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The out-of-equilibrium dielectric response of a glass sample after the application of a strong dc field at low
temperatures cannot solely be understood by interacting two-level tunneling systemsfS. Ludwig and D. D.
Osheroff, Phys. Rev. Lett.91, 105501s2003dg. The usual picture of a particle tunneling between two close
potential wells has to be extended to include at least a third well. We investigate such a three-well system.
Particles trapped in the third well after the dc field application result in an additional contribution to the
out-of-equilibrium response. Analyzing the experiments with regard to our theoretical model we find that the
energy of the third well has a minimal valueEc larger thankBT for the experimental investigated temperatures.
Additionally, the tunneling frequencies in between the double well and between the third well and the double
well are correlated. Such a correlation is well known for tunneling defects in crystals and we speculate that
crystals doped with tunneling defects show glassy low-temperature behavior if heavily strained. Therefore, we
want to encourage experiments toward that direction.
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I. INTRODUCTION

Most low-temperature properties of glasses are well de-
scribed by the phenomenological tunneling model.1–4 It starts
from the assumption that the potential minima of groups of
atoms are not “well defined,” but can be described as par-
ticles moving in “double-well” potentials. At low enough
temperatures, only the ground states of the two wells are
occupied, and the tunneling particles move by quantum me-
chanical tunneling between them. The energy splitting of
these two levels is given byE=ÎD0

2+D2, where the asymme-
try, D, is the energy difference between the two local
minima. The tunneling splitting can be estimated using the
WKB approximation asD0."V exps−ld, with the attempt
frequency,V. The tunnel parameterl=dÎ2mV/2" contains
the effective mass,m, the potential barrier height,V, and the
distance between the two wells,d. The tunneling model as-
sumes homogenous distributions for the asymmetryD and
the tunneling parameterl.

Recent experiments revealed deviations from the tunnel-
ing model and show that interactions between tunneling sys-
tems sTSsd gain importance with decreasing temperature.5,6

These experiments investigate the out-of-equilibrium re-
sponse during or after the application of a strong dc electric
or strain field. The excess response found by the Osheroff
group5 results from strongly coupled pairs of tunneling sys-
tems, since isolated tunneling systems relax too fast to con-
tribute to the out-of-equilibrium response.7,8 Recent similar
experiments9 cannot be explained solely by double-well tun-
neling systems even when including interactions between
them. Ludwig and Osheroff suggested that the application of
the strong dc electric field leads to “structural rearrange-
ments.” Subsequently, the decay toward equilibrium by
quantum mechanical tunneling is observed as a temperature-
independent decay mechanism. Ludwig and Osheroff thus
evolved a picture where the energy landscape beyond the
double-well approximation has to be considered in order to
describe their experimental data. The strong dc field lifts the

particle out of the double well and the observed decay results
from tunneling particles relaxing back into a double well.

In the following sections, the experiments are described
by just adding to the local double-well potential of a tunnel-
ing system the simplest extension: a third well.

II. THREE WELL SYSTEM

In Fig. 1 we illustrate the potential energy landscape of a
three-well system with the third well higher in energy.

With the tunneling frequenciesD0/" andD08 /" the Hamil-
tonian in space representation for the three wells is

H = 1 D D0 D08

D0 − D D08

D08 D08 E8
2 , s1d

with the asymmetryD of the double well and the energy
differenceE8 between the double well and the third well.

FIG. 1. The potential energy landscape of a three-well system.
The arrows illustrate the tunneling path with the ascociated tunnel-
ing frequencies.
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In a three-well system electric and strain fields couple to a
linear combination of the operators

p̂1 = 1p1 0 0

0 − p1 0

0 0 0
2 and p̂2 = 1− p2 0 0

0 − p2 0

0 0 2p2
2 ,

and the1 operator. The exact form depends on the spacial
structure of the three-well system. Since the general behavior
does not depend on the exact form, we assume for simplicity
for the coupling to phonons

ĝ = 1g0 0 0

0 − g0 0

0 0 g8
2 , s2d

with g0 the coupling constant between the tunneling particle
in the double well and phonons andg8 the coupling constant
between the tunneling particle in the third well and phonons.
This form tends to the usual dipole operator of a two-level
system if we neglect the third well. We expect thatg0 andg8
are of the same order of magnitude.

Finally we are interested in relaxation times for particles
trapped in the third well. Neglecting terms10 of second and
higher order inD08 /E8 and of orderD0D08 /E82, the eigenstates
of a three-well system are

u + l =1
s+

− s−

−
D08

E8
ss+ − s−d 2 ,

u− l =
1
Î21

s−

s+

−
D08

E8
ss+ + s−d 2 and u3̃l =1

D08

E8

D08

E8

1
2 , s3d

with s±= ±ÎsE±Dd /E/2.
We investigate systems where, directly after the field

sweep, the tunneling particle is in the third well

u3l = 10

0

1
2 = u3̃l −

D08

E8
ss+ − s−du + l −

D08

E8
ss+ + s−du− l.

Typical dephasingst2d times for tunneling systems are
shorter than milliseconds at temperatures aroundT
.10 mK, as known from polarization echo experiments.11

Assuming similar behavior for a three-well system, it is in

stateu3̃l with probability 1−OsD08
2/E82d or in stateu± l with

probabilityOsD08
2/E82d after milliseconds. Since the shortest

observed time in the experiments by Ludwig and Osheroff is
10 seconds, all three-well systems will be in either one of the
eigenstates. Observed in the experiments then are the ones
that are not relaxed back into the statesu± l.

The one-phonon relaxation time12 for a particle from

eigenstateu3̃l into the eigenstateu± l estimated by Fermi’s
golden rule is

t±
−1 = G±D08

2E8cothS E8

2kBT
D , s4d

with

G± = 2S 1

cl
5 +

2

ct
5D ug0ss+ ± s−d 7 g8ss+ 7 s−du2

2pr"4 ,

wherecl,t is the longitudinalstransversald speed of sound,r
is the mass density of the glass, andg and g0 the above-
introduced strain coupling constants. Note that 0øG+øG0
andG0øG+ø2G0 for arbitraryD andD0. Thus the time for a
particle to relax out of the third well, i.e., minst+,t−d,
changes only by a factor of two for arbitraryD andD0.

III. COMPARISON WITH EXPERIMENTS

The relative change of the dielectric constant measured by
Ludwig and Osheroff is dominated by tunneling systems
with energiesEùkBT7, thusE8ùkBT. We should remind the
reader that the decay time, which is the time when the mea-
sured dielectric response reaches its equilibrium value after
the application of a dc electric field, is given by the longest
relaxation time of tunneling systems out of equilibrium. In
Refs. 5,7,8, the decay times for two-well systems consider-
ing various mechanisms to bring them out of equilibrium are
discussed. In Ref. 9, however, it was concluded that these
mechanism are not able to fully describe the data and that the
energy landscape beyond the usual two-well approximation
has to be considered. We therefore focus on the effects of the
three-well systems. For systems, which are trapped in the
third well after the application of a dc electric field, the decay
time is given as the longest relaxation time for a particle out
of the third well.

If E8 is broadly distributed with a minimum smaller
or equal kBT, the decay time would be t−1

=G±D0 min82 kBT coths1/2d and thus temperature dependent in
contrast to experiments. Keep in mind that only systems with
EùkBT and thusE8ùkBT contribute in the discussed experi-
ments. ThereforeE8ùEc with the minimal energyEc.kBT
for the experimental investigated temperatures ofT=10 and
T=20 mK, resulting in a temperature-independent decay
time.

An applied electric bias fieldF changes energies bypF
with the dipole momentp of a tunneling system. Only for
pFùE8.Ec particles can be trapped in the third well after
the field application since otherwise the field sweep could
not lift the particle into the third well. This explains the
critical field,9 below which the additional temperature-
independent decay is not found. The experimental-found
critical field,9 Fc.1,5 MV/m, results with a dipole
moment,9 p.1,2 D, of the tunneling systems in Mylar in an
critical energyEc.2 kB K. The observed critical field, how-
ever, should result in peculiar experimental effects at tem-
peratures aroundEc/kB.2 K, which should be measured
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and compared with theoretical predictions from a three-well
system as an additional test of our proposed model.

According to the WKB formula a tunneling frequency
between two wellsD0/".V exps−ld with l=dÎ2mV/2" is
determined by the barrier. We expect that the distances be-
tween the three wells are of the same order of magnitude.
Compared to typical barrier heights ofV,kB1000 K, the
difference of the potential minima of the three wells are neg-
ligible leading us to the assumption that the barrier heights
between the three wells are as well of the same order of
magnitude. Thus, we expect a similar distribution of param-
eters for both tunneling frequencies,D0 andD08 leading to a
logarithmic decay of the dielectric response for the systems
trapped in the third well in accordance with experiments.9

Keep in mind that the discussed out-of-equilibrium di-
electric response is a signal by 4 orders of magnitude weaker
than the total dielectric response measured. The main contri-
bution to the dielectric response at temperatureT comes from
isolated tunneling systems with energy splittings of the order
of temperature,E.kBT. At the experimental temperatures of
T=20 mK and below, the resonant part of the dielectric re-
sponse dominates, which itself results mainly from symmet-
ric tunneling systems withD.0. Typical relaxation times of
these tunneling systems are shorter than 1 s. Therefore, iso-
lated tunneling systems do not contribute to the experimental
observed out-of-equilibrium dielectric response after a field
sweep but constitute the main contribution to the total dielec-
tric response. The observed out-of-equilibrium behavior is
solely due to strongly coupled pairs.8 The slowly decaying
excess dielectric response due to strongly coupled pairs is
explained by the dipole gap theory of Burin.7 Some symmet-
ric tunneling systems are strongly coupled to strongly asym-
metric tunneling systems with very long relaxation times.
Whereas in thermal equilibrium both systems do not contrib-
ute to the dielectric constant due to the strong interaction, the
symmetric tunneling system can contribute when the asym-
metric one is out of equilibrium.7 The dipole gap theory pre-
dicts after a temporary application of an electric bias field for
the time-dependent excess dielectric constant

d«

«
= fsF,TdlnS t0

t
D ,

with the decay timet0 and a prefactorfsF ,Td.8 The addi-
tional decay mechanism discussed by Ludwig and Osheroff
shows a decay timet0 independent of temperature. The ex-
cess dielectric constant is as well due to strongly coupled
pairs9 since they found the same functional dependence of
the prefactorfsF ,Td as predicted by the dipole gap theory.
This results in two conclusions: no isolated tunneling system
contributing to the dielectric constant is out of equilibrium at
the times observed in the experiments. Thus, if all systems
are three-well systems, the relaxation time out of the third
well, Eq. s4d, for a symmetric three-well system withE
.kBT and D.0⇔E.D0 must be shorter than 10 s, the
shortest observed time in the experiments leading to

D08
2 ù s10 sd−1tanhsE8/2kBTd

G±E8
. s5d

Otherwise the relaxation of isolated three-well systems out
of the third well would be observed in experiments.

On the other hand, the experimental long-time behavior
results from asymmetric tunneling systems,E.kBT and D0
!D, which are strongly coupled to a second tunneling
system.8 The relaxation time of these systems out of the third
well must be very long,t@1 s, in order to explain the ex-
perimental observed decay times of the order of hours. Thus,
in this case

D08
2 ! s1 sd−1tanhsE8/2kBTd

G±E8
. s6d

Since the energies of the experimental relevant systems
are fixed as discussed above,E,kBT andE8ùEc.kBT, the
latter arguments can be summarized by

sid a tunneling splittingD0!E needs a smallD08,
sii d and a tunneling splittingD0&E needs a largeD08,

to be consistent with experiments. Accordingly, the tunneling
frequencies,D0 andD08 are correlated.

So far, we have only discussed a third well and ignored
the possibility of even more potential wells in the proximity
of the double well. In general we expect the same conclu-
sions to hold, since the tunneling back to the double well can
always be described by an effective tunneling frequency that
results from the potential structure in between.

IV. DISCUSSION

In order to explain the data by Ludwig and Osheroff, we
introduced a third well besides the double well forming the
tunneling system. We showed that such a model needs a
correlation between the tunneling frequency within the
double well, and between a third well and the double well in
order to be compatible with experimental results.

Such correlated tunneling frequencies between various
potenial wells are known for tunneling defects in crystals.
These have typically more than two equivalent potential
minima. For example, a substitutional lithium defect in po-
tassium chloride has eight potential wells accesible that form
the corners of a cube. The tunneling frequencies along any
edge of this cube are identical, whereas the tunneling fre-
quencies along the face or space diagonals are smaller due to
the longer tunneling path.13,14

One might speculate that the tunneling particles in glasses
have, due to symmetries, more than two equal potential wells
with equal tunneling frequencies between them. For ex-
ample, in SiO2 glasses, the tunneling particle might be a
SiO4 tetraeder with three equivalent rotational states. For a
polymer like Mylar it is known that side groups of the poly-
mer chains typically have various conformational states that
are energetically equivalent. The disorder of glasses leads to
large strain fields that break the symmetries. What remains
are only few systems where, accidentally, two wells are close
in energy so that they act as tunneling systems. The other
wells are shifted higher in energy. These strong strain fields
might as well break the exact equality of the tunneling fre-
quencies between the various wells, but a correlation would
certainly survive. Accordingly, a correlation between the tun-
neling frequencyD0 between the lowest two potential wells
and the tunneling frequencyD08 between the third well and
the other two wells is expected in such a scenario.
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If this picture is true, one should be able to turn a crystal
doped with tunneling defects into a glass by introducing
strain. It is shown that increasing the concentrations of tun-
neling defects in a crystal, which increases the interactions
between the defects, does not lead to glasslike low-
temperature behavior,15 at least as long as the introduction of
additional strain fields is avoided. However, in highly
strained mixed crystals, which are doped with tunneling de-
fects, a glasslike internal friction was found.16 In KBr:KCN
at CN concentrations of 25, 50, and 70%, a glassy thermal
conductivity and specific heat was found.17 Again the large
amount of defects lets one expect large strain fields. Further
investigations with control of the introduced strain could
verify or falsify the above-introduced picture. From the the-
oretical side, the question of how the tunneling model distri-
bution emerges needs further investigation as well. Burin and
Kagan showed that an ensemble of tunneling systems with
an arbitrary distribution of tunneling frequencies, but broad
and flat distribution of asymmetries, renormalizes to tunnel-
ing systems obeying the standard tunneling model distribu-
tions if the systems strongly interact via a dipole-dipole
interaction.18 It would be desirable to understand how these
results depend on the distribution of asymmetries to directly
compare them with the above-suggested experiments.

V. CONCLUSION

We evolved a picture for the local potential energy land-
scape of a tunneling system including an additional third
well in the standard double-well picture. Such a scenario is
able to explain the experiments by Ludwig and Osheroff if
one introduces a strong correlation between the tunneling
frequency within the double well and the tunneling fre-
quency from the third well into the double well. Such a cor-
relation between tunneling frequencies between different po-
tential wells is known from tunneling defects in crystals and
they result from symmetries of the underlying defects.

This suggests that in glasses there are basic tunneling de-
fects with a higher-than-twofold symmetry that are distorted
by strain fields due to strong disorder. A strong dipole-
dipole-type interaction between the basic tunneling defects
might then lead to standard tunneling model distributions for
the tunneling frequencies as proposed by Burin and Kagan.18

Accordingly, a crystal doped with tunneling defects
should show glassy low-temperature behavior if we distort
the sample substantially. Some experimental results to test
this hypothesis in mixed crystal systems16,17 are promising
but more experimental work toward this direction is desir-
able.

We thank S. Ludwig for valuable discussions.
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