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We present a formalism to obtain momentum distributions in condensed matter from neutron Compton
profiles measured by the deep inelastic neutron scattering technique. The formalism describes exactly the
neutron Compton profiles as an integral in the momentum variabley. As a result we obtain a Volterra equation
of the first kind that relates the experimentally measured magnitude with the momentum distributions of the
nuclei in the sample. The integration kernel is related with the incident neutron spectrum, the total cross section
of the filter analyzer, and the detectors efficiency function. A comparison of the present formalism with the
customarily employed approximation based on a convolution of the momentum distribution with a resolution
function is presented. We describe the inaccuracies that the use of this approximation produces, and propose a
data treatment procedure based on the present formalism.
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I. INTRODUCTION

During the past decades there has been a growing interest
in the experimental determination of momentum distribu-
tions of different particles in a wide variety of systems, the
experiments based on deep-inelastic scattering techniques
being of principal importance. Thus the Compton scattering
of x rays, gamma rays, and electrons has for a long time been
used to obtain the electron momentum distribution in con-
densed matter, the momentum distributions of nucleons in
nuclei have been determined by inelastic scattering of high-
energy protons and electrons, and the deep inelastic scatter-
ing of electrons, muons and neutrinos was essential for es-
tablishing the quark model of the nucleons.1,2

The experimental determination of atomic momentum
distribution in condensed matter making use of different neu-
tron techniques has experienced a considerable evolution up
to the present times. An historical review of these neutron
experimental techniques has been presented in Ref. 3. Nota-
bly, the deep inelastic neutron scatteringsDINSd technique,
proposed by Hohenberg and Platzmann4 nearly 40 years ago
for the study of the Bose condensation in superfluid4He,
attained a considerable experimental development. The tech-
nique proved to be remarkably adequate to explore the mo-
mentum distributions of the nuclei in condensed matter,5,6

and its development continues nowadays.7,8 It being a tech-
nique based on large momentum and energy transfers, the
interpretation of the recorded spectra is based on the validity
of the impulse approximationsIA d, where it is assumed that
the target particle recoils freely after the collision with the
incident particle,9 assuming that the binding energy of the
target nuclei is negligible compared with the energy trans-
ferred by the neutron to the target nuclei.4,9,10 The justifica-
tion of the validity of the IA in DINS experiments can be
found in Refs. 11 and 12, while the deviations either due to
final-state effectssFSEd,1,13–16 or to initial-state effects17

sISEd were extensively treated. The IA allows a direct rela-
tion of the scattering law with the momentum distribution

function, making use of the variabley, which is the projec-
tion of the initial impulse of the target nuclei over the direc-
tion of the momentum transfer vectorq, through a process
known asy scaling.1,17

On the other hand, the reactor based techniques for the
measurement of atomic momentum distributionssdeveloped
before DINSd have employed triple-axis crystal spectrom-
eters, magnetically pulsed beams, or rotating crystal and
chopper time-of-flight spectrometers.3 Since these techniques
employ neutrons with incident energies restricted to the ther-
mal range, they do not satisfy the IA and therefore sophisti-
cated corrections by FSE become essential before the mo-
mentum distribution can be obtained. The advent of high
epithermal neutron fluxes available from intense pulsed spal-
lation sources placed the DINS technique as the most suit-
able one for the study of momentum distributions of nuclei
constituting the condensed matter.

A common practice in the data treatment of the DINS
experiments is to employ a convolution approximation
sCAd,8,18,19where it is assumed that the observed spectrum in
the time-of-flight scale can be expressed as a convolution in
the variabley of the momentum distribution, with a mass-
dependentad hoc resolution function devised to take into
account the experimental uncertainties along with the reso-
nant filter energy width. However, the accuracy of this pro-
cedure has been questioned by us in previous papers.20,21The
criticisms rested on the fact that the expression of the CA is
not directly deducible from the exact one. When we tested it
against the exact expression we observed inaccurate results
for the peak positions, areas and shapes of the observed pro-
files, and the effects were more noticeable when treating
light nuclei. As a consequence, a noteworthy result of DINS
reported on H2O/D2O mixtures,22 that reported to have
found an anomalous behavior in the neutron cross sections,
was critically analyzed from the point of view of the accu-
racy of the CA. A careful analysis lead us to conclude20,21

that the inaccuracies committed in the CA produce anomalies
in the same sense as reported. Later measurements per-
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formed by transmission on H2O/D2O mixtures23 showed no
traces of anomalous neutron cross sections. Furthermore, on
the theoretical side, recent publications cast doubts on the
existence of anomalous phenomena.24,25 The controversial
situation increases the need to revise the procedures on
which the CA is based.

Besides the mentioned limitations, there is another impor-
tant unsatisfactory feature of the CA, that will be treated in
the present paper: in the CA only a single final energy cor-
responding to the peak of the resonant filter is considered
when the transformation from time-of-flight to they scale is
performed. However, as was remarked in a recent analysis,26

the final energies of the scattered neutrons are not restricted
to a narrow resonant-filter line width, but to a broader energy
distribution determined by the kinematics, the dynamics and
the full total cross section of the filter. The contributions of
detected neutrons with final energies outside the main reso-
nance peak cannot be neglected and in some cases become
dominant.

The motivation of this paper is to expose the details of the
exact treatment that must be performed on the DINS experi-
mental data, in view of the inconveniences that stem from
the mentioned weakness of the CA. We reformulate the basic
equations that describe the neutron Compton profiles starting
from the exact expressions as was previously treated.20 As a
result, explicit integrals in the variabley are obtained. The
passage from the time-of-flight variablet to y is presented in
its exact form, and the final expression results in a Volterra
equation of the first kind, which can be solved for the mo-
mentum distributionJsyd. The results of the present formal-
ism, which is essentially exact, are compared with those pro-
duced by the CA. We stress on the imperfections that it
generates and how those problems are solved by employing
the present formalism. The expressions we present are ame-
nable for the use of the experimentalists, and we recommend
them to replace the currently employed formalism in the data
analysis of DINS experiments.

II. THEORETICAL BACKGROUND

A. Preliminary considerations

In this section we will present a brief summary of the
basic equations that will be employed throughout this paper
for describing the observed spectra in DINS experiments.
For a more complete theoretical development, the reader is
referred to Ref. 20. We will restrict our analysis to a standard
inverse-geometry DINS experimental setup,18 in which inci-
dent neutrons with energyE0 fcharacterized by the spectrum
FsE0dg travel along a distanceL0 from the pulsed source to
the sample. Scattered neutrons at an angleu and a final en-
ergyE travel along a distanceL1 up to the detector position.
A movable filter with a neutron absorption resonance in the
eV-energy region is placed in the scattered neutron path, so
consecutive “filter in” and “filter out” measurements are per-
formed. The spectra are recorded as a function of the total
time of flight t. Throughout this paper, we will explicitly
omit the description of experimental uncertainties due to ge-
ometry, time of flight or multiple scattering. For an account
on these effects the reader is referred to Refs. 19 and 28.

The measured magnitudefknown as neutron Compton
profile sNCPdg is the difference count rates“filter out” minus
“filter in” d as a function oft, which for a pointlike sample
can be expressed as20

cstd =
Î8/m

L1
DVE

E0 inf

t=const

+`

dE0E
3/2FsE0dssE0,E,ud«sEd

3f1 − e−nTsFsEdg, s1d

wheressE0,E,ud is the sample double-differential cross sec-
tion, «sEd the detector efficiency andDV the solid angle
subtended by the detector. The term between brackets is the
absorption probability of the resonant filter, characterized by
a number densityn, a thicknessT and a total cross section
sFsEd. As indicated, the integral in Eq.s1d must be calcu-
lated at a constant time-of-flightt given by the kinematic
condition

t =Îm

2 S L0

ÎE0

+
L1

ÎE
D , s2d

wherem is the neutron mass. The lower limit of integration
E0 inf is determined from the kinematic condition that in the
second flight path the neutron has infinite velocity. Its value
is

E0 inf =
m

2
SL0

t
D2

. s3d

As usual, let

"v = E0 − E s4d

be the energy transferred by the neutron to the sample, and

"q = Î2msE0 + E − 2ÎE0E cosud s5d

the modulus of the transferred impulse. The DINS technique
was developed on the theoretical basis of the IA, in which
the scattering lawsfor a monatomic sampled can be written17

Ssq,vd =
M

"q
Jseq,yd, s6d

where eq is the unit vector along the direction ofq. The
variabley is the projection of the impulsep of the nucleus of
massM on eq, and can be expressed as

y =
M

"q
S"v −

"2q2

2M
D . s7d

Jseq,yddy is defined as the probability that a nucleus has a
momentum component along the direction ofeq with values
betweeny andy+dy. The distributionJseq,yd must be sym-
metric aroundy=0 if a moment in a given direction of the
space is equally probable than in its opposite. For an isotro-
pic sampleJseq,yd does not depend on the direction given by
eq, and thenJseq,yddy=Jsyddy is the probability that a
nucleus of the sample has component of momentum between
y and y+dy along any direction in the space. So, the dy-
namic structure factor is reduced to
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Ssq,vd =
M

"q
Jsyd. s8d

Then, for an isotropic sample composed of different nuclei,
NM being the number of nuclei of massM and bound scat-
tering lengthbM, the double differential cross section is

ssE0,E,ud =
1

"q
Î E

E0
o
M

NMbM
2 MJMsyMd, s9d

where the sum is extended over all the masses corresponding
to the different speciessin non equivalent positionsd present
in the sample.

B. Convolution approximation

The usually employed convolution approximation is ex-
pressed by18

cconvstd = o
M

jMstdJMsỹMd ^ RMsỹMd, s10d

with

jMstd = NMbM
2 MFFsE0d

dE0

dt
«sE1dDVDE1ÎE1

E0

1

q
G ,

s11d

whereE1 is fixed, defined by the energy of the main absorp-
tion peak in the filter total cross section. The sum has the
same meaning as in Eq.s9d, and a resolution functionRsỹMd
is introduced as a way to contain the geometric uncertainties
as well as the filter resonance width. It is worth emphasizing
that in Eq.s10d the relation between the variableỹM and t is
made through Eq.s7d, whereq andv are calculated also with
the sameE1 fixed, andE0 compatible with the time-of-flight
relation s2d. Also, it must be noticed that the term between
square brackets in Eq.s11d is independent of the sample
characteristics.

It is important to notice that the resolution function in the
CA framework is deducible from Eq.s10d and Eq.s1d con-
sidering a sample represented by an ideal gas in the limit of
T→0 K. In this caseJMsỹMd→dsỹMd and20

RMsỹMd =
cstdT=0 K

jMstd
. s12d

When geometric uncertainties are considered, they also con-
tribute to the width ofRM, but as we have already mentioned,
this case will not be analyzed in the present paper. It is worth
commenting that in common practice Eq.s12d is not em-
ployed, but instead a fitted Lorentziansfor gold filtersd or
Gaussian functionsfor uraniumd in the variable y are
employed.6,8

III. FORMULATION OF THE EXACT EXPRESSION

As it was commented, Eq.s10d cannot be deduced from
the exact expressions1d and therefore its application cannot
be fully justified. On the other hand, an expression where
flike in Eq. s10dg they variable appears explicitly is desirable

since it is the natural variable of the impulse distribution
Jsyd. In this section we will deduce such exact expression
that keepsy as the integration variable. To this end, we will
change the integration variable fromE0 to y in Eq. s1d. In the
first step we rewrite Eq.s7d in terms ofE, E0 andu as

yM =

MXE0 − E −
m

M
sE0 + E − 2ÎE0E cosudC

Î2msE0 + E − 2ÎE0E cosud
. s13d

At a given time of flightt, E0 and E are linked through
Eq. s2d. Therefore, at a scattering angleu, yM is a function of
E0 andt. On the other hand, it must be noticed thatE0 can be
a multivaluated function ofyM. There is a substantial differ-
ence between this definition ofyM and that employed in the
CA sSec. II Bd, called ỹM. In the present definitionyM is a
function ofE0 for each considered time of flight, while in the
former definitionỹM takes one value for eacht.

To proceed with the variable change, we first study the
limits of integration in the variabley. WhenE0→E0 inf fde-
fined in Eq.s3dg, y→−` regardless the mass of the scattering
nuclei. WhenE0→ +`, it can be readily shown that

lim
E0→+`

t,u=const

yM =5
+ ` if M . m,

− ` if M , m,

m
L1

t
cosu if M = m. 6 s14d

In Sec. IV A we will present a detailed study of the behavior
of yM.

The sought variable change in Eq.s1d involves the Jaco-
bian scalculated in Appendix Ad

U dy

dE0
U

t,u
=

− m

"q
SM"v

"2q2 +
1

2
DF1 −

L0

L1
S E

E0
D3/2

+ SL0

L1

E

E0

−Î E

E0
DcosuG +

M

"q
F1 +

L0

L1
S E

E0
D3/2G . s15d

To perform the variable change fromE0 to y in the integral
of Eq. s1d, it is necessary to know the intervals where the
function ysE0d is monotonous. Therefore we must obtain the
E0 valuessand its correspondingy valuesd where

U dy

dE0
U

t,u
= 0. s16d

Defining the variables

x =Î E

E0
,

s17d

, =
L0

L1

swhere the positive value of the square root is taken in the
definition ofxd, Eq.s16d can be reduced to a fifth-order poly-
nomial in x, with real coefficients. The sought values ofE0
are obtained from the roots of
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o
i=0

5

aix
i = 0, s18d

where

a0 = m− M ,

a1 = 3sM − mdcosu,

a2 = m− 3M + sm+ Md, cosu + 2mcos2 u, s19d

a3 = sM − mdcosu − s3M + md, − 2m, cos2 u,

a4 = 3,sm+ Mdcosu,

a5 = − ,sm+ Md.

Therefore, Eq.s18d has at most five real roots and at least
one, and only the positive values have physical sense. LetNR
be the number of such rootss0øNRø5d, whose values will
be labeledxj, and correspondinglyE0

j and yM,j the roots in
the E0 and y scales, respectively. Now we can proceed to
change the integration variable fromE0 to y in Eq. s1d. To
this end, the integration range has to be partitioned inNR
+1 intervalssE0

j−1,E0
j d, where the functionyMsE0d is monoto-

nous, which we will identify as “branchj” fwhere E0
0

=E0 inf given in Eq.s3d andE0
NR+1= +`g. The result is

cstd =
Î8/m

L1
DVo

M
o
j=1

NR+1E
yM,j−1

t=const

yM,j

dyMU dE0

dyM
U

t

j

FsE0dÎ E

E0

3f1 − e−nTsFsEdg«sEdE3/2 1

"q
NMbM

2 MJMsyMd, s20d

where the superscriptj in dE0/dyM indicates the branch
where it must be evaluated,yM,0=−` andyM,NR+1 is defined
in Eq. s14d. Thus the NCP results

cstd = o
M

o
j=1

NR+1E
yM,j−1

t=const

yM,j

dyMfM
j syM,tdJMsyMd, s21d

where the function

fM
j syM,td =

Î8/m

L1
DV

1

"q
NMbM

2 MU dE0

dyM
U

t,u

j

FsE0dÎ E

E0

3f1 − e−nTsFsEdg«sEdE3/2 s22d

is defined in the intervalsyM,j−1,yM,jd, and is zero outside
such range.

Finally, for a sample containingNM atoms of massM in
nonequivalent positions, the NCP can be expressed as

cstd = o
M

cMstd, s23d

where

cMstd =E
−`

t=const

+`

dyMfMsyM,tdJMsyMd s24d

and fMsyM ,td is the sum on the different branchess1ø j
øNR+1dd of fM

j syM ,td.
Equationss21d ands22d are the central expressions of the

present paper, which are exact expressions, since they were
derived directly from Eq.s1d without any approximation.
Equation s21d is a Volterra equation of the first kind. To
obtainJsyd from it, it is possible to resort to numerical meth-
ods. Alternatively, if the function that describesJsyd is
known beforehandsor a plausible form is assumed for itd, it
will be possible to obtain it from a fitting procedure. In this
last case it will not be necessary to change the integration
variable toy. In the case where the sample and/or detector
dimensions are not negligible, Eqs.s20d–s24d must be inte-
grated also over the geometric dimensions.

As it was already mentioned, the definition ofyM em-
ployed in Eqs.s20d–s24d differs from that employed in the
CA. It is worth noticing that while in the CA the resolution
function is the same for everyt fcentered inỹMstdg, in the
present formalism,fMsyM ,td depends explicitly ont. It must
be remarked that if the CA framework were exact, Eqs.s10d
ands21d would produce the same NCP, for an arbitraryJsyd.
Thus, from a direct comparison between Eqs.s24d and s10d
the following relation between the exact expression of
fMsyM ,td and the resolution function would be verified

jstdRM„ỹMstd − y… = fMsy,td, s25d

where jMstd is defined in Eq.s11d. However, the usually
employedRMsyMd does not verify expressions25d, as will be
examined in the next section.

IV. DISCUSSION

In this section we will analyze different aspects of the
formalism we are presenting, with special emphasis on the
differences between the exact results and those obtained in
the CA framework. We will focus our attention on scattering
on H, D, and3He, since as we will show, they are the most
sensitive cases in normal experimental conditions. We will
assume throughout detectors of ideal efficiency«sEd=1. An
incident neutron spectrum described byFsE0d=E0

−0.9, and
flight lengthsL0=1105.5 cm andL1=69 cm sso ,=16.022d
will be chosen to match the layout of the DINS facility at the
Rutherford Appleton Laboratory.8 The filter will be repre-
sented with a gold foil ofnT=4310−5 barn−1 and its total
cross section will be described from the data compiled in
Ref. 27.

We will divide our discussion in three different aspects of
our formalism. The first will be devoted to a close examina-
tion of the behavior of the variabley. We will establish the
relationship betweeny in the exact formalism and in the CA
framework. In the second part we will analyze the behavior
of the kernelfMsy,td and we will compare it with the reso-
lution function employed in the CA. In the third part we will
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analyze the consequence of our analysis in a specific case.
The starting result over which we will base the subsequent
discussions are the NCPs of hydrogen, deuteriumsSecs.
IV A and IV B and 3He sSec. IV Cd as calculated from Eq.
s1d.

The study of H and D will be based on ideal gases
of effective temperatures of 115.22 and 80.11 meV, re-
spectively, as described in Ref. 20. Their NCPs are shown
in Fig. 1.

A. Study of the variable yM

We will begin our discussion by examining the behavior
of the yM variable as a function of the time of flight. In Fig.
2 we show its behavior according to Eq.s13d as a function of
the incident neutron energyE0 at different times of flight, for
the case of hydrogensM /m=0.99862d at u=70°. The behav-

ior at the limits commented in Eq.s14d are observed. In the
same figure we show the behavior ofỹM according to the
conditions normally employed in the CA frameworksSec.
II B d. The differences between both ways to definey is evi-
dent: while in the exact formalism there is a whole range of
possible values ofy at each time of flightswhich is a func-
tion of E0d, in the CA there is only one value ofy defined at
eacht. We observe the curvesysE0d in the exact formalism
intersects the one of the CA in two points. However at each
time of flight there is only one value ofy defined in the CA
framework. Thus, only one of those two points over the exact
y curve has a final energy corresponding to that of the filter
s4.906 eVd, while the other has the same value ofy andE0

but a differentE. At 85.22msec, both points coincide so the
curves are tangent. At times of flight greater than
85.22msec, this property is found in the intersection of the

FIG. 1. sColor onlined Neutron
Compton profiles of hydrogen and
deuterium at a scattering angle of
u=70° calculated considering as
flight paths L0=1105.5 cm and
L1=69 cm, assuming a gold foil
analyzer of nT=4310−5 b−1 and
effective temperatures of 115.22
and 80.11 meV, respectively.

FIG. 2. sColor onlined The im-
pulsey as a function of the inci-
dent energyE0 for A=0.99862.
The exact calculations according
to Eq. s13d at the indicated times
of flight are compared with the
calculation performed by assum-
ing the final energy fixed at
4.906 eV, which is the variableỹ
employed in the CA framework.
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leftmost point between both curves, while at times lower
than 85.22msec we find it in the rightmost intersection point.

The behaviors observed in Fig. 2 are clarified in Fig. 3sad,
where we mapped on thesE0,Ed plane the constant-y and
constant-t curves, for the case of hydrogen. In Appendix B
we show the details for the calculation of the constant
y curves. We also show the constant-E line corresponding
to main peak absorption energy of the gold analyzer
sE=4.906 eVd. The intersection of a constant-t curve with
the 4.906 eV line defines anE0 value with which they value
in the CA framework is calculated. It can be easily shown
that in this case for each constant-t curve, there is onesand
only oned tangent constant-y curve. The geometric loci of the
tangency points in thesE0,Ed plane result in straight lines
fwhich will be calledlimit lines sLL d hereafterg whose slopes
can be obtained from the real positive roots of Eq.s18d.
Bearing in mind Eq.s17d, those slopes are the squares of
such roots. In this particular case of hydrogenusdy/dE0dut,u
=0 has only one real root, which defines the line
E=0.021E0 as the sought geometric locus of the tangency
points, which is represented in Fig. 3sbd. In the representa-
tion of Fig. 2 this corresponds to the geometric locus of the

maxima of theysE0d curves. It is worth pointing out that the
consequence of having one real root in Eq.s18d is that there
are two branches, soNR=1 in Eq.s21d. In Fig. 3sbd we show
a detail of the upper frame. The lineE=0.021E0 intersects
the constantE=4.906 eV at a point corresponding tot
=74.91msec andy=9.73 Å−1. In consequence, in Fig. 2 the
intersection betweenỹ and the curve of 74.91msec occurs at
its maximum. The importance of the LL resides in that it
indicates they values wherefMsy,td presents singularities,
and will be commented on in the next section.

The slope of the LLs is a function of the scattering angle
and,. This is shown in Fig. 4, for,=16.022. In the case of
hydrogen a LL can be defined in the whole angular range
from 0° to 90°, only one of such LLs existing as already
mentioned. On the other hand, for deuterium there exist two
real positive solutions of Eq.s18d below 39.7° and so two
LLs, and for oxygen we observe the same situation at a limit
angle of 24.7°.

It is also interesting to observe in Fig. 5 the representation
in thesE0,Ed plane for deuterium atu=35°. In this case there
exist two LLs sin accordance with Fig. 4d, which are shown
in the graph.

FIG. 3. sColor onlined sad The
full thick lines indicate the
constant-y curves for hydrogen at
u=70° and ,=16.022. y values
are indicated in Å−1. In dotted
lines, the curves oft=const sthe
indicated values are inmsecd. The
horizontal full line corresponds to
E=4.906 eV.sbd Detail of the up-
per frame showing a case where a
constant-t and a constant-y curve
are tangent. The particular case of
a tangency atE=4.906 eV was se-
lectedssee text for detailsd.
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B. Kernel fM„yM ,t…

Having established the behavior of the variableyM we can
now analyze Eq.s24d. We are especially interested in exam-
ining the kernelfMsyM ,td. In Fig. 6 we show its behavior in
the case of scattering in hydrogen at 70° for different times
of flight of interest in the Compton profile, as can be checked
in Fig. 1. It is very important to notice the asymptotic behav-
ior of fMsyM ,td at the values ofyM defined by the LL, that is
understood from the fact that the JacobianusdE0/dydut,u
→` in Eq. s22d. In the same figure we show the correspond-
ing kernel in the CA framework expressed in the left-hand
side of Eq.s25d, where the resolution function was calculated
according to Eq.s12d. The maxima of both distributions are
observed to be located atỹMstd, i.e., they variable as defined
in the CA framework. However, the asymptotes present in
the exact formulation mark important differences between
both formulations, which are clearly manifested at

74.91msec, as shown in Fig. 6sbd, where the asymptote is
exactly in ỹMstd. This effect is further illustrated in Fig. 7,
where the asymptote position is shown as a function oft
together withỹMstd. Both curves are tangent at 74.91msec.
Alternatively, the interpretation of this point can be under-
stood from the inspection of Fig. 3sbd. In the sE0,Ed plane
this point is the intersection between the LL and the
E=4.906-eV line. On any constant-t curve the maximum
value ofy occurs in its intersection with the LLspoint Ad, so
in general this value ofy is greater than the one at its inter-
section with the constant lineE=4.906 eVspoint Bd. But at
the precise time where both lines intersect points A and B
coincide. This is manifested in Fig. 7 where they values of
the asymptote position are always greater than those of the
constant lineE=4.906 eV except at the tangency point.

Besides the mentioned asymptotic behavior, there exist
two other important features not described in the CA frame-
work, viz. the main peak width and height depends ont, at

FIG. 4. sColor onlined The
open symbols indicate value of
the slopes of the straight lines cor-
responding to the geometric loci
of the tangency points between
constant-t and constant-y curves
in the sE,E0d plane as a function
of the scattering angle, for H, D,
and O, with a flight-paths ratio,
=16.022. Full symbols indicate
the ratio E/E0 in the cold-gas
limit for H, D, and O.

FIG. 5. sColor onlined The full
thick lines indicate the constant-y
curves for deuterium atu=35°
and ,=16.022.y values are indi-
cated in Å−1. In dotted lines, the
curves of t=const sthe indicated
values are inmsecd. The line cor-
responding toy=0 is shown in
dash-dotted line.
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variance with the left-hand side member of Eq.s25d. Simi-
larly, those behaviors are observed in deuteriumsnot shown
in this paperd.

C. Study of the mean kinetic energy

An immediate consequence of the present analysis can be
found in the study of the mean kinetic energies, which is the
main aim of the DINS technique. We will focus our attention
on a sample constituted by an ideal gas of3He with a mean
kinetic energy of 30 KskBT=1.7234 meVd. Such system
was extensively examined in the literature.29–31 The NCP
corresponding to this system can be obtained in the exact
formalism with Eq.s21d and is shown in Fig. 8sad scirclesd,
which corresponds to a Gaussian distributionJsyd with a full
width at half maximumsFWHMd of 1.3151 Å−1. The geom-
etry, the filter, and the efficiency are the same as described at
the beginning of this section. The functionJsyd is shown in
Fig. 8sbd sdotted lined.

We now compare the exact formalism with the results
produced in the CA framework. The resolution function can
be obtained from the limitT→0 K of the NCPfshown in
full line in Fig. 8sadg, and it is calculated in Eq.s12d, thus
obtaining theR1syd shown in Fig. 8sbd sfull lined. The total
cross section for gold employed in its calculation was taken
from Ref. 27. Following the procedure already described,20

Eq. s10d was employed to perform a least-squares fit of a
GaussianJsyd on the exact NCP, letting the area and the
width of the Gaussian be free parameters. DespiteR1 being
the only resolution function in the CA framework compatible
with the limit at T→0 K, we tested three other different
resolution functions based on the customary use as follows.

R2syd, obtained by fitting a Lorentzian function in the en-
ergy scale22,32 to the main resonance peak at 4.906 eV of the
gold total cross section,27 and employing Eq.s12d.

R3syd, a Lorentzian function in they variable5,6,8 fitted to
R2syd. The resulting FWHM is 3.292 Å−1.

R4syd, a Lorentzian function in they variable5,6,8 fitted to
R1syd. The resulting FWHM is 3.170 Å−1.

FIG. 6. sColor onlined sad Full lines: fsy,td at
u=70° for the indicated times of flight. Vertical
dotted lines: position of the asymptotes offsy,td.
Dotted lines: Resolution function times the am-
plitude factorjstd, centered at theỹMstd values.
See text for details.sbd Detail of the upper frame.
Full thick line: fsy,td for the special case oft
=74.91ms, for which the asymptote position
agrees with the value ofy where the resolution
function timesjstd sdotted thick lined is centered.
Full thin lines: fsy,td where the values oft are
indicated inmsec.
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FIG. 7. sColor onlined Asymp-
tote position of fsy,td as a func-
tion of the time of flightt, for the
case of hydrogen at a scattering
angle ofu=70°, and flight length
of L0=1105.5 cm andL1=69 cm.

FIG. 8. sColor onlined sad Neutron Compton
profiles in the time of flight scale of3He at a
scattering angle of 70°, at 0 Kslined and 30 K
scirclesd. sbd The dotted line indicates the Gauss-
ian momentum distributionJsyd of 3He with a
mean kinetic energy of 30 K. In full line, the
resolution function calculated according to Eq.
s12d and cstdT=0 K shown in framesad. Circles
indicate the NCP calculated at 30 K expressed as
a function of they variable in the CA framework.
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In Table I we show the resulting effective temperatures,
compared with the exact value, used as input to generate
Jsyd. It is worth remarking that the different choices ofRsyd
produces large variations in the effective temperature, even
when the FWHM has no such large variations. For example,
the change in FWHM fromR3 to R4 is 3.7% and the resulting
mean kinetic energies differ in 12.3%. The reason for such a
large change, was reported in Ref. 20: at low temperatures
the shape of the observed NCP is determined mainly by the
filter, so any imperfection in the description of the filter ef-
fects will affect significantly the obtained mean kinetic en-
ergy.

V. CONCLUSIONS

In this paper we developed the exact formalism that de-
scribes the NCPs obtained from DINS experiments in terms
of an integral equation in the variabley that involves a kernel
dependent on the experimental setup parameters. For its cal-
culation, a precise knowledge of the detectors efficiency, the
filter total cross section, and the incident neutron spectrum in
a wide range of energies is required. As a result, we obtained
a Volterra equation of the first kind that allows us to obtain
the desired momentum distributionJsyd by means of numeri-
cal methods.

A significant part of this paper was devoted to the study of
the variabley, that in the exact formalism presented here has
a definition that differs significantly from that employed in
the CA framework. The physical significance of this variable
is the projection of the initial impulse of the target nuclei
over the direction of the momentum transfer vectorq. In
DINS data processing procedures the passage fromt to y is
customarily calculated taking a fixed final energy, and thus it
has a single well-defined value for each time channel. In this
paper it was calculated exactly. The importance of knowing
the exact mapping of the variabley in the sE0,Ed plane can
be referred to our recent study on the neutron final energy
distributions in DINS experiments.26 In that work we found
that such distributions are far more complex than considering
a single final energy, and depends on the time channel and
the dynamics of the scattering species. We showed the
constant-y curves on thesE0,Ed plane for hydrogen and deu-
terium at a particular scattering angle and ratio of flight
paths, which served to illustrate its behavior, and developed
its general expressions. A noticeable particularity of they

variable in the exact treatment that we present in this paper is
that it can have local extrema as a function ofE0 for a given
time of flight as shown in Fig. 2, which define straight lines
in the sE0,Ed plane sLL d. This causes singularities in the
JacobiandE0/dyM which affect the kernelfMsyM ,td. For ex-
ample, in the analyzed case of hydrogen, values ofy greater
than those defined by the LL are not physically allowed.

In past publications20,21 we showed that CA cannot be
deduced from the exact expression. In this paper we again
showed that the CA formalism is incompatible with the exact
one, and that the basis of the difference between both for-
malisms resides in the integration kernels. Thus the resolu-
tion function must be replaced by a kernel that depends ont.
In Fig. 6 we show explicitly the differences between the
exact kernel and the commonly accepted resolution function.
Besides the clearly observed differences in shape, the appear-
ance of the above-mentioned singularities is notable. In the
particular case analyzed in this paper these discrepancies are
particularly noticeable at 74.91msec, where the singularity
occurs exactly at the value ofy where the maximum of the
resolution function is centered, i.e., aty= ỹMstd.

So far, we have focused our discussion on the differences
between the kernelfMsyM ,td and the resolution function,
without making any reference to the momentum distribution
of the sampleJMsyMd. As a first exam on the interrelation
betweenfMsyM ,td andJMsyMd it is helpful to check to what
extent the singularity can affect significant parts of the inte-
grand s21d. To this end we will compare the ratioE/E0
where the singularities appearsdefined by the slope of the
LL d with the same ratio for the scattering on a sample de-
fined by an ideal gas atT=0 K, i.e.,20

E

E0
= Scosu + Îcos2 u + sA − 1dsA + 1d

A + 1
D2

. s26d

Equations26d defines also the most probable energy ratio in
the case of a sample at finite temperature. In Fig. 4 we show
in open symbols the ratioE/E0 of the LL for H, D, and O,
and in full symbols the same ratio corresponding to Eq.s26d,
as a function of the scattering angle. We observe that for this
particular value of, the singularities do not appear signifi-
cantly near the main peak. However, due to the thermal mo-
tion fdescribed by the shape ofJsydg the singularities affect
the description of the tails of NCPs.

The present formalism was formulated regardless of the
functionJsyd. Although in this paper the case of an isotropic
sample was examined, all the considerations we developed
are applicable also for the case of anisotropic samples. It is
also worth noticing that although in most of the significant
cases concerning the study of condensed matter the function
Jsyd is closely represented by a Gaussian shape,17 this func-
tion could represent an anisotropic momentum distribution,
not centered iny=0 as in the case of particles flowing in a
preferential direction. With regard to the analysis of experi-
ments where the sample can be represented by the usual
Gaussian distributions, it must be emphasized that the effects
of the singularities will normally be smoothed out in the
NCP, i.e., the experimentally accessible magnitude. How-
ever, the differences between the exact formalism and the

TABLE I. Mean kinetic energy of3He at 30 K obtained in the
CA framework according to different resolution functions described
in the text. The exact value is included for comparison.

CA Mean kinetic energysmeVd

R1 1.694

R2 1.374

R3 1.353

R4 1.519

Exact value 1.7234
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CA in the description of the NCP are clearly manifested, as
accounted for in detail in Ref. 20, so we will briefly summa-
rize them here. A comparison of the results produced by Eq.
s10d in the calculation of the NCPs, with the exact formalism
represented either by Eqs.s1d or s20d sboth formulations are
equivalent, since they differ only in the integration variabled,
reveals that the CA is defective in the description of the peak
areas, the peak centroids, and the peak widths, with the case
of light scatterers at low temperatures being the ones most
sensitive to these imperfections. In this case the widths of the
momentum distribution functionJsyd, and the resolution
function Rsyd becomes comparable, and thus the conse-
quences of the differences betweenRsyd and the exact kernel
is more clearly manifested on the NCPs. Thus the obtainment
of peak areas and effective temperatures is significantly af-
fected because of the use of the CA. The analysis shown in
Sec. IV C clearly reflects this assertion, and the inadequacy
to employ resolution functionsseither theoretically or experi-
mentally definedd that due to the approximate nature of the
CA has an unavoidable degree of ambiguity in its definition.

We wish to conclude this paper giving a schematic outline
of the procedure we recommend to use to the experimental-
ists in the DINS field. For the measurement of an impulse
distribution function it is necessary to characterize different
parameters of the experimental configuration.

s1d The incident neutron energy spectrum can be deter-
mined by a measurement with a detector of well-
characterized efficiency placed on the direct beam.

s2d The efficiency of the detectors bank can be character-
ized using a heavy targetslike Pb or Bid at the sample posi-
tion swith the filter out of the scattered neutron pathd.

s3d The effective filter thickness can be measured with a
lead target, employing the method “filter in–filter out,” and
fitting it as a parameter in Eq.s1d. Alternatively, a transmis-
sion experiment can be performed on the direct beam. In the
process, the full total cross section of the filter is needed. A
wide variety of cross sections can be found in Ref. 27.

s4d Experimental data must be corrected by multiple scat-
tering and attenuation effects, using Monte Carlo procedures
like those described in Refs. 19 and 28.

s5d From the stepss1d to s3d, which aim to know the
kernel fsy,td, and steps4d which corrects for finite sample
effects, we obtain the necessary elements to state Eq.s21d,
that can be solved either by numerical means or by fitting
parameters if we have a previous knowledge of the function
Jsyd. In this last instance the fitting process can be made also
directly on thet scale employing Eq.s1d without changing
the integration variable fromE0 to y.

Finally, let us mention that the present formalism is also
applicable to the method of double differences recently
presented,32 which consists of employing two filters of dif-
ferent thicknesses. The use of the formalism presented in our
paper will be most beneficial for the users community of
these DINS techniques.
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APPENDIX A: DERIVATION OF dy/dE0

From the definition of they of Eq. s7d we have

U dy

dE0
U

t
=U ]y

]q

dq

dE0
U

t
+U ]y

]v

dv

dE0
U

t

=US− Mv

q2 −
"

2
D dq

dE0
U

t

+UM

q

dv

dE0
U

t
. sA1d

So, we need to calculate the derivatives ofq and v with
respect toE0 at constantt. From Eq.s4d we have

U dv

dE0
U

t
=

1

"
S1 −U dE

dE0
U

t
D . sA2d

From the kinematic conditions2d we have

U dE

dE0
U

t
= −

L0

L1
S E

E0
D3/2

. sA3d

Replacing Eq.sA3d in Eq. sA2d we have

U dv

dE0
U

t
=

1

"
X1 +

L0

L1
S E

E0
D3/2C . sA4d

On the other hand, deriving the definition ofq presented in
Eq. s5d we have

U dq

dE0
U

t
=U ]q

]E0
U

t
+U ]q

]E

]E

]E0
U

t
. sA5d

Then

U dq

dE0
U

t
=

m

"2q
F1 −

L0

L1
S E

E0
D3/2SL0

L1

E

E0
−Î E

E0
DcosuG ,

sA6d

where we have employed Eq.sA3d. Finally, replacing Eq.
sA4d and Eq.sA6d in Eq. sA1d we obtain Eq.s15d.

APPENDIX B: DERIVATION OF E„E0,y…

From Eq.s13d for y swhich is in terms ofE andE0d, we
want to solve forE, consideringy and E0 as fixed input
values. Defining the variables

x = ÎE,

a =
M2

2my2 , sB1d

m =
m

M
,

after some algebra Eq.s13d can be transformed to a fourth-
order polynomial inx, with real coefficients

o
i=0

4

bix
i = 0, sB2d

where
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b0 = fas1 − md2E0 − 1gE0,

b1 = 2f1 + 2asm − m2dE0gÎE0 cosu,

b2 = − 1 − 2af1 − m2 − 2m2 cos2 ugE0, sB3d

b3 = − 4ams1 + mdÎE0 cosu,

b4 = as1 + md2.

Therefore, the real positive roots of Eq.sB2d define the val-
ues of EsE0,yd, which define they-constant curves repre-
sented in Figs. 3 and 5.
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