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The dephasing effect of metallic gates on electrons moving in one quasi-one-dimensional diffusive wire is
analyzed. The incomplete screening in this geometry implies that the effect of the gate can be described, at high
energies or temperatures, as an electric field fluctuating in time. The resulting system can be considered a
realization of the Caldeira-Leggett model of an environment coupled to many particles. Within the range of
temperatures where this approximation is valid, a simple estimation of the inverse dephasing time givestG

−1

~T1/2.
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I. INTRODUCTION

The low temperature dephasing time of electrons in dif-
fusive metals has attracted a great deal of attention.1–4 Dif-
ferent mechanisms have been proposed to explain the
anomalous dephasing properties reported in these experi-
ments. Some of them are extrinsic, like dynamical defects,5

two level systems,6 or magnetic impurities.7 Alternatively,
intrinsic effects have also been proposed.8 Screening effects
in a quasi-one-dimensional geometry are significantly re-
duced, leading to a breakdown of Fermi liquid theory at low
temperatures9,10 ssee also Ref. 11d. Decoherence can be in-
duced by inelastic processes within the system under study,
or by fluctuating potentials induced by external sources. Me-
tallic gates are perhaps the most ubiquitous source of exter-
nal dephasing, as their gapless spectrum leads to fluctuations
at all time or energy scales, and they are electromagnetically
coupled to other metallic systems. In the following we study
the dephasing induced by metallic gates on quasi-one-
dimensional diffusive wires. The study follows the analysis
in Ref. 12, where dephasing effects in ballistic quantum dots
was considered.

Using electrostatic arguments, it is easy to show that the
fields induced by a fluctuation of charge in the gate decay
exponentially outside the gate, with a decay length propor-
tional to the wavelength of the fluctuation. Then, the pres-
ence of the gate implies the existence of two regimes, which
depend on the relative value of the distance over which the
electrons in the wire diffuse and the wire-gate distance. We
can also define the two regimes in terms of the energy or
temperature required to cover a distance of the order of the
separation between the wire and the gate.

sid For distances along the wireL!z, or time scales larger
thanDw

−1z2, whereDw is the diffusion coefficient of the wire,
and z is the distance to the gate, the dephasing time is the
sum of a contribution from charge fluctuations within the
wire and another due to the fluctuations at the gate. The
contribution from the gate comes from fluctuations in the
charge density of the gate of wavelength comparable or
larger thanz. The fields induced by fluctuations of shorter
wavelengths decay at distances shorter than the wire-gate
separation, and their influence on the wire can be neglected
ssee belowd. The electric fields induced by the gate can be

calculated within the dipolar approximation. Because of the
one-dimensional geometry of the wire, this field is not
screened by the charge fluctuations of the wire. As discussed
in Ref. 12, this coupling can be considered a generalization
to a many particle system of the Caldeira-Leggett model of
Ohmic dissipation.13 This model shows anomalous dephas-
ing in many situations.14–17

sii d At distancesL@z or time scales lower thanDw
−1z2 the

distance between the wire and the gate can be neglected. The
screening by the gate leads to an effective short range poten-
tial along the wire.18

Section II describes mathematically the model to be stud-
ied. The different regimes mentioned above are discussed in
Sec. III. Section IV generalizes the results to gates with ge-
ometries which differ from that depicted in Fig. 1. Finally,
Sec. V contains a discussion of the most relevant results. The
units are such that"=1.

II. THE MODEL

We study the setup sketched in Fig. 1. A wire of widthw
is located at heightz over a two-dimensional metallic gate of
width w8. The effects of the finite width of both systems is
included through the densities of states,nw and nG, defined
as number of states per unit length and per unit area, respec-
tively. We study the contribution to dephasing from the gate
using the scheme proposed in Ref. 11. The probability of
transition of a particle at the Fermi level to other states, after
time t, using second order perturbation theory, at temperature
T=b−1, is

Ps2dstd . E
0

t

dtE
0

t

dt8E dqiE
uvu.1/t

dveiqifr std−r st8dg+ivst−t8d

3
uvu

1 − e−bv Imfvscrsq,vdg, s1d

where qi is the momentum in the direction parallel to the
wire, andvscrsqi ,vd is the screened potential between points
within the wire. In general, we can write the screened poten-
tial as vscrsz,qi ,q' ,vd, wherez is the vertical coordinate,
and q' is the momentum in the direction perpendicular to
the wire and parallel to the gate. We assume that the wire is
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at z=z, and the gate is atz=0. We define the bare, un-
screened potential asv0sz,qi ,q' ,vd. The screened potentials
at the position of the gate and at the position of the wire can
be written as

vscrsz,qi,q',vd = v0sz,qi,q',vd +
2pe2

uqu
xwsqi,vd

3E dq'vscrsz,qi,q',vd

+
2pe2e−uquz

uqu
xGsqi,q',vdvscrs0,qi,q',vd,

vscrs0,qi,q',vd

= v0s0,qi,q',vd +
2pe2e−uquz

uqu
xwsqi,vd

3E dq'vscrsz,qi,q',vd

+
2pe2

uqu
xGsqi,q',vdvscrs0,qi,q',vd, s2d

whereqi andq' are the momenta parallel and perpendicular
to the wire, andxw andxG are the polarizabilities of the wire
and the gate. They are given by

xwsqi,vd = −
nwDwqi

2

iv + Dwqi
2 ,

xGsq,vd = −
nGDGq2

iv + DGq2 , s3d

where nw, nG, Dw, and DG are the densities of states and
diffusion coefficients of the wire and the gate, respectively.

From the second of the equations ins2d, we can write

vscrs0,qi,q',vd =

v0s0,qi,q',vd +
2pe2

uqu
xwsqi,vdE dq'vscrsz,qi,q',vd

1 −
2pe2

uqu
xGsqi,q',vd

. s4d

A point charge at a point in the wire leads to a bare potential
such that

v0sz,qi,q',vd =
2pe2

uqu
,

v0s0,qi,q',vd =
2pe2e−uquz

uqu
. s5d

Using this expression, and inserting Eq.s4d into the first
equation ins2d, we find

vscrsqi,vd =

e2FlogSqc

qi

D + Fsqi,vdG
1 + e2xwsqi,vdFlogSqc

qi

D + Fsqi,vdG , s6d

whereqc is a high momentum cutoff proportional to the in-
verse of the width of the wire. The functionF can be written
as

Fsqi,vd =E dq'

4p2e2e−2uquz

uqu2
xGsq,vd

1 −
2pe2

uqu
xGsq,vd

. s7d

For sufficiently low momenta,uqu!e2nG, we can write

FIG. 1. Sketch of the system considered in the text.L denotes a
distance along the wire, as discussed in the text.
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Fsqi,vd < F1sqid − ivF2sqid

F1sqid =E dq'

2p2e−2uquz

uqu
, logsqizd

F2sqid <
1

e2nGDG
E dq'

e−2uquz

uqu2
,

1

e2nGDG

1

qi

. s8d

For small frequencies,vøDwqi
2, we find

Imfvscrsqi,vdg

<
ve4nw

Dwqi
2

FlogSqc

qi

D + F1sqidG2

+ Dwqi
2F2sqid

H1 + nwe2FlogSqc

qi

D + F1sqidGJ2
.

s9d

III. RESULTS

A. Dipolar approximation †t−1
„T…šDw/z2

‡

The integral over the time differencet−t8 in Eq. s1d is
bounded by the inverse of the temperature,b. Bothz and the
value ofkfr std−r st8dg2l for t−t8.b act as a lower cutoff in
the integrals over qi, so that uqiu−2!minhkfr std
−r st8dg2l ,z2j. When kfr std−r st8dg2l!z2, we can limit the
integral overqi to uqiuøz−1 and substitute

eiqifr std−r st8dg < − hqifr std − r st8dgj2. s10d

Within these approximations, and settingqc
−1<w, Eq. s9d

becomes

Imfvscrsqi,vdgeiqifr std−r st8dg < v1Dsqi,vdeiqifr std−r st8dg

+ v2Dsqi,vd,

v1Dsqi,vd =
v

nwDwqi
2 ,

v2Dsqi,vd =
vuqiufr std − r st8dg2

e4nw
2nGDGlog2sz/wd

. s11d

Inserting Eq.s11d in Eq. s1d one obtains thatPs2dstd can be
written as the sum of two contributions,Pw

s2dstd and PG
s2dstd

arising fromv1D and v2D fnote that screening effects from
the gate are included in the denominator ofv1D in Eq. s12d
through the term logsqczdg. The first term when inserted in
Eq. s1d, give the contribution to the functionPG

s2dstd calcu-
lated in Ref. 11, leading to the standard expression for the
dephasing in one-dimensional wires.

The contribution fromv2D in Eq. s11d to Eq. s1d can be
written as

PG
s2dstd .

T

e4nw
2nGDGz2log2sz/wd

E
0

t

dt

3E
0

t

dt8E
1/t

T

dvhfr std − r st8dgj2eivst−t8d. s12d

Using kfr std−r st8dg2l=Dwst−t8d, we finally obtain

PG
s2dstd .

TDwt2

e4nw
2nGDGlog2sz/wdz2 . s13d

From this equation we can define a dephasing time due to the
presence of the gate,PG

s2dstGd<1, as

"tG
−1 .Î TDw

e4nw
2nGDGlog2sz/wdz2 . s14d

On the other hand, the dephasing time due to intrinsic pro-
cesses can be written asssee also Ref. 19d:

"tw
−1 .

T2/3

Dw
1/3nw

2/3. s15d

Because of the different temperature dependence,tG
−1 is

greater thantw
−1 at temperatures below a valueT8 given by

T8 .
Dw

5

DG
3 nG

3 e12nw
2log6sz/wdz6 . s16d

The approximations leading to this result are valid provided
that tG

−1ùDw/z2. This condition breaks down below a tem-
peratureT9 given by

T9 .
Dw

z2 e4nw
2nGDGlog2sz/wd. s17d

The dephasing due to the gate dominates if a temperature
rangeT9øTøT8. The inequalityT9øT8 implies

1 ø f =
Dw

e4nwnGDGzlog2sz/wd
. s18d

We can write this expression using as parameters the Fermi
wave vectors in the wire and gate,kF

w andkF
G, the width of the

wire and of the gate,ww andwG, and the mean free paths in
the wire and the gate,lw and lG. In terms of the dimension-
less Bohr radius of the wire,rsw=smwe2d / skF

w"2d, we can
write

Dw

e2 <
lw
rsw

,

e2nw < rswskF
wwwd2,

DGnG < skF
GlGdskF

GwGd s19d

so that

Dw

e4nwnGDGz
<

1

rsw
2 skF

wwwd2skF
GlGdskF

GwGd
S lw

z
D . s20d

In the presence of a dielectric between the wire and the gate
with dielectric constante0, one has to replace the electric
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chargee2 by e2/e0 in all expressions, or, alternatively,rsw by
rswe0. Hence, Eq.s18d can only be satisfied for very clean
wires, such thatz! lw, or in the presence of a large dielectric
constant,e0.

B. Low temperature regime †t−1
„T…™Dw/z2

‡

At low temperatures the electrons diffuse coherently over
distances much larger thanz. The dipolar approximation, Eq.
s10d cannot be made, and the cutoff in the integrals overqi is
fDwst−t8dg−1. Then, using Eq.s9d we obtain

PG
s2dstd .

Tt

e4nw
2nGDGlog2sqczd

logSDw

z2t
D . s21d

Neglecting logarithmic corrections, this result leads to

"tG
−1 .

T

e4nw
2nGDGlog2sqczd

. s22d

In this regime there is also a contribution from the intrinsic
processes, given by Eq.s15d. These processes will dominate
at sufficiently low temperatures,TøT- where

T- =
e12nw

4nG
3DG

3 log6sqczd
Dw

. s23d

Note that whenT9øT-, whereT9 is given in Eq.s17d the
contributions from the gate are always smaller than those
coming from fluctuations in the wire. The conditionT-
øT9 reduces to Eq.s18d.

Combining the results in this section and in the preceding
one, we can write

PG
s2dstd < 5

T

T9
SDwt

z2 D2

, t−1 !
Dw

z2

T

T9

Dwt

z2 , t−1 @
Dw

z2 ,

Pint
s2dstd < f−1 T

T9
SDwt

z2 D3/2

, s24d

where f is defined in Eq.s18d. These expressions lead to

tG
−1 <5

Dw

z2 S T

T9
D1/2

, T ù T9

Dw

z2

T

T9
, T ø T9,

tint
−1 <

Dw

z2 S T

fT9
D2/3

. s25d

IV. EXTENSIONS TO OTHER GEOMETRIES

A. One-dimensional gate

The analysis in the two previous sections can be extended,
in a straightforward way, to the case where the gate is an-
other quasi-one-dimensional wire. The gate polarizability,

defined in Eq.s3d depends only on the momentum parallel to
the wire. The functionF in Eq. s7d becomes

Fsqi,vd < e4K0
2sqizd

xGsqi,vd
1 − e2K0sqizdxGsqi,vd

, s26d

whereK0sqizd is a modified Bessel function:

K0sqizd =E
0

`

dq�
cossq�zd
Îqi

2 + q�
2

. s27d

We can, as in the preceding section, study separately the
dipolar regime,t−1!Dw/z2, and the long time regime,t−1

@Dw/z2. In the dipolar regime, using Eq.s10d, we obtain

tG
−1 <Î TnwDw

e2nGDGzsnw + nGd2 s28d

snote that nownw is a quasi-one-dimensional density of
statesd. The restrictiont−1øDw/z2 implies that this result is
only valid for temperaturesTùT9 where

T9 =
Dwe2nGDGsnw + nGd2

z3nw
. s29d

At high temperatures,TùT8, we find tG
−1øtint

−1, where

T8 =
Dw

5nw
7

e6snGDGd3snw + nGd6z3 . s30d

The condition required for the relevance of the dephasing
due to the gate,T9øT8 implies

1 ø
Dwnw

2

e2nGDGsnw + nGd2 . s31d

It is interesting to note that this condition does not depend on
the distance between the wire and the gate. At temperatures
below T9, such thatt−1øDw/z2, the combined system acts
like an effective one-dimensional wire, leading to at−1

~T2/3 dependence.

B. Three-dimensional gate

We assume that quasiparticles at the gate are specularly
reflected at the boundary. Then, the screening properties of
the system can be calculated from the fluctuations of surface
charges at the top of the gate.20 The functionF in Eq. s7d can
be written as

Fsqi,vd =E dq '
2pe2e−2qz

uqu
Bsq,vd − 1

Bsq,vd + 1
,

Bsq,vd =
uqu
p
E dqz

1

suqu2 + qz
2deGsq,qz,vd

,

eGsq,qz,vd = 1 +
4pe2

uqu2 + qz
2xGsq,qz,vd. s32d

Using this expression, the parameterstG, T8, T9, and T-
which characterize the dephasing induced by the gate can be
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calculated. One finds that they show the same dependence as
for a quasi-two-dimensional gate, with the only replacement
nG

2D→nG
3D3z, similarly to the results discussed in Ref. 12.

Qualitatively, a three-dimensional gate behaves as a two-
dimensional gate of widthz. The constraint which needs to
be satisfied for the gate induced dephasing to be dominant is

1 ø
Dw

e4nwnGDGz2log2sz/wd
. s33d

C. Granular gate

We now analyze the dephasing induced by a gate made up
of disconnected metallic grains. We assume that each grain
has volumeV and that these grains have a diffusion coeffi-
cientDG and a density of statesnG, leading to an intrinsic dc
conductivitys=e2nGDG. Their response to an applied field is
characterized by their polarizability,P and absorption coef-
ficient,gsvd<Vv2/s.21 The dielectric constant of the granu-
lar system can be written as

esvd = V−1SP +
ivV

e2nGDG
D . s34d

We can insert this expression into Eqs.s32d, and carry out
the following steps in order to obtain the dephasing effects of
the gate. The inequality which needs to be satisfied for the
gate induced dephasing to prevail is

1 ø
Dw

e4nwnGDGz2s1 + V−1Pd2 . s35d

This expression, valid for grains larger than the mean free
path, is very similar to the corresponding one for a three-
dimensional gate, Eq.s33d. The effects of a granular gate,
however, can be greatly enhanced by the surface roughness
of the grains22 ssee also Ref. 23d, or for grains much smaller
than the mean free path.

V. CONCLUSIONS

We have analyzed, within the standard approach to
dephasing in metals9–11 the effects of a two-dimensional dif-
fusive gate on the coherence properties of electrons in quasi-
one-dimensional wires. The method used can be easily gen-
eralized to other types of gates, like granular metals or
ballistic systems. Note that the analysis presented here deals
only with dephasing due to thermal fluctuations in the gate,
and it does not consider other possible sources of dephasing.

At short distances, or low temperatures, the gate induces
at the position of the wire an electric field, which fluctuates
in time but is approximately constant in space. The resulting
model can be considered an extension of the Caldeira-
Leggett model13 to a many particle system. Using the self-
consistent perturbation theory to calculate the dephasing
time, we find atG

−1~T1/2 dependence. The existence of this
regime requires only the validity of the dipolar approxima-
tion, see Sec. III A. Hence, it is not restricted to the diffusive
1D wire.24 At very low temperatures, the separation between
the gate and the wire becomes irrelevant, and the contribu-

tion from the gate changes to atG
−1~T dependence, as for a

two-dimensional metal.
The presence of the gate does not change qualitatively the

contribution to the dephasing rate due to processes intrinsic
to the wire, which has the same dependence on temperature
as for an isolated wire,tint

−1~T2/3 ssee Refs. 9–11d. Note,
however, that the long range part of the potential of an elec-
tron in the wire is suppressed by the screening by the gate.

The main results are schematically depicted in Fig. 2. The
contribution from intrinsic processes dominates both at low
and high temperatures. The existence of an intermediate
range of temperatures where the gate determines the inverse
dephasing time depends on the inequalities in Eqs.s18d, s31d,
and s33d or s35d, depending on whether the gate is a two-
dimensional metal, a one-dimensional wire, a three-
dimensional metal, or a granular metal. Note that the effec-
tive dimensionality of the gate depends on the value of the
distancez to the wire where dephasing is studied. A planar
gate whose widthwG is smaller thanz will behave as a
two-dimensional metal, and a conducting wire whose diam-
eter is smaller thanz can be described as a one-dimensional
gate.

In current experiments on metallic wires, the observed
mean free path is comparable to the width of the wire.1–4 In
this situation it is unlikely the regime where the dephasing is
determined by the gate can be observed. Note, however, that
the screening of the electrostatic interactions within the wire
and between the wire and the gate tends to enhance the rela-
tive contribution from the gate.

On the other hand, in multiwall carbon nanotubes Fabry-
Perot interferences have been found in samples of lengths
<500 nm,25 so that the elastic mean free path is, at least,
comparable to this length. The number of channels in these
nanotubes,kF

www is not large. Using Eq.s18d, we find that a
quasi-two-dimensional metallic gate can reduce significantly
the observed coherence effects25 if it is sufficiently dirty sso
that kF

GlG is not too larged and it is at distances of order
103 Å. A similar situation may arise in conducting channels
made from doped semiconductors,26,27where high mobilities
and small lateral dimensions have been achieved. In these
systems, the elastic mean free path can exceed 1mm, and the
lateral dimensions of the wire are comparable to the Fermi
wavelength. Using Eq.s18d we find that a metallic gate with
a short mean free path can contribute significantly to the

FIG. 2. Schematic representation of the intrinsic and gate con-
tributions to the inverse dephasing time, Eq.s25d. Left: constraint in
Eq. s18d is satisfied. Full line,tint, Eq. s15d. Broken line,tG, Eq.
s14d. Dotted line,tG, Eq. s22d. The values of the temperaturesT8,
T9, andT- are given in Eqs.s16d, s17d, ands23d. Right: constraint
in Eq. s18d is not satisfied. The intrinsic contribution to the inverse
dephasing time, Eq.s15d, dominates.
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dephasing in the wire when its distance to the wire is one
micron or less.

It is also worth noting that a nonperturbative treatment
shows that the coupling to an environment modelled by the
Caldeira-Leggett model strongly suppresses quantum coher-
ence in a variety of situations.14–17
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