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A type of large paramagnetic persistent current is revealed in polygonal carbon nanotubesCNTd tori through
calculation of the persistent current-induced magnetic moment using a tight binding model. Polygonal CNT
tori, constructed by apices formed at heptagonal and pentagonal defects on the inner and outer fringes, exhibit
paramagnetism related to the semimetallic band structures of the periodic CNT junctions, despite the inherent
diamagnetism of graphite. This type of persistent current differs from that originating from metallic band
structures, and is caused by both magnetic flux in the inner holesAharonov-Bohm fluxd and the magnetic flux
penetrating the graphite plane directlysdirect fluxd. This magnetic moment is close to that calculated based on
the Aharonov-Bohm alone for a cross section that includes the region of direct flux.
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I. INTRODUCTION

Despite the semimetallic nature of graphite, carbon nano-
tubessCNTsd become metallic and semiconducting depend-
ing on the radius and helicity of the honeycomb lattice.1 This
promising feature is caused by the quantum size effect,
whereby new electronic states arise as the system becomes
smaller than the coherent length. Such quantum size effects
have also been identified in the persistent current of the me-
soscopic ring; an ideal clean, one-dimensional, mesoscopic
metal ring is diamagnetic when the number of electrons is
4n+2 for integer n, and paramagnetic otherwise.2 This
means that the ring can have the opposite sign of magnetic
susceptibility compared to the bulk system. Furthermore, this
positive magnetic susceptibility is inversely proportional to
temperature, becoming divergent at absolute zero.2–4 Al-
though this appears superficially similar to the Curie-Weiss
law, the origin of this temperature dependence is not spin but
persistent current. In the absence of generally accepted ter-
minology for this type of paramagnetism, it is referred to as
giant orbital paramagnetismsGOPd in this paper.

Our group has become interested in the recently discov-
ered CNT ring for a number of reasons.5 First, similar to
graphite, CNTs exhibits negative values of magnetic suscep-
tibility with respect to the magnetic field perpendicular tothe
honeycomb plane,6 yet the persistent current of the CNT ring
can also produce GOP.4 Furthermore, CNT rings are more
suitable for miniaturization to a nanometer-scale radiusR
than the conventional mesoscopic rings of metals or
GaAs/AlGaAs.7 Such miniaturization is desirable from two
perspectives.s1d The circulating persistent currentI is given
in terms of the Fermi velocityvF by evF / s2pRd, and is also
related to the magnetic moment per ringM by M = IpR2.
Therefore, in closed-packed rings, the magnetic moment per
unit area is proportional toI and can be increased by shrink-

ing R. Additionally, s2d the persistent current occurs on the
condition that the coherent lengthlf is larger than 2pR.
Sincelf decreases with increasing temperature, the persistent
current can be observed at higher temperature asR de-
creases.

In other theoretical studies on the persistent current of the
CNT ring, “disclination” and “direct flux” have not been
considered together.4,8–11In the present study, however, both
are considered, as reducing the radius of the CNT ring in-
creases the importance of these two factors. The effect of
disclination is illustrated schematically in Fig. 1. The polygo-
nal CNT torus in the figure is formed by pentagonal and
heptagonal defects that produce the corners of the polygonal
shape on the outer and inner fringes, respectively. These de-
fects are generally called disclinations and have been shown

FIG. 1. sad Schematic of three-dimensional structure of a po-
lygonal CNT torus. Uniform magnetic field is applied perpendicular
to the page. Unit cell labels are denoted byn1. sbd Unit cell of the
CNT torus. The torus is composed of six unit cells.
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to have a significant effect on CNT junctions,12 CNT caps,13

and helical CNTs.14,15 Here, a polygonal CNT torus is de-
fined as a CNT torus with this nature of disclinations, al-
though more rounded shapes can also be achieved by a series
of more closely spaced disclinations.16

Only a few attempts have so far been made to investigate
the persistent current of the polygonal CNT torus,17 whereas
the circular CNT torus has been discussed by many
authors.4,8–11A circular CNT torus is defined here as a CNT
torus formed by elastic deformation of the straight CNT with
no disclination. The elastic energy of the circular CNT torus
has been investigated theoretically.18 In the circular CNT
torus, the honeycomb lattice shrinks along the tube axis by a
factor of R1/ sR1+Dd on the inner fringe compared to the
outer fringesR1 andD denote the radius of the inner hole and
the diameter of the CNT, respectivelyd. Although the result-
ant axial strain is relaxed to a certain degree by the elastic
deformation known as “buckling,”19 the relaxation is not suf-
ficient to maintain stability ifR1 approachesD. As shown in
Fig. 1, however, the strain in the polygonal CNT torus can be
relaxed by reducing the number of hexagons on the inner
fringe.

It is widely known that impurities suppress the GOP
effect,3,8 but the effect of disclinations on GOP remains open
for discussion. The effect of “direct flux” on GOP also re-
quires further attention. Previously, only the magnetic flux in
the inner hole, that is, flux that induces the Aharonov-Bohm
effectsAB fluxd, has been considered. In this study, however,
we also consider the magnetic flux which contacts the elec-
trons in the graphite plane directlysdirect fluxd. The ratio of
AB flux to direct flux is given byR1

2 to sR1+Dd2−R1
2, sug-

gesting that the direct flux cannot be neglected whenR1 is
comparable toD. As graphite is diamagnetic under direct
flux, it is necessary to determine whether direct flux reduces
GOP. These areas of uncertainty are clarified in this study by
investigating the influence of disclination and direct flux on
the magnetic moment of the polygonal CNT torus.

II. TIGHT BINDING MODEL

A polygonal CNT torus composed entirely of semicon-
ducting CNTs has a finite HOMO-LUMO gapshighest
occupied-lowest unoccupied molecular orbitald. It is shown
later that GOP does not appear under this condition. Thus,
the discussion can be limited hereto metallic CNTs. The first
example considered is the polygonal CNT torus withD6h
symmetry formed from armchair CNTs, which are metallic
irrespective of radius. The tight bindingsTBd model with
exclusivelyp orbitals is employed, and the positions of at-
oms are given by the assumed polygonal shape of the torus.

Figure 2 shows a part of the projection map for a polygo-
nal CNT torus. The torus is composed of six unit cells, one
of which is represented by the rectangleABB8A8. The prime
indicates that pointsX8 and X become identical when the

three-dimensional shape is formed. VectorLW denotes the
circumference of the original armchair CNT. The length and
direction of the CNT axis per unit cell along the outer and

inner fringes is represented bySW and SW2, respectively. The

i-membered ring disclination is formed atPi and Qi
si =5,7d by removal of the shaded area and attaching the
lines P5P7, P7D8, DQ7, andQ7Q5 to the linesP5P87, P87C8,
CQ87, and Q87Q5, respectively. The disclinations approxi-
mately maintain thesp2 bonds of carbon atomssthree nearest
neighbors for each atomd. Despite the unchanged local struc-
ture, the phase of the wave function is shifted when an elec-
tron circulates around the disclination due to an excess or
deficiency of thep /3 angle on the projection map. This to-
pological effect cannot be represented by the effective poten-
tial energy or by modification of the bond strength.20

As a result of theD6h symmetry,RW 55 andRW 77 are parallel

to LW , andSW2 andSW are perpendicular toLW . The definition of

RW i,j is illustrated in Fig. 2. The four integer parameters,nL

= uLW u / sÎ3ad, n75= uRW 75u /a, nS= uSW u /a, andn77= uRW 77u / sÎ3ad de-
fine the CNT torus with a lattice constant ofa.0.25 nm for
graphite. For example, the parameters in Fig. 2 arenL=6,
nS=5, n75=2, andn77=2. To maintain almost constant bond
lengths, the cross-section acrossP5P7Q7Q5P5 must be rect-
angular, and such the four integers must satisfy the condition

n77=snL−n75d /2. A uniform magnetic fieldBW parallel to the
sixfold rotational axis of the torus is employed. In Fig. 2,B'

denotes the component ofBW perpendicular to the projection
map.

The unit cells are numbered along the CNT axis as shown
in Fig. 1 sn1=1,2, . . . ,6d. Figure 2 shows the labels of atoms
in each unit cell,sn2,n3d, wheren2 specifies the zigzag rows
along the tube axis. On the inner hole side,n2=1 and in-
creasessor n2=−1 and decreasesd monotonically as the zig-
zag row ascendssdescendsd the INNER hole wall and ap-
proaches the outer fringe. In then2 zigzag row, atoms are
numbered along the CNT axis asn3=1,2,¯ ,qsn2d. For ex-
ample,qs1d=qs2d=6, qs3d=7 in Fig. 2. Between neighbor-
ing unit cells, atomssn1,n2,1d andsn1,n2,qsn2dd connect to
atomssn1−1,n2,qsn2dd and sn1+1,n2,1d, respectively. Us-

FIG. 2. Projection map for the CNT torus. The rectangleA to B8
is the unit cell. Magnetic field is applied perpendicular to the page
sB'd. Atoms sn2,n3d in the unit cell are labeled.
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ing this labeling scheme, the matrix elements of the Hamil-
tonian between atomsn andm are represented by

HsBdn,m = − tn,m expsibsn,mdBd. s1d

Each atom n has a constant hopping integral −tn,m
=−ts,−3 eVd with the three nearest neighborsm, and tn,m

=0 with all other atomsm. The effect of the magnetic fields
is included in the form of Peierls phasesbsn,mdB,21 where

bsn,md = gDsn,mdC1 + gABsn,mdC2,

C1 = Î3pa2/s2f0d,

C2 = Î3puSW2u2/s2f0d. s2d

gABsn,md = dn2,m2
sdn1,m1+1dn3,1dm3,qsn2d − dn1,m1−1dm3,1dn3,qsn2dd,

gDsn,md = dn2,m2
hfsn2dsdqsn2dn1+n3,qsn2dm1+m3+1

− dqsn2dn1+n3,qsn2dm1+m3−1d + gsn2dgABsn,mdj.

Here, f0=h/e is the magnetic flux quantum, andd is the
Kronecker delta. The parametersf and g are constants or
linear functions ofn2, as given by

fsn2d = Hn75, ¯ un2u ù 1 + n75 + n77,

un2u − n77 − 0.5, ¯n77 + 1 ø un2u ø n75 + n77,
J s3d

gsn2d =5− 2 o
j=1

n77+n75

fs jd, ¯ un2u ù 1 + n75 + n77,

s1/4d − fsn2d − 2 o
j=1

un2u−1

fs jd, ¯n77 + 1 ø un2u ø n75 + n77,6 s4d

while gsn2d= fsn2d=0 when un2uøn77. In Eq. s2d, gDsi ; jdC1

and gABsi ; jdC2 derive from the direct flux andAB flux, re-
spectively. Equations2d itself satisfies the condition that
f0Boi=1

j−1bsnsi+1d ;nsidd / s2pd must be equal to the magnetic
flux bounded by the closed loopns1d→ns2d→¯ns jd=ns1d.

III. RESULTS

The origin of GOP in a circular CNT torus can be ex-
plained using the dispersion relationElsk,Bd for a straight
CNT under a uniform magnetic fieldB applied perpendicular
to the tube axis. Ajiki and Ando showed that the direct flux
flattens the dispersion lines near the Fermi level.21 This is
shown schematically by the dashed curvesElsk,Bd compared
to the linear dispersionElsk,0d in Fig. 3. Neglecting lattice
distortion, the energy level of the circular CNT torus«l,j can
be expressed by

el,j = ElskjsBd,Bd, s5d

kjsBd = h j + sBSAB/f0dj/R, s6d

whereSAB is the area of the inner hole andj is an integer.
Equations6d represents theAB effect, while the difference
betweenElskjsBd ,Bd andElskjsBd ,0d originates from the di-
rect flux. The total energyUsBd is then obtained as

UsBd = 2o
l,j

fFDsel,jdel,j , s7d

where fFD is the Fermi-Dirac distribution function and the
factor of 2 represents spin degeneracy. The Zeeman effect is

neglected here but will be discussed later. Considering the
case of absolute zero temperature,ol,j fFD can be replaced by
the summationol,j=occ limited to the occupied states.

The magnetic moment per torusM is calculated by
M =−dU/dB. The effect of direct flux can be isolated by
extracting the magnetic moment induced solely byAB flux,
as follows:

FIG. 3. Dispersion relation withsdashedd and without ssolidd
direct flux. In the absence of a magnetic fieldsB=0d, the HOL of
the torus is located at the crossing of the solid linessgray circled.
The HOL is degenerate and partially occupied. Under finiteB, the
degeneracy is lifted and only the lower levelsclosed circled is oc-
cupied, while the higher level becomes vacantsopen circled. The
change of level induced by theAB effect is indicated by an arrow.

POSITIVE MAGNETIC SUSCEPTIBILITY IN… PHYSICAL REVIEW B 71, 045418s2005d

045418-3



MAB = − SAB/sRf0d o
l,j=occ

usdElsk,0d/dkduk=kjs0d. s8d

Then, sinceElsk,0d is an even function ofk, the energy
levels atk=kjs0d and k=k−js0d=−kjs0d are occupied at the
same time. Their contribution toMAB usually cancels out
becausedElsk,0d /dk is an odd function ofk. However, when
the highest occupied levelsHOLd corresponds to theK and
K8 corner points, this cancellation does not occur and GOP is
induced. This is illustrated in Fig. 3, where the energy levels
and the change caused by theAB effect are indicated by
circles and arrows, respectively. Without direct flux, the lev-
els move along the linear dispersion line and only the level
with negativedE/dk is occupiedsclosed circled, while the
level with positive dE/dk becomes vacantsopen circled.
Only the former then contributes to the magnetic moment,
giving rise to GOP. The exclusive occupation of the state
with negativedE/dk corresponds to the generation of persis-
tent current. The essential finding here is that the corner
point is only partially occupiedsgray circled. If the corner
point were to be fully occupied, the level indicated by the
open circle would also be occupied and the energy decrease
of the closed-circle level would be canceled. Under direct
flux, however, the closed-circle level is located on the dashed
curve and is shifted upward compared to the case without
direct flux, that is, direct flux suppresses GOP.

The magnetic moment of the polygonal torus can be cal-
culated by an almost identical approach as for the circular
torus. In this case, the phasea is used instead of the crystal
wave numberk. Rotation by p /3 with respect to the
sixfold symmetry axis is equivalent to multiplying the wave
function by the phase factor expsiad, as shown in Fig. 1.
Although kpR/3 corresponds toa, it should be noted that
R cannot be defined uniquely for the polygonal torus. The
energy levelsElsad are the eigenvalues of the matrixH1sBd
+expsiadH2sBd+exps−iadH2

†sBd, whereH1 and H2 refer to
the bonds in the unit cell and those connecting the neighbor-
ing unit cells, respectively. These values can be obtained
from the Hamiltonian matrix H as H1sn2,n3;m2,m3d
;Hsn1,n2,n3;n1,m2,m3d, and H2sn2,n3;m2,m3d
;Hsn1,n2,n3;n1+1,m2,m3d, with the atom labeling

sn1,n2,n3d as defined above. As the wave function is invari-
ant under 2p rotation, a takes discrete valuesa j =sp /3ds j
+sBSAB/f0dd s j =integerd including the AB flux, BSAB

=B3Î3uSW2u2/2. This results in discrete levels ofElsa j ,Bd for
the CNT torus. Alternatively,Elsa ,Bd with continuousa rep-
resents the continuous energy spectra of the periodic CNT
junction formed by connecting unit cells of the CNT torus.

The band structureElsa ,0d in the present analysis is clas-
sified as listed in Table I using three parameters,nS/3, n75/3,
andsnS−n75d /3, after Ref. 14. As shown in Fig. 2, the CNT
torus contains two kinds of CNTs, the original armchair CNT

with chiral vectorLW , and another characterized by a different

chiral vectorLW8. Whenn75/3 is an integer, the latter becomes
also metallic. It has been proved analytically that types 1 and
2 are semiconducting and metallic, respectively.15 Although
only numerical results have been obtained for other types, it
can be concluded that the CNTs tend to become semicon-
ducting as the axial length of the semiconducting CNT seg-

ment uLW83RW 77u / uLW8u increases.22

The dispersion curves for a type-2 periodic CNT junction
smetallicd and a type-3 periodic CNT junctionssemimetallicd
are shown in Figs. 4 and 5. The indexl of Elsa ,Bd is defined
as E1sa ,BdøE2sa ,Bdø ¯ , øE2Nsa ,Bd, where 2N is the
number of atoms in the unit cell, that is,N;2snSnL

−n57n77d−n57
2 . Thus, the HOMO band is denoted byENsa ,Bd

andEN+1sa ,Bd corresponds to the LUMO band.
The magnetic moment exclusively underAB flux MAB is

analogous to Eq.s8d as follows:

MAB = − C2 o
l,j=occ

usdElsa,0d/dadua=a j
, s9d

whereC2 is as defined in Eq.s2d. The HOMO and LUMO
bands of type 2 are similar to those of metallic CNTs, but the
band crossing point is shifted slightly froma= ±2p /3 as a
result of phase shift at the disclinations.15 Therefore, the
HOL is fully occupied and GOP does not occur. Under finite
B, however,a=2p /3+C2B arises at the crossing point such
that MAB exhibits a discrete change from negative to posi-
tive, as shown in Fig. 6. In contrast, the HOL can be partially
occupied in type-3 and 4-1 CNT tori under the condition that

TABLE I. The band structure of periodic CNT junctions,ENsa ,0d andEN+1sa ,0d.

n75/3=integer?

Yes No

nS/3= integer? nS/3= integer?

Yes No Yes No

snS−n75d /3= integer?

Yes No

Type 1 Type 2 Type 3 Type 4-1 Type 4-2

Semiconductor Metal Semimetal Semimetal Semiconductor

Semiconductor Semiconductor

Metal Metal
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the corresponding periodic CNT junction is semimetallic.
Figure 5 shows an example of this scenario, whereEN at a
=0 is vacant andEN+1 at a= ±p /3 is partially occupied. The
AB flux lifts the degeneracy of the HOLs, leaving only the
lowered level ata=p /3 occupied, thus allowing GOP.

How, then, does direct flux affect GOP? Surprisingly, di-
rect flux enhances GOP. The dashed lines in Fig. 5 represent
the dispersion relationElsa ,Bd under a finite magnetic field
of B=0.01f0/a2. In contrast to Fig. 3, the dispersion lines
are shifted along thea axis rather than along theE axis. This
horizontal shift, rather than canceling the effect of theAB
shift, in fact enhances it. Here it should be noted that there is
competition between GOP and spin paramagnetism. When
Zeeman splitting ofgmBB smB is the Bohr magneton andg
.2d is larger than the GOP splitting ofuMBu= uB dE/dBu,
both HOLs with positivedE/da and negativedE/da be-
come occupied by the same spin. This gives rise to a spin
magnetic moment of 2gmB per torus instead of GOP. As
mB. ta2/f0st.3eV,a.0.25nmd, GOP is relevant only
whenM is larger than 4t / sf0/a2d. To search for the polygo-
nal CNT torus exhibiting GOP in this context, the magnetic
momentMs1.5DBd=−sUs2DBd−UsDBdd /DB with DB=0.5

310−5f0/a2 si.e., B=1.5DB.0.24 Teslad was calculated for
207 tori in the parameter ranges of 3ønSø12,1øn75
ø6,3ønLø12 and 1øn77=snL−n75d /2ø6. Among these
tori, only 15 hadM larger than 4ta2/f0, and all belonged to
type 3 or type 4-1 and exhibited GOP. Two of the CNT tori
displayedM values of larger than 10ta2/f0. In contrast, the
tori without GOP hadM values much lower than 4ta2/f0.
Since MB approximately corresponds to the splitting be-
tween the degenerate HOLs induced byB, the temperature
must be lower thanMB for GOP to occur. WhenM
=10t / sF0/a2d andB=1.5DB, MB,2K, which is experimen-
tally achievable.

The distribution ofM and its enhancement by direct flux
are shown in Fig. 7, whereMAB/M is plotted as a function of
M for the tori exhibiting GOP. For all tori,MAB,M, that is,
direct flux enhances GOP. The effect of direct flux can be
almost entirely included in theAB effect by assuming a cross

FIG. 4. Band structure of type-2 periodic CNT junction with
parameterssnS,nL ,n75,n55d=s5,7,3,2d. Circles, lines, and arrows
have the same meanings as in Fig. 3. Dashed lines denote the con-
dition B=0.01f0/a2. sInsetd Detail of the band structure near the
HOL sENs−2p /3 ,0dd.

FIG. 5. Band structure of type-3 periodic CNT junction with
parameterssnS,nL ,n75,n55d=s3,7,1,3d. Circles, lines, and arrows
have the same meanings as in Fig. 3. Dashed lines denote the con-
dition B=0.01f0/a2.

FIG. 6. Magnetic moments of the polygonal tori corresponding
to Fig. 4 si.e., snS,nL ,n75,n55d=s5,7,3,2dd as a function of mag-
netic fieldB. M andMAB denote the magnetic moments induced by
full flux and AB flux only. The full-flux magnetic moment is calcu-
lated from the total energyUsBd by Mss j −0.5dDBd=−sUs jDBd
−Uss j −1dDBdd /DB with DB=0.5310−4sf0/a2d and j
=2,3, . . . ,100. For MAB, the total energy is calculated from the
Hamiltonian withg D in Eq. s2d is replaced with zero.

FIG. 7. Ratios MAB/M and c=fsM −MABd /MABgfuSW2u2/ suSW u2

− uSW2u2dg as functions ofM for 15 CNT tori with M .4ta2/f0,
whereM and MAB denote the magnetic moments due to full flux
and AB flux only. The applied magnetic fieldB is 0.75

310−5f0/a2. The factoruSW u2/ uSW2u2 denotes the ratio of full flux to
AB flux.
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section of cSD+s3Î3uSW2u2/2d rather than 3Î3uSW2u2/2, using

the cross section of the graphite planeSD=3Î3suSW u2

− uSW2u2d /2. Relation betweenc and MAB/M are represented
by

c = SM − MAB

MAB
DS uSW2u2

uSW u2 − uSW2u2
D . s10d

This is equivalent to replacingC1 and C2 in Eq. s2d with

C1=0 and C2=Î3puSW2u2/ s2f0d+pcSD / s3f0d. In other
words, the HOMO and LUMO dispersion curve can be ap-
proximated by

Elsa,Bd . Elsa + scp/3dsBSD/f0d,0d, s11d

wherecSD represents the effective cross section of the graph-
ite plane contributing to theAB effect. Since Fig. 7 shows
that values ofc are comparable to unity, we can say thatM is
close to that calculated based on the Aharonov-Bohm alone
for a cross section that includes the region of direct flux. The
shift of a in Eq. s11d can in fact be seen in Figs. 4 and 5,
where the dashed lines represent the dispersion relation
Elsa ,B=0.01f0/a2d. Equation s11d also indicates that the
magnetic momentM undergoes discrete changes atB lower
thanMAB Fig. 6.

IV. SUMMARY AND DISCUSSION

In some of the polygonal CNT tori examined in this study,
persistent current leads to a large positive magnetic suscep-

tibility that varies in inverse proportion to temperature. This
phenomenon is referred to as giant orbital paramagnetism
sGOPd in this paper. It was shown that the magnetic moment
per torus can be larger than the Bohr magneton under achiev-
able conditions ofB,0.24 Tesla andT,2K. For GOP to
occur, the corresponding periodic CNT junction must be
semimetallicsi.e., type 3 or type 4-1d. The magnetic flux was
separated intoAB flux in the inner hole and direct flux inter-
secting the graphite plane, and it was found that despite the
diamagnetism of graphite, direct flux in fact enhances GOP
and its effect can be effectively included in theAB effect by
assuming a cross section that encompasses the area bounded
by the outer fringe rather than the inner hole area alone, as
shown by Eq.s11d and in Fig. 7.

GOP in circular CNT tori is considered to be caused by
the metallic band structure of the straight CNT, whereas
GOP in polygonal CNT tori originates from the semimetallic
band structures of the periodic CNT junction. This difference
originates from the differing bond networks, that is, removal
of the shaded areas in the projection map and connecting the
edgessFig. 2d. In comparison, elastic deformation does not
affect the bonding ofn andm and as such is irrelevant with
respect to GOP in polygonal CNT tori. The discovery of this
new kind of GOP highlights the potential of polygonal CNT
tori as a nanostructure capable of large persistent current.
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