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A new, parametrized many-body tight-binding model is proposed for calculating the potential energy surface
for aluminum nanoparticles. The parameters have been fitted to reproduce the energies for a variety of alumi-
num clusterssAl2, Al3, Al4, Al7, Al13d calculated recently by the PBE0/MG3 method as well as the experi-
mental face-centered-cubic cohesive energy, lattice constant, and a small set of Al cluster ionization potentials.
Several types of parametrization are presented and compared. The mean unsigned error per atom for the best
model is less than 0.03 eV.
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I. INTRODUCTION

The goal of the present paper is to parametrize the tight-
binding method1–10 for the energetic properties of Al par-
ticles of nanometer size. Nanoparticles are, in general, too
big to be treated by full quantum mechanical methods, but
they are too small to neglect the dependence of their quan-
tum properties on size. Because nanostructured materials can
have different properties from the bulk, and indeed, due to
the large fraction of surface atoms, may be closer in many
respects to clusters, the existing tight-binding parametriza-
tions, and other semiempirical methods, since they are usu-
ally based on bulk properties, may be less accurate for nano-
particles than for the bulk. Due to experimental difficulties in
obtaining well-characterized nanoaluminum, one must rely
on theory in developing potential energy functions, and we
will base our parametrization mainly on computational re-
sults for Al clusters of subnanometer size. However, to make
the extrapolation to the nanoparticle regime more accurate,
we also include data for the cohesive energy of bulk alumi-
num in its most stable crystal habitsface-centered cubicd to
tie down the asymptote of the extrapolation. In the tight-
binding method the matrix elements of an effective single-
particle Hamiltonian are modeled as functions of internuclear
distances, with adjustable parameters. The quality of a tight-
binding parametrization depends strongly on the nature and
the quality of the data to which the parameters are fitted as
well as on the functional forms used for the matrix elements.
The data can be taken from experiment or from accurate
calculations. We believe that a set of 190 energies obtained
recently for a variety of aluminum clusters11 sAl2, Al3, Al4,
Al7, Al13d, augmented by the experimental cohesive energy
and lattice constant, is sufficiently diverse to serve as a train-
ing data set for a useful tight-binding parametrization. We
believe that this set of data can also be used to verify if the
functional forms used are adequate for the system modeled.

Traditionally, each tight-binding matrix element is a func-
tion only of the distance between the centers of the two or-

bitals involved in that matrix element, but our goal here is to
study tight-binding models that go beyond the two-center
approximation.12–15 Such models will be called many-body
tight-binding models. This approach can be especially useful
for the description of nanoparticles where the number of sur-
face atoms is relatively large, and manysor even mostd at-
oms have coordination numbers differing from their bulk
value.16

II. THEORY

We consider a particle consisting ofN nuclei andn elec-
trons. Relativistic effects are neglected, and we assume that
the Born-Oppenheimer approximation is valid; then the po-
tential energy for nuclear motion is given by the eigenvalue
E of the electronic HamiltonianH including the nuclear re-
pulsion,

HCsr electrons;Rd = EsRdCsr electrons;Rd, s1d

whereR andr electronsare the coordinates of all the nuclei and
electrons, respectively. Ins1d the wave functionsC and ei-
genvaluesE depend parametrically on the positions of nu-
clei. By invoking an independent-particle model, the wave
function is approximated by a suitably antisymmetrized lin-
ear combination of the product ofn one-electron functions
ci, and Eq.s1d can be converted into a system of nonlinear
differential or integrodifferential equations for single-particle
si.e., one-electrond functions:

Hcisr ;Rd = «isRdcisr ;Rd, i = 1, . . . ,n, s2d

whereci is an orbital,«i is an orbital eigenvalue, andr is the
coordinate of a single electron. The particular form of the
effective Hamiltonian operator,H, depends on the choice of
independent-particle model, e.g., Hartree-Fock or Kohn-
Sham density functional theorysDFTd. The latter is more
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accurate in principle because it includes electron correlation
effects. Tight-binding may be considered as an approxima-
tion to DFT with the effective Hamiltonian represented by a
matrix Hamiltonian in a minimum basis of valence atomic
orbitals. One of the goals of the present paper is to propose a
new functional form for this matrix Hamiltonian.

If the one-electron functions,ci, are expanded in a basis
of na normalized atomic orbitals on each atoma,

ci = o
a=1

m

ciawasr ,Rd, m= Nna, s3d

the set of equationss2d is equivalent to the system of linear
homogeneous equations

o
p=1

m

fHpqsRd − «iSpqsRdgcipsRd = 0, q = 1, . . . ,m, s4d

whereHpq are matrix elements ofH

Hpq =E wpsr ,RdHwqsr ,Rddt, s5d

and

Spq =E wpsr ,Rdwqsr ,Rddt s6d

are elements of the overlap matrix. The matrix elements ofH
andS will be denoted byHij

ab andSij
ab, respectively, wherei

and j refer to atomic orbitals, withi on a ssince it is written
underad and j on b swhen it is written underbd.

The overlap matrix elements involve at most two centers
and are often approximated by the unit matrix, which is
called neglect of overlap. A guide to the form of the Hamil-
tonian matrix elements can be obtained by following Slater
and Koster,1 who gave arguments why the three-center inte-
grals in s5d need not be taken into account. Then the matrix
elementsHij

ab for aÞb are functions ofRab. Considering the
vector Rab from a to b as a quantization axis, the inter-
atomic matrix elements can be written in the Slater-Koster
approximation in the form

Hij
ab = o

l=0

minsl i,l jd

Clil jl
ab slab,mab,nabdVlil jl

ab sRabd, s7d

where l i , l j are angular momentum quantum numbers of or-
bitals i and j , l is the component of angular momentum
along the internuclear axis,Clil jl

ab slab ,mab ,nabd are the Slater
and Koster coefficients resulting from the angular parts of
orbitals, andlab, mab, nab are the direction cosines ofRab.
The diagonal matrix elementsHij

aa are constants in the
Slater-Koster formalism. For the minimum basis set of alu-
minum one must model the following four potential func-
tions Vlil jl

: V000, V010, V110, V111 sdenoted by some authors
Vsss, Vsps, Vpps, Vpppd.

Nevertheless, as anticipated in key references12–15 men-
tioned in the introduction, going beyond the two-center ap-
proximation can be especially useful for achieving high ac-

curacy, and it will be the major focus of the present paper.
Therefore it is important to discuss the physical origin of the
many-body corrections to TB theory.

In a general way the need for many-body corrections can
be traced to the key assumptions of TB theory, namely,sid
the neglect of two-electron interactions,sii d the neglect of
three-center termssthe interaction of an overlap distribution
centered on atomsa andb with the nucleus or core of atom
gd in the one-electron Hamiltonian,siii d the formulation of
the one-electron Hamiltonian without self-consistent-filed
sSCFd iterations, andsivd the neglect of overlap in Eq.s4d. In
more complete theories, the two-electron Coulomb and ex-
change integrals include both three-center and four-center
contributions, so approximationssid andsii d are clear sources
of the need for many-body terms.8 The many-body terms in
the TB Hamiltonian may always be reformulated as environ-
mentally dependent two-body terms, and environmental de-
pendence of the two-body interactions is accounted for most
naturally by an SCF Hamiltonian that depends on the charge
distribution. Thus approximationsiii d is also a clear source of
the need for many-body terms. Nevertheless, Nguyen-Manh
et al.14 have shown that a good approximation to the envi-
ronmental dependence of the two-body terms may be derived
by a detailed examination of only approximationsivd. Their
argument starts by reformulatingsH −SEdc in Eq. s4d by
sS−1H −Edc. Thus the effect of overlap is to produce an ef-
fective Hamiltonian.fIn practice one should use a Hermitian
version such assRef. 14d sS−1H +HS−1d /2 or sRef. 17d
S−1/2HS−1/2.g This is a powerful approach that provides a
theoretical prescription for a major part of the many-body
effect and justifies the physical argument invoking screening
that was introduced in Refs. 12 and 13 for the environmental
dependence of the two-body interactions.

In the present work we recognize two additional physical
effects that, along with screening, contribute an environmen-
tal dependence to the two-body interactions. First is the ef-
fect of bond angle change. When bond angles change, the
hybridization of the bonding orbitals changes as well. In an
SCF treatment, polarization ofssayd the p orbital component
of ansp2 hybrid orbital is different than polarization of thep
component of ansp3 hybrid. In addition, the energetic effect
of electron correlation depends on hybridization. In a TB
calculation these many-body polarization and correlation ef-
fects must be reflected in the environmental dependence of
the two-body interactions. The final physical effect that we
consider is coordination number. As the number of bonds to
a given atom increases, its flexibility to use hybrid orbitals
effectively for directional bonding decreases, and crowding
of ligands changes the electron density and hence the
exchange-correlation energy. This many-body effect also
contributes an environmental dependence to the two-body
interactions. In principle all three effects take place simulta-
neously, and the effects may be additive or multiplicative or
they may interact in a very nonlinear fashion. In keeping
with the spirit of TB methods, the physical arguments are
used only to motivate the functional forms, but the param-
eters are found by fitting to experiment. At that stage, a func-
tional form motivated by a given physical effect may be
general enough to also represent other physical effects. Fur-
thermore, some physically motivated functional forms are
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more effective than others at capturing the true physics, and
it is better to keep only the most successful forms in order to
keep the parametrization compact and physical. In light of
the findings of Ref. 14, one could also introduce some many-
body effects by not making approximationsivd, i.e., by using
a nonorthogonal formulation. In the present work, though,
we employ the orthogonal approach because of its greater
computational efficiency for large systems. In fact the con-
siderations of Ref. 14 provide a justification of the many-
body orthogonal approach.

Based on these considerations, we will neglect the overlap
matrix in s4d, replacing it by a unit matrixsalthough we will
useSpq in the process of modelingHpqd. Furthermore, matrix
elements of the effective Hamiltonian will be modeled as
functions of one or more of the internuclear distancesRab

with some number of adjustable parameters to be fitted to
representative data from accurate calculations for small sys-
tems and from experimental data for the bulk.

To make the dimension of the matrices in Eq.s4d as small
as possible, we use a minimal basis set for the valence elec-
trons only. Thus the basis for each Al atom is one 3s orbital
and three 3p orbitalssof px, py, pz symmetryd, andna=4. The
matricesH and S in s4d consist of 434 submatricesHab,
Sab, wherea andb label individual nuclei. Note that some
authors18 have includedd orbitals on Al, but that would
make the basis 2.25 times larger.

The total energy of the system is given as a sum

E = EvalsRd + ErepsRd s8d

of the valence electron energyEval and the repulsive energy
Erep sassociated with core-core repulsiond.

One has

Eval = o
k=1

m

foksRd«ksRd + updok2
g, s9d

wheredkk8 is a Kronecker delta,ok is the occupation number
s0, 1, or 2d of molecular orbitalk, «k is an eigenvalue ofH,
and up, which is greater than zero, is the penalty
energy10,19,20for doubly occupied orbitals. The molecular or-
bitals are filled in such a way that the total energy of the
system is minimized. The penalty energy is included to ap-
proximately describe electron correlation and intraorbital re-
pulsion. The standard TB approximation enforces double oc-
cupancy of all molecular orbitalssexcept for single
occupancy of one orbital in systems with an odd number of
electronsd. The penalty energy is a mechanism to overcome
this restriction, and it may be considered to be a non-self-
consistent version of the Hubbard on-site term21 that ac-
counts for the change in Coulombic energy and exchange-
correlation energy when an orbital is doubly occupied. The
inclusion of the penalty energy means that partial occupan-
cies sometimes lead to lower energies than having all orbitals
doubly occupied ones, and we will see that this term allows
us to obtain improved multiplicities and improved properties
of the electronic wave function upon dissociation of clusters.

The repulsive energy

Erep= o
a.b

N

Vrep
absRabd s10d

is a sum of pairwise repulsive energies between any two
atomic coressconsisting of the atomic nucleus and core elec-
tronsd. The repulsive potential also has empirical parameters.
In some parametrizations the two-body repulsion functions
depend on the environment of those two atoms.

III. MODELS

The data set of aluminum energies11 can be used not only
for fitting parameters in a given model but also for determin-
ing which of two models is more accurate. We have studied
several models for the matrix elements, and they can be di-
vided into the following two groups: Slater-Koster-type
tight-binding sTBd models based on pairwise matrix ele-
mentsfa matrix element between an orbital ona and one on
b depends only onRab as in Eq.s7dg, and many-body tight-
bindingsMBTBd models in whichVlil jl

ab of Eq. s7d is replaced
by a function that depends on the geometry of more than two
atoms.

For the repulsive energys10d we have used the function

Vrep
ab =

A

Rab
u e−BRab, s11d

whereA, B, andu are adjustable parameters.
The off-diagonal elements ofH are called hopping or

transfer integrals. We will approximate transfer integrals in
terms of overlap integrals in a minimal basis set of Slater-
type orbitalssSTOsd. The overlap between an STO with an-
gular momentumla and exponential parameterzala

on atom
a and an STO with angular momentumlb and exponential
parameter zblb

on atom b will be denoted
SlalblsRabuzala

,zblb
d, wherel=0 for s symmetry andl=1

for p symmetry.

A. Slater-Koster-type TB models

In Slater-Koster-type TB models, intra-atomic matrix ele-
ments are assumed to have the form

Hij
aa = − I l i

di j , s12d

whereI l i
is the atomic or valence-state ionization potential of

an electron occupying orbitali. In the present paper we use
atomic ionization potentials taken from experiment.22 These
values are given in Table I. Atomic ionization potentials will

TABLE I. Data for Al.

Hartree-Fock orbital exponentssRef. 26d z0=2.5935 Å−1

z1=2.5610 Å−1

Atomic ionization potentialssRef. 22d I0
A=10.620 eV

I1
A=5.986 eV

Bulk cohesive energysRefs.11 and 37d EBulk
exp =3.43 eV

Lattice constantsRef. 38d at 298 K aexp=4.0496 Å
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be denotedI l
A.

The simplest approximation for the transfer integrals is
the one proposed by Mulliken23 and employed by Wolfsberg
and Helmholtz24 and Hoffmann25 but with different param-
etrizations. In this approximation

Vlil jl
ab = − Klil jl

I l i
A + I l j

A

2
Slil jl

sRabd, s13d

where theKlil jl
values ins13d and the exponential parameters

zala
needed to evaluate the overlap integrals are specified

below. Depending on the number of parameters in the for-
mula s13d we will distinguish the following three Slater-
Koster-type TB models.

s1d Wolfsberg-HelmholtzsWHd approximation. In this
model there is one adjustable parameterK0 for all four hop-
ping integrals, i.e.,

Klil jl
= K0 s14d

and thezala
are Hartree-Fock values26 for atoms. These val-

ues are given in Table I.
s2d Extended Wolfsberg-HelmholtzsEWHd approxima-

tion. In this model each of the fourKlil jl
is adjusted indepen-

dently. The ionization potentials and exponential parameters
are as in the WH method.

s3d Optimized Wolfsberg-HelmholtzsOWHd approxima-
tion. This model is like the EWH model except that the four
zala

values are also adjusted for best fit.
Together with parameters in the repulsive potential we

have 4, 7, and 11 parameters in the WH, EWH, and OWH
models, respectively.

Overlap integralsS000, S110, S111 were calculated by an
analytic formula, given by Jones,27 for Slater-type orbitals
with equal screening constants. Because of the small differ-
ence between the values of Slater orbital exponentszs andzp
for Al, this formula was also used in the case ofS010 integral
with the screening constant set to their average,
2.577 25 Å−1. This formula can be written in the form

Slil jl
= wnilinjl jl

szl i l j
Rabde−zl il j

Rab, s15d

whereni is the principal quantum number of orbitali, and,
denoting the productzl i l j

Rab by p, one has

w30300= 1 + p +
7p2

15
+

2p3

15
+

2p4

75
+

p5

225
+

p6

1575
, s16d

w30310= −
1

Î27
Sp + p2 +

12p3

25
+

11p4

75
+

17p5

525
+

p6

175
D ,

s17d

w31310= − 1 −p −
9p2

25
−

2p3

75
+

34p4

1575
+

13p5

1575
+

p6

525
,

s18d

w31311= 1 + p +
34p2

75
+

3p3

25
+

31p4

1575
+

p5

525
. s19d

In Eq. s13d we adopted the Harrison28 sign convention for
Vlil jl

ab . To be in agreement with this convention we have
changed the sign ins17d ands18d in comparison with Table 1
of Ref. 27.

One can consider the WH approximation to be a version
of the extended HückelsEHd approximation.25,29 It differs in
the parametrization. The most commonly adopted constant
value ofK in EH is 1.75, and it comes from Hoffmann.25 The
most widely available code30 for the EH method does not
include the repulsion potential. In order to compare the EH
parametrization of Ref. 30 to the WH, EWH, and OWH
methods, we added a repulsion term and optimized it.sThe
WH, EWH, and OWH methods all include optimized repul-
sion terms.d The model employing the EH parameters of Ref.
30 plus our optimized repulsion term is denoted EHR. In
Sec. V we compare the results of modelss1d–s3d with those
from the EHR method, calculated with Ref. 31, which is a
Minnesota EHR code.

B. Many-body tight-binding

The characteristic properties of nanoparticles are ex-
plained in a general way by the large ratio of the number of
surface atoms to the number of interior atoms and the fact
that surface atoms have a highly variable environment. In the
models based on two-body interactions discussed abovesi.e.,
the models employing the two-center approximation for hop-
ping integralsd, the influence of the neighboring atoms on the
two-body interaction is neglected. Although some previous
work12–14,32–36on TB modeling has included many-body ef-
fects, this kind of approach is much less studied than the
conventional two-center approach proposed by Slater and
Koster. In a previous paper16 we have used analytic potential
modeling to identify key many-body effects, and in the
present paper we will use the functional forms studied there
in TB calculations.

We have studied several TB models with many-body ef-
fects. In all of them the intra-atomic elements ofH are taken
to be diagonal and to have the form

TABLE II. Ionization potentialsseVd for Al clusters calculated
by the PBE0/MG3 method.

Cluster Structure No.sRef. 11d IP

Al2 1 7.76

Al2 3 6.35

Al3 42 6.55

Al3 59 6.05

Al4 3 6.41

Al4 43 6.38

Al7 17 6.38

Al7 34 6.40

Al13 1 6.07
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Hii
aa = − I l i

A + o
b

sbÞad

Vli
sRabd, s20d

Vl = Dle
−dlRab, s21d

whereDl and dl are adjustable parameters. Next, the func-
tions Vrep

ab, Vlil jl
ab , and Vl, given by formulass11d, s13d, and

s21d, respectively, are multiplied by the many-body function
FMB, which depends on all internuclear distances exceptRab.
We examine three MBTB models.

s1d MBTB based on coordination numbersCNd. In this

model,FMB =FCN, whereFCN is a coordination number func-
tion defined in Ref. 16. The effective coordination numberga

of atoma is given by the formula

ga = o
a8Þa

fgsRaa8d, s22d

where

fgsRaa8d = 5expSg1 +
g1g2

Raa8 − g2
D if Raa8 , g2,

0 if Raa8 ù g2.

s23d

It follows from s23d that only the atoms separated by a dis-
tance not exceedingg2 are counted, moreover the counts of
atoms are weighted by their distances froma. The coordina-
tion number function has the form

FCN = 1 −ds1 − Gabd s24d

with

TABLE III. Multiplicities for quasispherical clusters of sizesN
calculated by the PBE0/MEC method and the MBTB-S method for
several values of the penalty energy.

MBTB-S

Penalty energyseVd
N PBE0/MEC 0.64 0.07 0.0

13 2 6 2 2

19 6 12 6 2

43 6 18 6 2

55 8 20 2 2

79 2 22 4 2

87 14 30 6 2

135 4 44 2 2

141 10 40 8 2

177 10 54 6 2

MUE 20.44 2.67 4.90

TABLE IV. Comparison of the numbers of casesMn of neutral
dissociationsout of 5460 casesd calculated by MBTB-S method for
different penalty energies.sThe fitting parameters were optimized
for each value of the penalty energy.d

Penalty energy Mn %

0.00 0 0

0.07 1015 19

0.64 2323 43

FIG. 1. Potential energies of
Al2 sad and Al4 sbd–sid clusters
calculated by MBTB-S method
ssolid lined. Energies denoted by
crosses come from the
PBE0/MG3 data set. The struc-
tures of the clusters are specified
by geometry numbers in the sup-
porting material sRef. 11d: sad
1–10, the dimer;sbd 1–8, short
bridge approach of Al to Al3; scd
9–16, on top approach of Al to
small triangle; sdd 17–24, three-
fold approach of Al to small tri-
angle; sed 25–33, long bridge ap-
proach of Al to Al3; sfd 34–41,
dimer-dimer approach;sgd 42–50,
on top approach of Al to large tri-
angle; shd 51–60, threefold ap-
proach of Al to large triangle;sid
61–66, reaction path for conver-
sion of tetrahedron to rhombus.
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Gab =
1

1 +Sga − fgsRabd
g0

Dg

1

1 +Sgb − fgsRabd
g0

Dg . s25d

It is convenient to think ofg0 appearing ins25d as a reference
coordination number. The functionGab takes values between
0 and 1, so the effect ofFCN is to weaken thea-b bond.
Larger coordination numbers of atomsa and b are asso-
ciated with weakera-b Hamiltonian matrix elements,
which is a way of explicitly incorporating valence
saturation.

There are two positive adjustable parameters,g andd, for
each of theV functions, and three positive adjustable param-
etersg0, g1, g2 which are common for allV functions.

s2d MBTB based on screeningsSd. In this model,FMB

=FS, whereFS is the screening function of Refs. 12 and 13,

FS = 1 − tanhjab s26d

with

jab = b1 o
dÞa,b

e−b2fsRad + Rabd/Radgb3, s27d

which includes three-body interactions. There are three posi-
tive adjustable parameters,b1, b2, b3, for each of theV
functions. The screening function mimics the electronic
screening effects such that interaction between two atoms
becomes weaker if there is another atom located between
them. LikeFCN, the screening functionFS varies between 0
and 1, and takes its minimumsthe maximum screening
effectd when the atomd is situated on the line connecting
atomsa and b.

s3d MBTB with bond-angle sBAd corrections. In this
model,FMB =FBA where

FBA = 1 − tanhk4xab, s28d

xab = k1 o
g,dÞa,b

e−k2sRag
k3 +Rdb

k3d. s29d

with four positive adjustable environmental parameters,k1,
k2, k3, and k4, and a differentxab for each of theV func-
tions, defined in Ref. 16. Equations28d has one additional
parameter,k4, in comparison to the original form of the
bond-angle function.16

The screening and bond-angle functions are closely re-
lated; FBA, however, is capable of also modeling four-body

TABLE V. The parameters for pairwise interactions models.

Model No. of parameters EHR 3 WH 4 EWH 7 OWH 11

A seV Åud 64204 1142 655.5 3069

B sÅ−1d 10.77 2.921 2.615 3.548

u 0.1880 0.02936 0.0658 0.0955

K000 seVd 0.3928 0.3742 0.3922

K010 seVd 0.3928 0.5181 0.3118

K110 seVd 0.3928 0.3221 0.4292

K111 seVd 0.3928 0.0997 5.934

z000 sÅ−1d 1.897

z010 sÅ−1d 1.829

z110 sÅ−1d 3.876

z111 sÅ−1d 6.278

TABLE VI. The parameters for the MBTB-CN model.

K seVd z sÅ−1d d g

V000 0.5781 1.643 0.1290 4.172

V010 0.1880 1.761 0.02061 3.125

V110 0.3371 2.536 0.09656 4.237

V111 0.1252 2.111 0.1768 4.111

D seVd d sÅ−1d
V0 3.017 3.766 0.9002 2.666

V1 2.246 1.165 0.8997 1.838

A seV Åud B sÅ−1d u

Vrep 2503 3.503 0.4125 0.1377 2.119

g0 g1 g2

12.60 1.692 15.11

TABLE VII. The parameters for the MBTB-S model.

K seVd z sÅ−1d b1 b2 b3

V000 0.3577 1.676 0.03723 1.475 0.7413

V010 0.2806 1.785 2.400 4.157 2.252

V110 0.2926 2.570

V111 0.1990 2.581

D seVd d sÅ−1d
V0 6.219 3.395

V1 2.259 1.137 0.6149 2.813 1.369

A seV Åud B sÅ−1d u

Vrep 4462 3.896 0.3835
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effects. The maximal weakening of thea-b bond takes place
for three-body interactionsd=gd and atomd situated on the
line connecting atomsa and b. In contrast toFCN, the
screening function depends on ratios of the distances, not on
the distances between atoms. In particular, the same screen-
ing effect is obtained for the atom sitting on the line between
a andb independently of the distanceRab, which is not true
for the weakening of thea-b bond due to the bond angle
function.

The maximal number of parameters is 32, 36, and 43 in
the models MBTB-CN, MBTB-S, MBTB-BA, respectively.

IV. DETERMINATION OF THE PARAMETERS

A. Data

The following data has been used to determine the adjust-
able parameters in all TB models considered in this paper.

s1d The set of 190 energies calculated by the PBE0/MG3
method for aluminum clusters Al2, Al3, Al4, Al7, and Al13.

11

These data were carefully chosen to represent diverse con-
figurations in small as well as in moderate-sized clusters. The
coordination number in bulk aluminum is equal to 12, and
systems with such coordination numbers are also included in
the data in the form of two quasispherical Al13 clustersscen-
tral atom surrounded by 12 close packed atomsd and one
icosahedral cluster. The values of the energies and corre-
sponding Cartesian coordinates, as well as other details of
the data set are given in Ref. 11. This set of energies is
divided into five cases, i.e., AlNk

with Nk=2, 3, 4, 7, and 13,

for k=1, . . . ,5, and in casek we havenk geometries. We will
denote the energy for the geometryi of casek by Ei

k. The
values ofnk are given in Ref. 11.

s2d Experimental cohesive energyEBulk
exp for a FCC

crystal37 and experimental latice constantaexp at 298 K,38

their values are given in Table I.
s3d A set of nine ionization potentialssIPid calculated by

the PBE0/MG3 method for some of the clusters from the set
described above. Their values and geometries11 are given in
Table II. The nine geometries for calculating IPs are chosen
to represent one high-energy and one low-energy structure
for each of the considered clusters.

B. Cohesive energy

The cohesive energy,QN, of anN-atom cluster, defined as

QN =
E

N
s30d

converges rather slowly withN to its bulk limit of EBulk
exp and

this dependence can be approximated39,40as a linear function
of N−1/3. Therefore, it is assumedsas in the previous paper16d
that the bulk cohesive energyEBulk for an arbitrary valuea of
the lattice constant can be obtained by computingQNsad for
two quasispherical clusters, of sizesN1 and N2, with lattice
constanta by the extrapolation formula

TABLE VIII. The parameters for the MBTB-BA model.

K seVd z sÅ−1d k1 k2 sÅ−k3d k3 k4

V000 0.2489 1.423 2.827 3.594 1.936 3.647

V010 0.3432 2.150 0.1884 4.324 1.636 2.476

V110 0.2598 2.327

V111 0.1819 2.486

D seVd d sÅ−1d
V0 4.540 2.340 0.9586 5.986 1.812 1.592

V1 3.879 1.369

A seV Åud B sÅ−1d u

Vrep 4230 3.889 0.2254

TABLE IX. Mean unsigned errors in eV/atom and FCC lattice constantam in Å.

«2 «3 «4 «7 «13 «NC «Bulk «AE am

EH 0.521 0.589 0.516 0.637 0.718 0.412 3.663 0.745 4.632

EHR 0.417 0.370 0.428 0.452 0.726 0.412 3.692 0.665 4.608

WH 0.040 0.073 0.063 0.050 0.100 0.065 0.126 0.078 4.003

EWH 0.060 0.076 0.071 0.047 0.067 0.065 0.204 0.068 4.035

OWH 0.076 0.080 0.095 0.065 0.031 0.070 0.122 0.058 4.050

MBTB-CN 0.038 0.078 0.050 0.077 0.025 0.049 0.000 0.046 4.050

MBTB-S 0.023 0.065 0.046 0.038 0.013 0.033 0.001 0.029 4.050

MBTB-BA 0.038 0.061 0.042 0.055 0.019 0.031 0.088 0.038 4.050
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EBulksad =
N1

−1/3QN2
sad − N2

−1/3QN1
sad

N1
−1/3 − N2

−1/3 . s31d

As in Ref. 16, we usedN1=55, N2=321. For the fitting pro-
cedure of the TB potential parameters we made use of two
cohesive energiesEBulk for two lattice constants: the experi-
mental lattice constantaexp and the minimum-energy lattice
constantam. The two energies are denoted byEBulksaexpd and
EBulksamd. The lattice constantam is obtained by minimizing
EBulksad, for a given set of TB or MBTB parameters, with
respect toa.

C. Penalty energy

We optimized the value of the penalty energy of Eq.s9d in
the following way. First, for our best TB modelsMBTB-Sd
the fitting parameters of the potentials were optimized for
several values of the penalty energy. The values of the mul-
tiplicity of the clusters were found to strongly depend on the
penalty energy. Therefore, the final choice of the penalty
energy was made by minimizing the mean unsigned error
sMUEd in the multiplicities over a set of data calculated by a
recently developed version of hybrid density functional
method sPBE0/MEC, which denotes the Perdew-Burke-
Ernzerhof method with zero empirical parameters and the

TABLE X. uDEi
ku seV/atomd.

Structure No.sRef. 11d Reaction coordinate WH OWH MBTB-S MBTB-BA

Al2

1 1.90 0.05 0.13 0.01 0.15

2 2.30 0.12 0.15 0.03 0.13

3 2.70 0.09 0.27 0.06 0.00

4 2.86 0.03 0.31 0.00 0.04

5 3.10 0.04 0.29 0.04 0.06

6 3.50 0.11 0.23 0.07 0.06

7 3.60 0.11 0.21 0.07 0.06

8 3.90 0.10 0.15 0.06 0.04

9 4.30 0.04 0.05 0.01 0.02

10 4.50 0.00 0.01 0.04 0.06

Al3, oblique approach to large dimer

29 6.06 0.37 0.16 0.15 0.12

30 5.71 0.36 0.26 0.06 0.00

31 5.36 0.44 0.09 0.13 0.02

32 5.02 0.35 0.03 0.08 0.03

33 4.68 0.32 0.03 0.07 0.00

34 4.35 0.29 0.04 0.09 0.03

35 4.02 0.14 0.03 0.09 0.00

36 3.71 0.02 0.17 0.07 0.05

37 3.56 0.08 0.18 0.13 0.02

38 3.41 0.01 0.32 0.05 0.04

39 3.12 0.01 0.41 0.06 0.01

Al13

1 1.02 0.65 0.04 0.21

2 0.93 1.01 0.20 0.33

3 0.91 0.25 0.19 0.10

4 0.22 0.28 0.25 0.29

5 0.00 0.10 0.04 0.14

6 1.09 0.41 0.10 0.28

7 0.74 0.06 0.25 0.28

8 1.83 0.38 0.21 0.30

9 1.94 0.19 0.20 0.03

10 0.41 0.02 0.03 0.02

11 2.74 0.15 0.18 0.40
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Minnesota effective cored.41,42The multiplicities obtained by
the PBE0/MEC method and by TB methods with different
penalty energies, and the corresponding MUEs are given in
Table III. The optimum value, used in the present paper, is
0.07 eV. Two sets of fitting parameters optimized for other
penalty energies, namely 0.0 eV and 0.64 eV, are given in
the supporting information file.43 These models with other
penalty energies may be useful for various purposesse.g., a
penalty energy of zero is easier to handle in dynamics calcu-
lations, and a larger penalty energy may be a better starting
point for adding heteroatomsd, but these alternatives will not
be discussed further in this paper.

It is important to emphasize that the present parametriza-
tion is designed to yield accurate nanoparticle energies, but
not necessarily nanoparticle wave functions or bulk energies
or band structures. As is well known,45 a double-occupancy
molecular orbital method like tight-binding does not neces-
sarily dissociate into a qualitatively correct wave function
upon bond cleavage. For example, if a system with an even
number of Al atoms dissociates asymmetrically into two

fragments which each have an odd number of electronssfor
example, Al4→Al3+Ald, the restriction to doubly occupied
orbitals means that one fragment will have a cationic wave
function and the other an anionic one. It is important to keep
in mind that the present method is nevertheless parametrized
yield to reasonably accurate dissociation energies even when
this happens. This is a special case of the more general phe-
nomenon that one can obtain correct energetic predictions
even from a wave function that does not predict correct elec-
tronic properties such as multipole moments. This is espe-
cially true when we use the modern justification of TB theory
as being an approximation to density functional theory since
it is not necessary to interpret the Kohn-Sham orbital eigen-
values as having a direct relation to band theory, at least
when we use integer occupancies.44 The inclusion of a pen-
alty function does, however, represent a step toward improv-
ing the behavior of the wave function, and it does allow us to
obtain reasonable multiplicities. It also affects the behavior
of the wave function upon dissociation, and this deserves a
few remarks. The penalty energy can make up in part for the
incorrect dissociation of tight-binding wave functions, but
not completely. Our data set contains 104 molecules with an
odd number of Al atoms, which allows us to create 5460
unique pairs of such molecules, which may in turn be con-
sidered as 5460 dissociation asymptotes. Table IV shows the
percentage of these asymptotes that correspond to neutral
fragment wave functions; we see that this percentage in-
creases, although only slowly, as the penalty energy in-
creases. However, the largest value of the penalty energy in
the table leads to an unacceptably large error in the multi-
plicities, so we chose 0.07 eV as a compromise value for the
penalty energy. We recall that Wang and Mak19 used a pen-
alty energy of 3 eV for hydrocarbon species. That might be

TABLE XI. «IP seVd.

EH 1.06

EHR 1.06

WH 0.58

EWH 0.31

OWH 0.36

MBTB-CN 0.30

MBTB-S 0.36

MBTB-BA 0.39

TABLE XII. Cohesive energies in AlN seVd.

N WH EWH OWH MBTB-CN MBTB-S MBTB-BA

13 2.30 2.31 2.35 2.37 2.38 2.37

19 2.49 2.56 2.52 2.62 2.66 2.59

43 2.72 2.78 2.77 2.80 2.83 2.80

55 2.82 2.92 2.90 2.94 2.94 2.92

79 2.95 3.08 3.01 3.07 3.09 3.04

87 2.89 3.01 2.96 3.04 3.02 2.99

135 3.02 3.12 3.08 3.09 3.10 3.08

141 3.01 3.12 3.07 3.12 3.10 3.08

177 3.06 3.15 3.11 3.12 3.12 3.11

201 3.12 3.20 3.15 3.13 3.16 3.15

225 3.08 3.17 3.13 3.13 3.12 3.14

249 3.10 3.19 3.15 3.12 3.13 3.15

321 3.15 3.24 3.19 3.16 3.16 3.20

369 3.18 3.27 3.21 3.16 3.17 3.22

381 3.17 3.27 3.21 3.16 3.17 3.22

429 3.17 3.27 3.21 3.16 3.17 3.22

531 3.20 3.28 3.23 3.17 3.17 3.24

555 3.21 3.30 3.24 3.17 3.18 3.25

603 3.22 3.31 3.25 3.18 3.19 3.26
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better for dissociation, but is definitely worse for multiplici-
ties.

D. The fitting procedure

A microgenetic algorithm46 has been applied to the esti-
mation of parameters. We have used the FORTRAN version
1.7a of Carroll’s code47 supdated on 4/2/2001d augmented by
a subroutine with our fitness function.

Four groups of terms are included in the fitness function.
The first group of terms fits the differences between PBE0/
MG3 and TB energies:

DDEij
k = DEij

k − DEij
TBk, s32d

where

DEij
k = Ei

k − Ej
k, s33d

DEij
TBk = Ei

TBk − Ej
TBk, s34d

andEi
TBk stand for the energies calculated by the TB method.

Notice that throughout this paper the zero of energy for a
given k is taken as the energy ofnk separated atoms. The
second group of terms fits the energies

DEi
k = Ei

k − Ei
TBk, s35d

the third group of terms fits the cohesive energiesEBulk to the
bulk experimental valueEBulk

exp sTable Id,

DEBulk
m = EBulksamd − EBulk

exp ,

s36d
DEBulk

exp = EBulksaexpd − EBulk
exp .

The fourth term fits ionization potentials,

DIPi = IPi − IPi
TB. s37d

We define a mean unsigned error per atom for AlNk
clus-

ters as

«Nk
=

1

2Nk
F 2

nksnk − 1d o
i=1

nk−1

o
j=i+1

nk

uDDEij
k u +

1

nk
o
i=1

nk

uDEi
kuG ,

s38d

where the firstsdoubled summation includes all relative en-
ergies of two geometries in the data set, and the second term
sums over individual geometries. The mean unsigned error
per atom in energies and their differences is then defined as
the weighted average

«Clu =
1

NClu
o
k=1

5

Nk«Nk
, s39d

where

TABLE XIII. Comparison of mean unsigned errorsseV/atomd
to previous tight-binding models.

Nonclose Al data set Large Al data set

«AE

EH 0.63 0.75

EHR 0.64 0.67

OWH 0.06 0.06

MBTB-S 0.02 0.03

«Av

EH 0.52 0.64

EHR 0.53 0.56

TBTE sRef. 11d 0.36 4.46

OWH 0.06 0.06

MBTB-S 0.03 0.03

FIG. 2. The same as in Fig. 1
but for Al3 sad–sfd, and Al7 sgd–
skd. The points aresad 1–9, side-
ways approach of Al to small
dimer; sbd 10–19, sideways ap-
proach of Al to medium dimer;scd
20–28, sideways approach of Al
to large dimer;sdd 29–39, oblique
approach of Al to large dimer;sed
40–47, equilateral triangles;sfd
48–57, linear approach of Al to
small dimer; sgd 1–11, approach
of Al to small octahedron;shd 12–
22, approach of Al to large octa-
hedron;sid 23–31, large trimer ap-
proaching large tetramer;sjd 32–
40, small trimer approaching
small tetramer; skd 41–46, ap-
proach of Al to small octahedron
along the perpendicular bisector
of a bond.
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NClu = o
k=1

5

Nk. s40d

The mean unsigned error in the bulk cohesive energies is

«Bulk = 1
2fuDEBulk

m u + uDEBulk
exp ug. s41d

The mean unsigned error in atomization energysAEd per
atom for neutral aluminum,«AE, is defined as the weighted
average of«Bulk and the five values of«Nk

,

«AE =
1

NNeu
So

k=1

5

Nk«Nk
+ «BulkD , s42d

whereNNeu=NClu+1. The mean unsigned error for the ion-
ization potentials is

«IP =
1

9o
i=1

9

uDIPiu, s43d

and the mean unsigned error for the total data set is

TABLE XIV. Ranges of the two-body functions.

n 2 3 4 5 6

Model Functionf/DistancesÅd 4.050 4.960 5.727 6.043 7.014

MBTB-S V000F
S 1.7310−1 3.4310−2 7.9310−3 2.1310−3 6.5310−4

V010F
S 7.7310−2 9.6310−4 4.5310−6 1.0310−8 1.3310−11

V110 3.4310−1 1.0310−1 3.3310−2 1.1310−2 3.8310−3

V111 1.7310−1 3.7310−2 9.4310−3 2.7310−3 8.2310−4

Vrep 8.6310−3 2.3310−4 1.1310−5 7.5310−7 6.7310−8

MBTB-BA V000F
BA 6.4310−1 4.1310−1 2.2310−1 1.4310−1 8.4310−2

V010F
BA 4.3310−1 1.8310−1 7.4310−2 3.2310−2 1.4310−2

V110 4.5310−1 1.7310−1 6.6310−2 2.6310−2 1.0310−2

V111 1.9310−1 4.5310−2 1.2310−2 3.6310−3 1.2310−3

Vrep 9.2310−3 2.5310−4 1.2310−5 8.8310−7 8.0310−8

MBTB-CN V000F
CN 5.5310−1 3.0310−1 1.7310−1 9.8310−2 5.7310−2

V010F
CN 6.3310−1 3.5310−1 1.9310−1 1.1310−1 5.9310−2

V110F
CN 3.5310−1 1.1310−1 3.6310−2 1.2310−2 4.4310−3

V111F
CN 2.8310−1 8.8310−2 3.1310−2 1.2310−2 4.8310−3

VrepF
CN 1.4310−2 5.1310−4 3.3310−5 2.9310−6 3.3310−7

OWH V000 4.5310−1 2.1310−1 1.0310−1 4.9310−2 2.5310−2

V010 5.9310−1 3.1310−1 1.6310−1 8.6310−2 4.6310−2

V110 7.3310−2 6.9310−3 8.1310−4 1.1310−4 1.8310−5

V111 2.8310−3 2.3310−5 3.7310−7 8.9310−9 3.0310−10

Vrep 1.4310−2 5.6310−4 3.6310−5 3.3310−6 3.7310−7

EWH V000 2.4310−1 6.4310−2 1.9310−2 5.9310−3 2.0310−3

V010 2.8310−1 8.0310−2 2.4310−2 7.9310−3 2.7310−3

V110 3.4310−1 1.1310−1 3.3310−2 1.1310−2 4.0310−3

V111 1.8310−1 3.9310−2 9.9310−3 2.8310−3 8.8310−4

Vrep 4.4310−2 4.0310−3 5.3310−4 9.1310−5 1.8310−5

WH V000 2.4310−1 6.4310−2 1.9310−2 5.9310−3 2.0310−3

V010 2.8310−1 8.0310−2 2.4310−2 7.9310−3 2.7310−3

V110 3.4310−1 1.1310−1 3.3310−2 1.1310−2 4.0310−3

V111 1.8310−1 3.9310−2 9.9310−3 2.8310−3 8.8310−4

Vrep 3.1310−2 2.2310−3 2.3310−4 3.2310−5 5.3310−6
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«Tot =
1

NTot
So

k=1

5

Nk«Nk
+ «Bulk + «IPD , s44d

whereNTot=NClu+2. To minimize the total error we define
the fitness functionswhich is maximizedd as

f = − «Tot. s45d

To compare our results to previous tight-binding models we
also introduce a measure of the average error per atom in the
atomization energy in the form of

«Av =
1

5o
k=1

5

«Nk
. s46d

V. RESULTS AND DISCUSSION

The optimized parameters for six models are given in
Tables V–VIII. In two MBTB models the number of param-
eters shown in Tables VII and VIII is less than the maximal
one. This arises as follows. First, in the process of optimiza-
tion all many-body terms were included and the importance
of each term was examined. Some of the correction terms
appear not to be important, and they were not taken into
account in the further process of optimization. This happened
in the S model and BA models where we kept 24 and 27
parameters, respectively, as compared to maxima of 36 and
43, respectively. In both models the many body corrections
to V110, V111, and Vrep turned out to be insignificant. Also,
one correction to the diagonal terms in each model was ef-
fectively redundant, but for theS model the correction toV1
was kept, and for the BA model the correction toV0 appeared
to be significant. The parameters of omitted terms are left
blank in Tables VII and VIII.

We also considered models in which combinations of
many-body functions were applied, e.g.,FMB =FCNFS or
FMB =FCNFBA. Such combinations increase considerably the
number of parameters to be optimized but do not signifi-
cantly improve the fits and therefore are not discussed fur-
ther.

For all six methods we have computed the mean unsigned
error in atomization energy for neutral systems. We have also
calculated the«AE for the extended Hückel methodsEHd29

with and without the repulsion potential term included. The
results are given in Table IX. As seen in Table IX, the EH
method gives considerably larger error for all cases, and
these errors increase for bigger and bigger clusters.

The WH approximation gives much more realistic results
than the EHR model. Among the Slater-Koster-type TB mod-
els, the OWH method where both linear and nonlinear pa-

rameters were optimized, gives a much smaller error«AE
than the others.

As in Refs. 11 and 16 we also consider a nonclose data set
of 155 energies which is obtained from our data set of 190
energies by removing all points for which any Al-Al distance
is smaller than 2.25 Å; the remaining geometries are the
ones with no closesNCd approach of any two atoms.

The values of«Av for NC data are also given in Table IX.
They are denoted in this Table as«NC. Eliminating the close
parts lowers the mean error defined this way by 31% for EH
and 12% for EHR, but it has almost no effect on the average
errors for the other Slater-Koster-type parametrizations. For
the three MBTB methods that have the smallest errors, it
lowers the mean unsigned error by 8–24%.

The MBTB methods give better representations of the
data than Slater-Koster-type TB methods. The many-body
terms are more important for bigger clusters. The compari-
son between MBTB methods shows that the MBTB-S
method is best. In Figs. 1 and 2 we compare potential ener-
gies for Al2, Al3, Al4, and Al7 obtained by MBTB-S method
to those obtained by PBE0/MG3 method. To plot each
MBTB curve we calculated 100 values of energy. The fit is
very good and all the curves are smooth. In the case of Al13
the quality of the fit is presented in Table X, whereDEi

k is
also tabulated for Al2 and Al3 soblique approach to large
dimerd. The Al3 system sin which three-body interactions
occurd was investigated separately to evaluate the importance
of different many-body terms. For the cases presented in
Table X the S and BA methods give very similarDEi

k sthe
BA method gives the smallest errors for Al3d. It is interesting
to notice that for Al13 all TB methods considered in this
paper correctly predict the lowest energy to be the icosahe-
dron sstructure No. 1d.

Mean unsigned errors for the ionization potentials calcu-
lated by TB methods are given in Table XI. One can see that
the ionization potentials are reproduced with an error less
than 10% for all methods. This means that neither the num-
ber of optimized parameters nor the choice of many-body
terms has much influence on the values of the calculated IPs,
which are realisticsthough not quantitatively accurated for all
Slater-Koster-type and MBTB methods.

As in two previous papers11,16 we calculate the cohesive
energy for several quasispherical clusters. The results are

TABLE XV. Comparison of«AE seV/atomd for aluminum with
analytic potentials to those for tight-binding.

Analytic sRef. 16d TB

Best pairwise 0.32sERd 0.06

Best MB 0.05sER2+ESCNad 0.03

TABLE XVI. Timing comparisonsssd for tight-binding methods
and analytic potentials from Table XV.

Number of atoms 249 531

TB

WH 19 193

MBTB-CN 19 251

MBTB-S 64 792

MBTB-BA 22 261

Analytic sRef. 17d
ER 0.024 0.10

ER2+ESCNa 0.90 5.9
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shown in Table XII. The rate of approach to the bulk value of
3.43 eV is remarkably similar across the various models.

It is interesting to compare the present TB results to the
TBTE model of Mehl and Papaconstantopoulos. As dis-
cussed in Ref. 11, their method is very inaccurate if any
Al-Al distance is smaller than 2.25 Å.sHowever, their
method was not designed to be valid in that region, and it is
very reasonable that a model is parametrized for a specific
objective and is not equally valid for all properties and all
geometries.d The mean unsigned errors for both data sets are
compared in Table XIII. The present models clearly represent
a qualitative advance, even for nonclose geometries, where
our best model reduces the mean error by more than an order
of magnitude.

Our models do not have a cutoff. Therefore, it is interest-
ing to consider the ranges of the two-body functions that
result from the parametrizations presented in this paper. In
the WH, EWH, and OWH models, the two-body functions
areVlil jl

andVrep, whereas in the CN, BA, and S models, the
two-body functions, sayfsRd, are given byVlil j

FMB and
VrepF

MB. The ranges of these functions may be illustrated by
tabulating fsRab

sndd / fsRab
s1dd where fsRab

sndd is the nth nearest
neighbor distance in the bulk FCC lattice.sThus Rab

s1d is
aexp/Î2=2.863 Å, andRab

s2d, Rab
s3d , . . . are4.050,4.960,. . .Å.d

These ratios were determined for the cental atom of a 603-
atom quasispherical lattice and are tabulated in Table XIV.
The table shows that the two-body repulsion functions de-
crease more rapidly than the Hamiltonian matrix elements,
and in all cases they are less than 1% of their nearest-
neighbor values by the third-nearest-neighbor distanceRab

s3d.
The average value of the Hamiltonian matrix elements at
Rab

s3d is however 11% as large as atRab
s1d. Although some older

models neglect the Hamiltonian matrix elements beyond the
second nearest neighbors, our model has much longer-ranged
interactions.

Finally we consider a comparison of the present results to
the analytic potential results of Ref. 16. This is done in Table
XV. We see that the pairwise approximation is much better
in the context of TB theory than for analytic potentials. In-
corporating the pairwise approximation into the matrix ele-
ments, followed by diagonalization of the TB Hamiltonian
automatically builds in most of the many-body effects. How-
ever, we can still reduce the error by another 50% by explicit
inclusion of many-body effects in the matrix elements, as we
anticipated in Sec. II.

Cost comparisonsscomputer timesd are given in Table
XVI. For pure Al, the analytic potentials are much less ex-
pensive. However, once one considers systems containing
other elements such as H and C, along with Al, it may be
harder to “discover” functional forms that incorporate the
many-body effects. One can anticipate that TB will still in-
clude a good portion of the many-body effects automatically,
but it is a question for future study.

VI. CONCLUDING REMARKS

In a previous study,16 we sand Jasperd tested a large num-
ber of analytic potential energy functions, for example, pair-
wise additive,48,49 nonpairwise additive,50,51 and embedded-
atom sEAd-type52–55 methods, for Al clusters. In both that
work and the present study we based our conclusions prima-
rily on the average unsigned error per atom in the atomiza-
tion energy, averaged over Al2, Al3, Al4, Al7, Al13, and bulk
Al. Thus the studies can be directly compared. The best pre-
vious potential energy functions were found to have mean
error of 0.45 eV/atom for pairwise additive, 0.16 eV/atom
for nonpairwise additive, and 0.13 eV/atom for EA-type,
and reoptimization of these kinds of potential energy func-
tions against our new cluster data training set reduced the
error for these three categories of potentials to 0.31, 0.13,
and 0.046 eV/atom, respectively.16 In the present work we
found that the best tight-binding model with pairwise matrix
elementsswe call this Slater-Koster-type TBd has a mean
error of only 0.056 eV/atom. Thus the tight-binding formal-
ism by lodging the pairwise functions in a quantum mechani-
cal framework immediately recovers almost all of the many-
body effects that can be recovered even by the very best and
most sophisticated analytic potential energy functions. Then
by explicitly adding many-body effects to the Hamiltonian,
we can do even better. In particular, we found that the
screening function introduced by Ho and co-workers is very
powerful, and our final model which includes this function
has a mean error of only 0.029 eV.

It is especially noteworthy that we achieved this accuracy
without including the overlap matrix in the secular equation.
Thus our model is what some workers refer to as “orthogonal
tight-binding,” and this is well known to more efficient for
molecular dynamics calculations than nonorthogonal tight-
binding.

We expect that the present model will be particularly use-
ful for simulating nonbulk Al, for example, Al nanoparticles,
since we placed an emphasis on interpolating between clus-
ters and the bulk rather than on quantitatively reproducing a
full set of bulk properties. However, the approach is general
and we recommend the many-body tight-binding with
screeningsMBTB-Sd scheme for other applications to Al and
other elements. It can also serve as a starting point for pa-
rametrizing heteronuclear systems such as the interaction of
hydrocarbon fragments with Al particles.
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