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Neutron Compton scattering measurements in a variety of materials have shown a relative deficit in the total
signal from hydrogen compared to deuterium and heavier ions. We show here that a breakdown in the
Born-Oppenheimer approximation in the final states of the scattering process leads to such a deficit and may be
responsible for the effect.
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Deep inelastic neutron scattering experimentsfneutron
Compton scatteringsNCSdg on a variety of systems have
found, given the well-known nuclear cross sections for these
materials, that the integrated intensity of the signal from hy-
drogen is smaller than expected relative to heavy ions, such
as oxygen, or even deuterium,1 This deficit has also been
observed in electron Compton scattering.2 This has been at-
tributed to previously unknown physics at the very short time
scales of the measurements,3 quantum entanglement between
the struck proton and the other protons of the material4 and
inadequacies in the treatment of the data.5–7 While inadequa-
cies of the data analysis cannot ever be ruled out, careful
analysis of all the possibilities that have been suggested have
not turned up any errors or approximations that could ac-
count for the observed discrepancies.8 We show here that the
effect can be explained within the usual formalism by a
breakdown of the Born-Oppenheimer approximation in the
final state of the scattering process, which contains a very
rapidly moving proton with sufficient energy to mix the elec-
tronic states of the system. These corrections are present for
any scattering experiment, but only become significant for
high momentum transfer.

We begin with the usual expression for the scattering
cross section when the spin of the neutron is not observed in
the largeq limit in which only incoherent scattering remains.
Our work will be forT=0, since the momentum distributions
measured are dominated by the ground state contribution at
the temperatures of the experiments. It can easily be ex-
tended to finite temperatures,

SsqW,vd = SnWzk0ue−iqW.RW 1uEnWlz2dFv −
sEnW − E0d

"
G , s1d

where the ground state is taken to be the Born-Oppenheimer
ground state,

krW,RW u0l = F0,0sRW da0srW,RW d, s2d

whererW are the coordinates of the electrons andRW the coor-
dinates of the ions. TheuEnWl are energy eigenstates of the

complete system of electrons and ions.a0srW ,RW d is the solu-
tion of the electronic problem with the protons and other ions

at the positionsRW , and F0,0sRW d is the ground state for the
heavy particles in the potential energy surface defined by
ua0l. RW 1 is the component ofRW denoting the position of the
struck particle. There are, in addition, a complete set of ex-
cited electronic states for the ions at the same positions, de-
noted byaisrW ,RW d. It is evident from Eq.s1d that

E SsqW,vddv = 1, s3d

for any q. The total intensity of the incoherent scattering is
proportional to this integral times the total scattering cross
section for the scattering particle. Our point of view is that if
this appears not to be the case, then some intensity is not
being accounted for in the experimental integration. This per-
spective is consistent with recent transmission experiments
in which the cross section was measured in the same energy
range of incident neutrons as the NCS measurements.9 These
experiments measure the total cross section for scattering,
including all final energies. They give the expected value for
the cross section, with no deficit, as we would expect.

It is usually assumed at this point that the energy eigen-
states of the full Hamiltonian can be adequately represented
by the ground state for the electronic system and the excited
states for the ions in the Born-Oppenheimer potential for that
ground state. The energiesEnW are the sum of the electronic

energyEn8sRW d and the energy of the heavy ions in the effec-
tive potential defined by this energy surface. However, we
wish to consider the limit that the transferred momentum is
large, so that the recoiling proton has sufficient energy to mix
the electronic states. In short, we must go beyond the Born-

Oppenheimer approximation in expanding the stateeiqW.RW 1u0l
in energy eigenstates and consider the full Hamiltonian for
the system, which includes the kinetic energy of the struck
proton. We will treat this kinetic energy as a perturbation, to
the extent that it acts on the electronic wave functions, and
first calculate the energy eigenstates to lowest order. We take
the full Hamiltonian to be

H = H0srW,RW d + Si

Pi
2

2M
. s4d

The Born-Oppenheimer energy eigenstatesuFn,jluanl satisfy
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H0srW,RW dansrW,RW d = En8sRW dansrW,RW d. s5d

and

FSi

Pi
2

2M
+ En8sRW dGFn,jsRW d = En,jFn,jsRW d. s6d

In addition to the kinetic energies of the heavy particles,
obtained fromsSisPi

2/2MduFlduanl, the leading term in the
perturbation when acting on a state of the formuFluanl, is

SiPW iuFl . PW iuanl/M . s7d

The action of the momentum of the heavy particle on the
electronic states is, from Eq.s5d

kamuPW iuanl = i"kamu
dH0

dRW i

uanlY sEn8 − Em8 d, s8d

where the matrix elements are taken over the electronic co-
ordinates, and the positions of the heavy particles are the
same for all the states. This perturbation mixes the original
Born-Oppenheimer energy eigenstates. For all the heavy par-
ticles except the one struck by the neutron, the momentum
operator acting on the wave function of the particle gives a
small overall contribution, which is the basis for the usual
Born-Oppenheimer approximation. However, for the struck
particle fparticle 1 in Eq.s1dg, this operator gives a large
term, of order"qW, and cannot be neglected.

We then have that the energy eigenstates for the full
Hamiltonian are given to first order by

uEn,il = uFn,iluanl + Sm,jkFm,jukamu

i"
dH0

dRW 1

sEn,i − Em,jdsEn8 − Em8 d
uanl

3
PW 1

M
uFn,iluFm,jluaml. s9d

We will neglect, for the moment, the shift of the energies for
these states, as it is not essential for this work. The important
point is that because of the presence of the fast proton, the
excited states have a significant overlap with the ground
state, and, as a consequence, there is some amplitude for the
scattered neutron to transfer some of its energy to the elec-
tronic system. When Eq.s9d is used in Eq.s1d, we see that
the only component of the excited states wave function that
is significant is that which couples it to the ground state. The
sum in Eq. s1d extends over the indices of the electronic
states, and for each electronic state, one sums over the spec-
trum of eigenstates of the ionic system in that electronic
state. We have then that there is a contribution to the sum in
Eq. s1d from each of the the excited electronic states,
SnsqW ,vd of the form

SnsqW,vd = uSi,jukF0,0ue−iqW.RW 1uF0,jlkF0,ju
"

M

3 ka0u

dH0

dRW 1

sEn,i − E0,jdsEn8 − E08d
uanl

3 uPW 1uFn,ilu2dFv −
sEn,i − E0,0d

"
G . s10d

We are going to approximate the electronic matrix ele-
ment in Eq.s10d by evaluating it at the equilibrium positions
of the heavy particles. Since only ionic states for which the
struck particle has a momentum in the vicinity of"q will

have any significant overlap with the statekF0,0ue−iqW.RW 1, we
can assume theuF0,jl that are important in the sum have this
property. Then this must be true of the statesuFn,il as well.
Furthermore, for the heavy particles that have not been
struck, henceforth referred to as the bath, the wave functions
and energies in both the ground and excited states are unaf-
fected, initially, by the scattering event. Hence the change in
the heavy particle energies in both the excited and ground
electronic states is dominated by the kinetic energy of the
struck particles"qd2/2M. Thus we can replacesEn,i −E0,jd in
the denominator of Eq.s10d by sEn8−E08d. The electronic ma-
trix element is then independent of the heavy-particle energy
indices, and we can use any basis for the particle wave func-
tions that we like. In particular, we choose a plane wave

basis. This also allows us to evaluate the action ofPW 1, which
we will replace with "q. This approximation neglects the
momentum of the particles in the initial state compared to"q
when evaluating the matrix elements. In the energy delta
function, we will keep the full kinetic energyf"spW
+qWdg2/2M in the final state and replaceE0,0 by E08+p2/2M.
None of these approximations are essential for our main
point, but serve to simplify the result. We find then that the
excited electronic states contribute toSsqW ,vd

SnSnsqW,vd = SnU"2qW

M
ka0u

dH0/dRW 1

sEn8 − E08d
2uanlU2

3E nspWddFv − sEn8 − E08d/" −
"q2

2M
−

pW . qW

M
GdpW ,

s11d

wherenspWd is the diagonal matric element of the one particle
density matrix for particle 1 in the momentum representa-
tion. We see that these terms give the same functional form
in q and v as the usual impulse approximation result, but
shifted to high energies by the difference in energies of the
electronic states.

The total intensity in these terms is compensated for in the
sum in Eq.s1d by the reduction in intensity of the scattering
in which there is no change in the electronic wave function.
The ground state of the electronic system, in the presence of
the fast proton, is no longerua0l, but is given by Eq.s9d.
When used in the sum in Eq.s1d, it must be normalized. The
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normalization of this state leads to a reduction of intensity of
the primary signal, again with the same approximations, by
an amountDI

DI = SnU"2qW

M
ka0u

dH0/dRW 1

sEn8 − E08d
2uanlU2

. s12d

This just compensates for the intensity transferred to the ex-
cited electronic states. To the extent that one measures only
the intensity in the primary peak, Eq.s12d gives the apparent
deficit in the cross section of the struck particle. We see that
this varies withq2 and 1/M2, as well as the particulars of the
electronic system.

Although a detailed calculation is necessary to evaluate
the magnitude of the deficit in the intensity of the main peak,
we can get some idea of the size of the effect by introducing
dimensionless variables. A characteristic length scale for mo-
lecular systems is the radius of the Bohr orbita. A charac-
teristic energy scale ise2/2a. Since

dH0

dRW 1

= Si
e2

urWi − RW 1u2
, s13d

where the sum in Eq.s13d is over all the electrons in the
system, we find that an estimate of the magnitude of the
effect is given by

DI < 1 2Neff"
2q/a

M

e2/2a
2

2

, s14d

whereNeff is the effective number of terms in the sum ap-
pearing in Eq.s13d.

For aq of 50 Å−1 andNeff of 3, DI <0.15. Using a per-
haps more realistic scale for water, which would be the en-
ergy gap of about 6 eV, we would have an increase by a
factor of 4. The result is also very sensitive to the value of
Neff. It is clear that without evaluating the integrals, there is
considerable uncertainty in the magnitude of the effect, but
that nevertheless, it is potentially of the right order of mag-
nitude to explain the deficits. However, the result above can-
not explain two features of the phenomenology of the deficit
as it is observed in a variety of systems. The deficit is not
observed to vary withq sRefs. 3, 8d in the neutron Compton
scattering measurements on water. Although the results of
the electron Compton scattering experiments in Formvar2 are
consistent with aq2 dependence of the deficit for the small
range ofq measured, the great bulk of the available data over
a much wider range inq is obtained using neutrons. The data
on the deficit in Nb and Pd hydrides11 do show a strongq
dependence, which, however, saturates at largeq. The satu-
ration value ofDI is about 0.4, which is four times the value
in the deuterated Nb hydride as the theory above would pre-
dict, but the deuterated material shows no variation withq.

Also, as it stands, there is no explanation for the depen-
dence of the deficit on the relative concentration of deute-
rium and ordinary water.1 Since the matrix elements and the
density of electronic states that determine the amplitude of
the effect are presumably nearly the same in D2O and H2O,
we would expect no concentration dependence from the re-

sults above. Both of these inadequacies point to the coupling
of the electronic states in the presence of a fast proton being
too strong to use the weak coupling perturbation theory pre-
sented thus far. The effect of the higher-order terms in the
coupling may be accounted for by introducing linewidths for
the excited states due to transfer of energy in the electronic
system to the ions. These linewidths are strongly enhanced
by the presence of the fast proton.

The time scale for the relaxation of the density correlation
function, sqDp/Md−1 sRef. 10d, whereDp is the momentum
distribution width, is about 1 fs in water for typical momen-
tum transfers of 35 Å−1. This corresponds to a momentum
width for the protons of about 5 Å−1 sRef. 12d. It is known
that the relaxation time for the lowest excited electronic state
in water to the so-called solvated electron state is about
150 fs,13 considerably longer than the time scale in which we
are interested. However, that is when the protons are moving
at velocities comparable toDp/M above. When one of these
protons has momentum of 30–40 Å−1 the relaxation rate
could be a factor of 50 faster because this rate has a compo-
nent that varies asq2. That rate is comparable to the typical
time scale of the scattering, and the decay of the excited state
can play a major role in determining the intensity deficit.
Furthermore, it is known14 that the excited-electron wave
function extends over 5–10 water molecules and that the rate
of transfer of energy to the protons or deuterons depends on
a decoherence time scale that is longer by a factor of 2 in
D2O than in H2O, providing a mechanism for the concentra-
tion dependence of the deficit. Although we are not be able
to compute the electronic properties needed to make this
argument precise, it is plausible that a stong coupling theory,
which includes the decay of the excited states, can account
for the concentration dependence in water.

To go beyond lowest-order perturbation theory, we will
use a mode coupling approximation to include the decay of
the excited states. The intermediate scattering functionSsq,td
is

SsqW,td = k0ue−iqW.RW 1eiqW.RW 1stdu0l

= k0ue−iqW.RW 1esi/"dfH0+SsPi
2/2mdgteiqW.RW 1e−i/"fH0+sSPi

2/2mdgtu0l.

s15d

Since

S
pi

2

2M
F0,0sRW d = fE0,0− E08sRdgF0,0sRW d, s16d

it follows that the action of the Hamiltonian on the ground
state in Eq.s15d can be replaced by

e−si/"dE0,0tF0,0sRW d = e−si/"dE08sRdte−si/"dSsPi
2/2MdtF0,0sRW d.

s17d

Having done this, the functione−si/"dE08sRdt commutes with the

density operator,eiqW.RW 1, and can be combined with the Hamil-
tonian acting on the final state. There is an additional term,
arising from the commutator of the kinetic energy term in
Eq. s15d with E08sRd. This gives the effects of the forces
acting on the heavy particles. This term has no direct effect
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on the impulse approximation limit10 q→` ,t→0, qt finite,
as it is of orderqt2. It leads to traditional final state correc-
tions of order 1/q, which are included in the data analysis.
Thus we can include the ground-state electronic energy in
the exponent in Eq.s15d. The kinetic energy terms that do
not involve the struck particle can also be approximated as
commuting with the electronic energy, as this is the essence
of the Born-Oppenheimer approximation. The noncommuta-
tive terms are responsible for the thermalization of the elec-
tronic states. These lead to the relaxation processes men-
tioned earlier and occur on a much longer time scale than the
one in which we are interested. We will therefore neglect the
commutator of the kinetic energy of the unstruck particles
with the electronic Hamiltonian. We can then commute the
kinetic energy for the unstruck particles through the density
operator and eliminate it from the direct time evolution of
the density operator.

Finally, we can approximate the operatorP1
2 by

P1
2 = P1

12
+ 2P1

1 . P1
2, s18d

where the operatorP1
1 acts only on the proton wave function

and the operatorP1
2 acts only on the parametersRW of the

electronic wave function. In its action on the ground state,
we will ignore the second term on the right in Eq.s18d,
which is, again, the Born-Oppenheimer approximation.

We will also replaceP1
1 by "qW in the second term of Eq.

s18d, when this operator acts on final states for which the
momentum is approximately"qW. The full Hamiltonian acting
on the final state is now the sum of two commuting terms.

Allowing the operatorP1
12

to act oneiqW.RW 1 we can then ex-
press the intermediate scattering function as

SsqW,td = k0ue−iqW.RW 1ei/"fH0−E08+s"qW.PW 1
2/MdgteiqW.fRW 1+sPW 1

1/Mdtgu0l.

s19d

If we neglect the perturbation"qW .PW 1
2/M in Eq. s19d we

obtain immediately the impulse approximation result for
Ssq,td, making clear again that it is the mixing of the Born-
Oppenheimer eigenstates that is the source of the intensity
deficit.

Equation s19d can be expressed in more detail, making

use of the identityesi"q2/2mdteiqW.RW 1eiqW.sPW 1
1/Mdt=eiqW.fRW 1+sPW 1

1/Mdgt, as

SsqW,td = esi"q2/2MdtE drWdRW F0,0
* sRW da0

*srW,RW d

3 esi/"dfH0−E08sRW d+s"qW.PW 1
2/MdgteisqW.PW 1

1/Mdta0srW,RW dF0,0sRW d.

s20d

For each value ofR, we see that we now have a standard
perturbation problem for the action of the Hamiltonian on the
electronic wave function.

It is clear from the above that it is the evolution of the
electronic state in the presence of the fast proton that must be
calculated to obtain the deficit. We choose to do the pertur-
bation calculation for the electronic propagator in the fre-
quency domain rather than directly in the time domain. Us-

ing standard projection operator methods for the the
resolvent operator for the electronic Hamiltonian, we can
show

ka0uFz− H0 + E08sRW d +
"qW . PW 1

2

M
G−1

ua0l = fz− G0szdg−1,

s21d

where

G0szd = Sn,m8 S"2qW

M
D2

ka0u
dH0/dRW 1

sEn8 − E08d
uanl

3kanuFz− sH0 − E08d/" −
"qW . P1

2

M
G−1

uaml

3kamuF dH0/dRW 1

sEm8 − E08d
G−1

ua0l. s22d

The prime on the summation in Eq.s22d indicates the that
the the ground state is omitted from both sums. Furthermore,

the perturbations"qW . P̄1
2d /M operator should be understood

as having no matrix elements with the ground state.
We will approximate the sum in Eq.s22d by keeping only

the diagonal terms. These are the leading terms in the pertur-
bation series in powers ofq. In this case, we have

G0szd = Sn8

U"2qW

M
ka0u

dH0/dRW 1

sEn8 − E08d
uanlU2

z− sEn8 − E08d/" − Gnszd
, s23d

where

Gnszd = Sm8

U"2qW

M
kanu

dH0/dRW 1

sEm8 − En8d
uamlU2

z− sEm8 − E08d/" − Gmszd
. s24d

The prime on the sum in Eq.s23d indicates that the ground
state is omitted and, in Eq.s24d, that both the ground state
and the statem=n are omitted. Equationss23d and s24d are
an approximation, which should be understood as self-
consistently defining the self-energies. We will not attempt to
calculate these. For our purposes, it is sufficient to note that
these self-energies are proportional toq2 for smallq, and can
become independent ofq for largeq.

The energies in Eq.s23d depend on the position of the
proton, which is to be averaged over in Eq.s20d. The effect
of this averaging is to produce a distribution of energies in
the resolvent expression Eq.s23d that is independent ofq and
will, therefore, be neglected in comparison to the self-energy
of the excited states. However, while formally smaller in
powers ofq, the electronic energies are large compared to
"qDp/M, and their variation can introduce a time scale com-
parable to the decay time ofSsqW ,td for moderate values ofq.
In the work of Schwartzet al.,14 it is shown that the deco-

herence factorkesi/"d(En8sRW d−E08sRW d)tl that arises from this av-
eraging has a decay time of about 5 fs for deuterium and
about half that for protons.14 Therefore, the numerical value
for G0szd can be strongly influenced by this averaging, which
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must also include, in a realistic calculation, the average over
spatial configurations of surrounding molecules. We believe
this difference in decoherence time is responsible for the
concentration dependence of the deficit in H2O-D2O mix-
tures. The shorter decoherence time produces smaller relax-
ation rates, smaller values forG0szd and, hence, larger defi-
cits. We neglect it here for simplicity only, in order to focus

on the main point, the qualitative behavior of the intensity
deficit with q, and evaluate the energies at the equilibrium
position of the proton. The electronic propagatorsresolventd
then becomes independent ofRW 1, and the momentum of the
proton is conserved by the dynamics. We find then, that the
Laplace transform of Eq.s19d is

E
0

`

dte−iztSsqW,tddt

= − i E dpWnspd3z−
"q2

2M
−

pW . qW

M
− Sn

U"2qW

M
ka0u

dH0/dRW 1

sEn8 − E08d
uanlU2

z− sEn8 − E08d/" −
"q2

2M
−

pW . qW

M
− GnSz−

"q2

2M
−

pW . qW

M
D4

−1

. s25d

We can recover the results of the previous weak coupling
analysis by ignoringGnszd in the denominator of the expres-
sion in the sum in Eq.s25d. The neutron-scattering function
SsqW ,vd in Eq. s1d is obtained by lettingz→v− ie in Eq. s25d
and taking the real part of the resultant expression. The am-
plitude of the pole at v="q2/2M +pW .qW /M is 1/f1
− u(dG0szd /dz)uz=vg, whereG0szd is the sum in Eq.s25d. This
is the same result as Eq.s12d, to lowest order inq. With the
inclusion of linewidths for the excited states, and hence line-
shifts as well, we have the possibility of this intensity deficit
saturating asq→`. What is required is that the lineshifts
become comparable to the energy differences from the
ground state for the excited states for which the matrix ele-
ments in the numerator are significant. While we cannot
show that this occurs for the values ofq in the experiments
because we cannot evaluate the electronic matrix elements,
we can show that in the limit of very strong coupling, in
which the perturbation matrix elements are comparable to or
greater than the energy level separations, such a result holds.
In Eq. s20d we can write

esi/"dfH0−E08sRW d+s"qW.pW1
2/Mdgt

< esi/"dfH0−E08sRW dgtesiqW.PW 1
2t/Mdesi/2dsqW/Md.sdH0/dRW idt

2
s26d

if we neglect higher-order terms in the Baker-Campbell-
Hausdorf formula. The last term in Eq.s26d is of orderqt2.
While this is formally of higher order than the terms kept in
the impulse approximation limit, the coefficient is deter-
mined by the forces on the proton in the excited states and is
on the scale of electronic energies. For times of the order of
the characteristic times that are actually achieved in the ex-
periments, the last phase factor in Eq.s28d is approximately

e2

2a2SqDp

M
D−1

Dp
< 9 s27d

and cannot be neglected. It has been included in the discus-
sion above. It is, nevertheless, useful to consider the very
large q limit, where this phase factor can be neglected. We
then find thatSsq,td can be written simply as

SsqW,td < esi"q2/2MdtE dRW F0
*sRW dF0SRW +

"qW1t

M
D

3 Ka0sRW dUa0SRW +
"qW1t

M
DUL . s28d

The notationqW1 in Eq. s28d indicates that it is a vector cor-
responding to a displacement of the coordinate of particle 1.
It should be noted that the electronic matrix element is inde-

pendent ofRW at t=0, and will be weakly dependent onRW for
subsequent times, while the nuclear wave function depends

strongly onRW 1. Ignoring the position dependence of the elec-
tronic overlap, we can then write the nuclear overlap integral
in the momentum representation and obtain the usual im-
pulse approximation result forSsqW ,td multipled by a time-
dependent factor. Our point here is that this factor ap-
proaches a constant in the largeq limit for times of the order
of the characteristic time. Since the time for whichSsqW ,td is
significant is sqDp/Md−1, the electronic overlap integral,
which is responsible for the intensity deficit, involves the
two states separated by a finite amounts" /Dpd or using the
uncertainty relation, by a separation comparable to the local-
ization distance of the proton in the ground state. The reduc-
tion in intensity, therefore, is independent ofq in the very
strong coupling limit and proportional toq2 in the weak cou-
pling limit. While we are not in the very strong coupling
limit, we think it plausible that the experiments are being
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done in an intermediate region, with the perturbation compa-
rable to energy level differences, and showing a weakq de-
pendence. This could lead to a variety of dependences of the
deficit on the electronic properties, as observed. While most
experiments show an increase in the deficit withq, for in-
stance, recent experiments on LaH2 and LaH3 show a slight
decrease with increasingq at largeq.15

If the intensity is transferred, then it is important to know
why it has not thus far been observed. In water, the minimum
excitation energy is about 6 eV, therefore, the intensity that
is shifted by exciting the electronic system would be on the
high-energy side of the main signal by at least that amount. It
would continue to higher energies by an amount that de-
pended on the sum of the widths of the occupied and unoc-
cupied levels involved in the transitions. Using recent calcu-
lations of Cabral do Coutoet al.,16 we find this to be on the
order of 30 eV if the dominant contribution to the sums in
Eq. s23d come from the valence and conduction band, but the
widths could be much larger if there is significant excitation
of higher and/or deeper bands. It is difficult to say where the
center of gravity of the shifted spectral density would lie, but
it is easily conceivable that it lies at energies that correspond
to transit times at Vesuvio of less than 50 ms, which is where
the data for water stop. It is also the case that because of the
collapse of the phase space for short timesswhere a large
range of momentum transfers are incorporated in a small
change in the time of flightd, the signal may be missed due to
detector saturation. The data for LaH2 and LaH3 are more
problematical, as there is a band gap of about 0.5 eV in
LaH3, while LaH2 is a metal,17 and yet there is very little
difference in the magnitude of the intensity deficit. This
could be explained by the center of gravity of the absorbtion
being at energies much higher than the gap.

A further difficulty with comparison of the theory with the

data is that there are no apparent large-scale lineshifts in the
experiments. Our theory predicts a lineshift, which is always
toward lower energies in the weak coupling limit. This is
necessary to compensate for the intensity shifted to high fre-
quencies, since the first moment of the momentum distribu-
tion is unchanged by the corrections to the Born-
Oppenheimer approximation. For weak coupling, this shift
not being observed could be accounted for by the uncertainty
in the position of the detectors. It may be that in the inter-
mediate coupling region, the intensity is more uniformly
spread out as a broad background, and therefore the shift
does not become large enough to see, again given the uncer-
tainty in the positions of the detectors.

It is evident that to give a quantitative explanation for the
intensity deficit in various materials, it is necessary to be able
to calculate the integrals over the electronic levels with some
accuracy. We have not done this, and, indeed, it is possible
that the effects we are calculating may be too small to ex-
plain the observations.18 What we have shown is that a
straightforward physical effect, the mixing of Born-
Oppenheimer levels and an increase in the linewidth of ex-
cited electronic levels when a proton of large momentum is
present—effects that must be operative at some level in any
case—have the capacity to account for the phenomenology
of the intensity deficits in neutron Compton scattering, and
we have provided a framework in which to accurately calcu-
late these effects.
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