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We present a perturbative model for crystal-field calculations, which keeps into account the possible mixing
of states labelled by different quantum numberJ. AnalyticalJ-mixing results are obtained for a Hamiltonian of
cubic symmetry and used to interpret published experimental data for actinide dioxides. A unified picture for
all the considered compounds is proposed by taking into account the scaling properties of the crystal-field
potential.
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I. INTRODUCTION

Crystal-field sCFd theory1 is one of the most powerful
theoretical methods to deal with the magnetic properties of
rare-earthsREd and actinidesAnd ions, and Stevens’ operator
equivalents formalism is still the most commonly used to
analyze experimental data due to its simplicity. Unfortu-
nately, this approach concentrates only on the CF splittings
within the lowest-lying2S+1LJ multiplet of the considered
ion, completely neglecting the contributions of excited mul-
tiplets s“J mixing”d. Although the task of diagonalizing the
large matrices related to the fullf n configuration, including
different J multiplets, is relatively easy to perform numeri-
cally by means of today’s computers, Stevens’ approach of-
ten makes it possible to obtain analytical expressions for
physical quantities of interest for systems of sufficiently high
symmetry, thus leading to a deeper insight on the physics of
several compounds.

In the present paper, we discuss a perturbative approach
which retains the validity of Stevens’ formalism while cor-
rectly taking into accountJ-mixing effects. This method,
which has led to interesting results for transition-metalsTMd
based molecular clusters2,3 and ferromagnetic exchange-
driven RE-TM intermetallic compounds4 is now applied to
evaluate the intramultiplet CF splittings in light An and RE
ions. We exploit the method to analyze the CF of actinide
dioxides. These large-gap semiconductors are among the
most studied actinide compounds. Althoughf-electrons are
well localized, the complexity of the magnetic Hamiltonian,
which includes CF and magnetoelastic single-ion interac-
tions, phonon-transmitted quadrupolar interactions, and mul-
tipolar superexchange couplings between neighboring ions,
leads to a number of interesting and unusual physical phe-
nomena. Among them, we mention the proposed octupolar
phase transition in NpO2,

5,6 the observed CF-phonon bound
states in NpO2,

7 and the peculiar static and dynamic phe-
nomena produced by magnetoelastic interactions in UO2,

8–10

some of which are not yet fully understood.
The CF potential is the fundamental building block of any

theoretical model of the properties of dioxides, since this
influences the single-ion behavior to a large extent. In par-

ticular, it determines which degrees of freedom of thef shell
are left unquenched and the size of the corresponding multi-
pole moments, which account for the low-T physical proper-
ties. Most of the published theoretical approaches are based
on the above-mentioned Stevens’ treatment of the CF, which
includes only the lowest Russell-Saunders or intermediate-
coupling multiplet of the ion. If one takes as starting point
the CF of UO2, on which very detailed information is avail-
able by inelastic neutron scatteringsINSd experiments,11 then
scaling the CF of UO2 within the Stevens’ frameworksto
take into account the different ionic radiid provides a good
CF model for NpO2. However, the same scheme applied to
PuO2 is only qualitatively satisfactory, since it reproduces
the correct level sequence but it underestimates the observed
energy splitting.

Moreover, this approach is not internally consistent be-
cause the so-obtained CF parameters yield different results
when additional ionic multiplets are included in the calcula-
tion. On the other hand, the increased complexity ofJ mix-
ing calculations makes particularly hard to find CF parameter
sets working consistently over the various compounds. In-
deed, different sets have been proposed so far for dioxides
within J mixing calculations. In particular, in NpO2 two dis-
tinct and equally good sets of parameters had been
obtained.12

By our perturbativeJ mixing approach, we have been able
to obtain a unique set which works well over all the consid-
ered compounds.

II. THE PERTURBATIVE J-MIXING MODEL

Following Ref. 13, the total free-ionsFId and crystal-field
sCFd HamiltonianH=HFI+HCF, with

HCF = o
k,q

Bk
qCq

skd s1d

can be rewritten in the form

H = H0 + H1 + H2, s2d

where in the present caseH0 coincides withHFI andH1 and
H2 are chosen so that the former has nonzero matrix ele-
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ments only between states belonging to the same2S+1LJ mul-
tiplet. It is possible to define a Hermitian operatorV such
that the matrix element of the transformed HamiltonianH8

=e−iVHeiV are very small in the off-diagonal blocks, thus
restoring the possibility to use an isolated-multiplet ap-
proach. In this framework,13

kaJMuH8uaJM8l = E0aJdMM8 + kaJMuH1uaJM8l − o
a9J9M9

kaJMuH2ua9J9M9lka9J9M9uH2uaJM8l
E0a9J9 − E0aJ

, s3d

wherea, J label free ion manifolds andE0aJ are the eigen-
values ofH0. For clarity, in the following we will label the
states as in the Russell-Saunders scheme, wherea coincides
with sL ,Sd and any additional quantum number necessary to
identify the terms; yet the actual calculation will include
intermediate-coupling corrections to the eigenfunctions.

Once we limit our calculations to the groundJ multiplet
only, the first term on the right-hand side of the above equa-
tion represents a uniform energy shift of the whole multiplet,
while the second term is the usual ground-multiplet CF
HamiltonianHsJd. The effect ofJ-mixing is accounted for by
the third term, which will be considered as an extra contri-
bution to the ground-multiplet Hamiltonian and labelledHmix

sJd

fwe maintain the redundant superscriptsJd notation in order
to emphasize that the newly obtainedJ-mixing Hamiltonian
also acts on the ground multipletonlyg.

In the case of light actinides, the most importantJ-mixing
contribution comes from the two lowestJ-multiplets, i.e.,
2S+1LJ and2S+1LJ+1. Therefore, for the sake of simplicity we
restrict our analysis to the case of these two multiplets, sepa-
rated by an energy gapD by the spin-orbit interaction. From
Eq. s3d, Hmix

sJd can be written as

kJMuHmix
sJd uJM8l = − o

M9
o
k,q

o
k8,q8

Bk
qBk8

q8

3
kJMuCq

skduJ + 1M9lkJ + 1M9uCq8
sk8duJM8l

D
.

s4d

The Wigner-Eckart theorem, in the form

kJ1M1uCq
skduJ2M2l = s− 1dJ1−M1kJ1iCskdiJ2lS J1 k J2

− M1 q M2
D
s5d

allows us to get rid of the sum overM9 in Eq. s4d, since the
3j symbol in Eq.s5d equals zero ifM2ÞM1−q. The products
of 3j symbols can be rewritten as linear combinations of
matrix elements of Stevens operatorsOk

q,2,4 so that

Hmix
sJd = o

k,q,k8,q8

Bk
qBk8

q8

D
Mk+k8

q+q8, s6d

where the “mixing operators”Mn
m are2

Mn
m = o

p=0

n

cn,p
smdOp

m s7d

with conveniently definedcn,p
smd coefficients.

Let us consider the simple but important case of cubic
symmetry, for which the CF Hamiltonians1d has the form

HCF = B4
0fC0

s4d + Î 5
14sC4

s4d + C−4
s4ddg

+ B6
0fC0

s6d − Î7
2sC4

s6d + C−4
s6ddg . s8d

Restricting the calculations within the ground multiplet only
and using the Stevens’ operator equivalents formalism, Eq.
s8d becomes

HCF
sJd =

B4
0

8
bsO4

0 + 5O4
4d +

B6
0

16
gsO6

0 − 21O6
4d, s9d

b andg being the fourth- and sixth-order Stevens factors. To
introduce another common notation,1 we define

V4 =
B4

0

8
= A4kr4l, V6 =

B6
0

16
= A6kr6l, s10d

wherekr nl are the expectation values of ther n operator over
the appropriatef-electron wave function. It is found that
Hmix

sJd maintains the cubic symmetry, and has the form

Hmix
sJd = n4sO4

0 + 5O4
4d + n6sO6

0 − 21O6
4d

+ n8sO8
0 + 28O8

4 + 65O8
8d + ¯ , s11d

where we did not explicitly write the terms containing op-
erators of rank higher than 8 sinceOk

q=0 for k.2J, andJ
=9/2 is themaximum possible value for the ground state of
light lanthanides and actinides.14 The coefficients appearing
in Eq. s11d are dependent onJ and can be written as

nk =
1

D
fnk

s4,4dsV4kJiCs4diJ + 1ld2 + nk
s6,6dsV6kJiCs6diJ + 1ld2

+ nk
s4,6dsV4kJiCs4diJ + 1lV6kJiCs6diJ + 1ldg, s12d

and a list ofnk
sm,nd for the ground multiplets off n configura-

tions with 1ønø5 is given in Table I. The reduced matrix
elements kJiCskdiJ+1l are calculated by using the
intermediate-coupling free-ion wave functions.

Ions with six f electrons have aJ=0 ground singlet, so
that no intramultiplet energy splitting can exist andJ-mixing
effects are evident only in the wave function composition;

MAGNANI et al. PHYSICAL REVIEW B 71, 054405s2005d

054405-2



this case is then impossible to study by the present approach.
As for ions with half-filled f shell such as Gd3+, Cm3+, and
Bk4+, J mixing is generally negligible and it hardly affects
any physical property. Finally, the perturbativeJ-mixing ap-
proach is in principle suitable to study heavyf-electron ions
s8ønø13d, taking into account that the groundJ multiplet
is mixed with J−1 states, instead ofJ+1. However, in this
case the advantage of using the perturbative model with re-
spect to the numerical diagonalization ofH over a complete
f n basis could be significantly reduced, becausesid the use of
Stevens operators of rank 10s12d becomes necessary forJ
ù5 s6d; sii d it is not always possible to diagonalizeHCF

sJd

+Hmix
sJd analytically, even in cubic symmetry. In any case, the

expectedJ-mixing strength is much smaller for heavy than
for light elements.

III. A PARTICULAR CASE: THE f1 CONFIGURATION

In order to show in detail how the present model can be
applied to the study of rare-earth and actinide compounds, let
us start from the simplest possible configuration, an ion with
a singlef electron. The only interaction present in the free-
ion Hamiltonian is the spin-orbit coupling,

HFI = LL ·S. s13d

The f1 spectra is composed of two multiplets only,2F5/2
sground stated and2F7/2; adding a crystal field of cubic sym-
metry, the 14314 matrix representing the2F term is made
up of two 434 and two 333 diagonal blocks. The complete
HamiltonianH can then be analytically diagonalized, and the
resulting energy gap between theG7 doublet and aG8 quartet
composing the ground multiplet is

EG7
− EG8

= 1
1716f3744V4 − 4480V6 + Î25600s13V4 − 84V6d2 − 137280s13V4 − 84V6dL + 9018009L2

− Î16384s13V4 + 70V6d2 − 219648s13V4 + 70V6dL + 9018009L2g. s14d

Although the perturbative approach is not particularly useful
here since an exact analytical solution can be obtained, let us
study this simple case in order to clarify the details of the
process and to understand its limits of validity. No interme-
diate coupling occurs, andb=2/315, g=0, kJiC4iJ+1l
=2Î10/77, and kJiC6iJ+1l=−10Î2/143; moreover, the
spin-orbit gap can be expressed asD=LsJ+1d=7L /2, with
L=100.5 meV. DiagonalizingHCF

sJd +Hmix
sJd ssee Appendix for

detailsd, we find

EG7
− EG8

=
16

7
V4 +

1

L
S 20480

124509
V4

2 −
614400

77077
V4V6

+
204800

20449
V6

2D , s15d

which corresponds exactly to the series expansion of Eq.
s14d up to the first order inL−1.

The intramultiplet energy gap calculated above can be
directly measured by means of spectroscopic techniques; for

TABLE I. nk
sm,ndsJd coefficients for values ofJ corresponding to the ground state of light lanthanides and

actinides.

Coefficient J=5/2 J=4 J=9/2

n4
s4,4d 32/10395 −1328/2760615 −296/920205

n4
s6,6d 64/s33Î455d −Î2/353256/184041 −Î17/73128/184041

n4
s4,6d 448/6435 −6464/920205 −39488/15643485

n6
s4,4d 0 −1928/93648555 −452/52026975

n6
s6,6d 0 −Î2/35332/212355 4/s212355Î119d

n6
s4,6d 0 −512/22297275 −1072/126351225

n8
s4,4d 0 2/36891855 4/184459275

n8
s6,6d 0 −Î2/3532/250965 −1/s150579Î119d

n8
s4.6d 0 7/418275 49/14221350
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example, inelastic neutron scattering measurements for PrO2
swhere praseodymium ions have valence 4+, therefore pre-
senting a 4f1 electronic configurationd have shown thatEG7
−EG8

=131 meV.15 Figure 1 shows the possible solutions of
this equation in terms of the crystal-field parametersV4 and
V6, with three different expressions: the full black line cor-
responds to the exact diagonalization of the completef1

HamiltonianfEq. s14dg; the dashed vertical line is obtained
by neglectingJ mixing and using Stevens’ approximation
EG7

−EG8
=s16/7dV4; finally, the dashed-dotted line takesJ

mixing into account perturbatively by the present approach
fEq. s15dg. The results are satisfactory, the agreement be-
tween the exactsfull d and approximatesdashed-dottedd
curves is qualitatively much better if compared with Stevens’
approximationsdashed lined, and the quantitative contribu-
tion of the excited states is correctly estimated in the
small-CF rangeuVk/Lu,1. It may be noticed that the three
curves of Fig. 1 almost coincide whenV6.0, since in this
case the largest part of theJ-mixing correctionswhich is
linear in V6d vanishesfthis can be verified by observing the
relative magnitude of the different coefficients in Eq.s15dg.
For the same reason, for smallV6, the value ofV4 is slightly
underestimated forV6,0 and overestimated forV6.0. As
the spin-orbit interaction is stronger for heavier ions and the
gap between the two lowest multiplets grows withJ, we
expect our model to have a reasonably good performance
over the whole lanthanide and actinide series.

IV. THE CUBIC PHASE OF ACTINIDE DIOXIDES

In this section, the perturbativeJ-mixing model outlined
so far will be applied to interpret the intramultiplet crystal-
field splittings observed by inelastic neutron scatteringsINSd
for actinide dioxides AnO2 sAn=U,Np,Pud. The crystal-
field analysis will be performed in terms of the parametersA4
andA6 fEq. s10dg instead ofV4 andV6, using the values of

krnl given in Ref. 17. Although recent density functional
studies have pointed out a certain degree of covalency for the
AnuO bond in these systems,16 this does not prevent one
from using the crystal field theory to analyze experimental
data; it would be quite more difficult than in a ionic com-
pound to calculate the CF parameters from first principles,
but this is not our aim. We will demonstrate that the present
method can be used for an analytical study of the experimen-
tal results over a wide range of parameters and compositions.

INS spectra for UO2 in the paramagnetic phasesabove
TN=30.8 Kd display peaks between 150 ad 185 meV,11,18

which have been attributed to transitions between theG5
ground state11,18,19and excitedG3 andG4 states, and no other
magnetic transitions were reported up to 700 meVsRef. 11d
sit is worth to recall that theG5→G1 transition is not dipole
allowed so, if present, it will display a very small intensity
with respect to the other two transitionsd.

Figure 2 shows the values ofA4 and A6 for which the
possible transitions lie within the experimentally observed
range according to the perturbative model. In the preceding
section, we have studied the quantitative discrepancy be-
tween the model’s predictions and the exact results, which
was found to be significant for large CF parameters. Follow-
ing these estimates, we have determined a “safe zone”sindi-
cated in Fig. 2 by a dashed ellipsed within which the true set
of CF parameters for UO2 is located with high degree of
confidence.

For the paramagnetic phase of NpO2 we have followed
Amoretti et al.,12 who observed a broad magnetic signal cen-
tered at 55 meV in the INS spectra and attributed this peak to
a transition between the twoG8 quartets. They gave two
possible solutions for the paramagnetic phase, labelled 3 and
4 in Fig. 3; we show that actually there are infinite possible
solutions, divided in two branches.

PuO2 displays a temperature-independent magnetic sus-
ceptibility below 1000 K,20 so that the CF ground state is
expected to be theG1 singlet. Magnetic-dipole matrix ele-
ments involving this state within the5I4 multiplet are zero

FIG. 1. Possible solutions of the equationEG7
−EG8

=131 meV
in terms of the crystal-field parametersV4 andV6 of PrO2. Full line,
J-mixing effects are taken into account by exact diagonalization of
the full f1 HamiltonianfEq. s14dg. Dashed line,J-mixing effects are
neglected. Dashed-dotted line,J-mixing effects are taken into ac-
count perturbativelyfEq. s15dg.

FIG. 2. sColor onlined Possible solutions of the disequa-
tions 165 meVøEG4

−EG5
ø179 meV and 150 meVøEG3

−EG5
ø160 meV, in terms of the crystal-field parametersA4 and A6 of
UO2. The dashed ellipse represents the “safe zone” defined in the
text.
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except with theG4 triplet. Indeed, only one peak centered at
123 meV is observed in PuO2 INS spectra.21 According to
our perturbative model there are again infinite possible solu-
tions, plotted in Fig. 3, which cover a large area of theA4-vs-
A6 diagram.

It is clear that, in the case of AnO2, the INS data analysis
cannot give unambiguous results if every compound is
treated separately; this can also be inferred from the widely
scattered sets of parameters which are found in the literature
ssome of which are listed in Table II and displayed in Fig. 3d.
On the other hand, if we assume that theAk parameters are
approximately the same for all isostructural compounds,1 an
inspection of Fig. 3 shows that the only area of the diagram
where common solutions for An=U,Np,Pu might exist is
around the point labelled 4, which corresponds to one of the
two solutions sthe “strong J-mixing” oned proposed by
Amoretti et al.12 for NpO2 sA4=−19.6 meV/a0

4; A6
=0.666 meV/a0

6d. In order to verify this result, we have cal-
culated the INS transition energies for UO2, NpO2, PuO2,
and PrO2 with this set of parameters by numerical diagonal-
ization of the completefn configuration HamiltoniansTable
III d. Moreover, as a further test, we have calculated the mag-
netic susceptibility for AmO2 and CfO2 with the same pa-
rameterssFig. 4; the measurements can be found in Refs. 22
and 23, respectivelyd.

In all the cases examined so far, the comparison with
experimental results is quite good, considering that a 100%
exact scaling of the CF potential is not expected to hold.
Therefore, our results point towards a coherent unified pic-
ture for the CF potential in actinide dioxides.

The splitting predicted for PrO2 seems less satisfactory as
the measured value of the gapEsG7d−EsG8d=131 meV is
quite larger than the value calculated with the solution we
propose. However, the PrO2 case is complicated by magne-
toelastic interactions that are known to affect heavily the
physics of this compound by increasing the bare value of the
CF gap.15 Hence, a value of this bare gap of the order of
80 meV is fully realistic.

One feature which cannot be accounted for by the CF
models proposed so far is the temperature independence of
the magnetic susceptibility of PuO2 above 600 K. Indeed, it
is obvious that if there is a magnetic gap of 123 meV as

FIG. 3. sColor onlined Possible solutions of the equationsEG
8
s1d

−EG
8
s2d=55±5 meV sNpO2d, EG4

−EG1
=123±5 meV sPuO2d, in

terms of the crystal-field parametersA4 andA6. The dashed ellipse
near the bottom-right corner represents the “safe zone” for UO2

ssee Fig. 2d; the numbered dots are sets of parameters found in the
literature for different compoundsssee Table II for detailsd.

TABLE II. Crystal-field parameters found in the literature for
various actinide dioxides. The labels correspond to those used in
Fig. 3.

Label Compound V4 smeVd V6 smeVd Source

1 UO2 −409 24.8 Ref. 19

2 UO2 −123 26.5 Ref. 11

3 NpO2 −104 6.2 Ref. 12

4 NpO2 −132 26.4 Ref. 12

5 PuO2 −151 31.0 Ref. 21

TABLE III. The intramultiplet transition energies experimen-
tally detected by INS for some actinide and rare-earth dioxides are
compared with the corresponding energy splitting calculated in a
J-mixing framework with the unique set of parametersA4=
−19.6 meV/a0

4, A6=0.666 meV/a0
6 si.e., the solution labelled 4 in

Fig. 3d.

Compound Transition

EnergysmeVd

Expt. smeVd Calc.smeVd

UO2 G5→G3 155a 167

UO2 G5→G4 172a 187

NpO2 G8
s2d→G8

s1d 55b 56

PuO2 G1→G4 123c 112

PrO2 G8→G7 131d 82

aReferences 11 and 18.
bReference 12.
cReference 21.
dReference 15.

FIG. 4. Experimentalsdots, Refs. 22 and 23d and calculated
slines, present workd inverse magnetic susceptibility for AmO2 and
CfO2, with A4=−19.6 meV/a0

4, A6=0.666 meV/a0
6, xAm

−1 s0d
=80 mol/cm3, xCf

−1s0d=3mol/cm3.
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observed by neutron scattering, when this level becomes
thermally populated it will contribute to the susceptibility, no
matter the mechanism which generates the splittingsunless
this contribution is accidentally canceled by other contribu-
tionsd. Indeed, even a completely different approach based
on density-functional-theory calculations cannot remove the
discrepancy between magnetic susceptibility and neutron
scattering experiments.24 Using the diagram in Fig. 3 as a
guide we have been able to find a solution for PuO2 sA4=
−26.7 meV/a0

4, A6=1.68 meV/a0
6d which leads toEG4

−EG1
=134 meV and a flatxsTd curve below 1000 K. For this set
the Curie contribution of the excited triplet and the off-
diagonal Van Vleck contribution of theG1−G4 pair acciden-
tally combine into an almostT-independent susceptibility.
However, this solution is quite unstable even for small varia-
tion of the CF parameters; moreover, it does not give good
results if applied to UO2 and NpO2.

V. CONCLUSIONS

We have developed a perturbative approach toJ mixing
which allows the Stevens’ formalism to be recovered by re-
placing the original CF Hamiltonian with an effective one
operating within the sameJ multiplet. We have applied the
method to the study of the CF in actinide dioxides. These
compounds have extremely interesting physical properties,
which are determined by the CF to a large extent. It is there-
fore important to reach a precise understanding of the CF,
which is the basic building block of all theoretical efforts
devoted to understand these properties. Most studies of the
CF potential rely on the Stevens’ approach, which yields a
solution working fairly consistently over several compounds.
Yet, this solution does not work satisfactorily anymore when
J mixing is included, and the practical impossibility to per-
form exactJ-mixing calculations in wide ranges of the pa-
rameter space has prevented so far the identification of a
better alternative. By hugely decreasing the numerical effort
in favor of analytical calculations, our method has allowed
us to find a J-mixing solution sA4=−19.6 meV/a0

4, A6
=0.666 meV/a0

6d which works consistently over all the con-
sidered compounds.

Although in the present paper we have only studied cubic
systems and included the two lowest multiplets onlyswhich

in dioxides account for almost 100% ofJ mixingd, the
method can be used for any point symmetry, at the price of
additional terms in the effective Hamiltonian; also, as many
multiplets as necessary can be included in the calculation,
leading to additional contributions to thenk coefficients of
Eq. s12d. Even in this case our method, by allowing to per-
form a quantitative analysis of experimental data by means
of a Stevens-type Hamiltonian containing higher-rank opera-
tors, is much more efficient than full numerical diagonaliza-
tion. In particular, wide ranges of the parameter space can be
easily investigated, allowing to produce quite easily dia-
grams such as Figs. 2 and 3 which would otherwise be very
hard sif not impossible, in some casesd to obtain.

APPENDIX: ANALYTICAL DIAGONALIZATION OF A
CUBIC CRYSTAL-FIELD HAMILTONIAN

This Appendix will be devoted to illustrate the results of
analytical diagonalization of the cubic crystal-field Hamil-
tonian,

Hcubic
sJd =

b4

8
sO4

0 + 5O4
4d +

b6

16
sO6

0 − 21O6
4d

+
b8

128
sO8

0 + 28O8
4 + 65O8

8d, sA1d

which corresponds toHCF
sJd +Hmix

sJd discussed in this paperfEqs.
s9d and s11dg with b4=8V4b+n4, b6=16V6g+n6, b8=n8.

For J=5/2 sCe3+, Pr4+, Sm3+, Am4+, Pu3+, etc.d b6 andb8
have no effects, and the multiplet splits in aG7 doublet and a
G8 quartet separated byEG8

−EG7
=45b4.

A J=4 ground multipletsPr3+, U4+, Np3+, Pu4+, etc.d is
split into a singletsG1d, a doubletsG3d, and two tripletssG4

andG5d by a cubic crystal field. The energy separations be-
tween these levels are

EG3
− EG1

= 180s− b4 + 63b6 − 21b8d, sA2d

EG4
− EG1

= 105s− b4 + 63b6 − 216b8d, sA3d

EG5
− EG1

= 45s− 9b4 + 105b6 − 280b8d. sA4d

For J=9/2 sNd3+, Np4+, U3+, etc.d the multiplet splits into
a G7 doublet and twoG8 quartets, respectively, split by

EG8
s2d − EG8

s1d = 15Î7s103b4
2 + 4704b4b6 + 85680b6

2 − 10584b4b8 + 362880b6b8 + 3129840b8
2d sA5d

and

EG7
− EG8

s1d =
735

2
b4 − 12600b6 + 28350b8 +

sEG8
s2d − EG8

s1dd

2
. sA6d

The above results, with their algebraical signs, are correct for any particular order of the energy levels.
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