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Loss of Andreev backscattering in superconducting quantum point contacts
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We study effects of magnetic field on the quasiparticle energy spectrum in a superconducting quantum point
contact. The supercurrent induced by the magnetic field leads to intermode transitions between the electron
waves that pass and do not pass through the constriction. The latter experience normal reflections which couple
the states with opposite momenta inside the quantum channel and create a minigap in the low-energy spectrum
that depends on the magnetic field.
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I. INTRODUCTION which leads to formation of a minigap in the energy spec-
trum at a superconducting phase differemces a way simi-

Transport in superconducting/normal-metal hybrid strucdar to that for contacts with normal scatterér$The devia-
tures is governed by normal and Andreev reflections. Comtion from backscattering is produced by an exchange, during
petition between these processes is determined by insulatirie Andreev process, of a Cooper pair momentum induced in
barriers at the interfaces, mismatch in the material paramthe electrodes by an applied magnetic field. Varying the mag-
eters, impurities, etc. The devices where the degree of nonetic field one can tune the degree of normal reflection to-
mal and Andreev reflections can be tuned to control the sysgether with the minigap thus controlling the transport prop-
tem conductance are in the focus of current nanoscalerties of the contact.
physics research. One of the possible ways to manipulate the
conductance is to use an external magnetic field either to
influence the cyclotron trajectories of particles and holes ina Shown in Fig. 1a) is the model device that illustrates the
normal part of a hybrid systef or to induce interference loss of exact backscattering during the Andreev reflection: A
between partial reflected waves as in RefABdreev inter-  single-mode channel with the radies~k:* opens into a
ferometey. Another mechanism to change the trajectoriesnormal semispherical region with the radibsmuch larger
and to affect the interplay between the Andreev and normahan the superconducting coherence lengtiThe normal
reflections is to interfere with the fundamental property ofregion is surrounded by a superconductor which carries the
the Andreev reflection, i.e., with its almost exact backscattersupercurrent with the momentufik,. For b> ¢ the quasi-
ing. During the Andreev reflection, the angle of divergenceparticle propagation is well described via a trajectory repre-
between the trajectories of an incoming particle and the resentation. Due to the transfer &k the Andreev reflected
flected hole does not exce¢kl-¢)™!, where¢ is the super- trajectory deviates from its initial directidmnd can miss the
conducting coherence length akgelis the Fermi wave vec- constriction to experience a normal reflection from the insu-
tor. Generally, small deviations from exact backscatterindating barrier. The trajectory returns to the constriction after
come from interaction of electron and hole waves with anseveral reflections; this results in coupling of states propagat-
inhomogeneity in spatial distribution of the order-parameteiing through the channel in the opposite directions. The mo-
phase. For example, such deviations can be caused by theentum transfer ofik, deflects a trajectory by an angle
transverse force on particles and holes from thek/ke and produces its divergence kyb/kg: over a distance
supercurrerit® induced by a magnetic field. b. The probability of normal reflection thus depends on the

Although the deviations from the exact backscattering areatio of the trajectory divergence to the transverse channel
small, they become noticeable if the divergence between thgimensiona. For a single-mode quantum channak- k-2,
particle and hole trajectories is comparable with the size othis ratio becomeg&b/kra~ k.
the system involved. The exemplary device where such a In a superconducting point contact, the wave functions for
condition is achieved is a ballistic quantum point contactsubgap states decay at distandes ¢, thus kb~ké=<1.
having the form of a narrow chann@onstriction between  However, the trajectory divergendgé/ke is less than the
the two superconductor electrodes. In the present Brief Rewavelength, and the trajectory description is not adequate. A
port we show that breaking down the exact Andreev backsingle-mode channel with a radias- k:* irradiates an elec-
scattering produces a dramatic change in the low energironic wave determined by diffraction. Let us consider the
spectrum of quantum contact. The loss of backscatteringight superconductor occupying a half-spaze-0 and
mixes the modes passing through the channel with the modéstroduce the spherical coordinates=r sin#cos¢, y
that do not penetrate inside but are normally reflected fronxr sin @ sin ¢, z=r cos# with the origin at the right channel
the channel end. The normal reflections couple the wavesutlet. Far from ity > a, particlelike and holelike wave func-
propagating through the channel in the opposite directiongjons are

1. MODEL
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®H ®H electrode with & phase difference between thekyg, is a
constant wave vector in each electrode. It enters the super-
s I conducting velocitymvg=fik;—(2e/c)A that determines the
S, Z difference in the eikonals of particle and hole wave func-

superconductor at the London length In the right super-
conductor, for exampleyy(z)=-(2e/moBy\ye?*. Assum-
(b) (© ing for simplicity A>¢ we can negleci in the regionr
| de ch | | ~ ¢ where the low-energy wave functions are localized:
( th'G 1m(a)rAleSIr?g e “:]? ‘i ¢ t"’h‘””e is ;)penr:j totggrnor;na r;gnon ker=(27/ do)AByy, Where ¢py=tic/|e| is the flux quantum.
white semicirci¢ In a contact with a superconducigray regio The parametek¢ that determines the relative weight of nor-
Andreev reflected trajectories deviate from initial direction due to - .

mal reflections at the channel end kst~ By/H,, where

the transverse pair momentufiks and experience normal reflec- - . 2 )
tions from the insulator surfadélack), which couple right-moving Hem~ ¢o/ () is the thermodynamic critical field. The gap

u* and left-movingu™ states.(b) Asymmetric and(c) symmetric Ao iS suppressed by the magnetic field. However, this does
point contacts. not change the backscattering properties of Andreev reflec-

tion; we ignore it in what follows.

(7 4 I Vi, tions, (m/#) [vs-dr. The magnetic field is screened in the

U™ ot sier Y
- =1 lgtike NSE (1) lll. SCATTERING MATRIX

th In the normal channel, particleg and holes), propagate

superconductor/insulator boundaiy 7r/2 which is assumed in the +z direction while particlesi; and hole); propagate
specular for simplicity; thus the amplitude$ andV* can be in =z direction. Using the scheme employed in Ref. 8, we
expanded in spherical functio (6, ¢) with odd angular ~ introduce the scattering matriceSx(e, x.ksp) and § (e,
momental. Inside the single-mode channel there are two—X.KsD that relate the incident and outgoing wave ampli-
particle and two hole waveset™? with amplitudesuf and ~ tudes, respectively, at the right=0, and left,z=-d, ends of
vy, respectively, corresponding to the momentum prOJectlon§>he channel:
+hk, on thez axis. To match the channel modes with the + + -
i), =slie), () =a ()
R R L L

The microscopic wave functions vanish at

quasiparticle waves in the superconducting half-space we
note that, for a waveguide<k:', the radiated/incident dif-
fraction field is ex|itiker)cosé/r. We now assume that it is
only one mode in the diffraction field, Eql), proportional
to P, p=cos# that ideally transforms into the channel mode
Ug, vg Without reflections, while all other modds4 1 are Uy siva Y0

normally reflected from the waveguide end without transmis- =gl : (6)
sion into the channel. Thus the wave-function amplitudes R -

. _ _ . (5)
Vo Vo ) Vo
Hered< ¢ is the channel length. The wave functions at dif-

ferent ends of the channel have different phase factors:

+ +
Ug Uo

have the form The solvability condition of Eqs(5) and (6) yields
Ut ug P det(1 — g944S dikdS )= 0. 7
Gendd) | memem o
0 v For |E|< A, the matrixSis unitary: SS'=1. Indeed, Egs.

The amplitudesV; and \If;-' stand for the modes with# 1 (3) and (4) conserve the quasiparticle flow
which experience normal reflections at the channel end. They

* . e . e *
are coupled by a normal reflection matrIFig V= R\If' div[u (—|ﬁV—EA)u+u<|ﬁV—EA>u
V= R V.. The functionsW}, W are orthogonal tdP; ¢
<P1,0|\If U )_ 0. The angular brackets denote the angular av- _v*(_ V4 §A>v —v(iﬁV N EA)U* —0.
erage within G< < 7/2.

We use the Bogoliubov—de Gennes equations . . . .
g g Since this flow vanishes deep in the superconductor where

Vs=0, it should be zero also in the channel, whengg?
+[vg|?=|ug|?+|vg|? which results inSS'=1. The unitarity im-
plies that those quasiparticles which are scattered normally at
1 e \2 the superconductor surface and the channel end will eventu-
[—(—ihv +—A> - E|:1|U -A'u=-Ev, (4) ally return into the channel either as particles or as holes
2m ¢ after certain number of Andreev reflections at the supercon-
where A is the vector potential of the magnetic fieBl  ducting side. R
=B(2)X. The gap function has the form=A,e/Xr*s’) or We now calculate the matri$z explicitly. Consider first
A=Ay 0tst) in the right(left) superconducting electrode; low energies such thdE+E((0)| <A, where E40) is the
XrL=*x is the zero-field constant phase in the rigleft) Doppler shift associated with the supercurrent near the plane

[i<—iﬁV—9A>2—E}u+A ~Eu 3)
2m c F voES
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z=0. We assume, of coursi&¢(0)| < A,. Wave functions de-
caying for z—oo at distances of the order @f obey the
relations

UE = e_i/Z(X"'kst)é:(ksR)e_i/Z(X'*ksF{)uE,

()

u;{ - e”2<X+ksR’>é:(ksR)e”2(X+k3R')vg,

9)

which couple the electron and hole amplitudes near the chan-

nel end|r| <& Here
vt - N e PN
& (k) = e+ &(0) ¥ IV1-[e+ &0,
E=hvel Ay, e=E/Ay, andeg=ihv(0)V /2A,. For the left su-
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c.=c,. For smalle, it is sufficient to take Eq(12) whence

_i(ke)X(PZ psir? @i’ ¢)e””
8(P$ osi® 7 ’

where€7=e+iy1-¢€. Withoutks one hadc,|=|c_|=1. As a
result, the diagonal components®¥anish, thus the p, and

—p, States are decoupled.

In the diffraction picture, the transitions that couple the
penetrating and nonpenetrating modes are caused by the
angle-dependent Doppler shiff in Eq. (12) which distorts

the wave fronts of reflected holes as compared to those of
incident particles. The interference of these waves results in

c,=¢7 (15

perconductor, similar expressions hold with the replacemerthe suppression of the amplitude of the Andreev reflected

x——x anda*—a .

The Andreev relationg8) and(9) should be applied to the
entire functions with the amplitudes$ andV from Eq.(2) at
a hemisphere with a radiusa<r<¢ where kg
~kgr sin #sin p<<1. Taking the derivatives only of the rap-
idly varying radial exponents in Eq1l) we obtain

voP1o+ ﬁ—s‘l'; = e H(UiPy o+ he‘l’;), (10
UpP1o+ W, = €9 (0gP1 o+ ¥,), (11)

where
der=ext eVl —(e* €)?, (12

es:—%gkssin 0 sin ¢, and the indeXR is omitted. Equations

(10) and(11) are written fory=0, the phase can be recovered

by S(x)=€X7#25(y=0)e X772,

For higher energies, it may happen that the Doppler-

shifted energy exceeds the gdptel>1, where the sign
depends on the momentum direction and on the siga. of
The full Andreev reflection then occurs at a poirg

wave entering the channel.

IV. RESULTS

Consider first the zero-bias conductance of a normal-
metal/quantum-channel/superconductor  junéfion G
= (€ mh)(1-|Syy*+|S;,]*) where|S;,|* and |S,]* are prob-
abilities of normal and Andreev reflection, respectively. We
get for smallk¢

& 2(|c,2 - 1)? & [ 1( BO>4]
|22 | = =222 |.
mh |CE_1|2 =0 wh 2\H;

Here we introduce a fielt,~ H., through

BS _ (kXPiosin’ gsir’ ¢) _ (kd)®

HZ VI 20 °
Consider now an asymmetric structure that consists of a
superconducting tip with a curvature radius smaller than

in a contact with a bulk superconductor, see Fidp)1in this
casek =0 while ksg=ks# 0. On the right end of the chan-

Gs=

(16)

~\/cos® where the corresponding Doppler-shifted energyng| the matrixéRzé(e,X,ks) is determined by Eq(13). On

is equal to the gap enerdyz+ e((ro)|=1 due to the screening
of vg. In this case, one of the corresponding factets:, in

Egs.(10) and(11) should be modified. The new factors can

be found using the WKB approximation fars> ¢. We do not
present these expressions here.

Since the normal reflection at the channel end is associ-

ated with the momentum transferzikg, one can neglect the
energy dependence & on the scaled, and takeR=—¢¢r
with a constant phase shift which is a reasonable approxi-
mation at least for specular reflection. Solving E4€) and
(11 for W, and ¥, and then applying the orthogonality
(P10l ¥,,)=0, yields two equations coupling, v, andup,
ve through the matrix

.1 (e“*”r(lmlz— 1)

& e¥c.-c,)
e'X(c,-c.)

e (|c >~ 1)

), (13

" 1-c.C
where

_(P1o(1- dle="ex)71p, o)
: <P1,0(ei¢t - ei‘pi)_lpl,0> .

Using ¢+ =¢g7e--&) and applying the transformatiop
— ar+¢ in the integral over the angles in E(L4) we find

(14)

the left end the matri>é,_=é(e,—x,0) assumes an Andreev
form S =€ e X725, . The phase shifk,d— ¢, drops out and
Eq. (7) yields

(1-che"-(1-cHe'"=2(c, -c,)coq2y). (17)

For k=0 with c,=€'” we obtain a standard gapless
expressioft1? e= +cosy. For a nonzerd,, a minigap opens
in the spectrum. To see this consider ELjy7) in the limit of
small e andks. We have

€= cos x + gl(ic, + 12+ (ic; ~ 1)%]=o.
Within the leading terms il8/H. we find
€=cod y+é&,

where the minigap in the spectrum é@z%(BOIHC)Z. The
spectrum for energies close tagis not expected to change
qualitatively.

In the case of a symmetric contact shown in Fi¢c)1
the solution of the screening problem yieklg = -k g=—kKs.

The spectral equation7) with Sz=S(e,x,ko9 and §
=é(6,—x,—kg reduces to

(18)
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sirf(kd-¢). (19)

—ic})?
The spectrum has a gap for nonzégoln the limit of low e
and ks, the right-hand side of Eq19) can be treated as a
perturbation. We put|c,|>—1)?=(By/H,)* whereH, is de-
fined in Eq.(16) while (c,—c,)2=~-4 and(c,+c,)%/4= €.
Finally we get Eq(18) where

¢ = = (ByHo?lsin(kd - ).

> (20)

V. DISCUSSION

Since the wave vectd,< ¢ 1<k, it induces transitions
only between the modes with close transverse quantum nu

bers. Thus, the predicted effect is more easily seen in a co

tact transparent only for a few modes. On the contrary, in

n_
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asymmetry in the scattering removes the resonant tunneling
effect, thus a finite gap exists for any phase skift— ¢, as
illustrated by Eq.(18). Similar effects of resonant tunneling
and minigap oscillations as functions kfd can also take
place for other mechanisms of normal reflection such as mis-
match in the material parameters, interface barrierst®etc.

The predicted minigap is not small but can reach values of
the order ofA, for By~ H,,, It can be monitored by varying
the magnetic field and measuring the Josephson current that
decreases in magnitude and acquires more sinusoidal shape
with the increase in the minig&pThe minigap affects dy-
namic properties of the contact; in particular, at voltage bias
eV<e, the dc current is suppress&tivarying the magnetic
field one can thus observe a transition from the ballistic to
high-resistance behavior of the contact. For simplicity we
assumed specular reflections from both the insulating surface
ind the channel end. However, the general arguments on the
loss of backscattering and formation of a minigap in the

aEnergy spectrum of a single-mode contact should hold for an

multimode channel, coupling to the reflected modes th rbitrary rough surface as well.

mixesp and p states has a small weight while transitions
occur mostly between the penetrating modes. In large area
superconductor/normal-metal/superconductor junctions,
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