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Electronic dephasing in wires due to metallic gates
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The dephasing effect of metallic gates on electrons moving in one quasi-one-dimensional diffusive wire is
analyzed. The incomplete screening in this geometry implies that the effect of the gate can be described, at high
energies or temperatures, as an electric field fluctuating in time. The resulting system can be considered a
realization of the Caldeira-Leggett model of an environment coupled to many particles. Within the range of

temperatures where this approximation is valid, a simple estimation of the inverse dephasing timt%]gives
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[. INTRODUCTION calculated within the dipolar approximation. Because of the
one-dimensional geometry of the wire, this field is not
The low temperature dephasing time of electrons in dif-screened by the charge fluctuations of the wire. As discussed
fusive metals has attracted a great deal of attertibmif- in Ref. 12, this coupling can be considered a generalization
ferent mechanisms have been proposed to explain thi® a many particle system of the Caldeira-Leggett model of
anomalous dephasing properties reported in these expe®@hmic dissipatiort® This model shows anomalous dephas-
ments. Some of them are extrinsic, like dynamical defects,ing in many situation$*-17
two level system$,or magnetic impuritieg. Alternatively, (i) At distanced. >z or time scales lower thaf, 7 the
intrinsic effects have also been propo$escreening effects distance between the wire and the gate can be neglected. The
in a quasi-one-dimensional geometry are significantly rescreening by the gate leads to an effective short range poten-
duced, leading to a breakdown of Fermi liquid theory at lowtial along the wire'8
temperatures'© (see also Ref. )1 Decoherence can be in- Section Il describes mathematically the model to be stud-
duced by inelastic processes within the system under studied. The different regimes mentioned above are discussed in
or by fluctuating potentials induced by external sources. MeSec. lll. Section IV generalizes the results to gates with ge-
tallic gates are perhaps the most ubiquitous source of extepmetries which differ from that depicted in Fig. 1. Finally,
nal dephasing, as their gapless spectrum leads to fluctuatio®ec. V contains a discussion of the most relevant results. The
at all time or energy scales, and they are electromagneticallynits are such that=1.
coupled to other metallic systems. In the following we study
the dephasing induced by metallic gates on quasi-one-
dimensional diffusive wires. The study follows the analysis Il. THE MODEL
in Ref. 12, where dephasing effects in ballistic quantum dots

was considered. is located at height over a two-dimensional metallic gate of

. Us"ﬁg electrostatic arguments, it is easy to show that th?vidth w’. The effects of the finite width of both systems is
fields induced by a fluctuation of charge in the gate decayy,qjeq through the densities of stateg, and v, defined
exponentially outside the gate, with a decay length proporgq nmper of states per unit length and per unit area, respec-

tional t]? kt1he Wav.elerlllgth ﬁf the_ fluctuatifon. Then, the prhe_s;%ively. We study the contribution to dephasing from the gate
ence of the gate imp les the eX|stence.o two regimes, w ICusing the scheme proposed in Ref. 11. The probability of
depend on the relative value of the distance over which th

: . . . ; ransition of a particle at the Fermi level to other states, after
electrons in t_he wire diffuse _and the wire-gate distance. W‘?imet, using second order perturbation theory, at temperature
can also define the two regimes in terms of the energy Oﬁ-:ﬁ—l is
temperature required to cover a distance of the order of the '
separation between the wire and the gate. 2 t L O

(i) For distances along the wite<z, or time scales larger 7 (t):J de ded(hj dwe
thanD, 22, whereD,, is the diffusion coefficient of the wire, o 70 lul>11
andz is the distance to the gate, the dephasing time is the |o|
sum of a contribution from charge fluctuations within the Xl e IM[vsedd, w)], (1)
wire and another due to the fluctuations at the gate. The
contribution from the gate comes from fluctuations in thewhereq, is the momentum in the direction parallel to the
charge density of the gate of wavelength comparable owire, andvs.(q;,®) is the screened potential between points
larger thanz. The fields induced by fluctuations of shorter within the wire. In general, we can write the screened poten-
wavelengths decay at distances shorter than the wire-gati@l asvs.(Z,q;,q, ,w), wherez is the vertical coordinate,
separation, and their influence on the wire can be neglectegind q, is the momentum in the direction perpendicular to
(see below The electric fields induced by the gate can bethe wire and parallel to the gate. We assume that the wire is

We study the setup sketched in Fig. 1. A wire of width
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2me?
+ F;TXG(Q\\,QL'w)vscr(O’CIquIL,w): (2

whereq, andq, are the momenta parallel and perpendicular
to the wire, andy,, and yg are the polarizabilities of the wire
and the gate. They are given by

FIG. 1. Sketch of the system considered in the texdenotes a
distance along the wire, as discussed in the text.

at z=z, and the gate is az=0. We define the bare, un- "D q2
screened potential ag(z,q,,q , ,»). The screened potentials X0y @) = = &”2
at the position of the gate and at the position of the wire can o +D,gqj
be written as
2me? 5
Used 2,091,901, @) = 0o(2,0),0 L, ©) + ——xu(0), @) vcDgq
al Xo(0,0) == ————, (3)
o+ Dgq

Xf dQLUscr(ZaqH'qi'w)

2me?ellz
+ TXG(qlhqbw)vsm(ovq\\’qivw)y

where v, vg, Dy, and Dg are the densities of states and
diffusion coefficients of the wire and the gate, respectively.
From the second of the equations(R), we can write

2me?
v0(0,9;,9 1, w)+ | q| —xw(Q), ®) f dg vsed2,9),0 1, @)

Uscr(O-QH!qJ_-w) = . (4)
1- ﬁXG(QH q.,0)
[
A point charge at a point in the wire leads to a bare potential
such that &| log| = | + F(qy, )
qj
Vsel Q) ) = , (6)
Je
2me? 1 +€&xu(ay, )| log| — | + F(qy, )
qy

UO(Z qH’qLYw) | |

where(, is a high momentum cutoff proportional to the in-
verse of the width of the wire. The functioh can be written

as
2melelalz
01 ’ L = 5
UO( ad. (,!)) |q| ( ) 4772926_2‘(1‘2 XG(q C!))
f(qH,(D) = dqi 2 . (7)
[o] 2me?
1- | | XG(q w)
Using this expression, and inserting Ed@) into the first
equation in(2), we find For sufficiently low momentag| <€’vg, we can write
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F(q,0) = Fi(q) —iwF,(q)
72e2alz
Falay) = f g1 ~ log(q,2)
1 g 2alz 1 1
Falan = eZVGDGf daz gl N eZVGIDGq_H. ®

For small frequencieapsDqu, we find

IM[vsedqy, w)]

0 2
. |:|09< ) + ]:1((1|):| + Dyt Folay)
W€, a

= P2 2
W, 1+ Vwe{log(q ) +]-“1(q)]
dy

9)

IIl. RESULTS
A. Dipolar approximation [#XT)>D,,/7]

The integral over the time difference-7' in Eq. (1) is
bounded by the inverse of the temperaty@eBoth z and the
value of([r(7)—r(7')]? for 7—7' = B act as a lower cutoff in
the integrals over g, so that |q|"2<min{([r(7)
-r(7)]?,7%. When <[r(7-) r(7)]2 <2z we can limit the
integral overg, to |q,|<z* and substitute

g~ —{qr(n-rP (10

Within these approximations, and settiqglzw, Eq. (9)
becomes

lm[vscﬁ(qH,w)]eiq”[r(T)_r(Tl)] ~ UlD(q”'w)eiqu[r(r)—r(f')]

+v,p(Q), @),

(ay, ) ©
1% ,W)= ">,
1D\l VWDqu

o|q|[r (7) = r ()
e"2 vsDglog?(zw)

vop(Q), ) = (11

Inserting Eq.(11) in Eq. (1) one obtains thaP?(t) can be
written as the sum of two contribution®?(t) and P2(t)

arising fromuv,p andv,p [note that screening effects from

the gate are included in the denominatorvef in Eq. (12)
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-
"2 vsDsZlog?(ziw) J o

X J dr’ f do{[r(7) = r () ]}2d™) . (12)
0 1t

Using ([r(n-r (7)) =D,(7—7'), we finally obtain

PO TD,t?
¢ e"2vsDglog?(zw) 2

(13

From this equation we can define a dephasing time due to the
presence of the gat@,g)(re) =1, as
i D,

hg = \/ 4 2 2 :

e*vsvgDglog?(Zw)Z

On the other hand, the dephasing time due to intrinsic pro-

cesses can be written ésee also Ref. 19
T2/3

(14)

fir

w o D1/31}2/3 . (15

Because of the different temperature dependenge is
greater thanr at temperatures below a valUé given by

D5
Diviettilog(Zw)Z

T = (16)

The apprOX|mat|ons leading to this result are valid provided
that 7;'=D,,/Z%. This condition breaks down below a tem-
peratureT” given by

D,
T = — "2 vsDglog?(Z/w). (17)

ra

The dephasing due to the gate dominates if a temperature
rangeT’<T<T’'. The inequalityT"< T’ implies

D,
etv, veDszlog?(Z/w)

1<f= (18)

We can write this expression using as parameters the Fermi
wave vectors in the wire and gat¢ andkg, the width of the
wire and of the gatew,, andwg, and the mean free paths in
the wire and the gate,, andlg. In terms of the dimension-
less Bohr radius of the wirerg,=(m,e?)/(K4?), we can
write

lw
r 1

Dw _
2 ~
~Tr v\ﬂ(FWW)2

Devg = (Kelo) (Kewe) (19

through the term lo@.2)]. The first term when inserted in so that

Eq. (1), give the contribution to the functioif?g)(t) calcu-

lated in Ref. 11, leading to the standard expression for the

dephasing in one-dimensional wires.
The contribution fromw,p in Eq. (11) to Eq. (1) can be
written as

Dy 1 <|1V> 0
r2(kiwy,) 2kl o) (kwg) \ 2/

In the presence of a dielectric between the wire and the gate
with dielectric constant,, one has to replace the electric

e4VWVGDGZ
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chargee? by €%/ ¢, in all expressions, or, alternatively,, by  defined in Eq(3) depends only on the momentum parallel to
r<wéo- Hence, Eq(18) can only be satisfied for very clean the wire. The function¥ in Eq. (7) becomes
wires, such that<I,,, or in the presence of a large dielectric

constante. F(g;,0) = €*K3(q,2) Xe(01.) ,  (26)
i ol 1 - eKo(g2 xo(d), )
B. Low temperature regime [7 X(T) <D, /7] whereKq(q,2) is a modified Bessel function:
At low temperatures the electrons diffuse coherently over 49,2
distances much larger thanThe dipolar approximation, Eq. Ko(q,2) = f d lL 11 (27)
(10) cannot be made, and the cutoff in the integrals ayes + qi
Ny . ;

[Dy(7=7)I"". Then, using Eq(9) we obtain We can, as in the precedmg section, study separately the

) Tt I (D ) dipolar regime,71<D,/7?, and the long time regimez;*

PS(t) = o] 21 2

& (1) 2 reDaloF (02 9\ 2 (21)  >D, /7 In the dipolar regime, using E410), we obtain

Neglecting logarithmic corrections, this result leads to Al TuwDw (28)
T ¢ &veDaz(vy + v6)°
-1 __
firg = . (22) (note that noww,, is a quasi-one-dimensional density of

42 2
e, veDglo z W o . .
weDelog (42 state$. The restrictionr*<D,,/ 2 implies that this result is

In this regime there is also a contribution from the intrinsiconly valid for temperature$=T"” where

rocesses, given by E@L5). These processes will dominate
p g y EQLS) p Do veDel vy + 7o)

at sufficiently low temperature3,<T"” where Tr =W (29)
Zy '
. €2 EDElog®(q.2) _ " .
T"= D - (23) At high temperaturesT=T', we find 7.'< 7.}, where
Note that whenT”<T", whereT” is given in Eq.(17) the r— D\?V”Zv (30)
contributions from the gate are always smaller than those eS(veDg)3(vy + v6)82

coming from fluctuations in the wire. The conditioR”
<T" reduces to Eq(18).
Combining the results in this section and in the precedin

The condition required for the relevance of the dephasing
djue to the gateT”<T' implies

one, we can write A
1< YT (31)
T (D t) t_l < DW eZVGDG(VW+ VG)
PA(t) ~ ! ' is interesting to note that this condition does not depend on
T\ Z z It is interesting to note that this condition d t depend
¢ T Dyt 1. Du the distance between the wire and the gate. At temperatures
T 2 te> 2 below T”, such thatr *<D,/7? the combined system acts

like an effective one-dimensional wire, leading to7a*
o« T?/3 dependence.

) T D, t 3/2
Pt =1 ( - ) , (24)
B. Three-dimensional gate
wheref is defined in Eq(18). These expressions lead to We assume that quasiparticles at the gate are specularly
Do T \2 reflected at the boundary. Then, the screening properties of
—w <_> 7 T=T1" the system can be calculated from the fluctuations of surface
1 Z\T" charges at the top of the g&&The function in Eq.(7) can
s D, T be written as
__”, T S TI/,
2T 2mefe 22 B(q,0) - 1
F(Qw)= | dg L :
D T 2/3 |Q| B(q:w)+l
it ~ f(—) - (25)
fT 1

al f
B f = d ’
@)= 0+ D) sl b )
IV. EXTENSIONS TO OTHER GEOMETRIES
o 4mre?
A. One-dimensional gate es(0,0,0) =1+ r |277+ 5Xxc(0,0, ). (32

The analysis in the two previous sections can be extended,
in a straightforward way, to the case where the gate is andsing this expression, the parametets T', T”, and T"”
other quasi-one-dimensional wire. The gate polarizabilitywhich characterize the dephasing induced by the gate can be

045424-4



ELECTRONIC DEPHASING IN WIRES DUE TQ. PHYSICAL REVIEW B 71, 045424(2005

calculated. One finds that they show the same dependence as
for a quasi-two-dimensional gate, with the only replacement
v — ¥ x 7, similarly to the results discussed in Ref. 12.
Qualitatively, a three-dimensional gate behaves as a two-
dimensional gate of widtlz. The constraint which needs to

be satisfied for the gate induced dephasing to be dominant is

< Dy _ (33) FIG. 2. Schematic representation of the intrinsic and gate con-
e*v,vsDsZlog?(z/w) tributions to the inverse dephasing time, E2p). Left: constraint in
Eq. (18) is satisfied. Full linesy, Eq. (15). Broken line, 7, EqQ.
(14). Dotted line,7g, Eq. (22). The values of the temperaturg&s,
C. Granular gate T”, andT"” are given in Egs(16), (17), and(23). Right: constraint
Eq. (18) is not satisfied. The intrinsic contribution to the inverse
ephasing time, Eq15), dominates.

1

We now analyze the dephasing induced by a gate made d
of disconnected metallic grains. We assume that each grali
has volumeV and that these grains have a diffusion coeffi-
cientDg and a density of states;, leading to an intrinsic dc  tion from the gate changes tmglocT dependence, as for a
conductivityo=€?vDg. Their response to an applied field is two-dimensional metal.

characterized by their polarizabilitfy and absorption coef- The presence of the gate does not change qualitatively the
ficient, ¥(w) = Vw?/ a.?* The dielectric constant of the granu- contribution to the dephasing rate due to processes intrinsic
lar system can be written as to the wire, which has the same dependence on temperature
. as for an isolated wires 1T (see Refs. 9-11 Note,
() =V‘1<P+ oV ) (34)  however, that the long range part of the potential of an elec-
e*veDg tron in the wire is suppressed by the screening by the gate.

The main results are schematically depicted in Fig. 2. The

the following steps in order to obtain the dephasing effects o ontribution from intrinsic processes dominates both at low

. X ) . nd high temperatures. The existence of an intermediate
the gate. The mequa_llty which nggds to be satisfied for th‘f“ange of temperatures where the gate determines the inverse
gate induced dephasing to prevail is

dephasing time depends on the inequalities in Ef), (31),
Dy, and (33) or (35), depending on whether the gate is a two-

1< DL +V P (35  dimensional metal, a one-dimensional wire, a three-

Ywiete dimensional metal, or a granular metal. Note that the effec-
This expression, valid for grains larger than the mean fredive dimensionality of the gate depends on the value of the
path, is very similar to the corresponding one for a threedistancez to the wire where dephasing is studied. A planar
dimensional gate, Eq:33). The effects of a granular gate, gate whose widthwg is smaller thanz will behave as a
however, can be greatly enhanced by the surface roughnego-dimensional metal, and a conducting wire whose diam-
of the graing? (see also Ref. 23or for grains much smaller eter is smaller thaz can be described as a one-dimensional

We can insert this expression into E¢82), and carry out

than the mean free path. gate.
In current experiments on metallic wires, the observed
V. CONCLUSIONS mean free path is comparable to the width of the Wifen

this situation it is unlikely the regime where the dephasing is

We have analyzed, within the standard approach taletermined by the gate can be observed. Note, however, that
dephasing in metalst! the effects of a two-dimensional dif- the screening of the electrostatic interactions within the wire
fusive gate on the coherence properties of electrons in quasand between the wire and the gate tends to enhance the rela-
one-dimensional wires. The method used can be easily gemive contribution from the gate.
eralized to other types of gates, like granular metals or On the other hand, in multiwall carbon nanotubes Fabry-
ballistic systems. Note that the analysis presented here dedPerot interferences have been found in samples of lengths
only with dephasing due to thermal fluctuations in the gate~500 nm?® so that the elastic mean free path is, at least,
and it does not consider other possible sources of dephasingomparable to this length. The number of channels in these

At short distances, or low temperatures, the gate inducesanotubeskw,, is not large. Using Eq(18), we find that a
at the position of the wire an electric field, which fluctuatesquasi-two-dimensional metallic gate can reduce significantly
in time but is approximately constant in space. The resultinghe observed coherence efféets it is sufficiently dirty (so
model can be considered an extension of the Caldeirathat k%lg is not too large and it is at distances of order
Leggett modéf to a many particle system. Using the self- 10® A. A similar situation may arise in conducting channels
consistent perturbation theory to calculate the dephasinghade from doped semiconductdf<’ where high mobilities
time, we find arg'« T2 dependence. The existence of this and small lateral dimensions have been achieved. In these
regime requires only the validity of the dipolar approxima- systems, the elastic mean free path can exceedhland the
tion, see Sec. Il A. Hence, it is not restricted to the diffusivelateral dimensions of the wire are comparable to the Fermi
1D wire 24 At very low temperatures, the separation betweenvavelength. Using Eq18) we find that a metallic gate with
the gate and the wire becomes irrelevant, and the contribua short mean free path can contribute significantly to the
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dephasing in the wire when its distance to the wire is one

micron or less.

It is also worth noting that a nonperturbative treatment
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