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We present a formalism to obtain momentum distributions in condensed matter from neutron Compton
profiles measured by the deep inelastic neutron scattering technique. The formalism describes exactly the
neutron Compton profiles as an integral in the momentum variatfs a result we obtain a Volterra equation
of the first kind that relates the experimentally measured magnitude with the momentum distributions of the
nuclei in the sample. The integration kernel is related with the incident neutron spectrum, the total cross section
of the filter analyzer, and the detectors efficiency function. A comparison of the present formalism with the
customarily employed approximation based on a convolution of the momentum distribution with a resolution
function is presented. We describe the inaccuracies that the use of this approximation produces, and propose a
data treatment procedure based on the present formalism.
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[. INTRODUCTION function, making use of the variable which is the projec-
tion of the initial impulse of the target nuclei over the direc-
During the past decades there has been a growing interegbdn of the momentum transfer vectqr through a process
in the experimental determination of momentum distribu-known asy scaling**’
tions of different particles in a wide variety of systems, the On the other hand, the reactor based techniques for the
experiments based on deep-inelastic scattering techniqueseasurement of atomic momentum distributi¢developed
being of principal importance. Thus the Compton scatterindoefore DINS have employed triple-axis crystal spectrom-
of x rays, gamma rays, and electrons has for a long time beesters, magnetically pulsed beams, or rotating crystal and
used to obtain the electron momentum distribution in conchopper time-of-flight spectrometet§ince these techniques
densed matter, the momentum distributions of nucleons iemploy neutrons with incident energies restricted to the ther-
nuclei have been determined by inelastic scattering of highmal range, they do not satisfy the 1A and therefore sophisti-
energy protons and electrons, and the deep inelastic scatteated corrections by FSE become essential before the mo-
ing of electrons, muons and neutrinos was essential for esnentum distribution can be obtained. The advent of high
tablishing the quark model of the nucledrs. epithermal neutron fluxes available from intense pulsed spal-
The experimental determination of atomic momentumlation sources placed the DINS technigue as the most suit-
distribution in condensed matter making use of different neuable one for the study of momentum distributions of nuclei
tron techniques has experienced a considerable evolution wwnstituting the condensed matter.
to the present times. An historical review of these neutron A common practice in the data treatment of the DINS
experimental techniques has been presented in Ref. 3. Notexperiments is to employ a convolution approximation
bly, the deep inelastic neutron scatterifigINS) technique, (CA),218%where it is assumed that the observed spectrum in
proposed by Hohenberg and Platznfanaearly 40 years ago the time-of-flight scale can be expressed as a convolution in
for the study of the Bose condensation in superfitlite,  the variabley of the momentum distribution, with a mass-
attained a considerable experimental development. The techependentad hoc resolution function devised to take into
nique proved to be remarkably adequate to explore the maaccount the experimental uncertainties along with the reso-
mentum distributions of the nuclei in condensed m&fer, nant filter energy width. However, the accuracy of this pro-
and its development continues nowad&§dt being a tech-  cedure has been questioned by us in previous papétFhe
nigue based on large momentum and energy transfers, tteeiticisms rested on the fact that the expression of the CA is
interpretation of the recorded spectra is based on the validityiot directly deducible from the exact one. When we tested it
of the impulse approximatiofiA), where it is assumed that against the exact expression we observed inaccurate results
the target particle recoils freely after the collision with the for the peak positions, areas and shapes of the observed pro-
incident particlé’, assuming that the binding energy of the files, and the effects were more noticeable when treating
target nuclei is negligible compared with the energy transilight nuclei. As a consequence, a noteworthy result of DINS
ferred by the neutron to the target nud&il® The justifica- reported on HO/D,O mixtures?? that reported to have
tion of the validity of the IA in DINS experiments can be found an anomalous behavior in the neutron cross sections,
found in Refs. 11 and 12, while the deviations either due tovas critically analyzed from the point of view of the accu-
final-state effects(FSB),%3-16 or to initial-state effecd  racy of the CA. A careful analysis lead us to concRfdé
(ISE) were extensively treated. The IA allows a direct rela-that the inaccuracies committed in the CA produce anomalies
tion of the scattering law with the momentum distribution in the same sense as reported. Later measurements per-
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formed by transmission on J&/D,0 mixtureg® showed no The measured magnitudé&nown as neutron Compton
traces of anomalous neutron cross sections. Furthermore, gmofile (NCP)] is the difference count ratgfilter out” minus
the theoretical side, recent publications cast doubts on th#ilter in”) as a function ot, which for a pointlike sample
existence of anomalous phenoméfh& The controversial can be expressed®s

situation increases the need to revise the procedures on

which the CA is based. _\8/m Jﬂc 3
: . o _ _ c(t) = AQ dEE¥?D(Ey) o(Ey,E, H)e(E
Besides the mentioned limitations, there is another impor- ® Ly Eo inf R (Eo)o(Eo.E,0)e(B)
tant unsatisfactory feature of the CA, that will be treated in t=const

the present paper: in the CA only a single final energy cor- X[1 - e "orE)] (1)
responding to the peak of the resonant filter is considered € '

when the transformation from time-of-flight to tlyescale is ~ whereo(Ey, E, 6) is the sample double-differential cross sec-
performed. However, as was remarked in a recent and@ysis.tion, &(E) the detector efficiency and() the solid angle

the final energies of the scattered neutrons are not restrictegiptended by the detector. The term between brackets is the
to a narrow resonant-filter line width, but to a broader energyabsorption probability of the resonant filter, characterized by
distribution determined by the kinematics, the dynamics angy number density, a thicknessT and a total cross section
the full total cross section of the filter. The contributions of ;_(E). As indicated, the integral in Eq1) must be calcu-

detected neutrons with final energies outside the main res@sted at a constant time-of-flightt given by the kinematic
nance peak cannot be neglected and in some cases becomgdition

dominant.
The motivation of this paper is to expose the details of the _ m[{ Ly Ly
exact treatment that must be performed on the DINS experi- t= 2 \_EO * \_E ’ (2)

mental data, in view of the inconveniences that stem from
the mentioned weakness of the CA. We reformulate the basieherem is the neutron mass. The lower limit of integration
equations that describe the neutron Compton profiles starting ¢ iS determined from the kinematic condition that in the
from the exact expressions as was previously tre#téd.a  second flight path the neutron has infinite velocity. Its value
result, explicit integrals in the variable are obtained. The is
passage from the time-of-flight varialtiéo y is presented in 9
its exact form, and the final expression results in a Volterra Eoinf= T(B)) ) (3)
equation of the first kind, which can be solved for the mo- 2\t
mentum distribution)(y). The results of the present formal-
ism, which is essentially exact, are compared with those pro-
duced by the CA. We stress on the imperfections that it ho=Ey—-E (4)
generates and how those problems are solved by employi
the present formalism. The expressions we present are am
nable for the use of the experimentalists, and we recommend
them to replace the currently employed formalism in the data
analysis of DINS experiments. the modulus of the transferred impulse. The DINS technique
was developed on the theoretical basis of the IA, in which
Il. THEORETICAL BACKGROUND the scattering lavifor a monatomic samplecan be writtef’

As usual, let

e the energy transferred by the neutron to the sample, and

fiq= V/Zm(EO +E- 2v’§E cos6) (5)

A. Preliminary considerations

M
, : : _ S(a, @) = —J(egy), (6)

In this section we will present a brief summary of the hq
basic equations that will be employed throughout this papejhere e, is the unit vector along the direction af The

for describing the observed .spectra in DINS experiments?vari(,mey is the projection of the impulse of the nucleus of
For a more complete theoretical development, the reader i$,5355M on e, and can be expressed as

referred to Ref. 20. We will restrict our analysis to a standard

inverse-geometry DINS experimental setn which inci- M h2?
dent neutrons with enerdy, [characterized by the spectrum y= ﬁ_q “T5oM )
d(Ep)] travel along a distanck, from the pulsed source to

the sample. Scattered neutrons at an amgied a final en-  J(€g,Y)dy is defined as the probability that a nucleus has a
ergy E travel along a distance; up to the detector position. momentum component along the directionegfwith values

A movable filter with a neutron absorption resonance in thebetweeny andy+dy. The distributionJ(ey,y) must be sym-
eV-energy region is placed in the scattered neutron path, smetric aroundy=0 if a moment in a given direction of the
consecutive “filter in” and “filter out” measurements are per-space is equally probable than in its opposite. For an isotro-
formed. The spectra are recorded as a function of the totalic samplel(ey,y) does not depend on the direction given by
time of flight t. Throughout this paper, we will explicitly €, and thenJ(e;,y)dy=J(y)dy is the probability that a
omit the description of experimental uncertainties due to genucleus of the sample has component of momentum between
ometry, time of flight or multiple scattering. For an accounty and y+dy along any direction in the space. So, the dy-
on these effects the reader is referred to Refs. 19 and 28. namic structure factor is reduced to

()
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M since it is the natural variable of the impulse distribution
S(q,0) = h_qJ(y)' (8 J(y). In this section we will deduce such exact expression
that keepsy as the integration variable. To this end, we will
Then, for an isotropic sample composed of different nucleichange the integration variable frdgg toy in Eq. (1). In the

Ny being the number of nuclei of mass and bound scat- first step we rewrite Eq(7) in terms ofE, E, and 6 as
tering lengthb,,, the double differential cross section is

m — —
1 E 2 M(EO—E——(EO+E—2\EOECOS¢9))
AE2E.0)= 1o\ 2 NbiMI), O = —— M _ K
0 M V2m(E, + E - 2VE,E cos6)

where the sum is extended over all the masses corresponding
to the different specie6n non equivalent positiongresent
in the sample.

At a given time of flightt, E; and E are linked through

Eq. (2). Therefore, at a scattering anglgyy, is a function of

E, andt. On the other hand, it must be noticed tkgtcan be

a multivaluated function ofy,. There is a substantial differ-

B. Convolution approximation ence between this definition gf, and that employed in the
The usually employed convolution approximation is ex-CA (Sec. I B), calledyy. In the present definitioryy is a

pressed bif function of E, for each considered time of flight, while in the
former definitionyy takes one value for eadh

Coond®) = 2 EvOInTr) © RuGm) . (10) To proceed with the variable change, we first study the

M limits of integration in the variablg. WhenEy— Eg js [de-

fined in Eq.(3)], y— —c° regardless the mass of the scattering
nuclei. WhenEy— +«, it can be readily shown that

d [E;1 .
gm(t) = NMbﬁllM (I)(Eo)d_EtOS(El)AQAEl E_la:| y + 0 |f M > m,
0

) - if M<m,
(11) lim yy= (14)

Eg—+» 1 .

whereE, is fixed, defined by the energy of the main absorp- ¢ peconst m~cos6 it M=m.

tion peak in the filter total cross section. The sum has the

same meaning as in E¢P), and a resolution functioR(Y) In Sec. IV A we will present a detailed study of the behavior
is introduced as a way to contain the geometric uncertaintiesf yy.

as well as the filter resonance width. It is worth emphasizing The sought variable change in Ed) involves the Jaco-
that in Eq.(10) the relation between the varialjg andtis  bian (calculated in Appendix A

made through Ed.7), whereq andw are calculated also with

with

the samekE; fixed, andE, compatible with the time-of-flight ﬂ _ 1n(M_ﬁw .\ 1) {1 B E<E>3/2+ (EJE

relation (2). Also, it must be noticed that the term between dEy |y g\ A%® 2 L \Eg L, Ey

square brackets in Eq11) is independent of the sample -

characteristics. - \/E>cosa} + M{l + I;(E) ] (15)
It is important to notice that the resolution function in the Eo hq Li\Eg

CA framework is deducible from Eq10) and Eq.(1) con- . . .
sidering a sample represented by an ideal gas in the limit of® Perform the variable change frof to y in the integral

T—0 K. In this case] and® of Eqg. (1), it is necessary to know the intervals where the
- M) = 8w) functiony(Ep) is monotonous. Therefore we must obtain the
c(t)1=0 E, values(and its corresponding values where
Ru(m) = ———- (12
& dy
When geometric uncertainties are considered, they also con- Eo t0_ 0. (16)

tribute to the width oRy,, but as we have already mentioned, o )

this case will not be analyzed in the present paper. It is worth Defining the variables

commenting that in common practice E@.2) is not em-

ployed, but instead a fitted Lorentzidfor gold filters or X= \/E

Gaussian function(for uranium) in the variabley are 0

employed®® (17)

Ill. FORMULATION OF THE EXACT EXPRESSION Ly

As it was commented, Eq10) cannot be deduced from (where the positive value of the square root is taken in the
the exact expressiofi) and therefore its application cannot definition ofx), Eq.(16) can be reduced to a fifth-order poly-
be fully justified. On the other hand, an expression whereomial inx, with real coefficients. The sought values Ef
[like in Eq.(10)] they variable appears explicitly is desirable are obtained from the roots of
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5
>ax =0, (18
i=0
where
a=m-M,
a; = 3(M —m)cos,
a,=m-3M +(m+M){ cosf+2mcos 6, (19

az= (M —m)cosf - (3M + m)¢ — 2m¢ cog 6,
a, = 3¢(m+ M)cos¥,

as=—{(m+M).

Therefore, Eq(18) has at most five real roots and at least

PHYSICAL REVIEW B 71, 054105(2005

cu(t) = f_w dymfm(ym, ) Im(ym) (24

t=const

and fy(ym,t) is the sum on the different branchés=j
<Ng+1)) of f},(ym.,t).

Equations(21) and(22) are the central expressions of the
present paper, which are exact expressions, since they were
derived directly from Eqg.(1) without any approximation.
Equation (21) is a \olterra equation of the first kind. To
obtainJ(y) from it, it is possible to resort to numerical meth-
ods. Alternatively, if the function that describely) is
known beforehandor a plausible form is assumed foy, it
will be possible to obtain it from a fitting procedure. In this
last case it will not be necessary to change the integration
variable toy. In the case where the sample and/or detector
dimensions are not negligible, Eq20)—(24) must be inte-
grated also over the geometric dimensions.

As it was already mentioned, the definition pf;, em-

one, and only the positive values have physical senseNket Ployed in Egs.(20-24) differs from that employed in the

be the number of such root8<Ng=5), whose values will
be labeledx;, and correspondinglf} andyy ; the roots in

CA. It is worth noticing that while in the CA the resolution
function is the same for every[centered iryy,(t)], in the

the E, and y scales, respectively. Now we can proceed toPresent formalismfy(yy,t) depends explicitly on. It must

change the integration variable froky to y in Eq. (1). To
this end, the integration range has to be partitionedNin
+1 intervals(E}*, E)), where the functiotyy(E,) is monoto-
nous, which we will identify as “branch” [where Eg
=Ey inf given in EqQ.(3) and EjR*1= +]. The result is

f— N +l .
\8/m R (M dE, |} E
c="""a03 3 dyw 20| (g | =
L Moj=1 Jymja dym |1 Eo
t=const
1
><[1—e—”TUF<E>]s(E)E3’2ﬁ—qNMb§AMJM(yM), (20)

where the superscript in dEy/dyy indicates the branch
where it must be evaluategly o=—= andyM,NRﬂ is defined
in Eq. (14). Thus the NCP results

Ng+1 Y ‘
c)=> > dymfha(ym, DImyw),  (21)
M j=1 Y Ymj-1
t=const
where the function
/_ .
- V8/m 1 dg; |! E
£l (yu,t) = AQ—NybZM —| ®(Ex)\/—
MM Ly g M dywle o O VEo
X[1-e"TorB®]g(E)E3? (22)

is defined in the intervalyy j-1,Yw ), and is zero outside
such range.

Finally, for a sample containintyly, atoms of mas# in
nonequivalent positions, the NCP can be expressed as

c(t) = > ou(b), (23)
M

where

be remarked that if the CA framework were exact, H3§)
and(21) would produce the same NCP, for an arbitrafy).
Thus, from a direct comparison between E@) and (10)

the following relation between the exact expression of
fu(ym,t) and the resolution function would be verified

EORu(YMM) —y) =fu(y,1), (25
where & (t) is defined in Eq.(11). However, the usually
employedRy,(yy) does not verify expressioi25), as will be
examined in the next section.

IV. DISCUSSION

In this section we will analyze different aspects of the
formalism we are presenting, with special emphasis on the
differences between the exact results and those obtained in
the CA framework. We will focus our attention on scattering
on H, D, and®He, since as we will show, they are the most
sensitive cases in normal experimental conditions. We will
assume throughout detectors of ideal efficieati)=1. An
incident neutron spectrum described B(Eq)=E,%°, and
flight lengthsLy=1105.5 cm and.;=69 cm (so {=16.0223
will be chosen to match the layout of the DINS facility at the
Rutherford Appleton LaboratofyThe filter will be repre-
sented with a gold foil ohT=4X 107 barri! and its total
cross section will be described from the data compiled in
Ref. 27.

We will divide our discussion in three different aspects of
our formalism. The first will be devoted to a close examina-
tion of the behavior of the variablg We will establish the
relationship betweew in the exact formalism and in the CA
framework. In the second part we will analyze the behavior
of the kernelfy(y,t) and we will compare it with the reso-
lution function employed in the CA. In the third part we will
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20 T T T T T T
H
1.5 4 4
FIG. 1. (Color online Neutron
Compton profiles of hydrogen and
10 ) ] deuterium at a scattering angle of

#=70° calculated considering as

flight paths Lp=1105.5 cm and

L;=69 cm, assuming a gold foil

! | analyzer of nT=410°b™* and

0.5 D . effective temperatures of 115.22
1 and 80.11 meV, respectively.

c(t) (arb. units)

0.0 . . . ; . ;
0 100 200 300 400

t (us)

analyze the consequence of our analysis in a specific casier at the limits commented in Eq14) are observed. In the
The starting result over which we will base the subsequensame figure we show the behavior Y, according to the
discussions are the NCPs of hydrogen, deuteriiBacs. conditions normally employed in the CA framewo(8ec.
IVA and IV B and *He (Sec. IV O as calculated from Eq. |1 B). The differences between both ways to defjnie evi-
(2). dent: while in the exact formalism there is a whole range of
The study of H and D will be based on ideal gasespossible values of at each time of fligh(which is a func-
of effective temperatures of 115.22 and 80.11 meV, reyjon of Ey), in the CA there is only one value gfdefined at
§pegtlvely, as described in Ref. 20. Their NCPs are showp,cht \We observe the curvegEy) in the exact formalism
in Fig. 1. intersects the one of the CA in two points. However at each
) time of flight there is only one value of defined in the CA
A. Study of the variable yy framework. Thus, only one of those two points over the exact
We will begin our discussion by examining the behaviory curve has a final energy corresponding to that of the filter
of theyy, variable as a function of the time of flight. In Fig. (4.906 eV}, while the other has the same valueyoénd E,
2 we show its behavior according to E@3) as a function of  but a differente. At 85.22 usec, both points coincide so the
the incident neutron enerdy, at different times of flight, for curves are tangent. At times of flight greater than
the case of hydrogefM/m=0.99862 at #=70°. The behav- 85.22 usec, this property is found in the intersection of the

15 T —TTTTTTT T T
1 —=—50ps
—0—74.91 us
] —8522ps i ]
10 100 ps " .
1 ———150ps : ] FIG. 2. (Color onling The im-
—*—200 ps A, pulsey as a function of the inci-
| —©—250ps ] : dent energyE, for A=0.99862.
<~ 54 ——300pus . | 3 The exact calculations according
< —%— 500 ps / . to Eq. (13 at the indicated times
>~ 1 ------ E=4.906 eV . R LR, of flight are compared with the
b 00055 22 990994 calculation performed by assum-
0 ; ing the final energy fixed at
] [ * ,’f | ] 4.906 eV, which is the variabfg
] / / 17 ] employed in the CA framework.
1 10 100 1000
E, (eV)
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FIG. 3. (Color online (a) The
full thick lines indicate the
constanty curves for hydrogen at
0=70° and ¢=16.022.y values
are indicated in AL In dotted
lines, the curves of=const(the
indicated values are ipseq. The
horizontal full line corresponds to
E=4.906 eV.(b) Detail of the up-
per frame showing a case where a
constant- and a constary-curve
are tangent. The particular case of

a tangency aE=4.906 eV was se-
lected(see text for detai)s

leftmost point between both curves, while at times lowermaxima of they(Ey) curves. It is worth pointing out that the
than 85.22usec we find it in the rightmost intersection point. consequence of having one real root in Etf) is that there
The behaviors observed in Fig. 2 are clarified in Figd,3  are two branches, f8g=1 in Eq.(21). In Fig. 3b) we show
where we mapped on th@y,E) plane the constart-and  a detail of the upper frame. The lire=0.021E, intersects
constant: curves, for the case of hydrogen. In Appendix B the constantE=4.906 eV at a point corresponding to
we show the details for the calculation of the constant=74.91usec andy=9.73 A™L. In consequence, in Fig. 2 the
y curves. We also show the const&nhtine corresponding intersection betweey and the curve of 74.9Lsec occurs at
to main peak absorption energy of the gold analyzeits maximum. The importance of the LL resides in that it
(E=4.906 eV. The intersection of a constanteurve with  indicates they values wherefy,(y,t) presents singularities,
the 4.906 eV line defines df, value with which they value  and will be commented on in the next section.
in the CA framework is calculated. It can be easily shown The slope of the LLs is a function of the scattering angle
that in this case for each constanturve, there is on¢éand  and<€. This is shown in Fig. 4, fof =16.022. In the case of
only one tangent constang-curve. The geometric loci of the hydrogen a LL can be defined in the whole angular range
tangency points in théE,,E) plane result in straight lines from 0° to 90°, only one of such LLs existing as already
[which will be calledlimit lines (LL) hereaftef whose slopes mentioned. On the other hand, for deuterium there exist two
can be obtained from the real positive roots of E48). real positive solutions of Eq18) below 39.7° and so two
Bearing in mind Eq.(17), those slopes are the squares ofLLs, and for oxygen we observe the same situation at a limit
such roots. In this particular case of hydrogddy/dEy)|;,  angle of 24.7°.
=0 has only one real root, which defines the line Itis also interesting to observe in Fig. 5 the representation
E=0.02I, as the sought geometric locus of the tangencyin the(Ey,E) plane for deuterium a#=35°. In this case there
points, which is represented in Fig(b3. In the representa- exist two LLs(in accordance with Fig.)4 which are shown
tion of Fig. 2 this corresponds to the geometric locus of than the graph.
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1.0 -

0.8 - FIG. 4. (Color online The
open symbols indicate value of
the slopes of the straight lines cor-
0.6 ' responding to the geometric loci
of the tangency points between
constant and constany curves
0.4 4 D . in the (E,Ep) plane as a function
of the scattering angle, for H, D,
and O, with a flight-paths ratié

E/E,

0.2 H H - =16.022. Full symbols indicate
(@) AA 4 5 ] the ratio E/Ey in the cold-gas
D limit for H, D, and O.
0.0 —7fr r r - r T 11T 1T 17
0 20 40 60 80 100 120 140 160 180
6 (deg)
B. Kernel fy(yy,t) 74.91usec, as shown in Fig.(B), where the asymptote is

exactly inyy(t). This effect is further illustrated in Fig. 7,

Having established the behavior of the variaylewe can  where the asymptote position is shown as a functiort of
now analyze Eq(24). We are especially interested in exam- together withyy, (t). Both curves are tangent at 74.8%ec.
ining the kernelfy(yw,t). In Fig. 6 we show its behavior in  Alternatively, the interpretation of this point can be under-
the case of scattering in hydrogen at 70° for different timestood from the inspection of Fig.(B. In the (Ey,E) plane
of flight of interest in the Compton profile, as can be checkedhis point is the intersection between the LL and the
in Fig. 1. Itis very important to notice the asymptotic behav-g=4.906-eV line. On any constahteurve the maximum
ior of fy(yw,t) at the values ofy defined by the LL, thatis  value ofy occurs in its intersection with the L{point A), so
understood from the fact that the JacobiafdEy/dy)l,,  in general this value of is greater than the one at its inter-
—» in Eq.(22). In the same figure we show the correspond-section with the constant linE=4.906 eV(point B). But at
ing kernel in the CA framework expressed in the left-handthe precise time where both lines intersect points A and B
side of Eq.(25), where the resolution function was calculated coincide. This is manifested in Fig. 7 where thealues of
according to Eq(12). The maxima of both distributions are the asymptote position are always greater than those of the
observed to be located @ (t), i.e., they variable as defined constant lineE=4.906 eV except at the tangency point.
in the CA framework. However, the asymptotes present in Besides the mentioned asymptotic behavior, there exist
the exact formulation mark important differences betweenwo other important features not described in the CA frame-
both formulations, which are clearly manifested atwork, viz. the main peak width and height dependstat

100 —

FIG. 5. (Color onling The full
thick lines indicate the constagt-
curves for deuterium at#=35°
and €=16.022.y values are indi-
cated in AL In dotted lines, the
curves oft=const (the indicated
values are inuseq. The line cor-
responding toy=0 is shown in
dash-dotted line.

E (eV)
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ly——rr—rrr—"rrr—r7 73
(a) 50pus —e— 200 us E
—4—100ps —o— 300 ps Tel a ]
0.1 —0— 150 ps —*—400 ps 4
~ ; 3
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-------- ] Dotted lines: Resolution function times the am-
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) ! ) ' ) ' ) ! ; agrees with the value of where the resolution
] function timesé&(t) (dotted thick ling is centered.
@a T Full thin lines: f(y,t) where the values of are
*é‘ E| indicated inusec.
= ;
S ]
S E
-’ 3
— ]
dﬂ“ -
>
= 3

variance with the left-hand side member of EB5). Simi- We now compare the exact formalism with the results
larly, those behaviors are observed in deuterimot shown produced in the CA framework. The resolution function can
in this papey. be obtained from the limiT —0 K of the NCP[shown in
full line in Fig. 8(a)], and it is calculated in Eq12), thus
obtaining theR;(y) shown in Fig. &) (full line). The total
C. Study of the mean kinetic energy cross section for gold employed in its calculation was taken
from Ref. 27. Following the procedure already descriffed,

An immediate consequence of the present analysis can eg. (10) was employed to perform a least-squares fit of a
found in the study of the mean kinetic energies, which is theGaussianJ(y) on the exact NCP, letting the area and the
main aim of the DINS technique. We will focus our attention width of the Gaussian be free parameters. DedRjtbeing
on a sample constituted by an ideal gasidé with a mean the only resolution function in the CA framework compatible
kinetic energy of 30 K(kgT=1.7234 meV. Such system with the limit at T—0 K, we tested three other different
was extensively examined in the literatdPe3! The NCP  resolution functions based on the customary use as follows.
corresponding to this system can be obtained in the exact R,(y), obtained by fitting a Lorentzian function in the en-
formalism with Eq.(21) and is shown in Fig. @) (circles,  ergy scalé®3?to the main resonance peak at 4.906 eV of the
which corresponds to a Gaussian distributdoy) with a full ~ gold total cross sectioff,and employing Eq(12).

width at half maximum(FWHM) of 1.3151 A% The geom- Rs(y), a Lorentzian function in thg variable®28fitted to
etry, the filter, and the efficiency are the same as described &(y). The resulting FWHM is 3.292 &.
the beginning of this section. The functidfy) is shown in R4(y), a Lorentzian function in thg variable®8fitted to
Fig. 8(b) (dotted ling. R,(y). The resulting FWHM is 3.170 &.

054105-8



FORMALISM FOR OBTAINING NUCLEAR MOMENTUM... PHYSICAL REVIEW B 71, 054105(2005

20 —r r v r 1 r r 1
Asymptote position
15 4 ---- E=4.906eV
10 H .
o FIG. 7. (Color onling Asymp-
ot tote position off(y,t) as a func-
: tion of the time of flightt, for the
54 case of hydrogen at a scattering
angle of #=70°, and flight length
of Ly=1105.5 cm and.;=69 cm.
0
-5 ) ) )
0 50 100 150 200
t (us)

Py
4
g .
)
o -
< _
< N
[3
0.0_ T T T T T T T T T T T T T T T
290 295 300 305 310 315 320 325 330
t (HS) FIG. 8. (Color onling (a) Neutron Compton
profiles in the time of flight scale ofHe at a
04 v T v T T T T T T T T scattering angle of 70°, at 0 Kine) and 30 K

(circles. (b) The dotted line indicates the Gauss-
ian momentum distributiord(y) of 3He with a
mean kinetic energy of 30 K. In full line, the
resolution function calculated according to Eg.
(12) and c(t)1-¢ k shown in frame(a). Circles
indicate the NCP calculated at 30 K expressed as
a function of they variable in the CA framework.
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TABLE I. Mean kinetic energy ofHe at 30 K obtained in the  variable in the exact treatment that we present in this paper is
CA framework according to different resolution functions describedthat it can have local extrema as a functiorggffor a given

in the text. The exact value is included for comparison. time of flight as shown in Fig. 2, which define straight lines
in the (Ey,E) plane (LL). This causes singularities in the
CA Mean kinetic energymeV) JacobiardEy/ dyy which affect the kernefy(yy,t). For ex-
R, 1,694 ample, in the gnalyzed case of hydrogen, \_/alueys ofeater
R 1.374 than those defmed_ by the LL are not physically allowed.
R2 1'353 In past publicatior®?! we showed that CA cannot be
3 .

deduced from the exact expression. In this paper we again
R, 1.519 showed that the CA formalism is incompatible with the exact
E one, and that the basis of the difference between both for-
xact value 1.7234 ! - - . .
malisms resides in the integration kernels. Thus the resolu-
tion function must be replaced by a kernel that depends on
In Fig. 6 we show explicitly the differences between the
act kernel and the commonly accepted resolution function.
esides the clearly observed differences in shape, the appear-

produces large variations in the effective temperature, eveffNce of the above—mentlgned_ singularities is lnotable. I.n the
when the FWHM has no such large variations. For examplepart!CUIar case .analyzed in this paper these dlscr_epanqes are
the change in FWHM fronRs to R, is 3.7% and the resulting particularly noticeable at 74.9dsec, where the singularity

mean kinetic energies differ in 12.3%. The reason for such gccurs'exactly at the value gfwlhere th~e maximum of the
resolution function is centered, i.e., \tyy(t).

large change, was reported in Ref. 20: at low temperatures So far, we have focused our discussion on the differences
the shape of the observed NCP is determined mainly by th ' . .
b v ! ! y oy Between the kernefy(yy,t) and the resolution function,

filter, so any imperfection in the description of the filter ef- =~ : S
fects will affect significantly the obtained mean kinetic en- Without making any reference to the momentum distribution
ergy. of the sampledy(yy). As a fl_rs_t exam on the interrelation
betweenfy,(ym,t) andJy(yy) it is helpful to check to what
extent the singularity can affect significant parts of the inte-
V. CONCLUSIONS grand (21). To this end we will compare the ratig/E,
where the singularities appeédefined by the slope of the

In this paper we developed the exact formalism that det | ) with the same ratio for the scattering on a sample de-
scribes the NCPs obtained from DINS experiments in tefrmgined by an ideal gas &=0 K, i.e.2°

of an integral equation in the variabjehat involves a kernel
dependent on the experimental setup parameters. For its cal- E [cosf+coZ o+ (A-1)(A+1))?
culation, a precise knowledge of the detectors efficiency, the EO = A+l . (26)
filter total cross section, and the incident neutron spectrum in
a wide range of energies is required. As a result, we obtaineBquation(26) defines also the most probable energy ratio in
a \olterra equation of the first kind that allows us to obtainthe case of a sample at finite temperature. In Fig. 4 we show
the desired momentum distributidfy) by means of numeri- in open symbols the rati&/E, of the LL for H, D, and O,
cal methods. and in full symbols the same ratio corresponding to &6),

A significant part of this paper was devoted to the study ofas a function of the scattering angle. We observe that for this
the variabley, that in the exact formalism presented here hagarticular value off the singularities do not appear signifi-
a definition that differs significantly from that employed in cantly near the main peak. However, due to the thermal mo-
the CA framework. The physical significance of this variabletion [described by the shape dfy)] the singularities affect
is the projection of the initial impulse of the target nuclei the description of the tails of NCPs.
over the direction of the momentum transfer vectprin The present formalism was formulated regardless of the
DINS data processing procedures the passage framy is  functionJ(y). Although in this paper the case of an isotropic
customarily calculated taking a fixed final energy, and thus isample was examined, all the considerations we developed
has a single well-defined value for each time channel. In thisre applicable also for the case of anisotropic samples. It is
paper it was calculated exactly. The importance of knowingalso worth noticing that although in most of the significant
the exact mapping of the variabjein the (Eq,E) plane can cases concerning the study of condensed matter the function
be referred to our recent study on the neutron final energy(y) is closely represented by a Gaussian sHapkis func-
distributions in DINS experimenf8.In that work we found  tion could represent an anisotropic momentum distribution,
that such distributions are far more complex than consideringot centered iry=0 as in the case of particles flowing in a
a single final energy, and depends on the time channel angteferential direction. With regard to the analysis of experi-
the dynamics of the scattering species. We showed thments where the sample can be represented by the usual
constanty curves on théE,, E) plane for hydrogen and deu- Gaussian distributions, it must be emphasized that the effects
terium at a particular scattering angle and ratio of flightof the singularities will normally be smoothed out in the
paths, which served to illustrate its behavior, and developedICP, i.e., the experimentally accessible magnitude. How-
its general expressions. A noticeable particularity of yhe ever, the differences between the exact formalism and the

In Table | we show the resulting effective temperatures,
compared with the exact value, used as input to genera
J(y). It is worth remarking that the different choices Rfy)
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CA in the description of the NCP are clearly manifested, achas (Argenting, and CLAF (Centro Latinoamericano de
accounted for in detail in Ref. 20, so we will briefly summa- Fisica for financial support.

rize them here. A comparison of the results produced by Eq.

(10) in the calculation of the NCPs, with the exact formalism APPENDIX A: DERIVATION OF - dy/dE,

represented either by Eg4) or (20) (both formulations are From the definition of they of Eq. (7) we have
equivalent, since they differ only in the integration variaple

reveals that the CA is defective in the description of the peak dy 9 dq " y do

areas, the peak centroids, and the peak widths, with the case dEy|; dqdEy|; dJdwdEy|,

of light scatterers at low temperatures being the ones most “Mo #) dg M deo

sensitive to these imperfections. In this case the widths of the —:( >~ —)— + —— . (A1)
momentum distribution function)(y), and the resolution q 2)dE[; qdE];

function R(y) becomes comparable, and thus the conseg, we need to calculate the derivativesgpfind » with
quences of the differences betweRfy) and the exact kernel yespect toE, at constant. From Eq.(4) we have
is more clearly manifested on the NCPs. Thus the obtainment

of peak areas and effective temperatures is significantly af- do - E( 1 __E ) (A2)
fected because of the use of the CA. The analysis shown in dEy|; % d5 |/

Sec. IV C clearly reflects this assertion, and the inadequac¥rom the kinematic conditiof2) we have

to employ resolution function@ither theoretically or experi-

mentally defineglthat due to the approximate nature of the dE Lo/ E \3?

CA has an unavoidable degree of ambiguity in its definition. d_EO t: - L_l EO : (A3)

We wish to conclude this paper giving a schematic outline
of the procedure we recommend to use to the experimentaReplacing Eq(A3) in Eq. (A2) we have

ists in the DINS field. For the measurement of an impulse do 1 L./ E\32
distribution function it is necessary to characterize different —| = —<1 +—°<—> ) (A4)
parameters of the experimental configuration. dE |, 7 Li\Eo

/(1) The incident neutron energy spectrum can be detefo the other hand, deriving the definition @fpresented in
mined by a measurement with a detector of well-gq (5)we have

characterized efficiency placed on the direct beam.

(2) The efficiency of the detectors bank can be character- ﬂ
ized using a heavy targélike Pb or Bj at the sample posi- dE, .
tion (with the filter out of the scattered neutron path

(3) The effective filter thickness can be measured with alhen
lead target, employing the method “filter infilter out,” and dq m Lo/ E\¥?( L, E E
fitting it as a parameter in Eq1). Alternatively, a transmis- Eo = 7%q 1 “L\E LE VE cosé |,
sion experiment can be performed on the direct beam. In the e 120 1=0 0

process, the full total cross section of the filter is needed. A (AB)

wide variety of cross sections can be found in Ref. 27. - .
. ' where we have employed E@GA3). Finally, replacing Eq.
_(4) Experlmenta_l data must be_ corrected by multiple scat-gA4) and Eq.(A6) in Eq. (A1) we obtain Eq.(15).
tering and attenuation effects, using Monte Carlo procedure

like those described in Refs. 19 and 28. APPENDIX B: DERIVATION OF E(Eg,y)
(5) From the stepg1) to (3), which aim to know the
kernel f(y, t), anq step(4) which corrects for finite sample want to solve forE, consideringy and Ey as fixed input
effects, we obtain the necessary elements to stateZAg,. - .
: . " .. values. Defining the variables
that can be solved either by numerical means or by fitting

-

e
t JEg

A5
. JEJE, (AS)

From Eq.(13) for y (which is in terms ofE andE,), we

parameters if we have a previous knowledge of the function X = \;’E,

J(y). In this last instance the fitting process can be made also

directly on thet scale employing Eq(l) without changing M?2

the integration variable frori, to y. a= 2my?’ (B1)

Finally, let us mention that the present formalism is also

applicable to the method of double differences recently m

presented? which consists of employing two filters of dif- w=—,

ferent thicknesses. The use of the formalism presented in our M

paper will be most beneficial for the users community ofafter some algebra E13) can be transformed to a fourth-

these DINS techniques. order polynomial irx, with real coefficients
4
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— 2 =
bo—[a’(l_,lL) Eo_ 1]E0, b3=_4CY,LL(1 +/_L)\r'E0 COSH,
b4 = a(l + /.l/)2

Therefore, the real positive roots of E@®2) define the val-
ues of E(Ep,y), which define they-constant curves repre-

by = 2[1 + 2a(u — u?)Eq)VE, cos¥,

by=—1-2a[1-u?-2u?cog 0]E,, (B3)  sented in Figs. 3 and 5.
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