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A new, parametrized many-body tight-binding model is proposed for calculating the potential energy surface
for aluminum nanoparticles. The parameters have been fitted to reproduce the energies for a variety of alumi-
num clustergAl,, Als, Aly, Al;, Ali3) calculated recently by the PBEO/MG3 method as well as the experi-
mental face-centered-cubic cohesive energy, lattice constant, and a small set of Al cluster ionization potentials.
Several types of parametrization are presented and compared. The mean unsigned error per atom for the best
model is less than 0.03 eV.
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I. INTRODUCTION bitals involved in that matrix element, but our goal here is to

The goal of the present paper is to parametrize the tightStudy t_lght-.blmzjlng models that go beyond the two-center
binding method° for the energetic properties of Al par- a}pproxlmgtmrﬂ e Such models will be called many-body
ticles of nanometer size. Nanoparticles are, in general, tofght-binding models. This approach can be especially useful
big to be treated by full quantum mechanical methods, bufor the description of nanoparticles where the number of sur-
they are too small to neglect the dependence of their quarface atoms is relatively large, and mafyr even mostat-
tum properties on size. Because nanostructured materials cams have coordination numbers differing from their bulk
have different properties from the bulk, and indeed, due tovalue®
the large fraction of surface atoms, may be closer in many
respects to clusters, the existing tight-binding parametriza-
tions, and other semiempirical methods, since they are usu- Il. THEORY
ally based on bulk properties, may be less accurate for nano-
particles than for the bulk. Due to experimental difficulties in ~ \We consider a particle consisting Nfnuclei andn elec-
obtaining well-characterized nanoaluminum, one must relyirons. Relativistic effects are neglected, and we assume that
on theory in developing potential energy functions, and wethe Born-Oppenheimer approximation is valid; then the po-
will base our parametrization mainly on computational re-tential energy for nuclear motion is given by the eigenvalue
sults for Al clusters of subnanometer size. However, to maké of the electronic Hamiltoniart{ including the nuclear re-
the extrapolation to the nanoparticle regime more accurateulsion,
we also include data for the cohesive energy of bulk alumi-
num in its most stable crystal hatfface-centered cubjido HY(r glectrons R) = E(R)W (I gjectrons R) (1)
tie down the asymptote of the extrapolation. In the tight- . .
binding method the matrix elements of an effective single-WhereR andre'EC‘foPSare the coordinates of 3” the nucle|.and
particle Hamiltonian are modeled as functions of internuclea?lecnons’ respectively. If1) th? wave functlons;f' and ei-
distances, with adjustable parameters. The quality of a tightgerjvalue;sE d_epend parametrlcally on_the positions of nu-
binding parametrization depends strongly on the nature angl€i- BY invoking an independent-particle model, the wave
the quality of the data to which the parameters are fitted a&/nction is approximated by a suitably antisymmetrized lin-
well as on the functional forms used for the matrix elements&a" combination of the product of one-electron functions
The data can be taken from experiment or from accuraté/i, @and Eq.(1) can be converted into a system of nonlinear
calculations. We believe that a set of 190 energies obtaine@ifferential or integrodifferential equations for single-particle
recently for a variety of aluminum clustétgAl,, Als, Al,,  (i.e., one-electronfunctions:

Al-, Ali3), augmented by the experimental cohesive energy D) — . - -

and lattice constant, is sufficiently diverse to serve as a train- HU(R) = &(R)G(rR), 1=1,..., @

ing data set for a useful tight-binding parametrization. Wewherey; is an orbital g; is an orbital eigenvalue, andis the
believe that this set of data can also be used to verify if theoordinate of a single electron. The particular form of the
functional forms used are adequate for the system modele@ffective Hamiltonian operatokl, depends on the choice of

Traditionally, each tight-binding matrix element is a func- independent-particle model, e.g., Hartree-Fock or Kohn-
tion only of the distance between the centers of the two orSham density functional theorfDFT). The latter is more
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accurate in principle because it includes electron correlatioguracy, and it will be the major focus of the present paper.
effects. Tight-binding may be considered as an approximaTherefore it is important to discuss the physical origin of the
tion to DFT with the effective Hamiltonian represented by amany-body corrections to TB theory.

matrix Hamiltonian in a minimum basis of valence atomic  In a general way the need for many-body corrections can
orbitals. One of the goals of the present paper is to proposee traced to the key assumptions of TB theory, nam@ly,

new functional form for this matrix Hamiltonian. the neglect of two-electron interaction@i) the neglect of
If the one-electron functions);, are expanded in a basis three-center terméthe interaction of an overlap distribution
of n, normalized atomic orbitals on each atam centered on atoms and B with the nucleus or core of atom
“ v) in the one-electron Hamiltoniartiii) the formulation of
m the one-electron Hamiltonian without self-consistent-filed
= > Cin®o(r,R), m=Nn,, (3) (SCH iterations, andiv) the neglect of overlap in E¢4). In
a=1 more complete theories, the two-electron Coulomb and ex-

the set of equation&) is equivalent to the system of linear change integrals includ_e bqth.three—.(.:enter and four-center
/ contributions, so approximatiortg and(ii) are clear sources
homogeneous equations of the need for many-body termisThe many-body terms in
m the TB Hamiltonian may always be reformulated as environ-
_ _ _ mentally dependent two-body terms, and environmental de-
E[HDQ(R) 2iSq(RICp(R) =0, q=1,...m, (4) pendence of the two-body interactions is accounted for most
naturally by an SCF Hamiltonian that depends on the charge
whereH,, are matrix elements dfl distribution. Thus approximatiofiii ) is also a clear source of
the need for many-body terms. Nevertheless, Nguyen-Manh
_ et al'* have shown that a good approximation to the envi-
Hpq _J pll R)Heq(r, R)d, ®) ronmental dependence of the two-body terms may be derived
by a detailed examination of only approximati@m). Their
and argument starts by reformulatingd —SE)c in Eq. (4) by
(S*H-E)c. Thus the effect of overlap is to produce an ef-
- fective Hamiltonian[In practice one should use a Hermitian
a f el R)eq(rR)dr (©) version such agRef. 14 (STH+HS™1)/2 or (Ref. 17
SY2HsS 2] This is a powerful approach that provides a
theoretical prescription for a major part of the many-body
effect and justifies the physical argument invoking screening

323 é rre)fe;ntccj) .aé?]m'C(V?/Lkg:]alif’i:'\"f/}piggnau(rsu'jnece)'t IS written that was introduced in Refs. 12 and 13 for the environmental
* jonp B). dependence of the two-body interactions.

The overlap matrix elements involve at most two centers In the present work we recognize two additional physical

and are often approximated by the unit matrix, which Seffects that, along with screening, contribute an environmen-

fa”.Z?] negtle_cte?:; O\Q?]rtlap. A %Lgdoebio.”;% fgm:ocl)lgth.ﬁ Hgﬂ'{; tal dependence to the two-body interactions. First is the ef-
onian matrix elements can an y WING S1atea ot of bond angle change. When bond angles change, the
and Kostef who gave arguments why the three-center inte-

grals in (5) need not be taken into account. Then the matrithbridization of the bonding orbitals changes as well. In an
) S SCF treatment, polarization ¢ay) the p orbital component
eIementsHﬁ‘B for «# B are functions oR,z. Considering the P @y P P

or Rt i tizal ‘s the int of ansp? hybrid orbital is different than polarization of the
vtec r aﬁt _roml @ 10 f as abquan_tltza lon tﬁXISél te '2 ert- component of asp® hybrid. In addition, the energetic effect
atomic matrix elements can be written in the Slater-Kostety: oociron correlation depends on hybridization. In a TB

calculation these many-body polarization and correlation ef-

are elements of the overlap matrix. The matrix elements of
andS will be denoted byH;” and S, respectively, where

approximation in the form

min(; ;) fects must be reflected in the environmental dependence of
HE= > C%(,5mM,z0,5VE (R, (7)  the two-body interactions. The final physical effect that we
ij LI\ ap T aps Hap) VI ap) s . . . .
A=0 ! ! consider is coordination number. As the number of bonds to

a given atom increases, its flexibility to use hybrid orbitals
wherel;,|; are angular momentum quantum numbers of orgffectively for directional bonding decreases, and crowding
bitals i and j, A is the component of angular momentum ¢ jigands changes the electron density and hence the
along the internuclear axi€;, (1,5, Map. Nup) are the Slater  gychange-correlation energy. This many-body effect also
and Koster coefficients resulting from the angular parts otontributes an environmental dependence to the two-body
orbitals, and .5, Mg, N, are the direction cosines &, interactions. In principle all three effects take place simulta-
The diagonal matrix elementsli“ are constants in the neously, and the effects may be additive or multiplicative or
Slater-Koster formalism. For the minimum basis set of aluthey may interact in a very nonlinear fashion. In keeping
minum one must model the following four potential func- with the spirit of TB methods, the physical arguments are
tions V! Vooo Voio Viio Vini (denoted by some authors used only to motivate the functional forms, but the param-
Vssr Vspor Voper Vopr)- eters are found by fitting to experiment. At that stage, a func-

Nevertheless, as anticipated in key referelcédmen-  tional form motivated by a given physical effect may be
tioned in the introduction, going beyond the two-center ap-general enough to also represent other physical effects. Fur-
proximation can be especially useful for achieving high acthermore, some physically motivated functional forms are
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more effective than others at capturing the true physics, and TABLE |. Data for Al.

it is better to keep only the most successful forms in order te

keep the parametrization compact and physical. In light ofHartree-Fock orbital exponentRef. 26 £p=2.5935 A
the findings of Ref. 14, one could also introduce some many- £,=2.5610 A?
body effects by not making approximatidin), i.e., by using  Atomic ionization potential§Ref. 22 1£=10.620 eV
a nonorthogonal formulation. In the present work, though, 1A=5.986 eV

we emplqy the orthogonal approach because of its 9realed i cohesive energyRefs.11 and 37 Egh.=3.43 eV
computational efficiency for large systems. In fact the con-~ !
siderations of Ref. 14 provide a justification of the many--2tice constan(Ref. 38) at 298 K Boxp=4.0496 A
body orthogonal approach.

Based on these considerations, we will neglect the overlap
matrix in (4), replacing it by a unit matrixalthough we will
useS,q in the process of modeling,,o). Furthermore, matrix
elements of the effective Hamiltonian will be modeled as
functions of one or more of the internuclear distanggg is a sum of pairwise repulsive energies between any two
with some number of adjustable parameters to be fitted t@tomic coregconsisting of the atomic nucleus and core elec-
representative data from accurate calculations for small sygrons. The repulsive potential also has empirical parameters.
tems and from experimental data for the bulk. In some parametrizations the two-body repulsion functions

To make the dimension of the matrices in E4).as small  depend on the environment of those two atoms.
as possible, we use a minimal basis set for the valence elec-

N
Erep= 2 Vi&(R,p) (10

a>f

trons only. Thus the basis for each Al atom is oseoBbital IIl. MODELS
and three P orbitals(of p,, p,, p, symmetry, andn,=4. The
matricesH and S in (4) consist of 4x 4 submatricedH *2, The data set of aluminum energigsan be used not only

S*, wherea and 8 label individual nuclei. Note that some for fitting parameters in a given model but also for determin-
authord® have includedd orbitals on Al, but that would ing which of two models is more accurate. We have studied

make the basis 2.25 times larger. several models for the matrix elements, and they can be di-
The total energy of the system is given as a sum vided into the following two groups: Slater-Koster-type
tight-binding (TB) models based on pairwise matrix ele-
E =Eva(R) + EefR) (8) ments[a matrix element between an orbital arand one on

B depends only ok, as in Eq.(7)], and many-body tight-

of the valence electron enerd;,, and the repulsive energy Pinding(MBTB) models in whichVii, of Eq.(7) is replaced

Eqep (@ssociated with core-core repulsjon by a function that depends on the geometry of more than two
One has atoms.
For the repulsive energl0) we have used the function
m
- af A -BR,
Eval - E [OK(R)SK(R) + up50k2]a (9) Vrep: u e By (ll)
k=1 B

. . . whereA, B, andu are adjustable parameters.
where s is a Kronecker de_Itaok is Fhe occ_upauon number The off-diagonal elements ofi are called hopping or
©,1,0r2 %f, rrrw]olgcular orbltakﬁ &g Is an elg.env:;lllue of, | transfer integrals. We will approximate transfer integrals in
and L;f(’, hich is greater than zero, i1s the penallyermg of overlap integrals in a minimal basis set of Slater-
energy”+><“for doubly occupied orbitals. The molecular or- type orbitals(STO9. The overlap between an STO with an-

bitals are filled in such a way that the total energy of thegular momentun,, and exponential parametgy; on atom

system is minimized. The penalty energy is included to aP_, and an STO with angular momentuin and exponential

prox.lmately describe electron co.rrela_tlon and intraorbital re'parameter La on atom B will be denoted

pulsion. The standard TB approximation enforces double oc: B _ _

cupancy of all molecular orbitals(except for single Salﬂ}‘(RaB|§ala'£ﬁlﬂ)’ whereA=0 for o symmetry anch =1

occupancy of one orbital in systems with an odd number of©" 7 Symmetry.

electrong. The penalty energy is a mechanism to overcome

this restriction, and it may be considered to be a non-self- A. Slater-Koster-type TB models

ggzigigi %teersézgn%fet?ne Cl_élfj?ct))rirl;jicoennzlrtgytir([jh?)(;cange- In Slater-Koster-type TB models, intra-atomic matrix ele-
. L . ments are assumed to have the form

correlation energy when an orbital is doubly occupied. The

inclusion of the penalty energy means that partial occupan- Hﬁ!a: -1,.8;, (12

cies sometimes lead to lower energies than having all orbitals '

doubly occupied ones, and we will see that this term allo\/vsyvherehi is the atomic or valence-state ionization potential of

us to obtain improved multiplicities and improved propertiesan electron occupying orbitél In the present paper we use

of the electronic wave function upon dissociation of clustersatomic ionization potentials taken from experimé&These

The repulsive energy values are given in Table I. Atomic ionization potentials will
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be denoted;".

The simplest approximation for the transfer integrals is

the one proposed by Mullikéhand employed by Wolfsberg
and Helmholt?* and Hoffman#/® but with different param-
etrizations. In this approximation

|A+|A
‘K||>\ Sin(Rep),

Vi = (13)

PHYSICAL REVIEW B1, 045423(2005

2
34p”
75

3 4 5
P 3, P

. 19
25 1575 525 (9

Wsiz1=1+p+

In Eq (13) we adopted the Harriséhsign convention for
VII)\ To be in agreement with this convention we have
changed the sign ifl7) and(18) in comparison with Table 1
of Ref. 27.

One can consider the WH approximation to be a version
of the extended HiickéEH) approximatior?>2° 1t differs in

where theK, P values in(13) and the exponential parameters the parametrization. The most commonly adopted constant
Cal, needed to evaluate the overlap integrals are specifiedalue ofK in EH is 1.75, and it comes from HoffmaridThe
below. Depending on the number of parameters in the formost widely available cod for the EH method does not

mula (13) we will distinguish the following three Slater-
Koster-type TB models.

(1) Wolfsberg-Helmholtz(WH) approximation. In this
model there is one adjustable parameagifor all four hop-
ping integrals, i.e.,

K =Ko (14)
and thegma are Hartree-Fock valu&sfor atoms. These val-
ues are given in Table I.

(2) Extended Wolfsberg-HelmholtZEWH) approxima-
tion. In this model each of the fou; Py is adjusted indepen-

dently. The ionization potentials and exponential parameters

are as in the WH method.
(3) Optimized Wolfsberg-HelmholtzOWH) approxima-

tion. This model is like the EWH model except that the four

{a, values are also adjusted for best fit.

Together with parameters in the repulsive potential we
have 4, 7, and 11 parameters in the WH, EWH, and OW

models, respectively.
Overlap integralsSyoo, Si10 Si11 Were calculated by an
analytic formula, given by Joné$,for Slater-type orbitals

with equal screening constants. Because of the small differZ

ence between the values of Slater orbital exponéysid ,
for Al, this formula was also used in the caseSyf, integral
with the screening constant set to their
2.577 25 A*. This formula can be written in the form

nlnd. x(§|| Ryp)€ b Ras, (15

[ |

Silj)\:

wheren; is the principal quantum number of orbitaland,
denoting the produq|i,jRaB by p, one has

o2 2p* p o p°
W =l+p+—+—+—+—+—, (16
30300 P57 15 T 75 T 225" 1575 (16)
1 12p° 11p4 17p° p6>
Wanain= — —| p+ p2 + +
30310 V@(‘) P55 T 775 T s25 T 175
(17)
9p? 2 34p* 13
- 9p° i 4p p°  p®
Wsi310=—1-p— - - C
25 75 ' 1575 1575 525’
(18)

average

include the repulsion potential. In order to compare the EH
parametrization of Ref. 30 to the WH, EWH, and OWH
methods, we added a repulsion term and optimize(The
WH, EWH, and OWH methods all include optimized repul-
sion terms). The model employing the EH parameters of Ref.
30 plus our optimized repulsion term is denoted EHR. In
Sec. V we compare the results of mod€ls—(3) with those
from the EHR method, calculated with Ref. 31, which is a
Minnesota EHR code.

B. Many-body tight-binding

The characteristic properties of nanoparticles are ex-
plained in a general way by the large ratio of the number of
surface atoms to the number of interior atoms and the fact
that surface atoms have a highly variable environment. In the
models based on two-body interactions discussed ab@ve
the models employing the two-center approximation for hop-

ing integral$, the influence of the neighboring atoms on the
wo-body interaction is neglected. Although some previous
work!?2-1432-36gn TB modeling has included many-body ef-
fects, this kind of approach is much less studied than the
conventional two-center approach proposed by Slater and
'Koster. In a previous pap¥rwe have used analytic potential
modeling to identify key many-body effects, and in the
present paper we will use the functional forms studied there
in TB calculations.

We have studied several TB models with many-body ef-

fects. In all of them the intra-atomic elementstbfare taken
to be diagonal and to have the form

TABLE II. lonization potentials(eV) for Al clusters calculated
by the PBEO/MG3 method.

Cluster Structure No(Ref. 11 IP
Al, 1 7.76
Al, 3 6.35
Al 42 6.55
Al 59 6.05
Al, 3 6.41
Al, 43 6.38
Al 17 6.38
Al 34 6.40
Alg 1 6.07
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FIG. 1. Potential energies of
Al, (@) and Al, (b)—(i) clusters
calculated by MBTB-S method
(solid line). Energies denoted by
crosses come from the
PBEO/MG3 data set. The struc-
tures of the clusters are specified
by geometry numbers in the sup-
porting material (Ref. 11: (a)
1-10, the dimer;(b) 1-8, short
bridge approach of Al to At (c)
9-16, on top approach of Al to
small triangle; (d) 17-24, three-
fold approach of Al to small tri-
angle; (e) 25-33, long bridge ap-
proach of Al to Ak; (f) 34-41,

-3 ; Al4 (h) 1 dimer-dimer approachy) 42-50,
-5 W on top approach of Al to large tri-
angle; (h) 51-60, threefold ap-
7 F . , - proach of Al to large triangle(i)
61-66, reaction path for conver-
. sion of tetrahedron to rhombus.
25 3
X(A) X(A)
Heo= 12+ S V(R (200  model,F"®=FC", whereFis a coordination number func-
! h e e tion defined in Ref. 16. The effective coordination numger
(B#a) of atoma is given by the formula
V, = Ajg R, (21) o= 2 fg(Ruar), (22
o' #Fa

where A, and 6 are adjustable parameters. Next, the func-

tions Vﬁ”e‘é, ff}\, andV,, given by formulas(11), (13), and  where

(21), respectively, are multiplied by the many-body function

FMB which depends on all internuclear distances exBept exp( .
"1

We examine three MBTB models. f(R..)
g\Raa’

(1) MBTB based on coordination numbéEN). In this 0

TABLE lll. Multiplicities for quasispherical clusters of sizéé

Y1Y2
Raa’ -2

|f Raa’ < Y2,
) 2 (23

|f Raa’ = V2.

calculated by the PBEO/MEC method and the MBTB-S method forlt follows from (23) that only the atoms separated by a dis-

several values of the penalty energy. tance not exceeding, are counted, moreover the counts of

atoms are weighted by their distances frammThe coordina-

MBTB-S tion number function has the form
Penalty energyeV) o

N PBEO/MEC 0.64 0.07 0.0 F-"=1-d(1-G,p) (24
13 2 6 2 2 with
19 6 12 6 2
43 6 18 6 2 TABLE IV. Comparison of the numbers of caskk, of neutral
55 8 20 2 2 dissociation(out of 5460 casg@scalculated by MBTB-S method for
79 2 22 4 2 different penalty energiegThe fitting parameters were optimized
87 14 30 6 2 for each value of the penalty enerpy.
135 4 44 2 2 Penalt M %
141 10 40 8 2 enaty eneray n °
177 10 54 6 2 0.00 0 0

0.07 1015 19
MUE 20.44 2.67 4.90 0.64 2323 43
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TABLE V. The parameters for pairwise interactions models.

Model No. of parameters EHR 3 WH 4 EWH 7 OWH 11
A (eV AY) 64204 1142 655.5 3069
B (A 10.77 2.921 2.615 3.548
u 0.1880 0.02936 0.0658 0.0955
Kooo (€V) 0.3928 0.3742 0.3922
Koo (€V) 0.3928 0.5181 0.3118
K110 (V) 0.3928 0.3221 0.4292
Ky11 (€V) 0.3928 0.0997 5.934
Zooo (A7Y) 1.897
Lo10 (A7Y) 1.829
{110 (A7Y) 3.876
L1 (A7) 6.278
Gop = ; . . (25 bup= Py 2, €A et ReplRasl®, 27
. +(ga— fg<Ra§)>V L +(gg_ @(R@)V ot
do do which includes three-body interactions. There are three posi-

It is convenient to think of, appearing in25) as a reference
coordination number. The functidd,; takes values between
0 and 1, so the effect dF°N is to weaken thex-3 bond.
Larger coordination numbers of atomsand 8 are asso-
ciated with weakera-g Hamiltonian matrix elements,
which is a way of explicitly incorporating valence
saturation.
There are two positive adjustable parameterandd, for

each of theV functions, and three positive adjustable param-

etersgg, v1, ¥» Which are common for alV functions.
(2) MBTB based on screenin¢S). In this model, FM8

=FS, whereFS is the screening function of Refs. 12 and 13,

FS=1-tanhé,, (26)

with

TABLE VI. The parameters for the MBTB-CN model.

Kev) (@A d Y
Vooo 0.5781 1.643 0.1290 4172
Voio 0.1880 1.761 0.02061 3.125
V110 0.3371 2.536 0.09656 4.237
Vi1 0.1252 2.111 0.1768 4.111
AY) (A
Vo 3.017 3.766 0.9002 2.666
vV, 2.246  1.165 0.8997 1.838
AVAY BAY u
Vrep 2503 3.503 0.4125 0.1377 2.119
Y Y1 Y2
12.60 1.692 15.11

tive adjustable parameter®,;, B, B3, for each of theV
functions. The screening function mimics the electronic
screening effects such that interaction between two atoms
becomes weaker if there is another atom located between
them. LikeF®N, the screening functioRS varies between 0
and 1, and takes its minimurtthe maximum screening
effect) when the atony is situated on the line connecting
atomsa and B.

(3) MBTB with bond-angle (BA) corrections. In this
model, FMB=FBA where

FBA=1-tantf1y,, (29
Xap= K1 > erRYRY. (29
y,0#a,B

with four positive adjustable environmental parametess,
Ky, K3, and k,, and a differenty,; for each of theV func-
tions, defined in Ref. 16. Equatiof28) has one additional
parameter,x,, in comparison to the original form of the
bond-angle functioA®

The screening and bond-angle functions are closely re-
lated; FBA, however, is capable of also modeling four-body

TABLE VII. The parameters for the MBTB-S model.

K (eV) (AT B B Bs
Vooo 0.3577 1.676 0.03723 1.475 0.7413
Voo  0.2806 1.785 2.400  4.157 2.252
Vio  0.2926 2.570
Vi; 01990 2581
A (eV) 5 (A
Vo 6.219 3.395
Vi 2.259 1.137 0.6149 2.813 1.369
A(eVvAY) B(AD u
Vigp 4462 3.806 0.3835
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TABLE VIII. The parameters for the MBTB-BA model.

K (eV) (AT Ky Ky (A7"3) K3 Ky
Vooo 0.2489 1.423 2.827 3.594 1.936 3.647
Vo10 0.3432 2.150 0.1884 4.324 1.636 2.476
V110 0.2598 2.327
% 0.1819 2.486

A (eV) 5(A™Y
Vo 4.540 2.340 0.9586 5.986 1.812 1.592
\A 3.879 1.369

A (eVv AY) B (A u
Vrep 4230 3.889 0.2254
effects. The maximal weakening of theg bond takes place for k=1,...,5, and in caskwe haven, geometries. We will

for three-body interactioié=vy) and atomé situated on the denote the energy for the geometrpf casek by Eik. The
line connecting atomsy and B. In contrast toFN, the  values ofny are given in Ref. 11.
screening function depends on ratios of the distances, not on (2) Experimental cohesive energ¥gh, for a FCC
the distances between atoms. In particular, the same screesrystaf’ and experimental latice constaat,, at 298 K38
ing effect is obtained for the atom sitting on the line betweertheir values are given in Table I.

« and g independently of the distandg,;, which is not true (3) A set of nine ionization potentialdP;) calculated by
for the weakening of thex-B8 bond due to the bond angle the PBEO/MG3 method for some of the clusters from the set
function. described above. Their values and geomeéttiase given in

The maximal number of parameters is 32, 36, and 43 ifTable II. The nine geometries for calculating IPs are chosen
the models MBTB-CN, MBTB-S, MBTB-BA, respectively. to represent one high-energy and one low-energy structure
for each of the considered clusters.

IV. DETERMINATION OF THE PARAMETERS
A. Data B. Cohesive energy

The following data has been used to determine the adjust-
able parameters in all TB models considered in this paper.

(1) The set of 190 energies calculated by the PBEO/MG3
method for aluminum clusters AlAl;, Al,, Al,, and Akt
These data were carefully chosen to represent diverse con- Qn=
figurations in small as well as in moderate-sized clusters. The
coordination number in bulk aluminum is equal to 12, and
systems with such coordination numbers are also included inonverges rather slowly witN to its bulk limit of Eg{f, and
the data in the form of two quasispherical Atlusters(cen-  this dependence can be approximafé@as a linear function
tral atom surrounded by 12 close packed atomsd one of N3 Therefore, it is assume@s in the previous papéy
icosahedral cluster. The values of the energies and corréhat the bulk cohesive enerdgg, for an arbitrary value of
sponding Cartesian coordinates, as well as other details dlie lattice constant can be obtained by compu@qga) for
the data set are given in Ref. 11. This set of energies iswo quasispherical clusters, of sizBg and N,, with lattice
divided into five cases, i.e., ,é)kl with Ny=2, 3, 4, 7, and 13, constanta by the extrapolation formula

The cohesive energ@y, of anN-atom cluster, defined as

E
N (30)

TABLE IX. Mean unsigned errors in eV/atom and FCC lattice constaqin A.

€2 €3 €4 €7 €13 ENC €Bulk EAE am
EH 0.521 0.589 0.516 0.637 0.718 0.412 3.663 0.745 4.632
EHR 0.417 0.370 0.428 0.452 0.726 0.412 3.692 0.665 4.608
WH 0.040 0.073 0.063 0.050 0.100 0.065 0.126 0.078 4.003
EWH 0.060 0.076 0.071 0.047 0.067 0.065 0.204 0.068 4.035
OWH 0.076 0.080 0.095 0.065 0.031 0.070 0.122 0.058 4.050
MBTB-CN 0.038 0.078 0.050 0.077 0.025 0.049 0.000 0.046 4.050
MBTB-S 0.023 0.065 0.046 0.038 0.013 0.033 0.001 0.029 4.050
MBTB-BA 0.038 0.061 0.042 0.055 0.019 0.031 0.088 0.038 4.050

045423-7



STASZEWSKA, STASZEWSKI, SCHULTZ, AND TRUHLAR PHYSICAL REVIEW B1, 045423(2005

TABLE X. |AEX (eV/atom).

Structure No(Ref. 1] Reaction coordinate WH OWH MBTB-S MBTB-BA
Al,
1 1.90 0.05 0.13 0.01 0.15
2 2.30 0.12 0.15 0.03 0.13
3 2.70 0.09 0.27 0.06 0.00
4 2.86 0.03 0.31 0.00 0.04
5 3.10 0.04 0.29 0.04 0.06
6 3.50 0.11 0.23 0.07 0.06
7 3.60 0.11 0.21 0.07 0.06
8 3.90 0.10 0.15 0.06 0.04
9 4.30 0.04 0.05 0.01 0.02
10 4.50 0.00 0.01 0.04 0.06

Al 3, oblique approach to large dimer

29 6.06 0.37 0.16 0.15 0.12
30 571 0.36 0.26 0.06 0.00
31 5.36 0.44 0.09 0.13 0.02
32 5.02 0.35 0.03 0.08 0.03
33 4.68 0.32 0.03 0.07 0.00
34 4.35 0.29 0.04 0.09 0.03
35 4.02 0.14 0.03 0.09 0.00
36 3.71 0.02 0.17 0.07 0.05
37 3.56 0.08 0.18 0.13 0.02
38 3.41 0.01 0.32 0.05 0.04
39 3.12 0.01 0.41 0.06 0.01
Als
1 1.02 0.65 0.04 0.21
2 0.93 1.01 0.20 0.33
3 0.91 0.25 0.19 0.10
4 0.22 0.28 0.25 0.29
5 0.00 0.10 0.04 0.14
6 1.09 0.41 0.10 0.28
7 0.74 0.06 0.25 0.28
8 1.83 0.38 0.21 0.30
9 1.94 0.19 0.20 0.03
10 0.41 0.02 0.03 0.02
11 2.74 0.15 0.18 0.40
NIUSQN (@) - NEl/?’QN (a) C. Penalty energy
Egun(@) = N211/3_ N, : (3D We optimized the value of the penalty energy of E.in

the following way. First, for our best TB modéMBTB-S)

) o the fitting parameters of the potentials were optimized for
As in Ref. 16, we usedl; =55, N,=321. For the fitting pro-  several values of the penalty energy. The values of the mul-
cedure of the TB potential parameters we made use of tW@piicity of the clusters were found to strongly depend on the
cohesive energieSg, for two lattice constants: the experi- penalty energy. Therefore, the final choice of the penalty
mental lattice constard,, and the minimum-energy lattice energy was made by minimizing the mean unsigned error
constant,,. The two energies are denoted By,x(aep) and  (MUE) in the multiplicities over a set of data calculated by a

Eguk(@m)- The lattice constard,, is obtained by minimizing  recently developed version of hybrid density functional

Esux(@), for a given set of TB or MBTB parameters, with method (PBEO/MEC, which denotes the Perdew-Burke-

respect taa. Ernzerhof method with zero empirical parameters and the
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TABLE XI. gp (eV). fragments which each have an odd number of elect(fors
example, Al— Al;+Al), the restriction to doubly occupied
EH 1.06 orbitals means that one fragment will have a cationic wave
EHR 1.06 function and the other an anionic one. It is important to keep
WH 0.58 in mind that the present methqd is neyertheless parametrized
EWH 0.31 ylgld to reasonably .accurate_dlssouatmn energies even when
' this happens. This is a special case of the more general phe-
OWH 0.36 nomenon that one can obtain correct energetic predictions
MBTB-CN 0.30 even from a wave function that does not predict correct elec-
MBTB-S 0.36 tronic properties such as multipole moments. This is espe-
MBTB-BA 0.39 cially true when we use the modern justification of TB theory

as being an approximation to density functional theory since
it is not necessary to interpret the Kohn-Sham orbital eigen-
Minnesota effective coye’>*2The multiplicities obtained by values as having a direct relation to band theory, at least
the PBEO/MEC method and by TB methods with differentwhen we use integer occupancféshe inclusion of a pen-
penalty energies, and the corresponding MUEs are given ialty function does, however, represent a step toward improv-
Table 1ll. The optimum value, used in the present paper, isng the behavior of the wave function, and it does allow us to
0.07 eV. Two sets of fitting parameters optimized for otherobtain reasonable multiplicities. It also affects the behavior
penalty energies, namely 0.0 eV and 0.64 eV, are given iwf the wave function upon dissociation, and this deserves a
the supporting information fil&> These models with other few remarks. The penalty energy can make up in part for the
penalty energies may be useful for various purpdsees., a incorrect dissociation of tight-binding wave functions, but
penalty energy of zero is easier to handle in dynamics calcuaot completely. Our data set contains 104 molecules with an
lations, and a larger penalty energy may be a better startingdd number of Al atoms, which allows us to create 5460
point for adding heteroatomsbut these alternatives will not unique pairs of such molecules, which may in turn be con-
be discussed further in this paper. sidered as 5460 dissociation asymptotes. Table IV shows the
It is important to emphasize that the present parametrizgpercentage of these asymptotes that correspond to neutral
tion is designed to yield accurate nanoparticle energies, bdtagment wave functions; we see that this percentage in-
not necessarily nanoparticle wave functions or bulk energiesreases, although only slowly, as the penalty energy in-
or band structures. As is well knowlha double-occupancy creases. However, the largest value of the penalty energy in
molecular orbital method like tight-binding does not neces-the table leads to an unacceptably large error in the multi-
sarily dissociate into a qualitatively correct wave function plicities, so we chose 0.07 eV as a compromise value for the
upon bond cleavage. For example, if a system with an evepenalty energy. We recall that Wang and Maksed a pen-
number of Al atoms dissociates asymmetrically into twoalty energy of 3 eV for hydrocarbon species. That might be

TABLE XIl. Cohesive energies in Al (eV).

N WH EWH OWH MBTB-CN MBTB-S MBTB-BA
13 2.30 2.31 2.35 2.37 2.38 2.37
19 2.49 2.56 2.52 2.62 2.66 2.59
43 2.72 2.78 2.77 2.80 2.83 2.80
55 2.82 2.92 2.90 2.94 2.94 2.92
79 2.95 3.08 3.01 3.07 3.09 3.04
87 2.89 3.01 2.96 3.04 3.02 2.99
135 3.02 3.12 3.08 3.09 3.10 3.08
141 3.01 3.12 3.07 3.12 3.10 3.08
177 3.06 3.15 3.11 3.12 3.12 311
201 3.12 3.20 3.15 3.13 3.16 3.15
225 3.08 3.17 3.13 3.13 3.12 3.14
249 3.10 3.19 3.15 3.12 3.13 3.15
321 3.15 3.24 3.19 3.16 3.16 3.20
369 3.18 3.27 3.21 3.16 3.17 3.22
381 3.17 3.27 3.21 3.16 3.17 3.22
429 3.17 3.27 3.21 3.16 3.17 3.22
531 3.20 3.28 3.23 3.17 3.17 3.24
555 3.21 3.30 3.24 3.17 3.18 3.25
603 3.22 3.31 3.25 3.18 3.19 3.26
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FIG. 2. The same as in Fig. 1
but for Al; (a)—(f), and Al (g)-
(k). The points arga) 1-9, side-
ways approach of Al to small
dimer; (b) 10-19, sideways ap-
proach of Al to medium dimei(c)
20-28, sideways approach of Al
to large dimer;(d) 29-39, oblique
approach of Al to large dimefg)
40-47, equilateral triangles(f)
48-57, linear approach of Al to
small dimer;(g) 1-11, approach
of Al to small octahedronth) 12—
22, approach of Al to large octa-
k hedron;(i) 23-31, large trimer ap-
( )‘ proaching large tetramelj) 32—
Al7 40, small trimer approaching
small tetramer; (k) 41-46, ap-
A proach of Al to small octahedron
3 along the perpendicular bisector

3 . 2 3 4
X(A) X(A) X(A) of a bond.

Potential energy (eV)

G) 4 12

- Al7{ -14

better for dissociation, but is definitely worse for multiplici- AEEBK: E/Bk - E].TBK, (34)
ties.
andE;®* stand for the energies calculated by the TB method.
Notice that throughout this paper the zero of energy for a
given k is taken as the energy @i, separated atoms. The
A microgenetic algorithff has been applied to the esti- second group of terms fits the energies
mation of parameters. We have used the FORTRAN version
1.7a of Carroll's cod¥ (updated on 4/2/200%augmented by AEF=Ef-E®K, (39
a subroutine with our fitness function. ) i )
Four groups of terms are included in the fitness functionth€ third group of terms fits the cohesive energiggy to the

The first group of terms fits the differences between PBEOPUIK experimental valu&g(, (Table ),

MG3 and TB energies:
g AEg,k = Egui(am) — Egﬁﬁ’k'

D. The fitting procedure

AAEf = AES - AE[®, (32) (36)
AEE = Egun( - Egu
where Bulk = Esuik(8exp) ~ Egyik-
AEX = gk — EX (33) The fourth term fits ionization potentials,
1] I
AIP, =P, - IP®. (37)
TABLE XIIl. Comparison of mean unsigned errofsV/atom . .
to previous tight-binding models. We define a mean unsigned error per atom fay, Alus-
ters as

Nonclose Al data set Large Al data set

l 2 nk—l N 1 Ny
- k K
N o | D S 2 MBS+ 3 JaEl |,
EH 0.63 075 k K\ k i=1 j=i+1 ki=1
EHR 0.64 0.67 (39
OWH 0.06 0.06 where the firs{double summation includes all relative en-
MBTB-S 0.02 0.03 ergies of two geometries in the data set, and the second term
sums over individual geometries. The mean unsigned error
€av per atom in energies and their differences is then defined as
EH 0.52 0.64 the weighted average
EHR 0.53 0.56 s
1
TBTE (Ref 1]) 0.36 4.46 ecu= 2 Nkstv (39)
OWH 0.06 0.06 Neiuk=1
MBTB-S 0.03 0.03

where
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TABLE XIV. Ranges of the two-body functions.

n 2 3 4 5 6
Model Functionf/Distance(A) 4.050 4.960 5.727 6.043 7.014
MBTB-S VoodS 1.7x101  3.4x102 79x10°% 21x10°% 6.5x10*
VoiFS 7.7x102 9.6x10% 45x10% 1.0x10°% 1.3x104
V110 34x101 1.0x10! 33x102 1.1x102 3.8x1073
Vi 1.7x101 3.7x1072% 9.4x10°% 27x10°% 8.2x10*
Vrep 8.6x10°% 23x10% 1.1x10° 75x107 6.7x10°8
MBTB-BA Voo A 6.4x101 4.1x10! 22x10! 1.4x10! 8.4x1072
Vo, FBA 43x101 1.8x10! 7.4x102 3.2x102 1.4x107?
Vi1o 45x101 1.7x10' 6.6x10% 2.6x102 1.0x107?
Vi 1.9x101 45x102 1.2x102 3.6x10°% 1.2x10°
Vrep 9.2x10° 25x10% 1.2x10° 8.8x107 8.0x10°8
MBTB-CN VoooFN 55x101 3.0x10! 1.7x10' 9.8x10? 57x107?
V1PN 6.3x101 35x10! 1.9x10! 1.1x10! 59x107?
V1PN 35x101 1.1x10! 3.6x102 1.2x102 4.4x107°
Vy1FN 2.8x101 8.8x102 3.1x102 1.2x102 4.8x10°
VieF N 1.4x102 51x10% 3.3x10° 29x10°% 3.3x107
OWH Vooo 45x10t 24x10! 1.0x10! 4.9%x102 2.5x1072
Voio 59x101 3.1x10! 1.6x10! 8.6x102 4.6x1072
V110 7.3x102 69x103% 8.1x10% 1.1x10% 1.8x10°
Vi 2.8x10° 2.3x10° 3.7x107 8.9x10° 3.0x1010
Viep 1.4x102 56x10% 3.6x10° 33x10° 3.7x107
EWH Vooo 2.4x101 6.4x102 1.9x102 59x103% 2.0x103
Voio 2.8x101 8.0x102 24x102 7.9x103% 2.7x1073
V110 3.4x101 1.1x10! 3.3x102 1.1x102 4.0x1073
Vi 1.8x101 3.9x102 9.9x10°% 2.8x10°% 8.8x10*
Vrep 44x102 4.0x10° 53x10% 9.1x10° 1.8x10°
WH Vooo 24x101 6.4x102 1.9x102 59x10°% 2.0x10°
Voio 2.8x101 8.0x102 24x102% 7.9x10°% 2.7x10°
V110 3.4x101 1.1x10! 3.3x102% 1.1x102% 4.0x10°
Vi 1.8x101 3.9x102 9.9x10°% 28x10° 8.8x10*
Vrep 3.1x102 22x10°% 23x10* 3.2x10° 53x10°

5 1 5
New = 2 Ni. (40) EpE = _<2 Nien, + 8Bu|k> , (42)
k=1 Neu \ k=1

) ) ) ~ whereNpe,=N¢g+1. The mean unsigned error for the ion-
The mean unsigned error in the bulk cohesive energies is jzation potentials is

9
esuk = 3L|AERu + IAERRI. (41) ep= éz |AIP;], (43

The mean unsigned error in atomization ene(@i) per =1

atom for neutral aluminums ,g, is defined as the weighted
average okgy and the five values ofy,, and the mean unsigned error for the total data set is
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TABLE XV. Comparison ofeag (€V/atom for aluminum with TABLE XVI. Timing comparisongs) for tight-binding methods
analytic potentials to those for tight-binding. and analytic potentials from Table XV.
Analytic (Ref. 16 B Number of atoms 249 531
Best pairwise 0.32ER) 0.06 B
Best MB 0.05ER2+ESCNa 0.03 WH 19 193
MBTB-CN 19 251
5 MBTB-S 64 792
1 MBTB-BA 22 261
ETot= (E Nien, + eguik + 8|P) , (44)
Tot \ k=1

Analytic (Ref. 19
ER 0.024 0.10
ER2+ESCNa 0.90 5.9

where Nt;=Ngj,+2. To minimize the total error we define
the fitness functiorfwhich is maximized as

f=-ero (45)

To compare our results to previous tight-binding models waameters were optimized, gives a much smaller eegr

also introduce a measure of the average error per atom in thtean the others.

atomization energy in the form of As in Refs. 11 and 16 we also consider a nonclose data set
of 155 energies which is obtained from our data set of 190
energies by removing all points for which any Al-Al distance
is smaller than 2.25 A; the remaining geometries are the
ones with no clos€NC) approach of any two atoms.

The values ok,, for NC data are also given in Table IX.
They are denoted in this Table agc. Eliminating the close
parts lowers the mean error defined this way by 31% for EH

The optimized parameters for six models are given inand 12% for EHR, but it has almost no effect on the average
Tables V-VIII. In two MBTB models the number of param- errors for the other Slater-Koster-type parametrizations. For
eters shown in Tables VII and VIl is less than the maximalthe three MBTB methods that have the smallest errors, it
one. This arises as follows. First, in the process of optimizalowers the mean unsigned error by 8—-24%.
tion all many-body terms were included and the importance The MBTB methods give better representations of the
of each term was examined. Some of the correction termdata than Slater-Koster-type TB methods. The many-body
appear not to be important, and they were not taken intéerms are more important for bigger clusters. The compari-
account in the further process of optimization. This happenedon between MBTB methods shows that the MBTB-S
in the S model and BA models where we kept 24 and 27method is best. In Figs. 1 and 2 we compare potential ener-
parameters, respectively, as compared to maxima of 36 argles for Ab, Als, Al,, and Al obtained by MBTB-S method
43, respectively. In both models the many body correctiongo those obtained by PBEO/MG3 method. To plot each
to Vi10 Vi11, @and Ve, turned out to be insignificant. Also, MBTB curve we calculated 100 values of energy. The fit is
one correction to the diagonal terms in each model was efvery good and all the curves are smooth. In the case gf Al
fectively redundant, but for th8 model the correction t&/;  the quality of the fit is presented in Table X, Whe."rE:< is
was kept, and for the BA model the correctiortMgappeared also tabulated for Al and Ak (oblique approach to large
to be significant. The parameters of omitted terms are leftimen. The Al; system(in which three-body interactions
blank in Tables VII and VIII. occup was investigated separately to evaluate the importance

We also considered models in which combinations ofof different many-body terms. For the cases presented in
many-body functions were applied, e.g"E=F°NFS or  Table X the S and BA methods give very similAEX (the
FMB=FCNEBA Such combinations increase considerably theBA method gives the smallest errors forAllt is interesting
number of parameters to be optimized but do not signifito notice that for Al; all TB methods considered in this
cantly improve the fits and therefore are not discussed furpaper correctly predict the lowest energy to be the icosahe-
ther. dron (structure No. 1

For all six methods we have computed the mean unsigned Mean unsigned errors for the ionization potentials calcu-
error in atomization energy for neutral systems. We have alstated by TB methods are given in Table XI. One can see that
calculated these for the extended Hiickel metha@H)?®  the ionization potentials are reproduced with an error less
with and without the repulsion potential term included. Thethan 10% for all methods. This means that neither the num-
results are given in Table IX. As seen in Table IX, the EHber of optimized parameters nor the choice of many-body
method gives considerably larger error for all cases, anderms has much influence on the values of the calculated IPs,
these errors increase for bigger and bigger clusters. which are realisti¢though not quantitatively accurat®r all

The WH approximation gives much more realistic resultsSlater-Koster-type and MBTB methods.
than the EHR model. Among the Slater-Koster-type TB mod- As in two previous papets®we calculate the cohesive
els, the OWH method where both linear and nonlinear paenergy for several quasispherical clusters. The results are

= . 46
5= ENy (46)

Eav

V. RESULTS AND DISCUSSION
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shown in Table XII. The rate of approach to the bulk value of VI. CONCLUDING REMARKS
3.43 eV is remarkably similar across the various models.

It is interesting to compare the present TB results to the |n a previous stud}® we (and Jaspertested a large num-
TBTE model of Mehl and Papaconstantopoulos. As disper of analytic potential energy functions, for example, pair-

cussed_in Ref. _11, their method is very inaccurate if. anYyise additivet®4? nonpairwise additive®5! and embedded-
Al-Al distance is smaller than 2.25 A(However, their atom (EA)-type®-55 methods, for Al clusters. In both that

method was not designed to be valid in that region, and it is : .
very reasonable that a model is parametrized for a specifi%’Ork and the present st_udy we based our conclusmns prima-
objective and is not equally valid for all properties and all "Iy On the average unsigned error per atom in the atomiza-
geometries. The mean unsigned errors for both data sets ardon energy, averaged over AlAl, Aly, Al7, Alys, and bulk
compared in Table XIII. The present models clearly represenf!l- Thus the studies can be directly compared. The best pre-
a qualitative advance, even for nonclose geometries, whedoUs potential energy functions were found to have mean
our best model reduces the mean error by more than an ordgfror of 0.45 eV/atom for pairwise additive, 0.16 eV/atom
of magnitude. for nonpairwise additive, and 0.13 eV/atom for EA-type,
Our models do not have a cutoff. Therefore, it is interestand reoptimization of these kinds of potential energy func-
ing to consider the ranges of the two-body functions thations against our new cluster data training set reduced the
result from the parametrizations presented in this paper. lerror for these three categories of potentials to 0.31, 0.13,
the WH, EWH, and OWH models, the two-body functions and 0.046 eV/atom, respectivéf/in the present work we
areV|i|jx andV,, whereas in the CN, BA, and S models, the found that the best tight-binding model with pairwise matrix
two-body functions, sayf(R), are given byV,i,_F'\"B and elements(we call this Slater-Koster-type TBhas a mean
Vref’\"B. The ranges of these functions may be'illustrated byerror of only 0.056 eV/atom. Thus the tight-binding formal-
tabulating f(Rg‘;)/f(R(al;) where f(Rg‘;) is the nth nearest ism by lodging the pairwise functions in a quantum mechani-
neighbor distance in the bulk FCC latticéThus R(al) is  cal framework immediately recovers almost all of the many-
Bexy/ V2=2.863 A, and?f), Rf),... are4.050,4.960,..A)  body effects that can be recovered even by the very best and
These ratios were determined for the cental atom of a 603Nn0st sophisticated analytic potential energy functions. Then
atom quasispherical lattice and are tabulated in Table XIVvby explicitly adding many-body effects to the Hamiltonian,
The table shows that the two-body repulsion functions dewe can do even better. In particular, we found that the
crease more rapidly than the Hamiltonian matrix elementsgcreening function introduced by Ho and co-workers is very
and in all cases they are less than 1% of their nearespowerful, and our final model which includes this function
neighbor values by the third-nearest-neighbor distaiafg’;g has a mean error of only 0.029 eV.
The average value of the Hamiltonian matrix elements at Itis especially noteworthy that we achieved this accuracy
R® is however 11% as large as RE. Although some older without including the overlap matrix in the secular equation.
models neglect the Hamiltonian matrix elements beyond thd NUS our model is what some workers refer to as “orthogonal
second nearest neighbors, our model has much longer-rangBght-binding,” and this is well known to more efficient for
interactions. molecular dynamics calculations than nonorthogonal tight-
Finally we consider a comparison of the present results t&nding. _ _
the analytic potential results of Ref. 16. This is done in Table e expect that the present model will be particularly use-
XV. We see that the pairwise approximation is much bettefu! for simulating nonbulk Al, for example, Al nanoparticles,
in the context of TB theory than for analytic potentials. In- SiNce we placed an emphasis on interpolating between clus-
corporating the pairwise approximation into the matrix ele-ters and the bulk ratht_ar than on quantitatively repr_oducmg a
ments, followed by diagonalization of the TB Hamiltonian full Set of bulk properties. However, the approach is general
automatically builds in most of the many-body effects. How-and we recommend the many-body tight-binding with
ever, we can still reduce the error by another 50% by expliciec'€eningMBTB-S) scheme for other applications to Al and
inclusion of many-body effects in the matrix elements, as wePther elements. It can also serve as a starting point for pa-
anticipated in Sec. 1. rametrizing heteronuclear_ systems _such as the interaction of
Cost comparisonécomputer times are given in Table hydrocarbon fragments with Al particles.
XVI. For pure Al, the analytic potentials are much less ex-
pensive. However, once one considers systems containing
other elements such as H and C, along with Al, it may be ACKNOWLEDGMENT
harder to “discover” functional forms that incorporate the
many-body effects. One can anticipate that TB will still in-  This work was supported in part by the Defense Univer-
clude a good portion of the many-body effects automaticallysity Research Initiative in Nanotechnolog¢DURINT)
but it is a question for future study. through a grant managed by the Army Research Office.
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