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By using a generalized version of the time-dependent Ginzburg-Landau theory, we have calculated the
paraconductivity,Ds, of a superconducting mesoscopic tube beyond the conventional ohmic approximation.
Among other dimensionality effects, the so-obtained paraconductivity expressions show that, close toTc and
deep inside the nonohmic region, a dimensional crossover from the one-dimensional to the two-dimensional
fluctuation regimes can be induced which, in turn, may be understood in terms of an effective shrinkage of the
superconducting coherence length with the electrical field. These nonohmic effects onDs may be observed in
Al mesoscopic tubes and carbon nanotubes, thus opening new experimental possibilities to investigate the
superconducting behavior of these nanostructured materials.
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During the last years, advances in different microfabrica-
tion techniques have attracted the interest of many research-
ers to the properties of superconductors with dimensions of
the order ofjs0d, the amplitude of the Ginzburg-Landau
sGLd superconducting coherence length.1 One of the most
striking conclusions in this field is that the superconducting
critical parameters of these so-called mesoscopic samples
may be appreciably enhanced by nanoscale modulation of
the boundary conditions.1,2 This outstanding property broad-
ens the perspectives for both the design of innovative devices
based on these materials and the improvement of the practi-
cal applications of superconductivity.

The study of the response of these mesoscopic supercon-
ductors to external magnetic fields and, in particular, to ap-
plied electrical currents is a crucial issue for the development
of the novel applications mentioned above. Up to date, the
dimensionality effects on the resistivity,rsTd, have been
mainly studied in mesoscopic loops and wires, where it has
been found that the behavior ofrsTd around the critical tem-
perature at zero applied magnetic field,Tc0, is dominated by
order parameter fluctuations.3–7 These fluctuations create be-
low Tc0 phase slips that considerably enhance the resistivity,
whereas above the transition they lead to a depletion of the
normal state resistivitysthe so-called paraconductivityd due
to the presence of short-lived thermally activated Cooper
pairs. Such precursive superconducting effects aboveTc0,
also studied through the diamagnetic response to an applied
magnetic field,8–12 have been proven to be a useful tool to
investigate the properties of the mesoscopic superconductors.

Our present paper aims to extend these studies of the di-
mensionality effects on the electrical transport properties of
mesoscopic superconductors to the paraconductivitysDsd of
a mesoscopic tubefi.e., a tube with radius,R, of the order of
js0dg at high applied electrical fields. This regime is charac-
terized by an electrical field dependence ofDs which, there-
fore, departs from the conventional ohmic behavior. The
physical origin of this nonlinear effect is the acceleration of
the Cooper pairs along the fluctuation’s size which, if the
electrical field is high enough, may increase their kinetic
energy up to suppress the fluctuation itself.13 To the best of

our knowledge, this high field regime of the paraconductivity
has only been investigated in thin films of conventional low-
Tc superconductorssLTSCd.14 However, the existing studies
have also raised interesting questions concerning the nono-
hmic region ofDs in high-Tc superconductorssHTSCd as,
for instance, those related to the possible influence of the
electrical field on the fluctuations’ dimensionality.15

We believe that, due to their relatively large values ofjs0d
and intrinsic intermediate dimensionality, the mesoscopic
low-Tc superconductors are appropriate systems to observe
the interplay between dimensionality and electrical field ef-
fects addressed here. Therefore, by using a generalized ver-
sion of the time-dependent Ginzburg-Landau theory
sTDGLd, we will first present detailed calculations of the
paraconductivity for a mesoscopic tube which extend the ex-
isting results for the ohmic regime16 to the finite electrical
field limit. The so-obtainedDs-expressions will show that
the superconducting fluctuationssSFsd in the tube, which
may vary between the one-dimensionals1Dd and two-
dimensionals2Dd regimes, are not only controlled by the
reduced temperature,e; lnsT/Tc0d, but also by the applied
electrical field. In fact, these results predict that, close toTc0,
a 1D to 2D crossover may be induced when going deep
inside the nonlinear region. We will argue here that this be-
havior, which contrasts with the one expected for other su-
perconducting systems showing a crossover between two dif-
ferent dimensionalities,15 may be understood in terms of an
effective shrinkage of the superconducting coherence length
when the electrical field increases. Finally, we will discuss
the possibility to reach the nonohmic regime in Al mesos-
copic tubes, as well as the usefulness of our present results
for studies of the superconducting effects in carbon nano-
tubes.

To calculate the paraconductivity of a mesoscopic tube
beyond the conventional Ohmic approximation, we have
adapted to this particular geometry the GL formalism pro-
posed in Ref. 17 for bulk isotropic 3D superconductors and
2D thin films. This procedure consists in combining the stan-
dard GL expression for the thermally averaged current of the
superconducting condensate,
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AstdkC*Cl, s1d

with the generalized Langevin equation for the order param-
eter,

]Csr ,td
]t

=
8kBTc0

p"a0

s− ĤCsr ,td + Gsr ,tdd . s2d

In these equationsĤ=a0e+s1/2m*dfs" / id¹−s2e/cdAstdg2 is
the GL Hamiltonian,m* is the effective mass of the Cooper
pairs,e is the electron charge," is the reduced Planck con-
stant,a0="2/2m*j2s0d is the GL normalization constant,kB

is the Boltzmann constant,Astd is the vector potential, and
Gsr ,td is a Langevin random force uncorrelated in space and
time. The latter implies that Gsr ,td will verify
kG*sr ,tdGsr 8 ,t8dl=adsr −r 8ddst− t8d, wherea=p"a0/4 is a
normalization constant.

By using cylindrical coordinates, the presence of a homo-
geneous electrical fieldsEd applied parallel to thez axis at
the instant t=0 may be introduced into the formalism
through the following gauge choice,

Ar = Af = 0,

Azstd = H− cEt if t ù 0,

0 if t , 0,
J s3d

wherer, f, andz are, respectively, the radial coordinate, the
azimuthal angle, and the axial coordinate. In order to calcu-
late the thermal averages involved in Eqs.s1d and s2d, it is
also useful to perform an expansion of the superconducting
order parameter in terms of its Fourier components,Ckstd
;V−1ed3rCsr ,tdexps−ikr d, whereV=2pRdLz is the sam-
ple’s volume18 fhered andLz are, respectively, the thickness
and length of the tube, which verifyd!R, js0d!Lzg andk is
the so-called wave vector of the fluctuations. As a direct
consequence of the boundary conditions, the latter may be
expressed ask ;s0,n/R,kzd, wheren is an integer number
and kz is the component of the fluctuations’ wave vector in
the z direction. Equationss1d and s2d are then transformed
into

Jz = − V−1o
n,kz

2e

m* s"kz − 2eEtdkuCn,kz
u2l, s4d

and, respectively,

]Cn,kz
std

]t
=

8kBTc0

p"a0
f− En,kz

Cn,kz
std + Gn,kz

stdg. s5d

In this last equation,Gn,kz
std is the Langevin random force in

momentum space, which now obeys

kGn,kz

* stdGn8,kz8
st8dl = adsn − n8ddskz − kz8ddst − t8d, s6d

whereasEn,kz
holds for the eigenvalues of the GL Hamil-

tonian, which are given by

En,kz
std = a0e +

1

2m* s"kz + 2eEtd2 +
"2n2

2m*R2 . s7d

The thermally averaged current density at arbitrarily high

electrical fields may be now obtained by introducing in Eq.
s4d the kuCn,kz

u2l expression that results from combining the
solution of Eq.s5d with Eq. s6d. This gives

Jz = −
e

m*

2kB
2Tc0

2

p5"a0Rd
o

n=−`

` E
−`

`

dkzs"kz − 2eEtd

3E
−`

t

dt8 expS−
16kBTc0

p"a0
E

t8

t

dt9En,kz
st9dD , s8d

where we have applied that the sums in momentum space
may be written ason,kz

;on=−`
` e−`

` dkz/ s2p /Lzd.
As discussed in Ref. 17, to calculate the integrals in-

volved in Eq.s8d it is convenient to introduce the variables
pz, u, andu8 defined as, respectively,"pz="kz−eEst+ t8d, u
= t8− t, andu8= t+ t8−2t9. Then, the paraconductivity may be
calculated by considering the limitt→` and taking also into
account thatJz=DsE. This leads to

Dsse,Ed =
AAL

2D

rÎpe3/2E
0

`

dxÎx expH− xF1 +S E

E*sed
xD2GJ

3 q3F0,expS−
x

r2e
DG , s9d

wherer =R/js0d, x=16kBTc0eu/p" is a dimensionless time
variable, AAL

2D=e2/16"d is the Aslamazov-Larkin paracon-
ductivity amplitude in two dimensions,19 q3 is the elliptic
theta function of index three defined byq3su,qd=1

+2on=1
` qn2

cos 2nu, andE*sed is an electrical field character-
istic of each material given by,

E*sed =
16Î3kBTc

pejs0d
· e3/2 = E0

* · e3/2. s10d

As it can be seen from Eq.s9d, the behavior of the para-
conductivity in a mesoscopic tube is only controlled byr2e
and the ratioE/E*sed. The latter defines, in particular, the
different electrical field regimes of the paraconductivity
which we are going to discuss separately. Note first that for
E!E*sed Eq. s9d reduces to

Dssed =
AAL

2D

rÎpe3/2E
0

`

dxÎxe−x 3 q3f0,e−x/r2eg, s11d

a field-independent expression that corresponds to the well-
known ohmic regime of the paraconductivity, where theDs
behavior is entirely governed byr2e. For instance, ifr2e
!1, the SF will be confined in the direction parallel to the
axis of the tube and, subsequently,Ds will show a 1D be-
havior. In fact, Eq.s11d at r2e!1 simplifies to

DsAL
1Dsed =

AAL
2D

2r
·

1

e3/2, s12d

an expression that shows the critical exponent of −3/2 char-
acteristic of the Aslamazov-Larkin contribution to the para-
conductivity in 1D superconductors.19,20Contrary to that, for
r2e@1 the 2D fluctuations may be created over the whole
surface of the tube as it becomes topologically equivalent to
a thin film. This is confirmed by the behavior of Eq.s11d in
this limiting case, which is given by
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DsAL
2Dsed = AAL

2D ·
1

e
, s13d

in perfect agreement with the ohmic paraconductivity for 2D
superconductors.19,20

Another important limiting case of Eq.s9d is the so-called
high electrical field regime, which corresponds toE@E*sed.
By applying this condition to Eq.s9d we obtain

DsE@E* sedsEd =
AAL

2D

rÎp
·

E0
*

E
E

0

`

dyÎye−y3

3q3F0,expF−
y

r2 ·SE0
*

E
D2/3GG , s14d

wherey=fE/E*sedg2/3x. As it can be seen from Eq.s14d, the
behavior of the paraconductivity at high applied electrical
fields is temperature independent and controlled only by
r3E/E0

* . In particular, note that forE!E0
*r−3 Eq. s14d reduces

to

DsE@E* sed
1D sEd = AAL

2D ·
1

3r
·

E0
*

E
, s15d

an expression that is proportional tosE/E0d−1 as expected at
high-E in 1D superconductors.13,17 On the other hand, the
asymptotic limit of Eq.s14d at E@E0

*r−3 is given by

DsE@E* sed
2D sEd = AAL

2D · GS4

3
D ·SE0

*

E
D2/3

, s16d

whereG is the gamma function. Equations16d coincides with
the high electrical field limit of the paraconductivity in 2D
superconductors.13,17

An interesting aspect of the paraconductivity results sum-
marized above is the fact that close toTc0 a dimensional
crossover may be induced deep inside the nonlinear region.
Surprisingly, this crossover happens between the 1D and 2D
cases, in spite of the fact that a depairing perturbation like an
external field normally leads to a decrease of the fluctuations
dimensionality.19,20 To illustrate this nonintuitive feature of
the Ds behavior in a mesoscopic tube, we first present in
Fig. 1 an overview of the electrical field dependence of the
paraconductivity ate=3310−3 that can be calculated by us-
ing Eq. s9d ssolid lined. To visualize better the differentDs

regimes, we have imposedr =1 and the vertical axis has been
normalized by the 1D ohmic paraconductivity. At low ap-
plied electrical fieldsffor E/E0

*r−3&2310−5, which corre-
sponds toE/E*sed&0.1g the paraconductivity coincides with
DsAL

1Dsed sdotted-dashed lined. This behavior is just the one
expected in this lowe-region, where the GL coherence
length, jsed=js0de−1/2, is much larger thanR and, due to
that, the SFs in the tube are one-dimensional in nature. Note
also that this dimensionality is preserved at moderate electri-
cal fields, for 2310−5&E/E0

*r−3&5310−2, whereDsse ,Ed
deviates from the ohmic regime but tends to be proportional
to E−1 as predicted for the high electrical field limit of the 1D
paraconductivitysdotted lined. However, when going deeper
inside the nonohmic regionsfor E/E0

*r−3*5310−2d, the
power law inE that describes theDs behavior progressively
changes toE−2/3 in perfect agreement withDsE@E* sed

2D sdashed

lined. In fact,Dsse ,Ed already shows a pure 2D behavior for
E/E0

*r−3*0.1. We see, therefore, that ifE is comparable to
E0

*r−3, the paraconductivity will be two-dimensional even
close to the transition, where the SFs are one-dimensional in
the absence of external perturbations.

The results presented in Fig. 1 are in striking contrast with
the E dependence ofDs expected for other superconducting
systems showing a crossover between two different dimen-
sionalities. This is the case, for instance, of the moderately
anisotropic HTSC, where close toTc0 the electrical field de-
creases the fluctuation’s dimensionality from the 3D to the
2D case.15 The physical origin of these differences may be
understood in terms of the qualitative description of the non-
linear effects considered in Ref. 13: The electrical field ac-
celerates the Cooper pairs along the fluctuating areas, so that
if E is high enough it can increase their kinetic energy up to
the depairing energy. In this case, the Cooper pairs will be
destroyed after covering distances much shorter thanjsed,
thus leading to an effective decrease of the coherence length.
In a moderately anisotropic HTSC this shrinkage of the order
parameter tends to confine the motion of the Cooper pairs in
the superconducting CuO2 layers and, subsequently,Ds be-
haves as two-dimensional even very close to the transition.15

However, in the case of a mesoscopic tube, the field-induced
decrease injsed may allow the creation of SFs over the
whole sample’s surface so that, even close toTc0, Ds will
show a 2D behavior.

From the experimental point of view, the most severe
limitation to observe the nonlinear effects inDs is the Joule
heating caused, both in the sample and in the contacts, by the
high electrical currents required to access the nonohmic re-
gion. In spite of these complications, which strongly depend
on sample’s geometry, the high-E regime of the paraconduc-
tivity was observed 30 years ago by using dc-currents in Al
thin films.14 In these experiments it was already possible to
reach electrical fields as high asE/E0

* ,10−2, whereE0
* is of

the order of 105 mV cm−1 in Al. Indeed, theseE values also
allow us to reach the nonlinear region in Al tubes which, as
mentioned before, are topologically equivalent to thin films.
However, to observe the field-induced dimensional crossover
close toTc0, it will be necessary to use electrical fields am-
plitudes approximately one order of magnitude larger than
those used in Ref. 14si.e., E/E0

* .10−1, which in Al corre-

FIG. 1. An overview of electrical field dependence ofDsse ,Ed
fscaled byDsAL

1Dsedg at e=3310−3 in a mesoscopic tube withr =1,
together with its different limit-behaviors. Deep inside the non-
Ohmic region, forE/E0

*r−3*5310−2, the paraconductivity shows
an unexpected dimensionality increase from the 1D to the 2D fluc-
tuational regimes. See main text for details.
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sponds toE.104 mV cm−1d. The latter seems to be well
within the present experimental capabilities, which include
high pulsed current sources that may be particularly suitable
for this type of measurements. The high electrical field ex-
periments could be also carried out on carbon nanotubes
where, recently, evidences of an intrinsic superconducting
behavior were found which, deeply affected by
order parameter fluctuations, may vary between the 1D
and 2D cases.21 The reportedTc0 and js0d values in these
materials are within 0.5 K&Tc0&15 K and, respect-
ively, 40 Å&js0d&3000 Å, which leads to 105 mV/cm
&E0

*107 mV/cm. This means that, if the GL theory is appli-
cable to describe the superconducting state of carbon nano-
tubes, the nonohmic regime could be achieved in these ma-
terials. Therefore, the experimental observation of the
nonlinear effects onDs and their subsequent analysis in
terms of the results presented here would help to clarify the
origin of the superconducting state in these systems. In such
a case, the differenceDssed−Dsse ,Ed could be also used to
detect and investigate the superconducting effects aboveTc0
in carbon nanotubes while, at the same time, avoiding sev-
eral experimental difficultiessas, for instance, those related
to the estimate of the normal state contribution to the resis-
tivity d.

To summarize, by using a generalized version of the time-
dependent Ginzburg-Landau theory, we have calculated the
paraconductivity of a mesoscopic superconducting tube be-

yond the conventional ohmic approximation. Among other
dimensionality effects for the SF, our results predict at high-
E an unexpected 1D to 2D crossover close toTc0 which may
be attributed to an effective shrinkage of the superconducting
coherence length with the electrical field. These nonlinear
effects in the paraconductivity can be observed in Al tubes
and, also, they might be particularly useful for a better un-
derstanding of the superconducting behavior of carbon nano-
tubes. Other aspects of the nonohmic behavior of the para-
conductivity in a mesoscopic tube deserve further analysis.
For instance, it will be interesting to study whether the de-
crease ofj with E may induce the appearance of the so-
called short-wavelength effects, which dominate the behav-
ior of the SF when the coherence length approachesjs0d.19,20

If so, the extension of the GL formalisms to the high-E re-
gion would also require the introduction of a total energy
cutoff in the fluctuations spectrum which, in particular, takes
into account the uncertainty principle limitations to the
shrinkage of the superconducting wave function.22
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