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An ideal atomistic model of a disordered material should contradict no experiments, and should also be
consistent with accurate force fieldsseitherab initio or empiricald. We make significant progress toward jointly
satisfyingbothof these criteria using a hybrid reverse Monte Carlo approach in conjunction with approximate
first-principles molecular dynamics. We illustrate the method by studying the complex binary glassy material
g-GeSe2. By constraining the model to agree with partial structure factors andab initio simulation, we obtain
a 647-atom model in close agreement with experiment, including the first sharp diffraction peak in the static
structure factor. We compute the electronic state densities and compare to photoelectron spectroscopies. The
approach is general and flexible.
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I. INTRODUCTION

The modeling of complex materials based upon molecular
dynamicssMDd simulation has been one of the remarkable
advances in theoretical condensed matter physics. Whether
the potentials chosen are empirical orab initio, remarkable
insights have accrued for diverse problems in materials phys-
ics and beyond. There is, however, an unsatisfying point to
the logic of MD simulation: it does not make use of all the
information available about a material under study—notably
the information implied by experiments. Simulations often
cannot achieve agreement with experiment because of short
simulation times, small system sizes or inaccuracies in the
interactions. Successful prediction ofnewproperties is more
likely for models in agreement with existing data. Imposition
of experimental information may be important in phase-
separated or other complex materials for which obtaining a
suitable starting structure may be difficult, and for which
short MD time scales preclude the emergence of such struc-
tures in the model.

A different approach to model construction implemented
by McGreevy1–4 and colleagues is the so-called “reverse
Monte carlo”sRMCd method. Here, one explicitly sets out to
make an atomistic model which agrees with experiments.
RMC has been widely used to model a variety of complex
disordered materials. This is accomplished by making Monte
Carlo moves which drive a structural model toward exact
agreement with one or more experiments. In practice, RMC
is the ideal method to explore therange of configurations
which are consistent with experimentssd. Without adequate
limitation to a “physical” subspace of configuration space, it
is unlikely to produce a satisfactory model. That is, only a
subset of RMC modelsfwhich match the experimentssdg is
physically realisticsconsistent with accurate interatomic in-
teractionsd. The imposition of topological/chemical bonding
constraints in RMC can ameliorate this problem, but not re-
move it entirely.5 The mathematical structure of constrained
RMC is a constrained optimization “traveling salesman”
problem. In our previous implementation of constrained
RMC we formed a positive definitesquadraticd cost or “pen-
alty” function j, which was then minimizedsideally, but not
practicallyd to zero for a structural model which exactly sat-
isfies all constraints imposed:
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experimental data points,K is the number of experimental
data sets employed,MK is the number of data for theKth set,
and L is the number of additionalsnonexperimentald con-
straints included. The quantityQ is the appropriate general-
ized variable associated with experimental dataFsQd and
Pl .0 is the penalty function associated with each additional
constraint with the property thatPl =0 if constraintl is ex-
actly satisfied, andll .0. Such “additional” constraints can
be of many different formssfor example, one may impose
chemical or topological ordering, or phase separated units
within a continuous random networkd The coordinates of at-
oms are changed according to Monte Carlo moves, which is
akin to a simulated annealing minimization of our cost func-
tion j. The method is easy to implement, though care must
be taken to include the minimum number of independent
constraints possible to reduce the likelihood of getting
“stuck” in spurious minima. We have shown that inclusion of
suitable constraints leads to models ofa-Si much improved
compared to RMC models using only the structure factor
ffirst term of Eq.s1dg as a constraint.5

As the creation of models of complex materials is a dif-
ficult task, it is of obvious advantage to incorporateall pos-
sible information in fabricating the model. We assert that an
ideal model of a complex material shoulds1d be a minimum
smetastable or globald of a suitable energy functional faith-
fully reproducing the structural energetics,s2d should contra-
dict no experiments. When stated in these terms, our crite-
rion seems quite obvious, yet current simulation schemes do
not simultaneously accommodate both criteria, but focus
only on one or the other.

In this paper, we merge the power ofab initio molecular
simulation with thea priori information of experiments to
create models consistent with experiments and the chemistry
implied by accurate interatomic interactions. To obtain joint
agreement, we unite MD with the reverse Monte Carlo
sRMCd method. We name the scheme “experimentally con-
strained molecular relaxation”sECMRd. One can understand
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our scheme as a way to “tune” a structural model using MD
within the space ofexperimentally realisticmodels as de-
fined by RMC. We choose a troublesome and complex
material with a long experimental and modeling history:
g-GeSe2.

From an algorithmic perspective, our scheme has impor-
tant advantages. For example, to model a glass such as
GeSe2 or SiO2 using first-principles methods, the method of
choice is to form an equilibrated liquid, use some dissipative
dynamics to simulate ansunphysicallyd rapid quench of the
liquid into an arrested phase and finally to relax this to a
local energy minimum, presumably at astronomical fictive
temperatureshigh potential energyd. Usually some repeated
“annealing” cycles are also used. If one is interested in a
glassy phase all the work of forming and equilibrating the
liquid is redundant, and it is a pious hope that the arrested
liquid will resemble a real glassy phase. Evidently the like-
lihood for success is strongly affected by topological and
chemical similarity of the melt to the physical amorphous
phase. If complex ordering “self-organization” or phase
separation occurs in the physical amorphous phase, the short
simulations of conventionalab initio schemes will surely
miss these important structural features. In this vein, we have
used ECMR to construct models ofa-Si with intermediate
range order on a nanometer length scale6 by inclusion of
fluctuation electron microscopy.7 We note that successful
techniques do exist to tackle the time-scale problem,8,9

though these do not enable the inclusion of experimental
information. Our method is efficient enough to enable the
creation of a 647 atom model ofg-GeSe2 using only a work-
station. The method is at least a factor of five faster than a
comparable quench from the melt simulation, with its inher-
ent limitations.

II. METHOD

The obvious means to incorporate interatomic interactions
into an RMC simulation is to add a constraint to minimize
the magnitude of the force on all the atoms according to
some energy functional or to minimize the total energy. For
anab initio Hamiltonian this is expensive, since Monte Carlo
minimization of Eq.s1d requires a large number of energy/
force calls. Thus, we have instead employed a simple “self
consistent” iteration schemesindicated in Fig. 1d: s1d starting
with an initial configuration C1, minimize j to get C2, s2d
steepest-descent quench C2 with an ab initio method to get
C3, s3d subject the resulting configuration to another RMC
run sminimizej againd, repeat stepss2d ands3d until both the
MD relaxed model and RMC models no longer change with
further iteration. In this paper, we limit ourselves to the first
term in Eq. s1d sthe experimental static structure factord,
though additional constraintssexperimental or otherd cer-
tainly could be employed. For the RMC component of the
iteration, we make the conventional choice of using Monte
Carlo for the minimization. This is simple and does not re-
quire gradientsfand thus allows the use of nonanalytic terms
in Eq. s1d sRef. 10d, if desiredg.

We emphasize that our method isflexible. Its logic sug-
gests that one should include whatever experimental infor-

mation is available. These might be costly to includesfor
example, to compel agreement with the vibrational density of
states, the dynamical matrix would be required at each itera-
tiond. The method is equally suited to fast empirical poten-
tials, which would allow studies of very large models. It is
also possible to force a close fit to some restricted range of
data, and a less precise fit elsewhere if desired. Our scheme
also provides insight into the topological signatures of differ-
ent constraintssexperimental or otherwised. Chemical and or
topological constraints could also be maintained as part of
the RMC iteration.

Our method can be understood as a way to minimize an
effective potential energy functionVeffsRd=VsRd+LzsRd,
whereVsRd is the potential energy of the configurationsde-
noted byRd, L.0, and z is a non-negative cost function
enforcing experimentalsor otherd constraints as in Eq.s1d.
Empirically, we find that it is possible to find configurations
that simultaneously approximately minimize both terms
swhich implies that the choice ofL is not very importantd. It
is also clear that our method is reallystatistical: in general,
one should generate an ensemble of conformations using
ECMR. For adequately large models, self-averaging can be
expected; in this study of larges647 atomd models of
g-GeSe2 we find similar results for two runs; for small sys-
tems a proper ensemble average is required.

This method needs to be studied and developed in a num-
ber of ways. Nevertheless, we show in this paper that it is
relatively easy to model a particularly challenging material
with significant advantages in both experimental plausibility
of the model and computational efficiency of the algorithm.

III. APPLICATION TO GLASSY GeSe 2

We apply ECMR to glassy GeSe2, a classic glass forming
material with challenging physical and technical issues:s1d it

FIG. 1. Flow diagram for the “experimentally constrained mo-
lecular relaxation” method of this paper.
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displays nanoscale order: a “first sharp diffraction peak”
sFSDPd is observed in neutron diffraction measurement,s2d
the packing of GeSe tetrahedra involves both edge- and
corner-sharing topologies,s3d the material has interesting
photoresponsesunderstanding of which requires the elec-
tronic structured, s4d the material is difficult to simulate with
ab initio techniques.11–14 The model used in our calculation
consists of 647 atoms in a cubic box of size 27.525 Å.

In the nomenclature of Fig. 1, C1 is obtained by constrain-
ing the coordination numbers2 for Se, 4 for Ged and the
bond-angle distribution of Se-Ge-Se to an approximate
Gaussian with an average bond angle 109.5°. The initial net-
work was “generic” and included none of the detailed local
chemistry of Ge and Se aside from the coordination and
chemical orderingsbond angles were not constrained in
RMC loopsd. Equal weighting was used for all experimental
points in this paper. Using the method of isotopic substitu-
tion, Salmon and Petri15 were able to separately measure the
threesGe-Se, Ge-Ge, and Se-Sed partial structure factors of
g-GeSe2. We jointly enforced all three partialssin real spaced
in the RMC component of the loop in Fig. 1. The MD relax-
ation was done withFIREBALL.16 It was found that after the
fourth iteration,SsQd hardly changed. In Table I, we show
the average force per atom at the beginning of each call to
MD relaxation; good convergence is observed. Subsequent
discussion in this paper is for the last step of the MD, with
forces less than 1310−2 eV/Å. it was not obvious to us in
the beginning that RMC and first principles interatomic in-
teractions could be made “self-consistent,” but for this sys-
tem at least, reasonable convergence is possible. It is likely
that some initial conformations C1 will get “stuck” and re-
quire a new start.

A. Structure

In Fig. 2, we compare the RMC, ECMR, and experimen-
tal structure factors. Here, the RMC model is that obtained
by starting with the generic C0 configuration, and forcing
agreement on the experimentalSsQd swithout any other con-
straintsd. While the agreement is very good, it is not perfect.
This is to be expected for three reasons:s1d consistency be-
tween data and Hamiltonian is never exact,s2d our cell con-
tains 647 atoms, which is compared to the thermodynamic
limit, and s3d we chose to constrain our model using real
space data, which involves Fourier transforms and window-

ing sthis introduces only small errors in this data setd. In Fig.
2 we highlight the differences between experiment,15 a
quench from the melt model13 and the new ECMR model. In
the inset of Fig. 2, we also illustrate the level of agreement
using a pure RMC approach, which is similar to the ECMR
result and notably better than quench from the melt. For
reference, we have reproduced the full partial structure fac-
tors elsewhere.6

Note in Fig. 2 that the first sharp diffraction peaksFSDPd
is well reproduced,svery close in width and centering, and
much improved from all previous models in heightd. More-
over, as for our “decorate and relax”sDRd method,17 the
largeQ structure closely tracks experimentsunlike the expe-
rience for quench from the melt models which are too liq-
uidlike and therefore decay too rapidly for largeQd. These
desirable features are of course “built in;” we show here that
the ECMR method does preserve every important feature of
the structure of the glass manifested inSsQd.

An important indicator of network topology and medium
range order of GeSe2 glass is the presence of edge-sharing
and corner-sharing tetrahedra. Raman spectroscopy18 and
neutron diffraction19 studies have indicated that 33 to 40 %
of Ge atoms are involved in edge sharing tetrahedra. The
fraction in our model is found to be 38%. This was not “built
in” to our modeling, and is a pleasing prediction arising from
the procedure. We also have observed that 81% of Ge atoms
in our model are fourfold coordinated of which approxi-
mately 75% form predominant Ge-centered structural motifs
GesSe1/2d4 while 6% are ethanelike Ge2sSe1/2d6 units. The
remaining Ge atoms are threefold coordinated and are mostly
found to be bonded as Ge-Se3 units. On the other hand, the
percentage of twofold, threefold, and onefold coordinated Se

TABLE I. The convergence of ECMR described in the text.

ECMR iteration Average force/atomseV/Åd

1 2.242310−3

2 7.365310−3

3 6.518310−4

4 5.019310−4

5 4.773310−4

6 4.903310−4

7 4.686310−4

8 4.642310−4

FIG. 2. Neutron-weighted static structure factor, comparing
ECMR model, experimentsRef. 15d and a quench from the melt
made with the same Hamiltonian used with ECMRsRef. 13d. Inset:
blowup of the small-Q region showing initial RMC modelse.g.,
enforcing experimental structure factor, but without ECMR itera-
tionsd, experimentsRef. 15d, and quench from the melt model due
to Cobbet al. sRefs. 13 and 14d. The first sharp diffraction peak is
closely reproduced by ECMR and RMC, and is present but weak in
the quenched model.
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atoms are 72, 18, and 10 %, respectively. Mössbauer experi-
ments, where Sn was used as a Ge probe,20 estimated that the
fraction of Ge involved in dimers is 16% which is again in
favor of our model.

By integrating partial radial distribution functions via
Fourier transform of structure factors Petri and Salmon15 ob-
tained nearest-neighbor coordination numbersnGeuGe=0.25,
nSeuSe=0.20, andnGeuSe=3.7 that corresponds to average
coordination numbern̄=2.68. The corresponding values
from our model arenGeuGe=0.17, nSeuSe=0.30, nGeuSe
=3.68, andn̄=2.66. The partial and total coordination num-
bers, therefore, agree well with experimentssas expectedd
and are consistent with the 8-N rule which predictsn̄=2.67.
The percentage of homopolar bonds present in our model is
found to be about 6.2% which is again very close to the
value 8% noted by Petri and Salmon.15

B. Electronic density of states

Having studied structural properties, we now briefly ana-
lyze electronic properties of our model. Since structural and
electronic properties are intimately related, an examination
of electronic density of states provides an additional test of
the validity of the model which is derived jointly from struc-
tural information and a suitable interatomic interaction.
The electronic density of statessEDOSd is obtained by con-
volving each energy eigenvalue with suitably broadened
Gaussian. The ECMR EDOS in the inset of Fig. 3 agrees
quite well with experimental results obtained from x-ray
photoemission21 sXPSd, inverse photoemission spectro-
scopy22 sIPESd, and ultraviolet photoemission spectroscopy23

sUPSd measurements as well as with those obtained in recent

theoretical studies.12,13,24,25It is remarkable that the Kohn-
Sham eigenvaluessobtained in the Harris approximationd
agree so well with the photoelectron spectroscopy,26 particu-
larly as the energy-dependent matrix element is not included
in the calculation. The substantial splitting between the first
two peaks of the valence bands named theA1 andA2 peaks is
also well pronounced. The position of the principal peaks
obtained from the different models and experiment are tabu-
lated in Table II. The similarity of experiment and theory
suggests the utility of a study of the Kohn-Sham eigenvec-
tors to enable atomistic identification of defects and bands
illustrated in Fig. 3.

We also compare the EDOS for the RMC model. The
RMC model does very poorly, without even showing an op-
tical gap, despite the excellent static structure factorsob-
tained by constructiond. By contrast, our DR and the quench
from the melt modelsnot shownd are very close to experi-
ment and ECMR. As the coordination and chemical order is
correct in the RMC model, the lack of an optical gap origi-
nates in an unrealistic bond angle distribution in the RMC
model fsomething very similar happens ina-Si if only Ssqd
sand no bond angle constraintd is used to form the model5g.
This result emphasizes the need to compute the density of
electron states as an important gauge of the credibility of a
model.

C. Vibrations

It is useful to also examine the vibrational density of
statessVDOSd of our ECMR model due to the close relation-

TABLE II. The positions of theA1, A2, A3, andB peaks in the
EDOS of GeSe2 glass compared to experimental resultssRef. 23d.

seVd A1 A2 A3 B

Present work −1.55 −3.0 −4.6 −7.4

ExperimentsRef. 23d −1.38 −3.0 −4.6 −7.8

Melt and quenchsRef. 13d −1.4 −2.7 −4.6 −7.0

Decorate and relaxsRef. 12d −1.36 −2.8 −4.5 −7.2

FIG. 3. The electronic density of statessGaussian-broadened
Kohn-Sham eigenvaluesd for ECMR model of GeSe2, along with
the RMC modelsnot usingab initio informationd and a “decorate
and relax” sDRd model made with the same Hamiltoniansinsetd.
The XPS sRef. 21d and IPESsRef. 22d data show the occupied
svalence bandd and unoccupiedsconduction bandd part of the spec-
trum. See Table II for numerical comparison of the peaks. The
Fermi level is atE=0. Both DR and ECMR reproduce the state
density closely, while the RMC model lacks an optical gap.

FIG. 4. Vibrational density of states computed from dynamical
matrix for 648 atom models and experimentsRef. 27d.
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ship to its atomic-scale structure and its dynamical proper-
ties. The VDOS was reported elsewhere.13 Comparing our
VDOS with experiment obtained by inelastic neutron
scattering,27 the spectrum exhibits the same features with
somewhat better resolution than results we reported in Ref.
13. Three bands can be distinguished: a low-energy acoustic
band involving mainly extended interblock vibrations and a
high-energy optic band consisting of more localized in-
trablock vibrations. The two main bands are clearly sepa-
rated by the tetrahedral breathingsA1-A1cd band. The overall
agreement is quite reasonable, including a resolvedA1 “com-
panion” mode “A1c.”

In Fig. 4, we compare the vibrational density of states of
the ECMR model with experiment27 and for completeness
our decorate and relax model including 648 atoms along with
the ECMR model. We do not present the RMC result, as the
system is not at equilibrium according toFIREBALL, which
would therefore lead to many imaginary frequencies in the
density of states. While generally DR and ECMR are quite
similar, we note some difference in the tetrahedral breathing
A1 band snear 25 meVd, including a slightly different

A1-A1c splitting. This is probably because the ratio of edge to
corner sharing tetrahedra is differents<29% of Ge atoms are
involved in edge sharing tetrahedra in the DR modeld. This
suggests that the VDOS has some sensitivity to medium
range orderstetrahedral packingd in this glass.

IV. CONCLUSION

In summary, we have proposed a method which enables
the inclusion ofa priori informationsexperimental or other-
wised into molecular simulation. We have shown that the
method is effective for a challenging materialg-GeSe2.
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