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Several neutron Compton scattering experiments reveal an apparent drop of the proton cross section when
the collision timetq is around 1 fs. Such smalltq corresponds to a large energy spread of the proton wave
packet after collision, allowing it to access excited electronic levels. This nonadiabatic excitation of electrons
leads to a distortion of the shape of the neutron scattering response function with some redistribution of
intensity at energies higher than the nuclear recoil energy and a slight shift of the main neutron intensity peak
to lower energies.
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I. INTRODUCTION

Several recent experiments have reported anomalies seen
in neutron Compton scatteringsNCSd from protons in many
different materials.1–7 The observed anomaly is a large short-
fall in the number of scattered neutronssup to 40%d around
the proton recoil peak at very high energy and momentum
transfers. This is a region where the impulse approximation
sIA d is expected to be almost exact.8,9 Departures from it10–12

should be very small and certainly not responsible for the
reduction of the intensity. Similar experiments with the pro-
ton replaced by a deuteron showed little or no anomaly, sug-
gesting a quantum-mechanical effect. Coherence effects
between the struck proton and neighboring exchange-
correlated protons were thought responsible for the
effect.13–15 A different interpetation involved entanglement
with the environment in the neighborhood of the struck
proton.1,16 A common feature of the experimental evidence
was that the reduction of the cross section appeared only
when a characteristic timetq associated with the scattering
event9 was short, between 10−15–10−16 s. In Fig. 1 the data
points, taken from Refs. 3 and 4, show the relative proton to
metal cross sections for the metal hydrides NbH and PdH, as
a function oftq. In the IA, tq is defined for fixed transferred
momentumq, as the inverse of the root-mean-square spread
of the transfered energy"v from the neutron to the nucleus

"/tq 8 Îk"2v2lS− k"vlS
2, s1d

where k lS denotes the average over transfered energy for
fixed q, using the scattering response functionSsq ,vd as the
probability distribution:k"nvnlS="edv"nvnSsq ,vd, n=1,2.
The scattering function is given by

Ssq,vd =E dk ufskdu2dS"v −
"2q2

2M
−

"2q ·k

M
D , s2d

whereM is the nuclear mass andfskd is the Fourier trans-
form of the initial nuclear wave function before collision
XsRd, fskd=1/Î8p3edR exps−ik ·RdXsRd. The scattering
time was obtained17,9

tq =
M

"qÎkkq
2lf

, s3d

wherekq is the projection ofk alongq and the expectation
value k lf is over the momentum distributionkkq

2lf

=edkkq
2ufskdu2. If the nucleus lies initially in an isotropic

potential, thenkkq
2lf=s1/3dkk2lf.

The timetq gives a statistical measure of the length of the
time interval during which the collision may occur, in the
same way that the spatial extent of a particle wave function
gives a statistical measure of the extent of the region in
which the particle may be found.

In the interpretations,tq was seen as the collision dura-
tion, which had to be small because otherwise decoherence
effects would set in and destroy the coherence responsible
for the apparent reduction of the cross section. Interestingly,
Chatzidimitriou-Dreismann and coworkers remarked7 that
for very short tq, the time-scale separation between elec-
tronic and protonic motions is not well defined and hence the
concept of electronic Born-OppenheimersBOd surfaces is
not applicable.

Recently, the correctness of the interpretations was
disputed18–21 and even the validity of the analysis of the
experiment data18,22–24was questioned. In addition, indepen-
dent neutron transmission measurements of the proton cross
section with equally energetic neutrons showed no departure
of the cross section from its expected value.23 These mea-
surements are very difficult to explain with the existing in-
terpretations and apparently challenge the NCS experiments.
We will present an explanation that is consistent with all the
seemingly contradictory experimental evidence.

II. ELECTRONIC EXCITATION IN A
NEUTRON-NUCLEAR COLLISION

The value oftq gives us an estimate of the energy scale
involved. Whentq becomes very short,,10−16 s, we obtain
" /tq,6.5 eV, which is of the order of the separation of the
electronic levels. Fortq larger," /tq is less than typical elec-
tronic energies. Although it remains to be seen why" /tq is a
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relevant energy to the problem, this hints that electronic ex-
citations may be responsible for the anomaly.

The excitation of electronic levels in a neutron-nuclear
sNNd collision cannot be described in the BO or adiabatic
approximationsin this work we treat the two approximations
as oned. In the adiabatic approximation, the nuclear motion,
rapid or slow, is decoupled from the electronic system. So,
when the neutron imparts momentumq to the nucleus, the
motion of the nucleus is always on the same potential surface
without affecting the electrons.

More technically, the wave functions for the electron-
nuclear system have the product formc j ,RXj ,nsRd, where
c j ,R, is an electronic state corresponding to thej th BO level
with energye jsRd, R is the nuclear space coordinateswe
focus on a single nucleus, incoherent scatteringd, andXj ,nsRd
is the n nuclear eigenfunction on thej th potential surface.
Fermi’s pseudopotential operator for a NN collision that re-

sults in momentum transferq to the nucleus isV̂q= b̂eiq·R,

where b̂ is the scattering length operator acting on spin de-
grees of freedom.8 The amplitude to excite electron-nuclear
level cn,RXn,msRd starting fromc j ,RXj ,nsRd is proportional to

E dRXn,m
* sRdkcn,Rueiq·Ruc j ,RlXj ,nsRd. s4d

The amplitude vanishes forj Þn, sincekcn,R uc j ,Rl=dn,j for
all R.

However, it is indeed possible to excite electrons in a NN
collision as Lovesey and co-workers25 and Reiter and
Platzman26 suggest. Actually, the idea dates back to 1939,
when Migdal investigated what happens when an atom in its
ground state receives an impulse that increases its velocity
by v, in the limit that the impulse duration is very short
compared with the electron period and witha/v, wherea is
the dimension of the atom. The problem is discussed as a
worked example in Ref. 27. For a hydrogen atom, the prob-
ability the electron remains in its ground state is

F1 +
m2a0

2q2

sMp + md2G−4

, s5d

wherea0 is Bohr’s radius andq=sMp+mdv is the momen-
tum transferred to the atom, andMp andm are the proton and
electron masses, respectively. Using a typical large value for
the recoil energy from the recent experiments"2q2/ s2Mpd
=100 eV, we find that the probability is 98.5%.

Clearly an excitation of a few percent of the electrons is
not sufficient to explain the large shortfall observed in the
experiments. The example is enlightening for another reason.
It shows that, at least in the case of the atom, even though the
nucleus has kinetic energy an order-of-magnitude larger than
the separation of the electronic levelssfor q values similar to
the experimentald, it still moves almost adiabatically carrying
along its electrons. So, just the fact that the nuclear kinetic
energy is much larger than the electronic gap is not sufficient
to cause significant nonadiabatic electronic excitation.

In general, the nonadiabatic coupling between electronic
levels j , n, depends on the matrix elementskcn,R u¹Rc j ,Rl
and kcn,R u¹R

2 c j ,Rl. The latter can be ignored as they play a
role only when the electronic levels come close together.
Obviously, to assess whether the nonadiabatic electronic ex-
citation explains the anomaly, we need an estimate of the
order of magnitude of the effect. Unfortunately, the nonadia-
batic coupling matrix elements are not easy to calculate and
the main goal of this work is to understand the underlying
mechanism, why the BO separation may break down. This
will allow us to estimate quantitatively the magnitude of the
effect.

Conventionally, the BO approximation fails when two
electronic levels cross, or come very close together, in a
region where the nuclear wave function is nonzero. The typi-
cal scenario for the breakdown is that the nuclear wave func-
tion in that region accesses more than one electronic level
and then the total wave function is not separable as an adia-
batic product. Here, we are considering a different case
where the electronic levels are not close. We will see, how-

FIG. 1. Squares show relative proton cross-
sectional reduction vstq for PdH sfull d and NbH
sopend, taken from Ref. 3. Line gives the prob-
ability that electrons remain in their ground state

for a two-level system withĒ=5 eV.
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ever, that after a NN collision of sufficiently highq, a similar
mixing happens and the nuclear wave packet after collision
accesses many electronic levels.

A. Mechanism for the breakdown of the Born-Oppenheimer
scheme in a neutron-nuclear collision

It is timely to revisit time-dependentsTDd perturbation
theory at this point. Initially, the space part of the nuclear
wave function is in its vibrational ground state described by
XsRd with energyE. We include both nuclear and neutron
spins in spin stateusil and the energy of the incoming neutron

is E0. We haveĤXsRdusil=sE+E0dXsRdusil, whereĤ is the
unperturbed Hamiltonian of the combined NN system. When

Fermi’s pseudopotential interactionV̂q is switched on for
time t, the wave function in first order becomes expf−isE
+E0dt /"g XsRdusil+exps−iĤt /"duCq,vsR ,tdl, with

uCq,vsR,tdl =E
0

t

dt8eisĤt8/"dV̂qe−isĤt8/"dXsRdusil. s6d

We find thatuCq,vsR ,tdl can be written as a product of a NN

spin stateosuslksub̂usil and a spatial function

Cq,vsR,td = o
k8

Xk8sRd E dR8Xk8
* sR8deiq·R8XsR8d

3
sinfs"v + E − Ek8dt/2"g

s"v + E − Ek8d/2"
, s7d

where we sum over a complete set of NN spin statesusl and
nuclear eigenfunctionsXk8 with energiesEk8, "v is the dif-
ference"v=E0−E1, and E1 is the energy of the outgoing
neutron. When q is very large, the matrix element
edR8Xk8

* sR8deiq·R8XsR8d is appreciable only whenXk8 is a
continuum state with momentumk8 comparable in magni-
tude toq. So,Cq,vsR ,td is a wave packet composed of plane
waves with a distribution of momenta aroundq and moving
with the recoil velocity. By Fermi’s golden rule, the probabil-
ity of transition from stateXsRd to the plane wave state
Xk8sRd=expsik8 ·Rd /ÎV is proportional to

UE dR8Xk8
* sR8deiq·R8XsR8dU2

ds"v + E − Ek8d. s8d

Setting k8=q+k, we find edR8Xk8
* sR8deiq·R8XsR8d

=Î8p3/Vfskd. From Eqs. s7d and s8d the norm
edRuCq,vsRdu2 is proportional toSsq ,vd.

Using the wave packetCq,v, we can calculate expectation
values of nuclear operators. For thenth power of the nuclear

Hamiltonianĥ, we have

kĥnlCq,v
=
E dRCq,v

* sRdĥnCq,vsRd

E dR8uCq,vsR8du2

=
ok8

sEk8d
nzkXk8ue

iq·R8uXlz2ds"v + E − Ek8d

Ssq,vd
.

s9d

The integral on the right-hand side of

kĥnlC̄q
8 "E dvkĥnlCq,v

Ssq,vd s10d

is the average over"v of the expectation valuekĥnlCq,v
. The

double average can be interpreted rather loosely as the ex-

pectation value ofĥn in terms of an averagesover "vd wave

packetC̄q. We have denoted the double average bykĥnlC̄q
.

With a little effort, we obtain froms9d the theorem

kĥnlC̄q
= "E dvs"v + EdnSsq,vd. s11d

A corollary of s11d is that the root-mean-square variance

DEC̄q
8 Îkĥ2lC̄q

− kĥl
C̄q

2 s12d

of the double distributionsi.e., of the average wave packet

C̄qd is equal to the root-mean-square variance" /tq of the
distributionSsq ,vd for fixed q

DEC̄q
=

"

tq
. s13d

Froms3d we have that the energy spread of the average wave

packetC̄q is proportional to the square root of the recoil

energyÎ"2q2/ s2Md times the square root of the initial ki-
netic energysisotropic potentiald Î"2kk2lf / s2Md. We may
write

DEC̄q
= Î4

3EqEv, s14d

where Eq is the nuclear recoil energy andEv the initial
nuclear vibrational kinetic energy. Now, the mechanism for
the breakdown of the BO approximation in a NN collision is
obvious. Whenq is low, the average energy uncertainty of
the recoil nucleus is small and the adiabatic separation of the
nuclear and electronic motions is valid. Whenq increases,
the spread of the recoil wave packet becomes large enough
that the struck nucleus samples more than one electronic
level. This signals the departure from the BO picture, where
nuclei and electrons can be treated separately. The effect is
stronger the higher the initial vibrational energyEv of the
nuclei. So, the nonadiabatic excitation of electrons will be
much stronger in molecules and solids than what it is in
atoms.
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B. Model to estimate magnitude of electronic excitation

To model the nonadiabatic electronic excitation we say
that only two electronic levels can be involved. We denote by
aq and bq the amplitudes that electrons, originally in their
ground state, will remain in the ground state or will be ex-
cited by the NN collision. We haveuaqu2+ ubqu2=1. Our re-

sults will be valid for smallDEC̄q
/ Ē, with Ē the mean-

energy separation of the electronic levels. WhenDEC̄q
becomes large, more than two electronic states will be ac-
cessed. We know from the previous discussion that the wave
packet energy spreadDEC̄q

couples the electronic levels. To
proceed, we model this coupling with that present in a 2

32 real matrix with diagonal elements separated byĒ and
off-diagonal elementDEC̄q

, obtaining the eigenvalue equa-
tion

S 0 DEC̄q

DEC̄q Ē
DSaq

bq
D = lqSaq

bq
D . s15d

We expand the eigenvalues and eigenvectors in powers of

DEC̄q
/ Ē and ignore terms higher than second order

lq = −
DE

C̄q

2

Ē
, s16d

lq8 = Ē +
DE

C̄q

2

Ē
, s17d

uaqu2 = 1 −
DE

C̄q

2

Ē2
, s18d

ubqu2 =
DE

C̄q

2

Ē2
. s19d

uaqu2 is the probability that electrons are not excited. For an

isotropic potentialuaqu2=1−"4q2kk2lf / s3M2Ē2d.
We can compare the prediction of our model with the

analytic result for the hydrogen atom. From Eq.s5d, the
probability the electron remains in its ground state, for lowq,
is

1 − 4
m2a0

2q2

sMp + md2 . s20d

For the hydrogen atom the energy levels areEn=−"2sMp

+md / s2Mpma0
2n2d. So, Ē=3"2sMp+md / s8Mpma0

2d and
kk2lf=1/a0

2. Therefore for our model, the probability that the
electron is not excited is

1 − 2.37
m2a0

2q2

sMp + md2 , s21d

the same as the exact results20d within a numerical constant
of order 2.

III. EXPLANATION OF APPARENT ANOMALY

This gives us confidence to proceed. After some algebraic
manipulations, the response function for scattering of a neu-
tron off a nucleus in the limit of highq, allowing for nona-
diabatic excitation of electrons becomes

Ssq,vd = uaqu2S1sq,vd + ubqu2S2sq,vd, s22d

where S1,2sq ,vd are scattering functionss2d centered at

"2q2/ s2Md−DE
C̄q

2
/ Ē and"2q2/ s2Md+Ē+DE

C̄q

2
/ Ē. For high

q, the scattering function splits into two distributions,

S1sq ,vd smaind and S2sq ,vd ssecondaryd, separated byĒ

+2DEq
2 / Ē. In the experiments, it is possible that neutrons

scattered near the secondary peak have been missed, since
one does not expect to find intensity at energies higher than
the proton recoil peak. In a realistic system with many neigh-
boring excited electronic levels available, the original distri-
bution will actually split in the main peak and a series of
weaker secondary peaks that will be hard or even impossible
to observe. The apparent cross-sectional shortfall probably

corresponds to the weight of the secondary peakDE
C̄q

2
/ Ē2.

Writing DEC̄q
=" /tq fEq. s13dg, we compare in Fig. 1 the

plot of the weight of the main peakuastqdu2=1−"2/ stq
2Ē2d

against the plot of the relative proton to metal cross section

for NbH and PdH. We usedĒ=5 eV. The lineuastqdu2 is

meaningfulssolidd for small" / stqĒd. The density of states of
both PdH and NbH show pronounced peaks on either side of
the Fermi energy separated by about 5 eV and about 4 eV,
respectivelysRefs. 28 and 29d.

The first-moment sum rule8 is obeyed in second order,
Eq8"2edvvSsq ,vd="2q2/2M, as expected. The main peak

in s22d is shifted to a lower energy byDE
C̄q

2
/ Ē

=4/3EqEv / Ē sisotropic potentiald. The shift is a consequence
of the requirement of the first-moment sum rule that the av-
erage energy remains at the recoil energy, while at the same
time some intensity appears at much higher energies. Cowley
writes that since a significant shift of the main peak has not
been observed experimentally, especially when the shortfall
is large, the nonadiabatic excitation of electrons probably
cannot account for the anomaly.21 To investigate whether the
predicted shift can be observed, we must estimate the differ-
ence in the scattering angleu that corresponds to the peak
shift. In terms ofu, the proton recoil energy is given by

Eq =
"2q1

2 tan2 u

2Mp
, s23d

whereq1 is the momentum of the scattered neutron.4 Invert-
ing s23d we may express the scattering angle in terms of the
proton recoil energy

u = arctanSÎ2MpEq

"q1
D . s24d

A small change in the recoil energydEq amounts to a change
in the scattering angle by
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du =
sin 2u

4Eq
dEq. s25d

SettingdEq equal to the shift, we obtain that the change in
the scattering angle, due to the shift, is

dushift =
Ev

3Ē
sin 2u. s26d

The maximum change in the angle occurs atu=45°, when
the transfered energy is rather lowsdushift

max,0.6° for NbH and
,0.4° for PdHd. For example, in NbH and PdH, the shortfall
becomes obvious for angles greater than 55°–60°.4 At the
same time, atu=45°, the peak shift due to conventional final
state effects is significant and comparable in magnitude to
the new shift.30 For large scattering angles, even though this
new shift grows, the corresponding change in the angle is
damped and the shift could not have been observed easily as
the angle was determined within,0.2°.31 Obviously, to ob-
serve the shift, the error in determining the scattering angle
should be much less thandushift. In the experiments, I believe
these shifts, which were not anticipated, would have been
confused with shifts due to conventional final state effects.

Looking at the mass dependence ofuaqu2, one understands
why for similar wave vector transfers the proton cross sec-
tion appears reduced and the deuteron cross section unaf-

fected. For deuterons, it would require about twice the mo-
mentum transfer needed for protons to see a similar cross-
sectional reductionsour two-level model indicates that the
ratio of the momentum transfers is 23/4.1.7d. Unpublished
data on hydrated and deuterated yttrium, YH3 and YD3,
agree with the prediction.

Our theory does not account for all experimental evidence
in its present form. NCS experiments, in a class of systems,
reveals that the drop of the proton cross section depends on
the relative concentration of protons to deuterons.1 Work is
in progress to explain these experiments in terms of a more
sophisticated theory of nonadiabatic electronic excitations.
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