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Paraconductivity of a mesoscopic superconducting tube in the nonohmic regime
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By using a generalized version of the time-dependent Ginzburg-Landau theory, we have calculated the
paraconductivityAo, of a superconducting mesoscopic tube beyond the conventional ohmic approximation.
Among other dimensionality effects, the so-obtained paraconductivity expressions show that, dligsado
deep inside the nonohmic region, a dimensional crossover from the one-dimensional to the two-dimensional
fluctuation regimes can be induced which, in turn, may be understood in terms of an effective shrinkage of the
superconducting coherence length with the electrical field. These nonohmic effekts may be observed in
Al mesoscopic tubes and carbon nanotubes, thus opening new experimental possibilities to investigate the
superconducting behavior of these nanostructured materials.
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During the last years, advances in different microfabrica-our knowledge, this high field regime of the paraconductivity
tion techniques have attracted the interest of many researchas only been investigated in thin films of conventional low-
ers to the properties of superconductors with dimensions of ; superconductor. TSC).2* However, the existing studies
the order of¢£(0), the amplitude of the Ginzburg-Landau have also raised interesting questions concerning the nono-
(GL) superconducting coherence lengtfne of the most hmic region ofAc in high-T, superconductor$HTSC) as,
striking conclusions in this field is that the superconductingfor instance, those related to the possible influence of the
critical parameters of these so-called mesoscopic samplegectrical field on the fluctuations’ dimensionafify.
may be appreciably enhanced by nanoscale modulation of We believe that, due to their relatively large values(@)
the boundary condition’s? This outstanding property broad- and intrinsic intermediate dimensionality, the mesoscopic
ens the perspectives for both the design of innovative devicegw-T, superconductors are appropriate systems to observe
based on these materials and the improvement of the practine interplay between dimensionality and electrical field ef-
cal applications of superconductivity. fects addressed here. Therefore, by using a generalized ver-

The study of the response of these mesoscopic supercogion of the time-dependent Ginzburg-Landau theory
ductors to external magnetic fields and, in particular, to ap{TDGL), we will first present detailed calculations of the
plied electrical currents is a crucial issue for the developmenparaconductivity for a mesoscopic tube which extend the ex-
of the novel applications mentioned above. Up to date, thésting results for the ohmic reginf&to the finite electrical
dimensionality effects on the resistivity(T), have been field limit. The so-obtained\o-expressions will show that
mainly studied in mesoscopic loops and wires, where it hashe superconducting fluctuatio$F9 in the tube, which
been found that the behavior pfT) around the critical tem- may vary between the one-dimensiondD) and two-
perature at zero applied magnetic fi€ldy, is dominated by dimensional(2D) regimes, are not only controlled by the
order parameter fluctuatiods’ These fluctuations create be- reduced temperature=In(T/T,), but also by the applied
low T, phase slips that considerably enhance the resistivityelectrical field. In fact, these results predict that, clos€p
whereas above the transition they lead to a depletion of tha 1D to 2D crossover may be induced when going deep
normal state resistivitythe so-called paraconductivitylue inside the nonlinear region. We will argue here that this be-
to the presence of short-lived thermally activated Coopehavior, which contrasts with the one expected for other su-
pairs. Such precursive superconducting effects abbye perconducting systems showing a crossover between two dif-
also studied through the diamagnetic response to an appligdrent dimensionalities} may be understood in terms of an
magnetic fielf~22 have been proven to be a useful tool to effective shrinkage of the superconducting coherence length
investigate the properties of the mesoscopic superconductorghen the electrical field increases. Finally, we will discuss

Our present paper aims to extend these studies of the dihe possibility to reach the nonohmic regime in Al mesos-
mensionality effects on the electrical transport properties otopic tubes, as well as the usefulness of our present results
mesoscopic superconductors to the paraconductigity) of  for studies of the superconducting effects in carbon nano-
a mesoscopic tube.e., a tube with radiusR, of the order of  tubes.
£(0)] at high applied electrical fields. This regime is charac- To calculate the paraconductivity of a mesoscopic tube
terized by an electrical field dependencedef which, there-  beyond the conventional Ohmic approximation, we have
fore, departs from the conventional ohmic behavior. Theadapted to this particular geometry the GL formalism pro-
physical origin of this nonlinear effect is the acceleration ofposed in Ref. 17 for bulk isotropic 3D superconductors and
the Cooper pairs along the fluctuation’s size which, if the2D thin films. This procedure consists in combining the stan-
electrical field is high enough, may increase their kineticdard GL expression for the thermally averaged current of the
energy up to suppress the fluctuation itdéfo the best of superconducting condensate,
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2eh . L 4P ) electrical fields may be now obtained by introducing in Eqg.
J= Ri_ﬂ’ V¥ -vvy)- m*CA(t)<\If v, @D @ the ([, | expression that results from combining the

with the generalized Langevin equation for the order paramsolution of Eq.(5) with Eq. (6). This gives
eter,

e 2KiT%, *
JV(r,t) _ 8kgTeo( - J=- =0 | dkj(fik,~ 2eED
aw(r.y _ 8O- Q(r ) + G(r ). 2) Z om rhaRd ). T
o ~ iy t t
In these equationsl =age+(1/2m")[(2/i)V-(2e/c)A(1)]? is XJ dt’ exol - l6kBTc0f dt'E, , (") @)
the GL Hamiltonianm’ is the effective mass of the Cooper o mhag Jy ke '

pairs, e is the electron chargé, is the reduced Planck con- where we have applied that the sums in momentum space
stant,ap=#%/2m’ ¢%(0) is the GL normalization constarks  may be written ag, =" [”.dk/(2m/L,).
is the Boltzmann constan#(t) is the vector potential, and A discussed in Ref. 17, to calculate the integrals in-
G(r,t) is a Langevin random force uncorrelated in space angolved in Eq.(8) it is convenient to introduce the variables
time. The latter implies that G(r,t) will verify p,, U, andu’ defined as, respectivelfip,=#k,—eEt+t’), u
(G'(r,HG(r',t'))=adr—r')8(t-t'), wherea=mhag/4 is a  =t'—t, andu’ =t+t’' - 2t". Then, the paraconductivity may be
normalization constant. calculated by considering the lintit- o and taking also into

By using cylindrical coordinates, the presence of a homoaccount thatl,=Ac¢E. This leads to
geneous electrical fiel(E) applied parallel to the axis at

2D %
the instantt=0 may be introduced into the formalism (. )= AL f dx\&exp{_x[lJ,( E X)ZH
1 E*(e)

through the following gauge choice, el
A =A,=0, X
P X ﬁg{o,ex;<— 7)] 9)
[-cEt itt=0, ‘
AAL) = 0 if t<0, ©) wherer=R/&(0), x=16kgTeu/ 7h is a dimensionless time

variable, Az =€?/16hd is the Aslamazov-Larkin paracon-
wherep, ¢, andz are, respectively, the radial coordinate, the ductivity amplitude in two dimensiond, 95 is the elliptic
azimuthal angle, and the axial coordinate. In order to calcutheta function of index three defined bys(u,q)=1
late the thermal averages involved in E¢b. and (2), it is +25% qn2 cos Ay, andE"(¢) is an electrical field character-
also useful to perform an expansion of the superconductin%tic“(;fl each matérial given by,
order parameter in terms of its Fourier componentg(t) = '
=V d*W(r,t)exp(-ikr), where V=27RdL, is the sam- (€)= 16v3KkeTe  ap_ v 32 (10)
ple’s volumé? [hered andL, are, respectively, the thickness me&(0) 0
and length of the tube, which verify<R, 5(0)_< L] andk is_ As it can be seen from Eq9), the behavior of the para-
the so-called wave vector of the fluctuations. As a direcl,qnq,ctivity in a mesoscopic tube is only controlled iy
consequence of the boundary conditions, the latter may bg,q the ratioE/E’(¢). The latter defines, in particular, the
expressed ak=(0,n/R,k;), wheren is an integer number different electrical field regimes of the paraconductivity

andk; is the component of the fluctuations” wave vector N which we are going to discuss separately. Note first that for

the z direction. Equationd1) and (2) are then transformed g <g(¢) Eq. (9) reduces to
into |
i~ 2e 2 Ao(e) = AL (” dxyxe™ X 940 e_XIrZE] 11
L=-V1> (i, = 20E0([ W, [9), (4) Trme)y o ’
nk

. a field-independent expression that corresponds to the well-
and, respectively, known ohmic regime of the paraconductivity, where the
IWoi () 8ksT behavior is entirely governed bye. For instance, ifr2e
Zz_ - —Bor Enk Wi (D) + Gry (D] (5) <1, the SF will be confined in the direction parallel to the

ot mhag axis of the tube and, subsequenthy will show a 1D be-
In this last equationG, (1) is the Langevin random force in havior. In fact, Eq(11) atr?e<1 simplifies to
momentum space, which now obeys AD 4
\ AciP(e)= 2. — (12
(Goi (DG (1)) =adn-n") ok, - k)t -t'),  (6) AL 2r &7

an expression that shows the critical exponent of —3/2 char-

whereasEn’kz holds for the eigenvalues of the GL Hamil- acteristic of the Aslamazov-Larkin contribution to the para-

tonian, which are given by conductivity in 1D superconductot&2°Contrary to that, for
1 5 22 r’e>1 the 2D fluctuations may be created over the whole
Enk,(t) = age + ﬁ(ﬁkﬁ 2eEY°+ R (7)  surface of the tube as it becomes topologically equivalent to

a thin film. This is confirmed by the behavior of EdJ1) in
The thermally averaged current density at arbitrarily highthis limiting case, which is given by
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~ 10 "o ' T regimes, we have imposed 1 and the vertical axis has been
w . €——AC * i . . ..
82 ol R — 3 normalized by the 1D ohm|c* paraconductivity. At low ap-
S w0'f T Ad\[{g k plied electrical fieldgfor E/Ey~3<2x 107, which corre-
& o AoeB) 7y ] sponds tdE/E"(e) < 0.1] the paraconductivity coincides with
g 0°F e A%Eerl Ay (e) (dotted-dashed line This behavior is just the one
< =1 R expected in this lowe-region, where the GL coherence

107 Bl sl vl sl vl sl i length, =&0)e Y2 is much larger tharR and, due to

10° 10° 10" 10° 10 100 10° 10" gth, £(e)=¢(0)e g
-3

that, the SFs in the tube are one-dimensional in nature. Note
also that this dimensionality is preserved at moderate electri-
FIG. 1. An overview of electrical field dependencelof(e,E)  cal fields, for 2< 10°<E/Er3<5x 102 whereAa(e,E)
[scaled byAoi2(e)] at e=3x 1073 in a mesoscopic tube with=1, ~ deviates from the ohmic regime but tends to be proportional
together with its different limit-behaviors. Deep inside the non-to E™ as predicted for the high electrical field limit of the 1D
Ohmic region, forE/Er—3=5x 1072, the paraconductivity shows paraconductivity(dotted ling. However, when going deeper
an unexpected dimensionality increase from the 1D to the 2D flucinside the nonohmic regiorifor E/ Egr'325>< 107?), the
tuational regimes. See main text for details. power law inE that describes thAo behavior progressively
changes t&2?in perfect agreement witho? .., (dashed

line). In fact, Ao(€,E) already shows a pure 2D behavior for
E/Ey~3=0.1. We see, therefore, thatE is comparable to

) ) ) o Egr‘3, the paraconductivity will be two-dimensional even
in perfect agreement with the ohmic paraconductivity for 2D¢|ose to the transition, where the SFs are one-dimensional in

E/E:) I

1
AoRl(e) =AY -~ (13)

SUpefCOHdU.CtO@-’ZO o . the absence of external perturbations.

_Another important limiting case of E¢9) is the so-called The results presented in Fig. 1 are in striking contrast with
high electrical field regime, which correspondsie-E (€).  the E dependence ofo expected for other superconducting
By applying this condition to Eq(9) we obtain systems showing a crossover between two different dimen-

AD e sionalities. This is the case, for instance, of the moderately
Aoeser(o(E) = % . —OJ dyvye? anisotropic HTSC, where close g, the electrical field de-
rm ElJo creases the fluctuation’s dimensionality from the 3D to the
y E-)2/3 2D cas€e*® The physical origin of these differences may be
xﬁg{o,ex;{— h (—0) ” , (14) understood in terms of the qualitative description of the non-
r E linear effects considered in Ref. 13: The electrical field ac-

wherey=[E/E"(e)]*3x. As it can be seen from E@14), the celerates the Cooper pairs along the fluctuating areas, so that
behavior of the paraconductivity at high applied electricallf E iS high enough it can increase their kinetic energy up to
fields is temperature independent and controlled only byh€ depairing energy. In this case, the Cooper pairs will be
r3E/EZ,. In particular, note that foE < Egr‘3 Eq.(14) reduces destroyed after covering distances much shorter #(ahn

to thus leading to an effective decrease of the coherence length.
. In a moderately anisotropic HTSC this shrinkage of the order
Aol . (E)= AL . 1 ) Ey (15) parameter tends to confine the motion of the Cooper pairs in
E>E'(¢) AL ar E the superconducting CyQayers and, subsequentlo be-

. . : 1 haves as two-dimensional even very close to the transition.
an expression that is proportional @/ Eo)™ as expected at  y,ever, in the case of a mesoscopic tube, the field-induced

high€ in 1D superconductors:*’ 9n_3the other hand, the ecrease ing(e) may allow the creation of SFs over the
asymptotic limit of Eq.(14) at E>Eqr™ is given by whole sample’s surface so that, even closéltg Ao will
.5 . 4 EB 2/3 show a 2D behavior.
Aogp(o(B)=Ay - T 3)\g) (16) From the experimental point of view, the most severe
limitation to observe the nonlinear effectsAar is the Joule
wherel is the gamma function. Equatidf6) coincides with  heating caused, both in the sample and in the contacts, by the
the high electrical field limit of the paraconductivity in 2D high electrical currents required to access the nonohmic re-
superconductors’ gion. In spite of these complications, which strongly depend
An interesting aspect of the paraconductivity results sumeon sample’s geometry, the highregime of the paraconduc-
marized above is the fact that close Tg, a dimensional tivity was observed 30 years ago by using dc-currents in Al
crossover may be induced deep inside the nonlinear regiothin films!# In these experiments it was already possible to
Surprisingly, this crossover happens between the 1D and 2Beach electrical fields as high &E,~ 1072, whereE, is of
cases, in spite of the fact that a depairing perturbation like athe order of 18 mV cm ™t in Al. Indeed, thesé values also
external field normally leads to a decrease of the fluctuationallow us to reach the nonlinear region in Al tubes which, as
dimensionality:>2° To illustrate this nonintuitive feature of mentioned before, are topologically equivalent to thin films.
the Ao behavior in a mesoscopic tube, we first present inHowever, to observe the field-induced dimensional crossover
Fig. 1 an overview of the electrical field dependence of theclose toTy, it will be necessary to use electrical fields am-
paraconductivity ag=3x 1072 that can be calculated by us- plitudes approximately one order of magnitude larger than
ing Eq. (9) (solid line). To visualize better the differefo  those used in Ref. 14.e., E/Ele(Tl, which in Al corre-
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sponds toE=10* mV cm™Y). The latter seems to be well yond the conventional ohmic approximation. Among other
within the present experimental capabilities, which includedimensionality effects for the SF, our results predict at high-
high pulsed current sources that may be particularly suitablg an unexpected 1D to 2D crossover closd tgwhich may
for this type of measurements. The high electrical field exe attributed to an effective shrinkage of the superconducting
periments could be also carried out on carbon nanotubegpherence length with the electrical field. These nonlinear
where, recently, evidences of an intrinsic superconductingects in the paraconductivity can be observed in Al tubes
behavior ~were found which, deeply affected by anq also, they might be particularly useful for a better un-
order parameter fluctuations, may vary between the 1Qygrstanding of the superconducting behavior of carbon nano-
and Z,D cases. The _reportedTCo and £(0) values in these tubes. Other aspects of the nonohmic behavior of the para-
materials are within 0.5 KTp=15K and, respect- .qnqyctivity in a mesoscopic tube deserve further analysis.
ively, 40 A<£(0)=3000 A, which leads to FmV/cm o instance, it will be interesting to study whether the de-
=E(10" mV/cm. This means that, if the GL theory is appli- crease of¢ with E may induce the appearance of the so-
cable to describe the superconducting state of carbon nangy|ieq short-wavelength effects, which dominate the behav-
tubes, the nonohmic regime could be achieved in these M3qy of the SF when the coherence length approagt@s!®2°
terials. Therefore, the experimental observation of thg¢ so, the extension of the GL formalisms to the higtre-
nonlinear effects oMo and their subsequent analysis in gion would also require the introduction of a total energy
terms of the results presented here would help to clarify the,off in the fluctuations spectrum which, in particular, takes
origin of the superconducting state in these systems. In suGl, account the uncertainty principle limitations to the
a case, the differencko(e)—Ao(e,E) could be also used to shrinkage of the superconducting wave funcfidn.
detect and investigate the superconducting effects abgye
in carbon nanotubes while, at the same time, avoiding sev- This work has been supported by the Belgian Interuniver-
eral experimental difficultiegas, for instance, those related sity Attraction Poles, the Research Fund K.U. Leuven GOA/
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