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We consider the microstructure evolution of a nonequilibrium system of primary defects, in which mobile
point defects, vacancy loops, and sessile interstitial clusters are continuously produced by cascade-damage
irradiation. It is shown that in a fully annealed metal, a spatially homogeneous microstructure may become
unstable if the yield of vacancy clusters in collision cascades is sufficiently low. Unlike cases studied in the
literature, in which sessile interstitial clusters are not produced, we found that the instability condition can only
be satisfied for a finite period of time, the duration of which depends on the density of the network dislocation.
Spatial heterogeneity starts to form from a homogeneous vacancy loop population, leading to the eventual
accumulation of almost all vacancy clusters within very sharp walls. The spatial distribution of interstitial
clusters, on the other hand, is relatively homogeneous, simply following the spatial variations of the net
interstitial flux. The spatial heterogeneity develops with the growth of some concentration peaks and the
disappearance of others. As a result, the surviving peaks form an increasingly well-defined periodic structure.
Nevertheless, as the total sink density of interstitial clusters and loops becomes sufficiently large, the periodic
structure disappears, and spatial homogeneity of damage microstructure eventually returns.
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I. INTRODUCTION

The damage microstructure caused by the continuous pro-
duction of lattice defects in solids under irradiation is a typi-
cal example of a system far from the equilibrium. Bifurca-
tions in the evolution of such systems often lead to the
qualitative changes in the system behavior, resulting in pat-
tern formation1–5 via spatial and temporal self-organization
in the defect populations. Examples are bubble and void
lattices,6,7 defect walls,8–15 and various arrays of dislocation
loops and stacking fault tetrahedra.16–18

Pattern formation due to the development of instability in
the homogeneous vacancy loop population is one of the most
actively studied cases. Investigations within the reaction-
diffusion mode16,19–26 progress from the simplest case, in
which only vacancy clusters, beside the Frenkel pairs, are
considered,20,21 to the more complicated cases that also in-
clude extended defects like interstitial loops and voids.22–25

Krishan6 showed numerically that under the continuous gen-
eration of vacancy clusters, the spatially homogeneous evo-
lution of the damage microstructure may become unstable.
Numerical calculations in the one-dimensional case further
demonstrated that the development of this instability leads to
the spatial ordering of vacancy loops.20 Analytical
studies21–24 in the weakly nonlinear regime, as well as nu-
merical simulations in two dimensions,24 show that the evo-
lution of a homogeneous vacancy loop population is some-
times unstable, leading to the formation of planar wall defect
structures, after transients corresponding to three-
dimensional patterns. Taking into account interstitial loops
and voids in the reaction-diffusion model does not change
this conclusion. Only the instability conditions are
modified.21–25Thus, the necessary conditions ares1d a suffi-
ciently high vacancy loop density, compared to the other
sinks,19,21–25ands2d a sufficiently low yield of vacancy clus-
ters in collision cascades.21–25

In these calculations, nevertheless, the number densities
of interstitial clusters and loops are assumed to be

constant.23–25As a result, the continuous generation of inter-
stitial clusters in cascades only leads to the increase of the
average size of existing loops.23–25 This assumption is not
easily justifiable, particularly at elevated temperatures, when
a significant portion of defects is continuously produced in
the form of immobile clusters. Indeed, the concentration of
free vacancies in this case, due to the thermal instability of
vacancy clusters, is significantly higher than that of free in-
terstitials, causing the interstitial clusters and loops to shrink
on average.27 The evolution of the interstitial cluster popula-
tion should therefore be described in a way similar to the
shrinking vacancy clusters.6,19–25 In other words, the
Bullough-Eyre-KrishansBEKd model,28 originally developed
for the vacancy clusters should also be applied to the inter-
stitials clusters.29

Interstitial clusters directly produced in cascades are gen-
erally smaller in size than their vacancy counterpart. Due to
their continuous generation and accumulation during cascade
irradiation, they may have sink strengths higher than the va-
cancy clusters and loops. This is in contrast to the cases
considered in Refs. 23–25, where the sink strength of inter-
stitial clusters and loops is much smaller. Thus, the necessary
condition for the instability derived there, i.e., a sufficiently
high vacancy loop density compared to the other sinks, may
never be applicable when both types of clusters are simulta-
neously produced.

In a previous paper,26 we investigated the stability of a
system of primary defects under cascade damage, with mo-
bile point defects, vacancy loops, and sessile interstitial clus-
ters. Through a linear stability analysis, we show that in a
fully annealed metal a spatially homogeneous system of pri-
mary defects may still become unstable through the instabil-
ity of the vacancy loop ensemble. The nontrivial conclusion
that follows is that the instability occurs most easily, not at
low, as it may be expected from Ref. 23, but rather at high
clustering fraction«i of interstitials in cascadess«i >0.4,
Ref. 26d. Indeed, although the higher fraction of interstitial
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clustering in cascades increases the interstitial cluster num-
ber density, and restraints the instability development, yet it
also produces higher net vacancy flux that helps build a
higher sink strength of vacancy loops.26

In the present paper we carry our investigation further
into the postbifurcation regime to consider the evolution of
the heterogeneous microstructure from a homogeneous one
under the continuous generation of mobile point defects, va-
cancy loops, and sessile interstitial clusters in collision cas-
cades.

II. KINETIC MODEL

According to the BEK model,28 the number of vacancies
Qvl accumulated in the shrinking vacancy loops can be de-
scribed in terms of the following mean-field kinetic equation:

dQvlstd
dt

= «vG − rvlfZilDiCi − ZvlsDvCv − DvC̄vldg, s1d

whereG is the effective production rate of point defects in
both clustered and free form,«v is the fraction of vacancies
clustered in vacancy loops after the cascade collapse,Dj and
Cj s j = i ,vd is the point-defect diffusion coefficients and
mean-field concentrations, respectively,rvl is the line density

of vacancy loops,C̄vl is the equilibrium concentration of
vacancies in the neighborhood of vacancy loops, andZjl
is the reaction constant between dislocation loops and point
defects. The line density of vacancy loops is given by
rvl =2Qvl / srvlbd sb is the Burgers vectord. The average va-
cancy loop radiusrvl is taken to be constant and equal to
rvl

0 /2, wherervl
0 =snvgV /pbd1/2 is the initial radius of a va-

cancy loop, withnvg andV being the number of vacancies in
the loop at creation and the atomic volume, respectively.

We consider temperatures above annealing stageV at
which the lifetime of vacancy clusters is governed mainly by
vacancy emission from them. Consequently, there is a net
vacancy flux to the sessile interstitial clusters, the total inter-
stitial contentQic of which is described by a kinetic equation
similar to s1d,26,29 i.e.,

dQicstd
dt

= «iG − s1 + adricsZvlDvCv − ZilDiCid, s2d

where«i is the corresponding fraction of clustered intersti-
tials, ric=2Qic / r icb is the line density of interstitial clusters,
which are treated as small loops of the average radius
r ic=fr icsnigd+r icsni0dg /2, a=ni0/ snig−ni0d. In deriving s2d,
the sessile primary interstitial clusterssPICsd are assumed to
start with a uniform size ofnig interstitials at the moment of
creation.29 They then shrink due to vacancy absorption, and
below a minimum sizeni0 of 4–5 interstitials they become
mobile in a way similar to single interstitials.30,31 Since the
majority of interstitial clusters have, at the moment of cre-
ation, a sizenig<6–10 atoms,32 a<1. On the other hand,
vacancy loops are assumed to have bigger size at the point of
creationsnvg<30–50d, and the corresponding value ofa in
s1d is negligible.

In addition to the kinetic Eqs.s1d and s2d, the conven-
tional kinetic equations for the concentrations of the mobile

species are also needed. In our present model, the mobile
interstitial clusters are assumed to obey the same reaction
kinetics as the single interstitials. The justification for this
has been discussed previously.33 Thus, interstitial clusters
shrinking below the sizeni0 are assumed to spontaneously
dissolve, and the corresponding numbers of free point de-
fects are added to the population of mobile single intersti-
tials. Then, the conservation equations for the mobile vacan-
cies and interstitials can be written as26,29

s1 − «vdG − DvCvsZvlric + Zvrd − DvsCv − C̄vldZvlrvl

+ Dv¹
2Cv = 0, s3d

s1 − «idG + aDvCvZvlric − DiCisZilrvl + Zir + s1 + adZilricd

+ Di¹
2Ci = 0. s4d

Herer is the network dislocation density andZj is the reac-
tion constant between point defects and network disloca-
tions. To simplify further analysis we assume thatZvl =Zv
=1, andZil =Zi ;Z=1+h, to take into account the conven-
tional dislocation bias. The additional influxj ic of mobile
interstitials ins4d:

j ic = aricsZvlDvCv − ZilDiCid, s5d

is due to the shrinkage of primary interstitial clusters PICs
below the minimum size.29

It is easy to check thats1d–s4d satisfy the law of matter
conservation, i.e.:

dQic

dt
=

dQvl

dt
+ rsDvCv − ZDiCid − ¹2sDvCv − DiCid. s6d

Further, let us introduce the following “natural” notations

related to the vacancy emission rateDvC̄vl, which governs
the lifetime of vacancy loops at elevated temperatures

rvl
0 =

Gf«v + «i/as1 + adg

DvC̄vl

, Q0 =
Gf«v + «i/as1 + adgrvb

2DvC̄vl

,

ric
0 = arvl

0 , s7d

t = 2DvC̄vlt/rvlb =
Gtf«v + «i/as1 + adg

Q0
, x = rÎrvl

0 , s8d

Qv = Qvl/Q0, Qi = Qic/Q0, rN = r/ric
0 ,

cv = Cv/C̄vl, ci = DiCi/DvC̄vl , s9d

wherea=rvl / r ic.
In these notations Eqs.s1d–s4d and s6d take the form

dQv

dt
=

«v

f«v + «i/as1 + adg
− QvfZci − scv − 1dg, s10d

dQi

dt
=

«i

f«v + «i/as1 + adg
− as1 + adQiscv − Zcid, s11d

A. A. SEMENOV AND C. H. WOO PHYSICAL REVIEW B71, 054109s2005d

054109-2



s1 − «vd
f«v + «i/as1 + adg

− acvsQi + rNd − Qvscv − 1d + ¹2cv = 0,

s12d

s1 − «id
f«v + «i/as1 + adg

+ aacvQi − ZcifQv + s1 + adaQi + arNg

+ ¹2ci = 0, s13d

dQi

dt
=

dQv

dt
+ arNscv − Zcid + ¹2sci − cvd. s14d

From Eqs.s12d ands13d, the net vacancy flux annihilated at
interstitial clusters in a spatially homogeneous microstruc-
ture is equal to

cv − Zci =
s«i − «vd/f«v + «i/as1 + adg + Qv

Qv + s1 + adaQi + arN
, s15d

so that the rate of accumulation of interstitials in clusters is
given by

dQi

dt
=

h«isQv + arNd + «vs1 + adaQi − f«vs1 + ada + «igQvQij
f«v + «i/as1 + adgfQv + s1 + adaQi + arNg

. s16d

In the absence of network dislocationssrN=0d, Eqs.s14d and
s16d have a simple homogeneous solutionQv=Qi =f1
−exps−tdg, which asymptotically approaches the stationary
solutionQv=Qi =1. Since the net interstitial flux to the PICs
sZci −cvd and the net vacancy flux to the PVCsscv−Zci −1d
are both negative in this casefsee Eq.s15d at Qv=Qi =1g,
both vacancy and interstitial clusters are shrinking on the
average, which is consistent with our expectation from
physical considerations.

If there is no interstitial clustering in collision cascades
s«i ;0d, then, from Eqs.s14d and s15d, the spatially homo-
geneous rate of vacancy accumulation in clusters is governed
by the equation

dQv

dt
= arN

s1 − Qvd
sQv + arNd

. s17d

In Eq. s17d the stationary solutionQv=1 corresponds to zero
net interstitial flux to the dislocations, i.e.,Zci −cv=0.

WhenQv=Qi =1 the total sink strength of small intersti-
tial clustersric

0 =2Q0/ r icb is larger than that of the vacancy
loops rvl

0 =2Q0/ rvlb srvl . r icd, as discussed in the introduc-
tion. Moreover, it follows froms11d, s14d, ands15d that when
rNÞ0 more interstitials will be accumulated in the PICs than
vacancies in the PVCssQi .Qvd. In the latter case, due to the
net vacancy flux at elevated temperaturesscv−Zci .0d, an
extra number of free vacancies is absorbed by the network
dislocations. Thus, the sink strength of PICs is generally
higher than the sink strength of PVCs. This conclusion is
contrary to that obtained in Ref. 23 where the interstitial loop
number density was assumed to be stationary, so that, under
the continuous PICs production in collision cascades,rvl be-
comes much larger thanric.

III. INSTABILITY OF SPATIALLY HOMOGENEOUS
SOLUTION

The evolution of small perturbationsdQv anddQi of the
steady-state spatially homogeneous solutions ofQv andQi in

s10d and s11d, within the linear approximation, is governed
by the equations

ddQv

dt
= Qvsdcv − Zdcid + HdQv

dt
−

«v

f«v + «i/as1 + adgJdQv

Qv
,

s18d

ddQi

dt
= − Qias1 + adsdcv − Zdcid + HdQi

dt

−
«i

f«v + «i/as1 + adgJdQi

Qi
. s19d

Neglecting high order terms ofdQv anddQi, from s12d and
s13d, we have, for the Fourier components with the wave
vectorq:

dcv − Zdci =
sVdQv − IdQid

q2 + ZfQv + arN + as1 + adQig
, s20d

where

V =
Z

Qv
H «v

f«v + «i/as1 + adg
−

dQv

dt
J +

sZ − 1dscv − 1dq2

Qv + aQi + arN + q2 ,

s21d

I =
Z

Qi
H «i

f«v + «i/as1 + adg
−

dQi

dt
J −

sZ − 1dcvq
2

Qv + aQi + arN + q2 .

s22d

The homogeneous solution may become unstable when the
determinant of the linear-evolution matrix of the systems18d
ands19d changes its sign from positive to negative, meaning
that one of the eigenvalues of the linear system becomes
positive. The corresponding instability condition is given by
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sZ − 1dq2

Qv + aQi + arN + q2F Qvscv − 1d
Zci + 1 −cv

−
aQicv

cv − Zci
G ù q2 + ZarN.

s23d

For the real values ofq this condition can be fulfilled only if

sZ − 1dF Qvscv − 1d
Zci + 1 −cv

−
aQicv

cv − Zci
G ù Qv + aQi + arNsZ + 1d

+ 2ÎZarNsQv + aQi + arNd. s24d

At the critical point, i.e., when the largest eigenvalue van-
ishes, the wave vectorqcr for the unstable spatial modes is
equal to

qcr
2 = ÎZarNsQv + aQi + arNd. s25d

For rN=0, the spatially homogeneous stationary solution is
Qv=Qi =1, and the inequalitys23d reduces to that obtained
before26

sZ − 1d
sq2 + 1 +ads1 + adH1 − s1 + ad«v − «i/s1 + ad

«v

−
afs1 + ada + «ig

«i
J ù 1. s26d

The critical value of the vacancy clustering fraction«v
cr, be-

low which the spatially homogeneous stationary solution
Qv=Qi =1 is unstable, can be easily calculated froms26d. In
Fig. 1, it is plotted as a function of interstitial clustering
fraction«i. The critical wave vectorqcr is obviously equal to
zero in this case, and for«v,«v

cr the wave vectors of the
growing spatial modes have an upper bound.26 Note that«v

cr

has its maximum around«i >0.4.
The actual density of network dislocations is never zero,

although its magnitude, as well as those of the densities of
other sinks such as voids and gas bubbles, is usually small
when the formation of spatially periodic arrays of defect

clusters is observed.12 In the presence of even low density of
network dislocations, the spatially homogeneous solution of
Eqs. s10d–s13d is not stationary. SincedQi /dt.dQv /dt at
rNÞ0, conditions24d can not be always satisfied ast→`.
However, as it follows from the conservation laws14d, when
rN!1, Qvstd>Qistd for t@1. In this case, as we have seen
in Sec. II, the spatially homogeneous vacancy and interstitial
cluster contents exponentially approach the stationary value
Qv=Qi =1 with the characteristic timet,1. As a result,
from Eqs. s8d and s25d, the critical wavelength of the un-
stable spatial modes can be approximately expressed through
the line densities of network dislocationsr and vacancy
loopsrvl

0 as srrvl
0 d−1/4.

According to the foregoing paragraph, whenrN!1sr
!rvl

0 d the instability conditions24d will be fulfilled during
the time periodt@1, if the inequalitys26d is also satisfied.
That this is really true is shown in Fig. 2, where the bifurca-
tion parameterz, which is defined as the ratio of the right and
left-hand sides of the inequalitys24d minus one, is plotted as

FIG. 1. Critical value of the vacancy clustering fraction as a
function of interstitial clustering fraction. Dashed line corresponds
to the limiting value of«v

cr at «i →0:«v
cr=«i /a

2s1+ad.

FIG. 2. Bifurcation parameterz and spatially homogeneous so-
lution of Eqs.s10d–s13d as functions of time at different values of
network dislocation density.
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a function of time. Herez is calculated for the spatially ho-
mogeneous solutionQjstd of the set of Eqs.s10d–s13d with
«v,«v

cr, where«v
cr is given by the equality ins26d. Note that

the value ofrN=5310−3 in Fig. 2sad does not necessarily
represent a low network dislocation density. Indeed, the or-
dering of vacancy clusters is often observed under the ion
irradiation.12,13 Taking into account intracascade recombina-
tion, the characteristic nominal dose rate of ion irradia-
tion K>10−3 NRT dpa/s corresponds to an effective dose
rate G=1–2310−4 dpa/s.34 Therefore, the value ofrN=5
310−3 in conventional units, for example in copper at 523
and 600 K, represents a network density ofr<231015 and
231013 m−2, respectively. This can be compared with the
typical network density of 1013 m−2 in irradiated copper at
elevated temperatures. The material parameters for copper
are listed in Table I. In well-annealed pure copper the net-
work density is below 1012 m−2, i.e., rN can be even lower
than 10−5. At rN=10−4, computer calculations give much
longer period of timetins=43103, when the inequalitys24d
is fulfilled fFig. 2sbdg. In copper this time period is equal to
8.93106 and 5.33104 s at 523 and 600 K, respectively.

The timetins can be roughly estimated from the conser-
vation law s14d. The bifurcation parameter changes sign
from positive to negative when the net vacancy flux to the
network dislocations integrated over time becomes compa-
rable with the amount of vacancies accumulated in vacancy
clusters. Sincecv−Zci ,1, tins<s2arNd−1. The foregoing
computer calculations support this estimation. Thus, in the
presence of network dislocations, the instability of the spa-
tially homogeneous solution may take place only within a
finite time interval, and spatial heterogeneity, even if it de-
velops, is not permanent. To check whether actually the de-
velopment of spatial heterogeneity takes place under the in-
stability condition s24d, Eqs. s10d–s13d are solved
numerically in the spatially inhomogeneous case.

IV. DEVELOPMENT OF SPATIAL HETEROGENIETY

A. Numerical results in one dimension

Weakly nonlinear analyses21–23 and numerical cal-
culations24 show that in the postbifurcation regime the spatial
pattern formation driven by the instability of the homoge-
neous vacancy loop population leads, after transients corre-
sponding to three-dimensional patterns, to the eventual for-

mation of planar wall defect structures. This conclusion is
also supported by the experimental observations.10–13There-
fore, we solve Eqs.s10d–s13d numerically for the one-
dimensional case. The size of the computational cellL is
taken to be 15–20 characteristic wavelengths defined by the
Eq. s25d at Qv=Qi =1, and the fluxes of mobile defects are
equal to zero at the cell boundaries. The accuracy of calcu-
lations is verified with the conservation laws14d, written in
the integral form

E
0

L

fQisx,td − Qvsx,tdgdx

= arNE
0

t

dt8E
0

L

fcvsx,t8d − Zcisx,t8dgdx. s27d

Typical spatial fragment of the solution is shown in Fig. 3 at
the different moments of time. Similar to Ref. 24, the devel-
opment of spatial heterogeneity leads to a sharpening of the
concentration of vacancy clusters into walls, with very few
clusters left in between. However, unlike Ref. 24, this is only
true for the vacancy clusters. The spatial distribution of small
interstitial clusters is much more homogeneous, and there is
only some reduction of their concentration in the areas of
sharp peaks of the vacancy cluster density. This is because
even very inhomogeneous distribution of vacancy clusters
has only a moderate effect on the spatial distributions of
mobile defects. Since the homogeneous evolution of the in-
terstitial clusters is stable itself, their spatial distribution just
follows the spatial variations of the net interstitial flux
fZcisxd−cvsxdg.

Concentrations of both mobile vacancies and interstitials
decrease towards the peaks of the vacancy cluster concentra-
tion, as it should be, due to the higher total sink strength in
the peak areasFig. 4d. However, the net vacancy fluxscv
−Zcid actually increases and, as a consequence, promotes the
accumulation of vacancy clusters in the corresponding loca-
tions, and, at the same time, reduces the accumulation of
interstitial clusters there. Moreover, the net vacancy flux
scv−Zcid in the peak area approaches the value of unity,
meaning the continuous accumulation of vacancy clusters
with no practical shrinkage. Note that this result is not re-
lated to the interstitial clustering in collision cascades, al-
though the clustering itself gives the net flux of vacancies
scv−Zcid,1 already in the spatially homogeneous casefsee
Fig. 2 and Eq.s15dg. Similar calculations in the absence of
interstitial clusterings«i =0d, i.e., when the homogeneous net
vacancy fluxscv−Zcid is equal to zerofEq. s15d at «i =0,
Qv=1g, also show thatfcvsxd−Zcisxdg>1 at the peaks of
vacancy cluster concentration.

Such behavior of the net vacancy flux in the peak areas is
a result of the physical nature of the instability. Indeed, an
increase in the vacancy cluster density diminishes the inter-
stitial flux to the vacancy loops, promoting further accumu-
lation of vacancies in clusters. On the other hand, the flux of
mobile vacancies also decreases, opposing such accumula-
tion. Due to the interstitial bias, the response of the intersti-
tial flux overcomes that of the vacancy flux. As a result, for
a sufficiently high dislocation bias, this positive feedback

TABLE I. Material parameters for copper.

Parameter Value

Atomic volume,V 1.0310−29 m3

Burgers vector,b 0.2 nm

Vacancy migration energya 0.8 eV

Vacancy formation energya 1.2 eV

Vacancy diffusivity pre-exponentiala 1.0310−5 m2/s

Average loop line energy 0.2 eV

Initial vacancy loop radius 1 nm

aReference 35.
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becomes strong enough to cause the instability and the de-
velopment of a spatially ordered microstructure. Mathemati-
cally, the response of the net vacancy flux to a spatially in-
homogeneous deviation of the vacancy cluster distribution is
described by Eq.s21d. Note that the second term of Eq.s21d,

which is proportional to the dislocation bias, is entirely re-
sponsible for the instability occurrencefsee Eq.s24dg.

The positive feedback between the accumulation of va-
cancy clusters in the peak areas and the corresponding in-
crease in the net vacancy flux, discussed in the foregoing,

FIG. 3. Snapshots of spatial fragment of the inhomogeneous solution of Eqs.s10d–s13d under the instability conditions. Note that all
peaks marked with asterisks disappear in the subsequent figures.Lcr is calculated with Eq.s25d at Qv=Qi =1.
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may be operational only until the flux amplitude reaches a
value of unity. Further operation would lead to the exponen-
tial growth of the cluster density in the peak areas with time
fEq. s10dg. Since the total number of clusters generated by
irradiation in any finite volume can only increase linearly
with time, the operation of the positive feedback mechanism
is confined by the requirements of conservation law. How it
actually happens is studied in more detail in the following
subsection.

With time t going beyondtins, the homogeneous micro-
structure becomes stable again, and the spatial heterogeneity
developed during earlier times has to eventually disappear.
However, according to the numerical calculationsfcompare
Figs. 2sad and 5g, the spatial heterogeneity may still survive
for quite a long time after the instability conditions24d be-
comes invalid. In the example given in Fig. 5 the microstruc-
ture is homogeneous again att=400, which in copper at 523
and 600 K converts, in the conventional time scale, tot
=8.93105 and 5.33103 ssd, respectively. In the second case
considered, i.e., whenrN=10−4, the damage microstructure
homogenizes att>2.33104, which is also significantly
larger thantins=43103 fFig. 2sbdg. In copper the timet
>2.33104 corresponds tot=5.13107 and 33105 ssd at
523 and 600 K, respectively.

B. Coarsening of concentration peaks

Simulating the peak distribution in Figs. 3 and 5, we con-
sider the diffusion Eq.s12d within the one-dimensional spa-
tial cell f−l /2 ,l /2g of the lengthl:

s1 − «vd
f«v + «i/as1 + adg

+ Qv − k2cv − Qv8scv − 1ddsxd + ¹2cv = 0.

s28d

Here dsxd is the d function, which models the peak of the
vacancy cluster density in the cell center. We also assume

that the total sink strengthk2=asQi +rNd+Qv outside of the
peak area is approximately constantssee Figs. 3 and 5d. With
the zero-flux boundary conditions the solution of this equa-
tion can be written asssee the Appendixd:

cv − 1 =
hs1 − «vd/f«v + «i/as1 + adg + Qv − k2j

k2

3H1 −
coshfksx ± l/2dg/coshskl/2d

1 + s2k/Qv8dtanhskl/2d J . s29d

The plus and minus signs in expressions29d correspond to
the negative and positive values ofx, respectively.

According to Eqs.s10d–s16d, s24d, ands26d, the value of
parametera=ni0/ snig−ni0d, which describes the additional
influx of mobile interstitials due to the shrinkage of sessile
interstitial clusters, only affects the instability threshold
quantitatively. For a qualitative analyses of the spatial het-
erogeneity development, we can neglect this parameter, by
setting, for example,ni0=0. As a result, inside the same spa-
tial cell, the diffusion Eq.s13d for the concentration of mo-
bile interstitialscisxd will have a solution similar tos29d, i.e.:

cisxd =
s1 − «id/s«v + «i/ad

Zk2

3H1 −
coshfÎZksx ± l/2dg/coshsÎZkl/2d

1 + s2k/ÎZQv8dtanhsÎZkl/2d
J .

s30d

From Eqs.s29d and s30d the net vacancy flux received by
vacancy clusters in the peak area is approximately

Qv8fcvs0d − 1 −Zcis0dg =H «i − «v

«v + «i/a
− asQi + rNd

+
1 − «i

«v + «i/a
F1 −

tanhsÎZkl/2d
ÎZtanhskl/2d

GJ
3

2 tanhskl/2d
k

. s31d

In the derivation ofs31d, it is taken into account thatQv8
@k. SincesÎZ−1d!1, we can further expand the right-hand
side of Eq.s31d to get

Qv8fcvs0d − 1 −Zcis0dg = H «i − «v

«v + «i/a
+

s1 − «idsÎZ − 1d
«v + «i/a

3F1 −
kl

sinhskldG − asQi + rNdJ
3

2 tanhskl/2d
k

. s32d

When l .3.5 the ratio kl /sinhskld!1, and Eq. s32d re-
duces to

FIG. 4. Spatial behavior of the vacancy concentrationcv and the
net vacancy fluxscv–Zcid for the case shown in Fig. 3sed.
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Qv8fcvs0d − 1 −Zcis0dg =
2

k
F«i − «v + s1 − «idsÎZ − 1d

«v + «i/a

− asQi + rNdG . s33d

When the instability condition is satisfied, i.e., fort,tins,
the conservation laws27d leads toQi <Qv8 / l +Qv. According
to Figs. 3scd, 3sdd, and 3sed, we haveQi @Qv, meaning that
practically all vacancy clusters are concentrated in the peak
area. Thus, from Eqs.s10d ands33d it follows that the accu-
mulation of vacancy clusters in the peak areas must saturate,
unless the characteristic distance between the peaksl in-
creases with time. This is exactly what we see in Fig. 3,
where the height of some peaks continues to grow, while the
neighboring peaks completely disappear. As a result of such
coarsening effect, the remaining peaks of vacancy cluster
concentration form an increasingly more regular spatial
structure.

Equations32d is also applicable when there is no intersti-
tial clustering in collision cascades. Thus, at«i =0 we have

Qv8fcvs0d − 1 −Zcis0dg =
ÎZ − 1

«v
H1 −

kl

sinhskld

−
s«v/«v

crdsÎZ + 1d

ZfÎs1 + arNd + ÎarN/Zg2J
3

2 tanhskl/2d
k

. s34d

Here we took into account that in the absence of interstitial
clusterings«i =0 andQi =0d the instability conditions24d re-
duces to

z =
sZ − 1dQv

«vZs1 + arNdfÎsQv + arNd + ÎarN/Zg2
− 1 ù 0.

s35d

The expression for parameter«v
cr is defined by the equality

zsQv=1,«v
crd=0, and is similar to that obtained in Ref. 21.

For the conventional values of dislocation bias the ratio
sÎZ+1d /Z.1, and, according to Eq.s34d, no coarsening of

FIG. 5. Same as Fig. 3, but with higher network dislocation density.
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PVC distribution peaks should be expected when«v /«v
cr is

slightly below the unity. When«v /«v
cr is significantly smaller

than one, the peak coarsening does not happen either, be-
cause the reduction of the vacancy cluster concentration be-
tween the peaks only decreases the value of termkl=sQv
+arNd1/2l. On the contrary, if vacancy cluster concentration
between the peaks is growing, i.e.,k increases with time, the
generation of additional concentration peaks, leading to the
reduction of the distancel between peaks, may take place.
The absence of peak coarsening at«i =0 is illustrated in Fig.
6. That additional concentration peaks can appear in this case
will be shown in the next section.

Although the interstitial clustering in cascades has been
taken into account in Refs. 23 and 24, the evolution of the
interstitial component of microstructure is treated very dif-
ferently in the present paper, as mentioned in the introduc-
tion. Thus, in these papers, the interstitials in the immobile

PICs directly produced in collision cascades are assumed to
be equally distributed only among the existing interstitial
loops ssomehow avoiding the network dislocations and va-
cancy loopsd, the concentration of which was taken to be
stationary.23–25 As a result, the interstitial loops are not
shrinking, but growing on the average, and their effect on the
instability development is qualitatively the same as that of
network dislocations.23 Such a treatment is essentially
equivalent to one in which there is no interstitial clustering.
This explains why no peak coarsening was obtained in the
previous numerical calculations.20,24Another consequence of
the treatment of Refs. 23–25 is that the spatial heterogeneity
developed at elevated temperatures is permanent, as long as
the instability criterias35d is fulfilled, while, according to the
present approach, the spatial heterogeneity should be much
less stable at these temperatures, and eventually disappears.
The latter conclusion is supported by that the experimental
observations of spatially periodic cluster arrays are restricted
mostly to a rather narrow temperature range between anneal-
ing stages III and V.12,13

Concluding this section, we would like to return to its
beginning and note the following. Similar to the particle
scattering, where it is well known that a narrow three-
dimensional potential barrier has a smaller effect on the par-
ticle motion, the response of concentrations of mobile de-
fects to the sharp concentration peaks is weaker in the three-
dimensional than in the one-dimensional case. Therefore, for
the narrow peaks the positive feedback between the vacancy
cluster density in the peak areas and the corresponding net
vacancy flux is stronger in the one-dimensional case. It is
interesting that in the three-dimensional case Eq.s28d does
not even have the physical solutionssee the Appendixd.
Thus, from the physics of the instability under consideration
it follows that in the three dimensions the heterogeneous
damage microstructure should indeed evolve towards the
concentration of vacancy clusters in planar narrow walls.

Experimentally the walls of defect clusters are found to be
arranged onh100j planes of the fcc lattice.10–13Together with
the walls, voids are also observed sometimes. However, they
are randomly distributed and do not participate in the
ordering.12,13 In this regard, it is worth noting that the one-
dimensional migration of small self-interstitial clusters,
which is observed in molecular dynamic simulations,31 and
often used to explain void-lattice formation,36,37 takes place
along the closed-packed directions, i.e.,k110l in fcc metals.
At the same time, it is shown in Ref. 24 that only 1% aniso-
tropy in the diffusion coefficient of self-interstitials along a
preferred directionsfor example,k100ld results in a signifi-
cant alignment of clustered defects parallel to the directions
of high mobility of the self-interstitials. Indeed, the correla-
tion between the wall alignment and the directions of high
mobility of the interstitials can also be predicted from the
physics of the instability under consideration. The contradic-
tion to the experimental observations indicates that the effec-
tive anisotropy of the interstitial diffusion must be small, so
that the selection of the wall orientation is not controlled by
the anisotropic transport of self-interstitial clusters, but
rather, probably by the anisotropic elastic field of the defect
clusters, through their effects on the interstitial fluxes. This
apparent contradiction between the theoretical and experi-

FIG. 6. Snapshots of spatial fragment of the inhomogeneous
solution when there is no interstitial clusterings«i =Qi =0d. Lcr is
calculated with Eq.s25d at Qv=1, andQi =0.
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mental seffectived transport properties of mobile interstitial
clusters have been discussed and rationalized.33 Since a
small anisotropy can only slightly modify the instability con-
ditions and does not affect the properties of the defect
walls,24,25 it is neglected in the present investigation.

V. LOW TEMPERATURE CASE

At temperatures when vacancy clusters are thermally
stable, Eqs.s2d ands11d can no longer describe the evolution
of primary interstitial clusters. At these temperatures, the
PICs are not shrinking on the average, as it is assumed in Eq.
s2d, but are actually growing in size due to the net interstitial
flux provided by the dislocation bias.27 As a result of the
growth of interstitial loops and their mutual coalescence with
the subsequent dislocation network formation, the interstitial
loop line density increases and approaches the saturation at a
dose of 0.1 NRT dpa.27 Microstructural investigations by
transmission electron microscopysTEMd during the early
stages of the irradiation also indicate that already at doses
,0.01 dpa self-interstitial atoms are absorbed by or create a
dislocation network via loop formation and subsequent inter-
action of dislocation loops.12,13 Similar to TEM, the experi-
mental results obtained from the differential dilatometry
demonstrate a continuous increase in specimen length with
irradiation dose,12,13 which reveals an efficient loss of self-
interstitial atoms to an evolving dislocation network. Since
the experimental observations also show that spatial fluctua-
tions of the cluster density start to develop at<0.1 dpa,12,13

for a qualitative description of the instability development
we may use Eqs.s10d–s13d, with «i andQi set to zero. In this
case the parameterrN represents the line density of both the
network dislocations and the interstitial loops. Although, this
simplification return us to the original simplest model,20,21

we are not aware of any detailed study of what actually fol-
lows from this model at low temperatures.

Comparing the present approach with the model devel-
oped in Refs. 23–25, the following is noted. The assumption,
that all the interstitials produced as immobile PICs are
equally distributed among the existing interstitial loops,23–25

literally means the introduction into the model the immobile
PICs as the major driving force for the interstitial loop
growth at low temperatures. This is contrary to the results of
the more rigorous consideration,27 where it was shown that
in low temperature regime the interstitial loop growth is due
to the dislocation bias. As far as the vacancy loop evolution
is concerned, it is important to realize that the corresponding
reduction of the flux of mobile interstitials leads to the over-
estimation of the lifetime of vacancy clusters and, as a result,
their concentration. The latter is the crucial parameter for the
instability development.

Formally, we can use the natural notationss7d–s9d for any
temperature. However, since bothrvl

0 and the characteristic
time t are related to the rate of vacancy emission from va-
cancy clusters, they do not represent the corresponding
physically meaningful values at low temperatures. This is
because the vacancy emission rate is negligible in such cases.
Indeed, in copper the formation of the dislocation walls have
been experimentally observed at temperatures as low as

100 °C.10–13At this temperature, according tos7d and s8d, t
=231010t ssd, andrvl

0 >231021 m−2 sG=10−7 dpa/sd. Thus,
the experimental doses of a few NRT dpasRefs. 10–13d cor-
respond to the values oft well below 10−3. Similarly, the
physical values of vacancy cluster contentQv is much less
than unity. For such values ofQv the spatially homogeneous
Eq. s17d has the following simple solution:

Qvstd
arN

= Î1 + 2t/arN − 1. s36d

Substituting this expression into the instability condition
s35d, we obtain that the instability of spatially homogeneous
solution sets in when

2t

arN
+ 1 =F1 +Î1 + sf« − 1dsZf« + 1d

ÎZsf« − 1d
G4

, s37d

and, from Eq.s25d, the critical wavelengthLcr of unstable
spatial modes is given by

Lcr =
2p

Î4 Zrsrvl + rd
=

2p

Îr
F sf« − 1d

1 +Î1 + sf« − 1dsZf« + 1d
G1/2

.

s38d

Here f«=sZ−1d / sZ«vd. Since arN!1, we havef«=«v
cr /«v.

Note that the ratioQvstd /arN is equal torvlstd /r and does
not depend on the rate of vacancy emission from vacancy
clusters. The latter is also true fort /arN=2«vGt/ rvlbr. Since
the term in square brackets of Eq.s38d weakly depends on
the value of parameterf«, it varies from 0.56 to 0.86 whenf«

takes values from 2 to 10, the critical wavelength is mainly
determined by the total line density of the interstitial loops
and network dislocationssLcr,r−1/2d. The experimental ob-
servations also show that the periodicity lengths of defect
walls seem to be rather insensitive to temperature and defect
production rate, in the sense that no clear dependence can be
deduced from the existing data.12

Obviously, it is convenient for further analysis to rewrite
Eqs.s10d–s13d in the following notations:

Q̄v = Qv/arN, Q̄i = Qi/rN, c̄j = arNcj, x = rÎr, t̄ = t/arN.

s39d

As a result, the equations take the form

dQ̄v

dt̄
=

«v

f«v + «i/as1 + adg
− Q̄vfZc̄i − sc̄v − arNdg, s40d

dQ̄i

adt̄
=

«i

f«v + «i/as1 + adg
− s1 + adQ̄isc̄v − Zc̄id, s41d

s1 − «vd
f«v + «i/as1 + adg

− c̄vsQ̄i + 1d − Q̄vsc̄v − arNd + ¹2c̄v = 0,

s42d
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s1 − «id
f«v + «i/as1 + adg

+ ac̄vQ̄i − Zc̄ifQ̄v + s1 + adQ̄i + 1g

+ ¹2c̄i = 0. s43d

As we have seen in the foregoing, the vacancy emission term
arN in Eqs. s40d and s42d can be neglected, when vacancy
clusters are thermally stable. Therefore, at the corresponding
temperatures, unlike the elevated temperatures, the evolution
of spatially heterogeneous microstructure governed by Eqs.
s40d–s43d is universal, i.e., in agreement with experimental
observations,12 is independent of both the actual temperature
and the dose rate. A typical example of the evolution is pre-
sented in Fig. 7.

From Eqs.s36d ands37d, when f«=3, the spatially homo-
geneous evolution becomes unstable at the time moment

t /arN=5.7, whenQv /arN=Q̄v
h=2.5. According to the figure,

after the bifurcation, concentration of vacancy clusters ini-
tially grows everywhere in space, even between the peaks,

where it is higher than the maximum valueQ̄v
h of the stable

spatially homogeneous concentration of vacancy loops. In
the previous paragraph we noted that in such circumstances
additional peaks might appear. As it can be seen from the
figure this scenario, which has not been observed in the pre-
vious numerical calculations,20,24 is indeed realized. From
the point of view of the stability analysis, such a behavior
means that relatively smooth spatial variations of vacancy
cluster concentration, corresponding to the wide peaks and
wells, are also unstable, similar to the spatially homogeneous
distribution. In Fourier space, this means that, due to the
growth of the homogeneous value ofQv, or, what is the
same, the bifurcation parameterfsee Eq.s35dg, the wave-
length of the fastest growing spatial mode, as defined by Eq.
s25d, becomes shorter. Note also that the spatial heterogene-
ity develops in such a way that, while the height of the peaks
is growing, the vacancy cluster concentration between the
peaks drops to values corresponding to a stable homoge-
neous solution, i.e., belowQ̄v

h.
At low temperatures we do not actually take into account

the interstitial clusterings«i =0d, and, consequently, a direct
comparison between the present theoretical results and the

FIG. 7. Snapshots of spatial fragment of the inhomogeneous solution at low temperatures and«i =Qi =0. Lcr is calculated with Eq.
s38d.
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experimental data obtained under the ion irradiation, when a
significant fraction of interstitials is generated in clusters, is
not applicable. However, such comparison can be made in
the case of 3 Mev protons,10,13 when rather small cascades
are most likely to be produced,38 and, consequently, no direct
formation of sessile interstitial clusters is expected. Accord-
ing to Fig. 7, the spatial periodicity in the vacancy cluster
distribution with the spatial periodl approximately equal to
2/r1/2 becomes very well developed already at the time
t /arN=600. In copper at 100 °C the distancel between the
defect walls is experimentally observed to be around
60 nm.10,12,13Since

t

arN
=

2«vGt

rvlbr
=

«v

«v
cr

2Gt

rvlbs2/ld2

Z − 1

Z
, s44d

the time t /arN=600 corresponds to the doseGt>0.4 dpa
sZ=1.3d,39 which, after taking into account that the defect
survival probability in collision cascades is about
10%–20%,32 is in a good agreement with the experimental
value of 2–4 NRT dpa.10–13

One of the consequences of the production of rather small
cascades under 3 MeV proton irradiation is also that the
probability of cascade collapse into the vacancy cluster is
relatively small as well. Therefore, the instability condition
«v,«v

cr can be fulfilled easier than under the neutron or ion
irradiation. In this regard it is worth noting that under 3 MeV
proton irradiation the most well-developed walls of defect
clusters are experimentally found.10,12,13Under neutron and
heavy ion irradiations mostly linear cluster arrays along cu-
bic axes are reported. These cluster arrangements are similar
to the precursors of wall formation observed at medium flu-
ences under proton irradiation.12

VI. SUMMARY AND CONCLUSION

The evolution at elevated temperatures of a nonequilib-
rium system of primary defects produced continuously under
cascade damage irradiation is studied. We analyzed a simple
model in which the kinetics of small sessile interstitial clus-
ters is treated in a way similar to the BEK model for shrink-
ing vacancy loops. Development of spatial heterogeneity in
this system is related to the instability of spatially homoge-
neous evolution of the vacancy loop population, caused by
the positive feedback between the local vacancy cluster den-
sity and the interstitial flux.

A local increase in the vacancy cluster concentration di-
minishes the corresponding interstitial flux, promoting fur-
ther accumulation of vacancies in clusters. For a sufficiently
high dislocation bias, the response of the interstitial flux to
the spatial variations of the vacancy cluster density is stron-
ger than the corresponding damping effect of the vacancy
flux. Under this condition, in the one-dimensional case con-
sidered the accumulation of vacancy clusters takes place in
the narrow peaks separated by regions almost free of va-
cancy clusters. The feedback relation between the vacancy
cluster concentrations and the interstitial flux towards them
is stronger in the one-dimensional than in the three-
dimensional case. Therefore, in the three-dimensional case

the developing heterogeneous microstructure should corre-
spond to the vacancy clusters concentrated in the narrow
planar walls. This conclusion, which follows from the phys-
ics of the instability under consideration, agrees with the
results of weakly nonlinear analysis21–24 and the experimen-
tal data.10–13

As for the interstitial clusters, their spatial distribution
remains much more homogeneous. There is only some re-
duction of their concentration in areas where the vacancy
cluster density peaks, and the net vacancy flux is higher. In
the case of interstitial clusters, there is no feedback relation
between the cluster concentration and the fluxes of mobile
defects, and the homogeneous evolution of the interstitial
clusters is stable. Thus, their spatial distribution simply fol-
lows the spatial variations of the net interstitial flux.

At elevated temperatures, vacancy clusters are thermally
unstable. In the presence of network dislocations, the sink
strength of the interstitial cluster grows faster than that of
vacancy clusters, with extra vacancies absorbed by the net-
work. This allows the development of spatial heterogeneity
when the network dislocation density is low, and only within
a finite time period. During this period, the periodic spatial
distribution of peaks of vacancy cluster density become in-
creasingly better defined, due to ongoing peak coarsening,
i.e., growth of peaks that satisfy the periodicity, and the com-
plete dissolution of the neighboring ones. Although the
evolving microstructure remains spatially heterogeneous
long after the instability conditions24d becomes invalid,
eventually homogeneity returns.

Peak coarsening does not occur, if the clusters produced
in collision cascades are only vacancy in nature. Indeed, the
number of concentration peaks may even increase with time,
initially after the bifurcation. When the vacancy cluster den-
sity between concentration peaks drops to a value corre-
sponding to the stable homogeneous solution, the spatial dis-
tribution of the peaks no longer changes. At lower
temperatures, when vacancy clusters are thermally stable, the
spatial distribution of the peaks is also independent of both
the temperature and the damage rate. This is in agreement
with the experimental observations.12,13 At these tempera-
tures interstitial clusters do not shrink on the average, but
actually grow in size, because of the net interstitial flux pro-
vided by the dislocation bias. As a result of their growth and
mutual coalescence, with the subsequent dislocation network
formation, the interstitial loop line density almost saturates
already at a dose of 0.1 NRT dpa.27 Therefore, when vacancy
clusters are thermally stable, qualitatively similar spatial be-
havior of the vacancy cluster density should be expected
both with and without interstitial clustering in collision cas-
cades.

If voids are present, the growth of interstitial loops from
small sessile clusters directly produced in collision cascades
is possible, with the formation of network dislocations at
elevated temperatures subsequently.27 Since the sink density
of vacancy clusters at these temperatures is dictated by the
rate of vacancy emission from them, it is usually much less
than the total sink density of the interstitial clusters, loops,
and the network dislocations.27 In the presence of voids, the
instability conditions also require that the sink density of
vacancy clusters is larger than that of voids.19,24 Conse-
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quently, the condition for the instability of spatially homoge-
neous evolution given by Eq.s35d is difficult to realize in
this case. In this regard, we note that the nonperiodic spatial
segregation of voids and dislocation loops, with the intersti-
tial loops concentrating in localized long narrow patches
separated by void growth regions of size of about several
microns,14,15 is difficult to explain within the framework of
the instability in the homogeneous vacancy loop population.
Indeed, the total sink strength of the vacancy loops and
stacking-fault tetrahedra, which are also present in such het-
erogeneous microstructure, is found to be much smaller than
those of the voids and the interstitial loops.15 Moreover, the
spatial distribution of the vacancy clusters themselves is
practically homogeneous.15 As shown in Ref. 29, the insta-
bility of the homogeneous evolution in that case is related to
the saturation of the homogeneous void growth, caused by
the continuous production of small immobile interstitial clus-
ters. The latter, being the major sinks almost from the start of
irradiation, act as recombination centers for mobile defects
and, as a result, suppress homogeneous development of the
microstructure. The formation of the spatially heterogeneous
microstructure in that case is caused by the spatial coarsen-
ing of the populations of voids, and the interstitial clusters
and loops, instead.29
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APPENDIX

For the negative values ofx Eq. s28d with the zero-flux
boundary conditions has the following solution:

cvsxd =
s1 − «vd/f«v + «i/as1 + adg + Qv

k2 − A coshfksx + l/2dg,

sA1d

whereA is some constant, which has to be determined. For
the positive values ofx the solution is similar and given by

cvsxd =
s1 − «vd/f«v + «i/as1 + adg + Qv

k2 − A coshfksx − l/2dg.

sA2d

Here it is taken into account that the vacancy concentration
should be a continuous function atx=0. Further, integrating
Eq. s28d over the infinitesimal interval around the initial
point x=0, we get that the spatial derivativecv8sxd satisfies
the equality

cv8s+ 0d − cv8s− 0d = Qv8fcvs0d − 1g. sA3d

Substituting Eqs.sA1d and sA2d into sA3d, we arrive at

A =
hs1 − «vd/f«v + «i/as1 + adg + Qv − k2j

k2 coshskl/2d
1

1 + s2k/Qv8dtanhskl/2d
. sA4d

EquationsA4d together with Eqs.sA1d and sA2d gives the
solution s29d.

In the three-dimensional case Eq.s28d written for the con-
centration of mobile interstitials has the form

s1 − «id
s«v + «i/ad

− Zk2ci − ZQv8cidsr d + ¹2ci = 0. sA5d

For the spherical cell of the finite radius the general solution
of Eq. sA5d is given by

cisrd =
s1 − «id/s«v + «i/ad

Zk2 +
A

r
exps− ÎZkrd +

B

r
expsÎZkrd.

sA6d

IntegratingsA5d over the infinitesimal spherical volume
containing the initial point, we obtain that

4psA + Bd = − ZQv8UF s1 − «id/s«v + «i/ad
Zk2

+
A

r
e−ÎZkr +

B

r
eÎZkrGU

r→0
. sA7d

From the latter equation it follows that

A = − B =
s1 − «id/s«v + «i/ad

2Z3/2k3 . sA8d

As a result

cisrd =
s1 − «id/s«v + «i/ad

Zk2 F1 −
sinhsÎZkrd

ÎZkr
G ø 0.

sA9d

The interstitial concentration given by the last equation hap-
pens to be negative everywhere except the initial pointr =0,
where it is equal to zero.

SPATIAL ORDERING OF PRIMARY DEFECTS AT… PHYSICAL REVIEW B 71, 054109s2005d

054109-13



1P. Glansdorff and I. Prigogine,Thermodynamic Theory of Struc-
ture, Stability and FluctuationssWiley, New York, 1971d.

2G. Nicolis and I. Prigogine, Self-Organization in Non-
Equilibrium SystemssWiley, New York, 1977d.

3G. Haken,Synergetics, An Introduction, 2nd ed.sSpringer, Berlin,
1978d.

4G. Haken,Synergetics. Instabilitiy Hierarchies of Self-Organizing
Systems and DevicessSpringer, Berlin, 1983d.

5I. Prigogine,From Being to Becoming: Time and Complexity in
Physical SciencessFreeman, San Francisco, 1980d.

6K. Krishan, Radiat. Eff.66, 121 s1982d.
7A. M. Stoneham, inThe Physics of Irradiation Produced Voids,

Proceedings of Consulting Symposium, edited by R. S. Nelson,
Harwell Report No. AERE-R-7934,s1975, p. 319d.

8L. D. Hullet, Jr., T. O. Baldwin, J. C. Crump, and F. W. Young,
Jr., J. Appl. Phys.39, 3945s1968d.

9B. C. Larson and F. W. Young, Jr., inRadiation Induced Voids in
Metals, edited by J. W. Corbett and L. C. IannellosUSAEC, Oak
Ridge, TN, 1972d, p. 672, CONF-710601.

10W. Jäger, P. Ehrhart, W. Schilling, F. Dworschak, A. A. Gadalla,
and N. Tsukuda, Mater. Sci. Forum15–18, 881 s1987d.

11W. Jäger, P. Ehrhart, and W. Schilling, inNonlinear Phenomena
in Materials Science, edited by G. Martin and L. P. KubinsTran-
stech Aedermannsdorf, Switzerland, 1988d, p. 279.

12W. Jäger, P. Ehrhart, and W. Schilling, Solid State Phenom.3–4,
297 s1988d.

13W. Jäger, P. Ehrhart, and W. Schilling, Radiat. Eff. Defects Solids
113, 201 s1990d.

14B. N. Singh, T. Leffers, and A. Horsewell, Philos. Mag. A53,
233 s1986d.

15C. A. English, B. L. Eyre, and J. W. Muncie, Philos. Mag. A56,
453 s1987d.

16A. Jostons and K. Farrell, Radiat. Eff.15, 217 s1972d.
17G. L. Kulcinski and J. L. Brimhall, inEffects of Radiation on

Substructure and Mechanical Properties in Metals and Alloys,
American Society for Testing and Materials, ASTM-STP 529
sASTM, Philadelphia, 1973d, p. 258.

18J. O. Steigler and K. Farrell, Scr. Metall.8, 651 s1974d.
19E. A. Koptelov and A. A. Semenov, Phys. Status Solidi A93,

K33 s1986d.
20S. M. Murphy, Europhys. Lett.3, 1267s1987d.
21D. Walgraef and N. M. Ghoniem, Phys. Rev. B39, 8867s1989d.
22D. Walgraef and N. M. Ghoniem, Modell. Simul. Mater. Sci. Eng.

1, 569 s1993d.
23D. Walgraef and N. M. Ghoniem, Phys. Rev. B52, 3951s1995d.
24D. Walgraef, J. Lauzeral, and N. M. Ghoniem, Phys. Rev. B53,

14 782s1996d.
25D. Walgraef and N. M. Ghoniem, Phys. Rev. B67, 064103

s2003d.
26A. A. Semenov and C. H. Woo, J. Phys. D34, 3500s2001d.
27A. A. Semenov and C. H. Woo, Appl. Phys. A: Mater. Sci.

Process.A67, 193 s1998d.
28R. Bullough, B. L. Eyre, and K. Krishan, Proc. R. Soc. London,

Ser. A 346, 81 s1975d.
29A. A. Semenov and C. H. Woo, Appl. Phys. A: Mater. Sci.

Process.A74, 639 s2002d.
30P. Ehrhart, K. H. Robrock, and H. R. Schober, inPhysics of

Radiation Damage in Crystals, edited by R. A. Johnson and A.
N. Orlov sElsevier, Amsterdam, 1986d.

31Yu. N. Osetsky, D. J. Bacon, A. Serra, B. N. Singh, and S. I.
Golubov, J. Nucl. Mater.276, 65 s2000d.

32D. J. Bacon, F. Gao, and Yu. N. Osetsky, J. Nucl. Mater.276, 1
s2000d.

33S. L. Dudarev, A. A. Semenov, and C. H. Woo, Phys. Rev. B67,
094103s2003d.

34NRT dpa: displacement per atom defined according to M. J. Nor-
gett, M. T. Robinson, and I. M. Torrens, Nucl. Eng. Des.33, 50
s1976d; ASTM standards E521-83s1983d.

35H. E. Schaefer, inProceedings of the Sixth International Confer-
ence on Positron Annihilation, 1982, edited by P. G. Coleman, S.
C. Sharma, and L. M. DianasNorth-Holland, Amsterdam, 1982d,
p. 369.

36C. H. Woo and W. Frank, J. Nucl. Mater.137, 7 s1985d.
37H. L. Heinisch and B. N. Singh, Philos. Mag.83, 3661s2003d.
38A. J. E. Foreman, C. A. English, and W. J. Phythian, Philos. Mag.

A 66, 655, 671s1992d.
39B. C. Skinner and C. H. Woo, Phys. Rev. B30, 3084s1984d.

A. A. SEMENOV AND C. H. WOO PHYSICAL REVIEW B71, 054109s2005d

054109-14


