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Spatial ordering of primary defects at elevated temperatures
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We consider the microstructure evolution of a nonequilibrium system of primary defects, in which mobile
point defects, vacancy loops, and sessile interstitial clusters are continuously produced by cascade-damage
irradiation. It is shown that in a fully annealed metal, a spatially homogeneous microstructure may become
unstable if the yield of vacancy clusters in collision cascades is sufficiently low. Unlike cases studied in the
literature, in which sessile interstitial clusters are not produced, we found that the instability condition can only
be satisfied for a finite period of time, the duration of which depends on the density of the network dislocation.
Spatial heterogeneity starts to form from a homogeneous vacancy loop population, leading to the eventual
accumulation of almost all vacancy clusters within very sharp walls. The spatial distribution of interstitial
clusters, on the other hand, is relatively homogeneous, simply following the spatial variations of the net
interstitial flux. The spatial heterogeneity develops with the growth of some concentration peaks and the
disappearance of others. As a result, the surviving peaks form an increasingly well-defined periodic structure.
Nevertheless, as the total sink density of interstitial clusters and loops becomes sulfficiently large, the periodic
structure disappears, and spatial homogeneity of damage microstructure eventually returns.
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I. INTRODUCTION constanf3—?5As a result, the continuous generation of inter-

The damage microstructure caused by the continuous pr(§_titial clusters in cascades only leads to the increase of the
X > o5 oy o=
duction of lattice defects in solids under irradiation is a typi-2Verage size of existing loop%:° This assumption is not

cal example of a system far from the equilibrium. Bifurca- €aSily justifiable, particularly at elevated temperatures, when
tions in the evolution of such systems often lead to the? Significant portion of defects is continuously produced in
qualitative changes in the system behavior, resulting in patth® form of immobile clusters. Indeed, the concentration of
tern formatiod® via spatial and temporal self-organization free vacancies in this case, due to the thermal instability of

in the defect populations. Examples are bubble and void@cancy clusters, is significantly higher than that of free in-
lattices®” defect wall$$~1% and various arrays of dislocation terstitials, causing the interstitial clusters and loops to shrink

loops and stacking fault tetrahedfxl8 on averagé’ The evolution of the interstitial cluster popula-
Pattern formation due to the development of instability intion should therefore be described in a way similar to the

inlei 9-25
the homogeneous vacancy loop population is one of the mo%h”nkmg vacancy clustefs. In other words, the
actively studied cases. Investigations within the reactionBullough-Eyre-KrishaBEK) model;™ originally developed

diffusion modd®19-28 progress from the simplest case, in for the vacancy clusters should also be applied to the inter-

which only vacancy clusters, beside the Frenkel pairs, ardtitials clusters? . .
considered®2! to the more complicated cases that also in- Interstitial c!ustgrs directly produced in cascades are gen-
clude extended defects like interstitial loops and véidds ~ €rally smaller in size than their vacancy counterpart. Due to
Krisharf showed numerically that under the continuous gen__thelr_cqntlnuous generation and accumulatl_on during cascade
eration of vacancy clusters, the spatially homogeneous evdadiation, they may have sink strengths higher than the va-
lution of the damage microstructure may become unstablé@nCy clusters and loops. This is in contrast to the cases
Numerical calculations in the one-dimensional case furthefonsidered in Refs. 23-25, where the sink strength of inter-
demonstrated that the development of this instability leads tgtitid! clusters and loops is much smaller. Thus, the necessary
the spatial ordering of vacancy loofs. Analytical cpndltlon for the mstabll_lty derived there, i.e., a suff|C|entIy
studie€24in the weakly nonlinear regime, as well as nu- high vacancy ]oop density compared to the other smk_s, may
merical simulations in two dimensioR&show that the evo- never be applicable when both types of clusters are simulta-
lution of a homogeneous vacancy loop population is somen€ously produced.
times unstable, leading to the formation of planar wall defect In a previous pape¥, we investigated the stability of a
structures, after transients corresponding to threesystem of primary defects under cascade damage, with mo-
dimensional patterns. Taking into account interstitial loopsbile point defects, vacancy loops, and sessile interstitial clus-
and voids in the reaction-diffusion model does not changeers. Through a linear stability analysis, we show that in a
this conclusion. Only the instability conditions are fully annealed metal a spatially homogeneous system of pri-
modified?2-25Thus, the necessary conditions #t¢ a suffi-  mary defects may still become unstable through the instabil-
ciently high vacancy loop density, compared to the otheiity of the vacancy loop ensemble. The nontrivial conclusion
sinks!921-25and(2) a sufficiently low yield of vacancy clus- that follows is that the instability occurs most easily, not at
ters in collision cascade&$:?® low, as it may be expected from Ref. 23, but rather at high
In these calculations, nevertheless, the number densitiadustering fractione; of interstitials in cascadeges;=0.4,
of interstitial clusters and loops are assumed to beRef. 26. Indeed, although the higher fraction of interstitial
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clustering in cascades increases the interstitial cluster nunspecies are also needed. In our present model, the mobile
ber density, and restraints the instability development, yet iinterstitial clusters are assumed to obey the same reaction
also produces higher net vacancy flux that helps build &inetics as the single interstitials. The justification for this
higher sink strength of vacancy loofs. has been discussed previou¥lyThus, interstitial clusters

In the present paper we carry our investigation furthershrinking below the sizen, are assumed to spontaneously
into the postbifurcation regime to consider the evolution ofdissolve, and the corresponding numbers of free point de-
the heterogeneous microstructure from a homogeneous offiects are added to the population of mobile single intersti-
under the continuous generation of mobile point defects, vatials. Then, the conservation equations for the mobile vacan-
cancy loops, and sessile interstitial clusters in collision caseies and interstitials can be written?&$°
cades. _

(1 - SU)G - DUCU(ZvlpiC + Zup) - DU(CU - Cvl)zvlpvl
IIl. KINETIC MODEL +D,V2C, =0, (3)

According to the BEK modet® the number of vacancies
Q,, accumulated in the shrinking vacancy loops can be de- (1 —&)G + aD,C,Z,pic — DiCi(Z;py + Zip + (1 + @) Z; pic)
scribed in terms of the following mean-field kinetic equation: +DV2C =0 (4)
I | "

de_vl(t) =¢,G - p,[Z,D,C - Z,(D,C, - Dﬁvo], (1) Herep is the network dislo<_:ati0n density ad is the reac-

t tion constant between point defects and network disloca-
tions. To simplify further analysis we assume tlat=2,

=1, andz;=7Z,=2Z=1+n, to take into account the conven-
tional dislocation bias. The additional influpe, of mobile
interstitials in(4):

whereG is the effective production rate of point defects in
both clustered and free form, is the fraction of vacancies
clustered in vacancy loops after the cascade colldpsand

C; (j=i,v) is the point-defect diffusion coefficients and
mean-field concentrations, respectively,is the line density jic = apie(Z,D,C, - Z;D;C)), (5)
of vacancy loopsC,, is the equilibrium concentration of
vacancies in the neighborhood of vacancy loops, Zpd
is the reaction constant between dislocation loops and poi
defects. The line density of vacancy loops is given by
p=2Q,/(r,b) (b is the Burgers vector The average va-
cancy loop radiug,, is taken to be constant and equal to dQ. dQ,
r9/2, whererd=(n,,Q/ 7b)¥2 is the initial radius of a va- a4t dt

is due to the shrinkage of primary interstitial clusters PICs
helow the minimum sizé?

It is easy to check thatl)—(4) satisfy the law of matter
conservation, i.e.:

0 +p(D,C, - ZD,C) - VA(D,C, - D,C)). (6)

cancy loop, withn,4 and{2 being the number of vacancies in
the loop at creation and the atomic volume, respectively. Further, let us introduce the following “natural” notations
We consider temperatures above annealing stgal  (g|ated to the vacancy emission radeC,, which governs

which the lifetime of vacancy clusters is governed mainly byie |jifetime of vacancy loops at elevated temperatures
vacancy emission from them. Consequently, there is a net

vacancy flux to the sessile interstitial clusters, the total inter-  ,  G[g, + g//a(l + a)] _Glg, +gla(l+a)lr,b

stitial contentQ;. of which is described by a kinetic equation ~ Pul = DC 0 D.C
similar to (1),262%j.e., vl vl

dQ.(t 0_,0

?;—‘;() =£G-(1+a)pcZ,D,C,~ZDC), (2 Pio =8P, ™
wherez; is the corresponding fraction of clustered intersti- __op & Gtle, +&i/al +“)]l x=r\, (®)
tials, pi.=2Q./ricb is the line density of interstitial clusters, Qo
which are treated as small loops of the average radius
ic=[ric(Nig) +ic(Mio) /2, a=mio/ (Nig=njp). In deriving (2), Q, = Q,/Q0. Q = Qi/Qo, pn = plpL,

the sessile primary interstitial clusteiBIC9 are assumed to
start with a uniform size ofy, interstitials at the moment of _ _
creation?® They then shrink due to vacancy absorption, and ¢, =C,J/Cy, ¢;=D;C/D,Cy, 9
below a minimum sizen,; of 4-5 interstitials they become
mobile in a way similar to single interstitiat8:3! Since the
majority of interstitial clusters have, at the moment of cre-
ation, a sizenj;=6-10 atoms? a=1. On the other hand, dQ, €,
vacancy loops are assumed to have bigger size at the point of dr = m
creation(n,q~30-50, and the corresponding value afin v
(2) is negligible.

In addition to the kinetic Eqs(1) and (2), the conven- Q_ & —a(l+a)Qi(c, - Zc), (11)
tional kinetic equations for the concentrations of the mobile dr [e,+&/a(l +a)] n '

wherea=r,/fi.
In these notations Eq$l)—(4) and(6) take the form
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(1-2,)
[e, +ei/a(l +a)]

6q _do,
dr dr
(12)  From Egs.(12) and(13), the net vacancy flux annihilated at

interstitial clusters in a spatially homogeneous microstruc-
ture is equal to

- aCU(Qi + pN) - Qv(cv - 1) + VZCv = O= + apN(CU - ZCI) + V2(Ci - Cv) . (14)

(gi—g,)l[e, +gla(l+a)]+Q,
(1—8i) CU_ZCi: + 1+ +
——————+0ac,Q; - Z¢[Q, + (1 + a)aQ + apy] Q, + (L +a@aQ +apy
[e, tela(l+a)] . . e .
so that the rate of accumulation of interstitials in clusters is
+V% =0, (13)  given by

. (19

E - {gi(Qv + apN) + sv(l + a)an B [Sv(l + a)a+ 8i]Qin}
dr [e, + /a1l +a)][Q, + (1 +a)aQ +apy] '

(16)

In the absence of network dislocatiofag,=0), Egs.(14) and  (10) and (11), within the linear approximation, is governed
(16) have a simple homogeneous solutidd,=Q;=[1 by the equations
—exp(-7)], which asymptotically approaches the stationary

solutionQ,=Q;=1. Since the net interstitial flux to the PICs dd&Q, _ Q.(5c, - 76¢) +{dQu _ &y }5Qv
(Zg-c,) and the net vacancy flux to the PVQs,—-Z¢-1) dr 07 ' dr [e,+gla(l+a)]] Q,’
are both negative in this cageee Eq.(15 at Q,=Q;=1], (18)
both vacancy and interstitial clusters are shrinking on the
average, which is consistent with our expectation from
physical considerations. doQ; dQ

If there is no interstitial clustering in collision cascades dr Qia(l +a)(dc, - Z55) + {E
(ei=0), then, from Eqs(14) and (15), the spatially homo-
geneous rate of vacancy accumulation in clusters is governed - #}& (19)
by the equation [e, +el/al+a)]] Q

dQ, _ a (1-Q) (17 Neglecting high order terms afQ, and 8Q;, from (12) and
dr pN(QU+apN)' (13), we have, for the Fourier components with the wave

In Eq. (17) the stationary solutio®,=1 corresponds to zero vectorg:
net interstitial flux to the dislocations, i.&Zg—c,=0. (VQ, - 15Q;)

WhenQ,=Q;=1 the total sink strength of small intersti- o, —Z26ci = — . , (20
tial clusterSp?c:ZQO/ricb is larger than that of the vacancy 9°+Z[Q, +apy+a(l+)Q]
loops p8|=2QO/rU,b (r,>Tric), as discussed in the introduc- where
tion. Moreover, it follows from(11), (14), and(15) that when
pn# 0 more interstitials will be accumulated in the PICs than 2
vacancies in the PVQ®,>Q,). In the latter case, due to the /= E{ . @} + (Z-1)(c,-1)q ,
net vacancy flux at elevated temperatutes-Zc >0), an Q, [e, +e/al+a)] dr | Q,+aQ +apy+0?
extra number of free vacancies is absorbed by the network (21
dislocations. Thus, the sink strength of PICs is generally
higher than the sink strength of PVCs. This conclusion is 5
contrary to that obtained in Ref. 23 where the interstitial loop | = E{# _ @} __ @Z-Deg”
number density was assumed to be stationary, so that, under Q| [e, +&i/a(l+a)] dr Q, +aQ +apy+
the continuous PICs production in collision cascaggsbe- (22)

comes much larger thap.

The homogeneous solution may become unstable when the

determinant of the linear-evolution matrix of the syst€if)

and(19) changes its sign from positive to negative, meaning
The evolution of small perturbation$Q, and 5Q; of the  that one of the eigenvalues of the linear system becomes

steady-state spatially homogeneous solution®,04ndQ; in  positive. The corresponding instability condition is given by

[Il. INSTABILITY OF SPATIALLY HOMOGENEOUS
SOLUTION
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FIG. 1. Critical value of the vacancy clustering fraction as a 5 (b)
function of interstitial clustering fraction. Dashed line corresponds 3 - ¢ 1
to the limiting value ofe’" ate;— 0:e""=¢;/a%(1+a). 4t ' ]

3Lk ]
—1Na? -
(-1q 2{ Q(e,-1 _ aQg, }2q2+2ap,\,. o -
Qv+an+apN+q ZCi+l_Cv CU_ZCi 1F 0; Jj
(23 0 -
For the real values df this condition can be fulfilled only if -1F e ]
c,—1 aQc ]
(Z—l){ Q6 -1 _ aQc, }2Q0+aq+apN(Z+1) 3
Zc+1-c, c,—Zg e, fe,=3
+2\Zap\(Q, +aQ; +apy). (24) py=1+10%
At the critical point, i.e., when the largest eigenvalue van- , , ,
ishes, the wave vectar,, for the unstable spatial modes is 10 100 1000
equal to T
0o = VZapy(Q, +aQ + apy). (25) FIG. 2. Bifurcation parametef and spatially homogeneous so-

lution of Egs.(10—(13) as functions of time at different values of
For py=0, the spatially homogeneous stationary solution isnetwork dislocation density.
Q,=Q;=1, and the inequality23) reduces to that obtained
before® clusters is observelt.In the presence of even low density of
Z-1) { 1-(1+a)s, - &/(1+a) network dislocations, the spatially homogeneous solution of

Egs. (10—«(13) is not stationary. SinceQ/dr>dQ,/dr at

(P +1+a)(1+a) &y pn# 0, condition(24) can not be always satisfied as- .
a[(1+a)a+ Si]} However, as it follows from the conservation |®4), when
- =1. (26)  pny<1, Q,(n=Qi(7) for 7> 1. In this case, as we have seen
&i in Sec. I, the spatially homogeneous vacancy and interstitial

The critical value of the vacancy clustering fractief, be- ~ cluster contents exponentially approach the stationary value
low which the spatially homogeneous stationary solutionQ,=Q;=1 with the characteristic time~1. As a result,
Q,=Q;=1 is unstable, can be easily calculated fr(2f). In from Egs.(8) and (25), the critical wavelength of the un-
Fig. 1, it is plotted as a function of interstitial clustering stable spatial modes can be approximately expressed through
fractione;. The critical wave vectog,, is obviously equal to the line densities of network dislocations and vacancy
zero in this case, and far, <z the wave vectors of the loopspj as(pp) ™.
growing spatial modes have an upper boéhblote thate’" According to the foregoing paragraph, whegq<1(p
has its maximum aroung, =0.4. <p8|) the instability condition(24) will be fulfilled during

The actual density of network dislocations is never zerothe time periodr> 1, if the inequality(26) is also satisfied.
although its magnitude, as well as those of the densities ofhat this is really true is shown in Fig. 2, where the bifurca-
other sinks such as voids and gas bubbles, is usually smaibn parametet, which is defined as the ratio of the right and
when the formation of spatially periodic arrays of defectleft-hand sides of the inequalit24) minus one, is plotted as
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TABLE |. Material parameters for copper. mation of planar wall defect structures. This conclusion is
also supported by the experimental observati@ns.There-
Parameter Value fore, we solve Eqgs.(10—(13) numerically for the one-
Atomic volume €1 10X 102° md dimensional case. The size'of. the computationql tels
: ‘ taken to be 15-20 characteristic wavelengths defined by the
Burgers vectorp 0.2nm Eqg. (25 at Q,=Q;=1, and the fluxes of mobile defects are
Vacancy migration energy 0.8eVv equal to zero at the cell boundaries. The accuracy of calcu-
Vacancy formation energy 1.2 eV lations is verified with the conservation laid4), written in
Vacancy diffusivity pre-exponentfl 1.0x10°m?/s  the integral form
Average loop line energy 0.2 eV L
Initial vacancy loop radius 1nm f [Qi(x,7) = Q,(x,7)]dx
0

aReference 35. .

=3 dr’f C,(X,7') = ZG(x,7)]dx. 27
a function of time. Herg is calculated for the spatially ho- pNJo 0 Le,0u) = 2600 7] 27
mogeneous solutio®;(7) of the set of Eqs(10—(13) with

e, <, wheree® is given by the equality i1126). Note that Typical spatial fragment of the solution is shown in Fig. 3 at

the value ofpy=5x 1073 in Fig. 2a) does not necessarily the different moments of time. Similar to Ref. 24, the devel-
represent a low network dislocation density. Indeed, the oroPment of spatial heterogeneity leads to a sharpening of the

dering of vacancy clusters is often observed under the ioffoncentration of vacancy clusters into walls, with very few
irradiation213 Taking into account intracascade recombina-ClUSters leftin between. However, unlike Ref. 24, this is only

tion, the characteristic nominal dose rate of ion irradia-{'ue for the vacancy clusters. The spatial distribution of small
tion K=10" NRT dpa/s corresponds to an effective doselnterstitial clusters' is much more homoggnequs, and there is
rate G=1-2x 10" dpa/s¥* Therefore, the value opy=5 only some reduction of their concentration in t_he_ areas of
X 1073 in conventional units, for example in copper at 523 sharp peak_s of the vacancy (_:Ius_ter_densny. This is because
and 600 K, represents a network densitypef 2x 10'° and even very inhomogeneous distribution of vacancy glusters
2% 10' m™2, respectively. This can be compared with thehas _only a mode_rate effect on the spatial dls_trlbutlons pf
typical network density of 1§ m-2 in irradiated copper at Mobile defects. Since the homogeneous evolution of the in-
elevated temperatures. The material parameters for Coppg;rstltlal clusters is stabl_e |_tself, their spatial _dlstrlb_u_tlon just
are listed in Table I. In well-annealed pure copper the netfollows the spatial variations of the net interstitial flux

work density is below 18 m2 i.e., py can be even lower [£G(X)=C,(X)]- _ _ _ .
than 105. At py=10"% computer calculations give much  Concentrations of both mobile vacancies and interstitials

longer period of timer,.=4x 10%, when the inequality24) decrease towards the peaks of the vacancy cluster concentra-

is fulfilled [Fig. 2(b)]. In copper this time period is equal to tion, as it shoulq be, due to the higher total sink strength in
8.9x 10f and 5.3x 10* s at 523 and 600 K, respectively. ~ the peak aredFig. 4). However, the net vacancy fluéc,

The time 7, can be roughly estimated from the conser-—Z26) actually increases and, as a consequence, promotes the
vation law (14). The bifurcation parameter changes signaccumulation of vacancy clusters in the corresponding loca-
from positive to negative when the net vacancy flux to thetions, and, at the same time, reduces the accumulation of
network dislocations integrated over time becomes Compdnterstitial clusters there. Moreover, the net vacancy flux
rable with the amount of vacancies accumulated in vacanc{c,~ZG) in the peak area approaches the value of unity,
clusters. Sincec,-Z¢~1, 7.~ (2apy)™L. The foregoing Meaning the continuous accumulation of vacancy clusters
computer calculations support this estimation. Thus, in thavith no practical shrinkage. Note that this result is not re-
presence of network dislocations, the instability of the spalated to the interstitial clustering in collision cascades, al-
t|a||y homogeneous solution may take p|ace On|y within athough the ClUStering itself giveS the net flux of vacancies
finite time interval, and spatial heterogeneity, even if it de-(C,—ZG)~1 already in the spatially homogeneous clsee
velops, is not permanent. To check whether actually the deFig. 2 and Eq(15)]. Similar calculations in the absence of
velopment of spatial heterogeneity takes place under the irinterstitial clusteringe;=0), i.e., when the homogeneous net
stability condition (24), Egs. (10—13) are solved Vvacancy flux(c,~Zg) is equal to zerdEq. (15) at =0,
numerically in the spatially inhomogeneous case. Q,=1], also show thafc,(x)-Zc(x)]=1 at the peaks of

vacancy cluster concentration.
Such behavior of the net vacancy flux in the peak areas is

IV. DEVELOPMENT OF SPATIAL HETEROGENIETY a result of the physical nature of the instability. Indeed, an
increase in the vacancy cluster density diminishes the inter-
stitial flux to the vacancy loops, promoting further accumu-

Weakly nonlinear analys&s?® and numerical cal- lation of vacancies in clusters. On the other hand, the flux of
culationg* show that in the postbifurcation regime the spatialmobile vacancies also decreases, opposing such accumula-
pattern formation driven by the instability of the homoge-tion. Due to the interstitial bias, the response of the intersti-
neous vacancy loop population leads, after transients correial flux overcomes that of the vacancy flux. As a result, for
sponding to three-dimensional patterns, to the eventual fora sufficiently high dislocation bias, this positive feedback

A. Numerical results in one dimension
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FIG. 3. Snapshots of spatial fragment of the inhomogeneous solution of Hi}s(13) under the instability conditions. Note that all
peaks marked with asterisks disappear in the subsequent figdrés.calculated with Eq(25) at Q,=Q;=1.

becomes strong enough to cause the instability and the devhich is proportional to the dislocation bias, is entirely re-
velopment of a spatially ordered microstructure. Mathematisponsible for the instability occurrenggee Eq.(24)].

cally, the response of the net vacancy flux to a spatially in- The positive feedback between the accumulation of va-
homogeneous deviation of the vacancy cluster distribution igancy clusters in the peak areas and the corresponding in-
described by Eq(21). Note that the second term of E@1), crease in the net vacancy flux, discussed in the foregoing,
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M that the total sink strengtk’=a(Q; +py)+Q, outside of the
peak area is approximately constésee Figs. 3 and)5With
25 ( \ {’\ the zero-flux boundary conditions the solution of this equa-
’ tion can be written agsee the Appendix
20 ] {(1-¢,)[e, +ila(l +a)]+Q, — K}
c,—1= 2
1.5 1
X{l _ cosfkx V2 costki) } )
. T 4000 1 +(2k/Q,)tanh(kl/2)
The plus and minus signs in expressi@$®) correspond to
sk c‘,—ZﬁJ ] the negative and positive values xafrespectively.
; According to Eqs(10)—(16), (24), and(26), the value of
&, fe, =3, py = 1+10 parametera=njo/ (nNig—njg), which describes the additional
0.0 S S S S S S influx of mobile interstitials due to the shrinkage of sessile
0 10 20 30 40 5)? 60 70 80 90 100 interstitial clusters, only affects the instability threshold

quantitatively. For a qualitative analyses of the spatial het-
FIG. 4. Spatial behavior of the vacancy concentratipand the efoge“e'ty development, we can negl'ecF this parameter, by

net vacancy fluxc,~Zc,) for the case shown in Fig.(8. setting, for examplenjo=0. As a result, inside the same spa-

tial cell, the diffusion Eq(13) for the concentration of mo-

. : . bile interstitialsc;(x) will have a solution similar t@29), i.e.:
may be operational only until the flux amplitude reaches a i) 29

value of unity. Further operation would lead to the exponen-

tial growth of the cluster density in the peak areas with time c(x) = (1 -&)l(e, +&i/a)

[Eqg. (10)]. Since the total number of clusters generated by ' ZK

irradiation in any finite volume can only increase linearly [ 5

with time, the operation of the positive feedback mechanism 1- COSF[\‘Zk(Xf I/Z)]/COSTZKVZ) )

is confined by the requirements of conservation law. How it 1 +(2KN\ZQ))tanH(vZkl/2)

actually happens is studied in more detail in the following (30)

subsection.

With time 7 going beyondr,s, the homogeneous micro- £y, Eqs.(29) and (30) the net vacancy flux received by
structure becomes stable again, and the spatial heterogene| cancy clusters in the peak area is approximately
developed during earlier times has to eventually disappear.

However, according to the numerical calculatijnsmpare

Figs. 4a) and 5, the spatial heterogeneity may still survive Q'[c,(0)-1-Zc(0)]= Si" & _ a(Q; + py)

for quite a long time after the instability conditid@4) be- o . g, tgila PPN
comes invalid. In the example given in Fig. 5 the microstruc- 1 Zkl/2
ture is homogeneous againat400, which in copper at 523 s = _Fi ll _ tfi_nm )}
and 600 K converts, in the conventional time scale,t to g, +gla vZtanhkl/2)

=8.9%X 10° and 5.3x 10° (s), respectively. In the second case 2 tanhkl/2)
considered, i.e., whepy=10", the damage microstructure X —,
homogenizes atr=2.3x 10%, which is also significantly k
larger thanr,c=4%10° [Fig. 2b)]. In copper the timer

=2.3X 104 Corresponds ta=5.1X 107 and 3)(105 (S) at In the deri\(gtion 0f(31), it is taken into account th@;
523 and 600 K, respectively. >k. Since(VZ-1) <1, we can further expand the right-hand

side of Eq.(31) to get

(31

B. Coarsening of concentration peaks

eime,  (L=e)(Z-1)

g, tgla g, tgla

Q,[c,(0)-1-Zg(0)]= {

Simulating the peak distribution in Figs. 3 and 5, we con-
sider the diffusion Eq(12) within the one-dimensional spa-

tial cell [-1/2,1/2] of the lengthl: __ kKA
X[l Sinl’(k|)] a(QI +pN)
(1-s) +Q, -k, - Q'(c, - 1)8(x) + V2, =0 2 tanh(kl/2
[, +efal+a)] > <0 WG 0= x 21antkli2) (32)

(28) k

Here 8(x) is the & function, which models the peak of the When |>3.5 the ratiokl/sinhkl)<1, and Eq.(32) re-
vacancy cluster density in the cell center. We also assumeéuces to
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FIG. 5. Same as Fig. 3, but with higher network dislocation density.

, 2| =8, + (1-e)(\Z~ 1) : z-1 K
0-1-Zg(0)]=- -1-Zg = 1-
Q;lc,(0) ¢(0)] k{ o +ola Q,[c,(0) c(0)] . sinh(k)
1) (VZ+ 1
-aQ, +pN>] (33 T S
Z[N(1 +apy) + Vapn/Z]
When the instability condition is satisfied, i.e., for 7, 2 tank{kl/2)
the conservation la27) leads toQ; ~ Q| /1+Q,. According X—. (34)

to Figs. 3c), 3(d), and 3e), we haveQ;>Q,, meaning that K

practically all vacancy clusters are concentrated in the peakere we took into account that in the absence of interstitial
area. Thus, from Eg$10) and(33) it follows that the accu- clustering(e;=0 andQ,=0) the instability condition24) re-
mulation of vacancy clusters in the peak areas must saturatdyuces to

unless the characteristic distance between the p&aks

creases with time. This is exactly what we see in Fig. 3, = (Z_ 1Q, : -1=0
where the height of some peaks continues to grow, while the ,Z(1 +apy)[V(Q, + apy) + Vapn/Z]?
neighboring peaks completely disappear. As a result of such (35)

coarsening effect, the remaining peaks of vacancy cluster

concentration form an increasingly more regular spatialThe expression for parametef’ is defined by the equality

structure. {(Q,=1,e%)=0, and is similar to that obtained in Ref. 21.
Equation(32) is also applicable when there is no intersti- _For the conventional values of dislocation bias the ratio

tial clustering in collision cascades. Thus,sat0 we have  (yZ+1)/Z>1, and, according to Eq34), no coarsening of

054109-8



SPATIAL ORDERING OF PRIMARY DEFECTS AT. PHYSICAL REVIEW B 71, 054109(2005

I/ PICs directly produced in collision cascades are assumed to
e Tfe, =3 =5 be equally distributed only among the existing interstitial
8t 3 ] loops (somehow avoiding the network dislocations and va-
Py =5+10 cancy loopg the concentration of which was taken to be
7F Ley=199 3 stationary’>2® As a result, the interstitial loops are not
6f ] shrinking, but growing on the average, and their effect on the
instability development is qualitatively the same as that of
st 1 network dislocationd® Such a treatment is essentially
) equivalent to one in which there is no interstitial clustering.
41 ] This explains why no peak coarsening was obtained in the
previous numerical calculatio?®?*Another consequence of
3F ] the treatment of Refs. 23-25 is that the spatial heterogeneity
developed at elevated temperatures is permanent, as long as
2 ] the instability criteria35) is fulfilled, while, according to the
present approach, the spatial heterogeneity should be much
1 less stable at these temperatures, and eventually disappears.
0 _J L L J k B h U] The latter conclusion is supported by that the experimental

0 10 20 30 40 50 60 70 80 90 100110 observations of spatially periodic cluster arrays are restricted
mostly to a rather narrow temperature range between anneal-

(@) X ing stages Il and V213
O e Concluding this section, we would like to return to its
beginning and note the following. Similar to the particle
T=300 ||&"fev=3 scattering, where it is well known that a narrow three-
10°E py =5+10° . dimensional potential barrier has a smaller effect on the par-

.= 19. . . . .
bar=199 ticle motion, the response of concentrations of mobile de-

fects to the sharp concentration peaks is weaker in the three-
10°¢ 3 dimensional than in the one-dimensional case. Therefore, for
the narrow peaks the positive feedback between the vacancy
1 cluster density in the peak areas and the corresponding net
vacancy flux is stronger in the one-dimensional case. It is
interesting that in the three-dimensional case @8) does

not even have the physical solutiqsee the Appendix
Thus, from the physics of the instability under consideration
B k it follows that in the three dimensions the heterogeneous

10

damage microstructure should indeed evolve towards the
concentration of vacancy clusters in planar narrow walls.

. A P s Experimentally the walls of defect clusters are found to be
0 10 20 30 40 50 60 70 80 90 100110 arranged 0f100} planes of the fcc latticé®-13Together with
®) X the walls, voids are also observed sometimes. However, they

FIG. 6. Snapshots of spatial fragment of the inhomogeneou?re r_an(iizogly d'_St”bUted gn_d do not partICIpate in the
solution when there is no interstitial clusteriig=Q;=0). L, is  °rdering-=="In this regard, it is worth noting that the one-
calculated with Eq(25) at Q,=1, andQ;=0. dimensional migration of small self-interstitial clusters,

which is observed in molecular dynamic simulatidhsind
PVC distribution peaks should be expected whehe’ is  often used to explain void-lattice formatiéh3” takes place
slightly below the unity. Whem, /¢ is significantly smaller along the closed-packed directions, i€.10 in fcc metals.
than one, the peak coarsening does not happen either, bat the same time, it is shown in Ref. 24 that only 1% aniso-
cause the reduction of the vacancy cluster concentration beropy in the diffusion coefficient of self-interstitials along a
tween the peaks only decreases the value of telm(Q, preferred directior(for example,(100) results in a signifi-
+apy) 4. On the contrary, if vacancy cluster concentrationcant alignment of clustered defects parallel to the directions
between the peaks is growing, i.k.increases with time, the of high mobility of the self-interstitials. Indeed, the correla-
generation of additional concentration peaks, leading to théion between the wall alignment and the directions of high
reduction of the distanck between peaks, may take place. mobility of the interstitials can also be predicted from the
The absence of peak coarseninga0 is illustrated in Fig.  physics of the instability under consideration. The contradic-
6. That additional concentration peaks can appear in this cagm®n to the experimental observations indicates that the effec-
will be shown in the next section. tive anisotropy of the interstitial diffusion must be small, so

Although the interstitial clustering in cascades has beeithat the selection of the wall orientation is not controlled by
taken into account in Refs. 23 and 24, the evolution of thehe anisotropic transport of self-interstitial clusters, but
interstitial component of microstructure is treated very dif-rather, probably by the anisotropic elastic field of the defect
ferently in the present paper, as mentioned in the introducelusters, through their effects on the interstitial fluxes. This
tion. Thus, in these papers, the interstitials in the immobileapparent contradiction between the theoretical and experi-

-2

10
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mental (effective) transport properties of mobile interstitial 100 °C19-13At this temperature, according t@) and(8), t
clusters have been discussed and rationafizeSince a =2x 107 (s), andp =2x 10?* m2 (G=10"" dpa/3. Thus,
small anisotropy can only slightly modify the instability con- the experimental doses of a few NRT d{fefs. 10-13 cor-
ditions and does not affect the properties of the defectespond to the values of well below 103. Similarly, the
walls242%it is neglected in the present investigation. physical values of vacancy cluster conté)t is much less
than unity. For such values @j, the spatially homogeneous

V. LOW TEMPERATURE CASE Eqg. (17) has the following simple solution;

At temperatures when vacancy clustt_—zrs are thermally QU_(T): V'TT/apN—l. (36)
stable, Eqs(2) and(11) can no longer describe the evolution apn
of primary interstitial clusters. At these temperatures, the
PICs are not shrinking on the average, as it is assumed in E@_ubstituting this expression into the instability condition
(2), but are actually growing in size due to the net interstitial(35), we obtain that the instability of spatially homogeneous
flux provided by the dislocation bi#$.As a result of the solution sets in when
growth of interstitial loops and their mutual coalescence with / A
the subsequent dislocation network formation, the interstitial 27 |1+ D (37)
loop line density increases and approaches the saturation at a apy - \;'E(f -1 '
dose of 0.1 NRT dp&’ Microstructural investigations by °
transmission electron microscogfEM) during the early and, from Eq.(25), the critical wavelength_, of unstable
stages of the irradiation also indicate that already at dosespatial modes is given by
~0.01 dpa self-interstitial atoms are absorbed by or create a

dislocation network via loop formation and subsequent inter- . 27 27 (f.-1) 12
action of dislocation loop¥*2 Similar to TEM, the experi- TR ,

. . . . / | +\1 + — +
mental results obtained from the differential dilatometry VZplpu*p)  NpL1+NI+ (T~ 1)(Zf,+1)
demonstrate a continuous increase in specimen length with (38)

irradiation dosé?13 which reveals an efficient loss of self- _
interstitial atoms to an evolving dislocation network. SinceHere f.=(Z-1)/(Ze,). Sinceapy<1, we havef.=¢/s,.
the experimental observations also show that spatial fluctudyote that the ratidQ,(7)/apy is equal top,(7)/p and does
tions of the cluster density start to develop=ad.1 dpal2!3  not depend on the rate of vacancy emission from vacancy
for a qualitative description of the instability developmentclusters. The latter is also true fefapy=2¢,Gt/r,bp. Since
we may use Eqg10)—(13), with ¢; andQ, set to zero. In this the term in square brackets of E@8) weakly depends on
case the parametey, represents the line density of both the the value of parametdt, it varies from 0.56 to 0.86 whef,
network dislocations and the interstitial loops. Although, thistakes values from 2 to 10, the critical wavelength is mainly
simplification return us to the original simplest modef!  determined by the total line density of the interstitial loops
we are not aware of any detailed study of what actually fol-and network dislocationéL.,~ p™*/9). The experimental ob-
lows from this model at low temperatures. servations also show that the periodicity lengths of defect

Comparing the present approach with the model develwalls seem to be rather insensitive to temperature and defect
oped in Refs. 23-25, the following is noted. The assumptionproduction rate, in the sense that no clear dependence can be
that all the interstitials produced as immobile PICs arededuced from the existing data.
equally distributed among the existing interstitial |08p=? Obviously, it is convenient for further analysis to rewrite
literally means the introduction into the model the immobile Egs.(10)—(13) in the following notations:
PICs as the major driving force for the interstitial loop . _
growth at low temperatures. This is contrary to the results of Q,=Q,/apy, Q =Qi/pn, Cj=apnCj, X =rVp, 7= 7lapy.
the more rigorous considerati6hwhere it was shown that (39)
in low temperature regime the interstitial loop growth is due
fco the dislocat_iop pias. As far as the vacancy loop evoluti.or]o\S a result, the equations take the form
is concerned, it is important to realize that the corresponding
reduction of the flux of mobile interstitials leads to the over-
estimation of the lifetime of vacancy clusters and, as a result, —~v_-__ W
their concentration. The latter is the crucial parameter for the dr  [e,+efa(l+a)]
instability development.

Formally, we can use the natural notatiqis—(9) for any

o
ol

&y

-Q[Zc - (c, - apy)], (40)

temperature. However, since bgif} and the characteristic Q_ & (1+a&)Q(c,-Zg), (4D
time 7 are related to the rate of vacancy emission from va- adr [e, +&/a(l+a)] n '
cancy clusters, they do not represent the corresponding

physically meaningful values at low temperatures. This is (1-s,)

because the vacancy emission rate is negligible in such cases————— —?U(a +1) - av(?v -apy) + V%, =0,
Indeed, in copper the formation of the dislocation walls have [e, + &i/a(l +a)]

been experimentally observed at temperatures as low as (42
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FIG. 7. Snapshots of spatial fragment of the inhomogeneous solution at low temperaturgs @n0. L., is calculated with Eq.
(39).

(1-g) _— — — spatially homogeneous concentration of vacancy loops. In
e.+ejal+a)] +ac,Q - Z¢lQ, + (1 +a)Q; + 1] the previous paragraph we noted that in such circumstances
v additional peaks might appear. As it can be seen from the
+V%=0. (43)  figure this scenario, which has not been observed in the pre-

vious numerical calculatior®;?# is indeed realized. From
As we have seen in the foregoing, the vacancy emission terrifie point of view of the stability analysis, such a behavior
apy in Egs. (40) and (42) can be neglected, when vacancy means that relatively smooth spatial variations of vacancy
clusters are thermally stable. Therefore, at the correspondingjuster concentration, corresponding to the wide peaks and
temperatures, unlike the elevated temperatures, the evolutioie!ls, are also unstable, similar to the spatially homogeneous
of spatially heterogeneous microstructure governed by qulstnbunon. In Fourier space, this means that, due to the
(40~(43) is universal, i.e., in agreement with experimental 9roWth of the homogeneous value ,, or, what is the

observationd? is independent of both the actual temperaturesame' the bifurcation parametgsee Eq.(35)], the wave-

; L length of the fastest growing spatial mode, as defined by Eq.
22r(?tg:jeir?cl)§i‘g§ r?te. Atypical example of the evolution is pre(25), becomes shorter. Note also that the spatial heterogene-

_ . ity develops in such a way that, while the height of the peaks
From Eqs(36) and(37), whenf.=3, the spatially homo- is growing, the vacancy cluster concentration between the

geneous evolution becom_ehs unstable a't the tlme' MOMeWaaks drops to values corresponding to a stable homoge-
tlapy=5.7, whenQ,/apy=Q,=2.5. According to the figure, ., solution, i.e.. beb@h_

after the bifurcation, concentration of vacancy clusters ini-  a¢ jow temperatures we do not actually take into account
tially grows everywhere in space, even between the peakgne interstitial clusteringe;=0), and, consequently, a direct
where it is higher than the maximum val@ of the stable comparison between the present theoretical results and the
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experimental data obtained under the ion irradiation, when ¢he developing heterogeneous microstructure should corre-
significant fraction of interstitials is generated in clusters, isspond to the vacancy clgsters (_:oncentrated in the narrow
not applicable. However, such comparison can be made iplanar walls. This conclusion, Wh!Ch foI_Iows from the _phys—
the case of 3 Mev protori8;13 when rather small cascades ics of the instability under consideration, agrees with the
are most likely to be producédand, consequently, no direct results ?Of \l/\aleak|y nonlinear analy$ts**and the experimen-
formation of sessile interstitial clusters is expected. Accordial data>" ) N . S

ing to Fig. 7, the spatial periodicity in the vacancy cluster As for the interstitial clusters, their spatial distribution
distribution with the spatial periotlapproximately equal to émains much more homogeneous. There is only some re-
2/pY2 becomes very well developed already at the timeduction of their concentration in areas where the vacancy

1apy=600. In copper at 100 °C the distaricbetween the cluster density peaks, and the net vacancy flux is higher. In
defggt walis is experimentally observed to be aroun he case of interstitial clusters, there is no feedback relation

60 nm10.1213Gince etween the cluster concentration and the fluxes of mobile
' defects, and the homogeneous evolution of the interstitial
T 2,Gt g 2Gt Z-1 clusters is stable. Thus, their spatial distribution simply fol-

— == 2 ; (44)  lows the spatial variations of the net interstitial flux.

apy  Tubp & rub(2) Z At elevated temperatures, vacancy clusters are thermally
the time 7/apy=600 corresponds to the do&t=0.4 dpa unstable. In the presence of network dislocations, the sink
(2=1.3,%° which, after taking into account that the defect strength of the mterstltlal cluster grows faster than that of
survival probability in collision cascades is about Vacancy clusters, with extra vacancies absorbed by the net-

10%-209%%2 is in a good agreement with the experimentalwork- This allows the dev_elopmen_t o_f spatial heteroge_ne_ity
value of 2-4 NRT dpa®-13 when thg network dIS|0CfitI0n Qen3|ty is low, anq only W|th_|n
One of the consequences of the production of rather smaft, finite time period. During this period, the periodic spatial
cascades under 3 MeV proton irradiation is also that th&listribution of peaks of vacancy cluster density become in-
probability of cascade collapse into the vacancy cluster i§ré@singly better defined, due to ongoing peak coarsening,
relatively small as well. Therefore, the instability condition -€-» 9rowth of peaks that satisfy the periodicity, and the com-
e, <& can be fulfilled easier than under the neutron or ionP!€te dissolution of the neighboring ones. Although the
irradiation. In this regard it is worth noting that under 3 Mev €volving microstructure remains spatially heterogeneous
proton irradiation the most well-developed walls of defect/ONd after the instability conditior(24) becomes invalid,
clusters are experimentally foud@1213Under neutron and €ventually homogeneity returns.
heavy ion irradiations mostly linear cluster arrays along cu- F€ak coarsening does not occur, if the clusters produced
bic axes are reported. These cluster arrangements are simifgrcollision cascades are only vacancy in nature. Indeed, the
to the precursors of wall formation observed at medium flu-"Umber of concentration peaks may even increase with time,
ences under proton irradiatidd. initially after the bifurcation. When the vacancy cluster den-

sity between concentration peaks drops to a value corre-
sponding to the stable homogeneous solution, the spatial dis-
VI. SUMMARY AND CONCLUSION tribution of the peaks no longer changes. At lower
temperatures, when vacancy clusters are thermally stable, the
The evolution at elevated temperatures of a nonequilibspatial distribution of the peaks is also independent of both
rium system of primary defects produced continuously undethe temperature and the damage rate. This is in agreement
cascade damage irradiation is studied. We analyzed a simpleith the experimental observatiohs!3 At these tempera-
model in which the kinetics of small sessile interstitial clus-tures interstitial clusters do not shrink on the average, but
ters is treated in a way similar to the BEK model for shrink- actually grow in size, because of the net interstitial flux pro-
ing vacancy loops. Development of spatial heterogeneity irvided by the dislocation bias. As a result of their growth and
this system is related to the instability of spatially homoge-mutual coalescence, with the subsequent dislocation network
neous evolution of the vacancy loop population, caused byormation, the interstitial loop line density almost saturates
the positive feedback between the local vacancy cluster deraiready at a dose of 0.1 NRT dp&Therefore, when vacancy
sity and the interstitial flux. clusters are thermally stable, qualitatively similar spatial be-
A local increase in the vacancy cluster concentration dihavior of the vacancy cluster density should be expected
minishes the corresponding interstitial flux, promoting fur-both with and without interstitial clustering in collision cas-
ther accumulation of vacancies in clusters. For a sufficientlycades.
high dislocation bias, the response of the interstitial flux to If voids are present, the growth of interstitial loops from
the spatial variations of the vacancy cluster density is stronsmall sessile clusters directly produced in collision cascades
ger than the corresponding damping effect of the vacancis possible, with the formation of network dislocations at
flux. Under this condition, in the one-dimensional case conelevated temperatures subsequetttigince the sink density
sidered the accumulation of vacancy clusters takes place iof vacancy clusters at these temperatures is dictated by the
the narrow peaks separated by regions almost free of vaate of vacancy emission from them, it is usually much less
cancy clusters. The feedback relation between the vacandian the total sink density of the interstitial clusters, loops,
cluster concentrations and the interstitial flux towards themand the network dislocatiorfé.In the presence of voids, the
is stronger in the one-dimensional than in the threeinstability conditions also require that the sink density of
dimensional case. Therefore, in the three-dimensional casecancy clusters is larger than that of vol8$? Conse-
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quently, the condition for the instability of spatially homoge- APPENDIX
neous evolution given by Ed35) is difficult to realize in
this case. In this regard, we note that the nonperiodic spatial For the negative values of Eq. (28) with the zero-flux
segregation of voids and dislocation loops, with the interstiboundary conditions has the following solution:
tial loops concentrating in localized long narrow patches
separated by void growth regions of size of about several
migrons,l“vlf’iys difficglt to explgin within the framework of = ¢ () = (L-e)le, +efal +a)]+ Q, — Acostik(x+1/2)]

. . . . v 2 l
the instability in the homogeneous vacancy loop population. k
Indeed, the total sink strength of the vacancy loops and (A1)
stacking-fault tetrahedra, which are also present in such het-
erogeneous microstructure, is found to be much smaller than
those of the voids and the interstitial loojsMoreover, the whereA is some constant, which has to be determined. For
spatial distribution of the vacancy clusters themselves ishe positive values ok the solution is similar and given by
practically homogeneou8.As shown in Ref. 29, the insta-
bility of the homogeneous evolution in that case is related to
the saturation of the homogeneous void growth, caused by, () - (1-e)ls, +elal +a)]+Q, — Acoshik(x—112)]
the continuous production of small immobile interstitial clus- k2 '
ters. The latter, being the major sinks almost from the start of (A2)
irradiation, act as recombination centers for mobile defects
and, as a result, suppress homogeneous development of the ] .
microstructure. The formation of the spatially heterogeneoustere it is taken into account that the vacancy concentration
microstructure in that case is caused by the spatial coarsefhould be a continuous function et 0. Further, integrating
ing of the populations of voids, and the interstitial clustersEd. (28) over the infinitesimal interval around the initial

and loops, insteatP, point x=0, we get that the spatial derivatiwg(x) satisfies
the equality
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PolyU 5173/01E, 5167/0)E Substituting Egs(Al) and (A2) into (A3), we arrive at
|
1-g,)[e, +e/al+a)]+Q, - K2 1
az {Lm2)llsy + s/all + @) +Q, - ) | | aa)
k“ coshkl/2) 1+ (2k/Q))tanhkl/2)
[
Equation(A4) together with Eqs(Al) and (A2) gives the | @ =g)l(e, + &la)
solution (29). 4m(A+B)=-ZQ, 712
In the three-dimensional case Eg8) written for the con-
centration of mobile interstitials has the form N ée‘\’fkw Ee\ikr] (A7)
r—0
(1-g) From the latter equation it follows that
———— -7k, - ZQ/ci8(r) +V’¢;=0.  (A5)
(e, t&ila)
: _(L-¢g)l(e, +gla)
A=-B= 2731243 (A8)
For the spherical cell of the finite radius the general solution
of Eq. (A5) is given by As a result
1-e)l(e, +ela)|  sin(\Zkr
ci(r):( o)(e, + & ){1— r(_\ )] <0
o(r) = (1-¢)l(e, +&ila) A expl— \Zkn) + B exp(VZkr) z$e VZkr
e 718 r X o e (A9)
(AB)

The interstitial concentration given by the last equation hap-
Integrating (A5) over the infinitesimal spherical volume pens to be negative everywhere except the initial poir,
containing the initial point, we obtain that where it is equal to zero.
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