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A two-dimensional Ising model on a particular topological structure, a “triangles-in-triangles” Kagomé
structure, which is called a triangular-Kagomé lattice, is investigated. In this model, we consider two interac-
tion parametersJaa andJab, corresponding to the interactions among spins on the inner sites and between spins
on the inner and vertex sites of the triangular in the Kagomé lattice, respectively. By summing over all spins
at inner sites in the partition function, we arrive at the partition function of the Kagomé lattice. The effective
interaction of the corresponding Kagomé lattice is always ferromagnetic, even for antiferromagneticJaa. The
critical properties of the system depend only onJaa/ uJabu. WhenJaa/ uJabu.−1, the system has long range order
at low temperature. However, whenJaa/ uJabu,−1, the partition function of the triangular-Kagomé lattice can
be related to that of the Kagomé lattice with effective interaction at a temperature higher than its critical
temperature. Therefore, the system will be in paramagnetic phase at all temperatures forJaa/ uJabu,−1. The
phase diagram forJaa/ uJabu is given exactly.
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Since Onsager solved exactly the problems of the Ising
model for the case of a square lattice,1 the same problems for
many other two-dimensional lattices, such as triangular,2,3

honeycomb,4,5 Kagomé lattice6 and so on, have been treated
by several authors. When the interaction is antiferromag-
netic, some of them are very frustrated, such as triangular
and Kagomé lattices, and in these cases there is no long
range order at finite temperature.

Recently Cu9X2scpad6 scpa=carboxypentonic acid;
X=F,Cl,Brd was discovered to form a particular topological
structure, a “triangles-in-triangles” Kagomé structure,7,8

which was called a triangular-Kagomé lattice. The structure
of this compound is shown in Fig. 1. As shown in Fig. 1, a
triangular-Kagomé lattice is made by dividing each triangle
in the Kagomé lattice into four small triangles. The
triangular-Kagomé lattice has two geometrically inequivalent
sitesa and b, as shown in Fig. 1, although both sites have
four neighbors.

The magnetic properties of these systems have also
been studied recently. The magnetic susceptibility observed
under 10 kG obeyed the Curie-Weiss law down to 150 K
with Weiss temperatures of −237, −226, and −243 K for
X=F,Cl,Br, respectively.9–12 These large negative values
suggest very strong antiferromagnetic exchange interactions,
which may be on the order of hundredskB. The magnetiza-
tion in magnetic field up to 38 T does not reach full satura-
tion, which shows that the antiferromagnetic exchange inter-
actions are much stronger than this field. In an electron-spin
resonance experiment,13 the transmission spectra observed in
a triangular-Kagomé lattice show that the resonance field re-
mains constant as the temperature is decreased. In inelastic
neutron scattering measurements,14 dispersionless scattering
around 6.5 meV is observed, which indicates a single-site
excitation with about 70kB. It is noticeable that this single-
site excitation is smaller than that caused by the antiferro-
magnetic exchange interactions. Thus, it may relate to spin
flipping under other weaker interactions instead of the strong
antiferromagnetic ones.

Based on these experiments and the consideration of ex-
change paths, it is expected that the interactionJaa among
sites a is antiferromagnetic and that its strength is much
stronger than the interactionJab between sitesa andb, which
is always ferromagnetic. Further, Mekata has interpreted the
magnetic properties in terms of the plaquette ordering model,
which assumes a 120° arrangement of three moments on
each triangular plaquette and a random freezing of the re-
maining paramagnetic moments. This interpretation is appar-
ently based on a classical Heisenberg spins model, which
corresponds to spin→`.

For this compound, the magnetic moments come from
Cu2+ with spin 1/2. Therefore, the spin-1/2 Heisenberg
model may be more appropriate than the classical Heisen-
berg spin for this compound. Theoretical study for the spin-
1/2 Heisenberg model on the triangular-Kagomé lattice also
exists, based on the linear Holstein-Primakoff spin wave
theorem.15 The spin-1/2 Heisenberg model is a quantum
magnetic model and is very difficult to treat. Until now, no

FIG. 1. Schematic drawing of triangular-Kagomé lattice. The
two geometrically inequivalent sitesa andb are shown.
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exact solutions exist for any two-dimensional Heisenberg
model, regardless of the spin value.

In this report, we adapt an Ising-type interaction instead
of the Heisenberg type, i.e., we ignore the quantum fluctua-
tion in the spin-1/2 Heisenberg model. The Ising model can
also be seen as a limiting case of the classical Heisenberg
model with infinite easy-axis anisotropy, which may result in
some discrepancy with experiments. However, it is fascinat-
ing that the model of Ising-type interaction can be solved
exactly. Furthermore, the antiferromagnetic interactionJaa in
the Ising model will cause both types of triangles,naaaand
naab, to be frustrated. The existence of all these frustrated
triangles will result in some properties similar to those ob-
served in other frustrated Ising models, among which are
that, no long range order exists in finite temperature, the
ground states are very degenerate, and the entropy is nonzero
at absolute zero temperature. We shall investigate the effect
of the frustrated triangular plaquette in this model in detail.

We shall exactly solve the transition temperature of the
Ising model on triangular-Kagomé lattice with only the
nearest-neighbor interaction by the decimation of spins on
site a.16 The Hamiltonian of this system is

H0 = − Jaao
ki,jl

sis j − Jabo
ki,ll

siSl , s1d

wheresi, Sl = ±1 are spin variables for sitesa andb, respec-
tively, i and j are site labels for sitea, and l is the site label
for siteb. ok..l indicates the summation is over corresponding
nearest-neighbor pairs. From Hamiltonians1d, we find that
simultaneously changing the sign ofJab and reversing the
definition of directions of all theb spins, the Hamiltonian is
invariant. Thus, the critical properties should not depend on
the sign of the interactionJab, although their magnetization is
different.

The partition function of the model is given by

ZsKaa,Kabd = o
hsijhSlj

expf− bH0g, s2d

whereb=1/kBT, Kaa=bJaa, and Kab=bJab. The triangular-
Kagomé lattice is different from the Kagomé lattice by con-
sidering more detailed structures in the triangles in the
Kagomé lattice, as shown in Fig. 1, i.e., onenaaa and three
naab are defined clearly for the triangular-Kagomé lattice,
instead of only a largenbbb as in the Kagomé lattice. It is
noticeable that in the triangular-Kagomé model, each of the
three sitesa in the large trianglenbbb can only couple with
its vertex on ab site, except the interactions among them-
selves. Therefore, we can first sum over the spins on sitesa
for a fixed spin configuration of siteb. It can be found that
after the decimation of the spins on sitesa, the trianglenbbb
is transformed to an Ising model coupled between sitesb
directly with an effective interaction strengthK; i.e.,

o
s4,s5,s6

exphsKabdfsS1 + S2ds4 + sS1 + S3ds5 + sS2 + S3ds6g

+ Kaass4s5 + s5s6 + s6s4dj

= A expfKsS1S2 + S2S3 + S3S1dg, s3d

where

e4K =
e3Kaa coshs6Kabd + 3e−Kaa coshs2Kabd

se3Kaa + 3e−Kaadcoshs2Kabd
, s4d

and

A = 2eKse3Kaa + 3e−Kaadcoshs2Kabd. s5d

If the decimation is carried out on the whole lattice, the
triangular-Kagomé lattice will be transformed into the
Kagomé lattice. The relation between the partition function
of the Ising model on triangular-Kagomé latticeZsKaa,Kabd
and that on the Kagomé latticeZksKd is

ZsKaa,Kabd = AN 3 ZksKd, s6d

whereN is the number of the triangles on the Kagomé lat-
tice. Now, we have established a mapping relation between
the partition function of the Ising model on the triangular-
Kagomé lattice and that on the Kagomé lattice, and the latter
has exact results already.6

From Eq. s4d, we can easily find that the effective
interaction strengthK is an even function ofJab, which
shows that the critical properties of the model do not depend
on the sign of the interactionJab as described previously.
Furthermore, in Eq.s4d the numerator is always larger
than its denominator. Thus, the effective interaction strength
K is always larger than zero, corresponding to a ferromag-
netic Ising model on the Kagomé lattice. The singular part
in Eq. s6d can only result from the partition function of
the Ising model on the Kagomé lattice, which has a logarith-
mically divergent specific heat at the critical temperature
e4Kc

=3+2Î3.6 By use of the relationship between the
Kagomé model and the triangular-Kagomé model as de-
scribed in Eq.s4d, the critical temperature of the Ising model
for the triangular-Kagomé lattice is

FIG. 2. Phase diagram of the Ising model on the triangular-
Kagomé lattice.
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expS3
Jaa

uJabu
Kab

c Dcoshs6Kab
c d + 3 expS−

Jaa

uJabu
Kab

c Dcoshs2Kab
c d

FexpS3
Jaa

uJabu
Kab

c D + 3 expS−
Jaa

uJabu
Kab

c DGcoshs2Kab
c d

= 3 + 2Î3, s7d

whereKab
c = uJabu /kBTc, which is only a function ofJaa/ uJabu.

Figure 2 shows the critical temperaturekBTc/ uJabu as a func-
tion of Jaa/ uJabu.

From Fig. 2, we can see that there exists a long range
order phase at low temperature in the regionJaa/ uJabu.−1.
For the regionJaa/ uJabu,−1, no long range order exists. To
illustrate what happens atJaa/ uJabu=−1, we emphasize the
following fact. If Jaa is antiferromagnetic, all triangles of the
system have an odd number of antiferromagnetic bonds,
which means that all triangles are frustrated. However, if
Jaa/ uJabu.−1, the wrong bond can be located only atJaa for
the ground state of the trianglenaab. Therefore, in the
ground state of the large trianglesnbbb, all spins at sitea
are parallel aligned. The alignment of the spins on sitesa and
b are parallel or antiparallel according to the sign ofJab, so
that the spins on sitesb are also parallel aligned. In this case,
the ground state of the whole system is twofold degenerate
and can be effectively related to a ferromagnetic Ising model
on the Kagomé lattice at any temperature. Therefore, it has
long range order at low temperature and a finite critical tem-
perature. It is not surprising now that a fully frustrated Ising
model has long range order at low temperature. For example,
the exact solution of the Ising model on a Kagomé lattice
with anisotropic ferromagnetic and antiferromagnetic inter-
action and a magnetic field17 also shows finite critical tem-
perature for a frustrated case similar to our case. In fact, in

these cases the systems are not “really frustrated,” because
the ground state in the large triangle is twofold degenerate in
spite of all small triangles being frustrated.

For the case ofJaa/ uJabu,−1, the situation is different. In
this case, the frustrated trianglenaaa becomes dominant
and should be in the lowest energy state, which is two spins
in one direction and the other in opposite direction. Then, the
spin on siteb neighboring the two parallel-aligned spins of
sitesa is decisively determined. However, the spins on the
other two sitesb can be in either direction without energy
changes. The ground state of the whole system in this case is
infinitely degenerate. This implies that the frustrated triangle
naaa will block off the effective interaction between sitesb
for the large trianglenbbb. Our calculation shows that the
effective interaction is always ferromagnetic, but with an ef-
fective temperature higher than the critical point for all tem-
perature regions. Therefore, the system is always in para-
magnetic phase forJaa/ uJabu,−1 and no phase transition
will occur.

In summary, exact solutions of the Ising model with two
kinds of interactions on triangular-Kagomé lattice have been
obtained by the decimation of some spins, which transforms
the triangular-Kagomé lattice into the Kagomé lattice. The
phase diagram is given as a function ofJaa/ uJabu. We also
investigated the effects of frustration in the Ising model on
triangular-Kagomé lattice in detail. Our results show that the
existence of the long range order is determined only by the
degeneracy of the ground state.
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