ass_umlng a L.m'.ax.'al .amsoFropy
the phenomenological Landau-Lifshitz equation with GilbertOf 0.01T and Gllbert.da.mpmg/—0.0l. This is n line W'th.
damping. Our general philosophy is that all steady states caﬁ}{|e values ofﬁthe uniaxial anisotropy and Gilbert damping
be calculated from first principles and loss of their stability,quOted by Surt. . -
determined from the Landau-Lifshitz equation, correspond We con.clude by stressing _that all the specm_c re_sul_ts we
to switching. This holds provided there is another stabl \ave obtained are strictly valid for a perfect epitaxial junc-

steady state at the same current density the system can swit fgn. 1.€., In the ba”'S“C I'r.n't' H.owever,.the Keldysh. for”.‘a'.'
into. We showed that our criterion for instability of the ISm we _hav_e descrlbegl 'S.Va“q ?"?0 n th_e qllffuswe _I|m|t.
steady state leads to the same critical current for switching eneralization to the diffusive I|m|t_ Is, in principle, str_alght-_
that obtained earlier by S&im the special case af, =0 and prwe_lrd. For example, one could introduce ran_dom Impurt-
for the initial angled between the polarizing and switching ties in the lateral supercell geometry, determine the one-
magnet moments equal to O ar. However, we find that electron surface Qreen funct_lons in this geometry and then
qualitatively different switching scenarios can occur Whenperform configuration averaging of the spin current.
T,/Ty#0, ##0, and in the presence of an easy-plane
(shape anisotropy. In particular, when the easy-plane aniso-
tropy is strong, even a relatively smal| (5—10% ofT,) has The support of the Engineering and Physical Sciences Re-
a strong effect on switching. In the absence of an appliedearch Counc{EPSRC UK is gratefully acknowledged. We
magnetic field, we find that an ordinary hysteresis loop is thelso acknowledge stimulating discussions with J.C. Sloncze-
only possible switching scenario whén /T,>0. However, wski, R.A. Buhrman, and J.Z. Sun.
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