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We present a comparative analysis of the velocity dependence of atomic-scale friction for the Tomlinson
model, at zero and finite temperatures, in one and two dimensions, and for different values of the damping.
Combining analytical arguments with numerical simulations, we show that an appreciable velocity dependence
of the kinetic friction forceFfric, for small scanning velocitiesvs sfrom 1 nm/s tomm/sd, is inherent in the
Tomlinson model. In the absence of thermal fluctuations in the stick-slip regime, it has the form of a power-law
Ffric −F0~vs

b with b=2/3, irrespective of dimensionality and value of the damping. Since thermal fluctuations
enhance the velocity dependence of friction, we provide guidelines to establish when thermal effects are
important and to which extent the surface corrugation affects the velocity dependence.
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I. INTRODUCTION

Although friction is a common phenomenon in everyday
experience, the fundamental mechanisms governing friction
at the atomic level are still under discussion. For macro-
scopic contacts the friction force is found to be independent
of the sliding velocity, but no consensus has been reached on
the velocity dependence at the nanometer scale. A very pow-
erful technique for measuring atomic-scale friction is pro-
vided by atomic force microscopysAFMd.1,2 Since scanning
velocities accessible by AFM are very small, typically from
nm/s to fewmm/s, it is relevant to study friction dynamics in
this regime. Velocity dependence of friction is relevant both
for applications and from a fundamental point of view, and
has been discussed in several AFMsRefs. 3–11d and quartz
crystal microbalance12 experimental studies as well as theo-
retical works.9–11,13–19Depending on the investigated systems
and on the experimental conditions, different and somewhat
contradictory results for the velocity dependence have been
found. In the original experiments of Mateet al.3 the authors
state that the frictional forces of a tungsten tip on graphite
show little dependence on velocity for scanning velocities up
to 400 nm/s. A similar behavior up to velocities of several
mm/s has also been reported in the work of Zwörneret al.,10

where friction on different carbon structures has been stud-
ied. The authors of Ref. 10 claim that a one-dimensional
s1Dd Tomlinson model atT=0 can reproduce a velocity in-
dependent friction force for scanning velocities up to
,1 mm/s, while giving a linear increase of friction for
higher velocities. At variance with the 1D case, in the 2D
version of the Tomlinson model atT=0, which has been
recently analyzed by Prioliet al.,11 a smooth increase of
friction for velocities lower than,300 nm/s has been found.
In view of the results of Zwörneret al. for the 1D case, the
authors argue that this effect should be peculiar of the 2D
model, due to the nonlinear coupling between the two de-
grees of freedom in the system. The role of damping has not
been addressed in Refs. 10 and 11. In the underdamped re-

gime, the velocity dependence can be quite complex, espe-
cially at intermediate-large velocities, where the system dis-
plays bifurcations, chaotic motion, resonances, and
hysteresis.14 In the overdamped regime, Robbins and
Müser20 suggest velocity independent friction.

An increase of the friction force has been observed for
small velocities also in Refs. 6, 7, and 9 and it has been
attributed to thermally activated processes.6,7,9,19 By means
of a simple thermal activation probabilistic analysis in 1D,
Gneccoet al.9 have obtained a logarithmic increase of fric-
tion with scanning velocity which fits their experimental data
quite well. A similar dependence had been obtained using a
simple stress-modified thermally activated Eyring model.6 In
a recent work, Sanget al.19 have corrected this logarithmic
relation at not too small velocities: they propose auln vsu2/3

dependence of the friction force, wherevs is the scanning
velocity. However, recent experiments showing an increase
of friction with velocity11 do not display the logarithmic be-
havior related to thermal activation, but rather suggest an
athermal power-lawvs

b behavior, as found in related systems,
such as charge density waves21 and in boundary
lubrication.22

In view of the contradictory results presented above, here
we reexamine this issue for Tomlinson-like models in 1D and
2D, for different values of the damping, and both with and
without thermal effects. In particular, we focus on the impor-
tance of the athermal contribution to the velocity dependence
of friction, which is intrinsically present in the Tomlinson
model. We show by means of a combined analytical and
numerical analysis that the exponentb is independent of the
spatial dimension and of the damping. Then we discuss the
role of thermal fluctuations, establishing guiding rules to un-
derstand where thermal effects become dominant.

In Sec. II we illustrate the model studied and the numeri-
cal techniques. In Sec. III we discuss the results for the ather-
mal velocity dependence of friction and in Sec. IV we in-
clude thermal fluctuations. Finally, we present some
concluding remarks in Sec. V.
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II. MODEL

The Tomlinson model23 has been successfully used to de-
scribe the motion of a tip and to model the scan process in
AFM.24–27 In particular, this model can reproduce the stick-
slip motion observed in experiments and can be used to
study frictional dynamics. Here we consider the 1D Tomlin-
son model and its extension in 2D atT=0 and TÞ0. A
cantilever tip of massm interacts with the surface via a pe-
riodic potential Vts and is attached by a spring of elastic
constantkx to a support moving at constant velocityvs along
the x direction. For the 1D case we chooseVts of the form

Vtssxd = V0f1 − coss2px/axdg, s1d

whereax is the lattice constant of the substrate. The elastic
interaction between the tip and the support is

Velsxd = 1
2kxsx − xsd2, s2d

where the support positionxs is

xs = vst. s3d

It is assumed that the tip is a pointlike object, representing
the average over many atoms of the real tip-surface contact.
Energy dissipation in this model is introduced by adding a
damping term proportional to the tip velocity in the equation
of motion. Thermal fluctuations are taken into account by a
stochastic force, in the framework of the Langevin approach.
Thus, the equation of motion in 1D becomes

mẍ+ mhẋ + s2pV0/axdsins2px/axd + kxsx − vstd = fstd,

s4d

with the random forcefstd satisfying the conditionskfstdl
=0 andkfstdfs0dl=2mhkBTdstd, wherek¯l indicates an en-
semble average,h is the damping parameter andkB is Bolt-
zmann’s constant.28 The static friction force in this model is
simply given by the force needed to overcome the potential
barrier:

Fstatic=
2pV0

ax
. s5d

Now we discuss the behavior of the 1D model atT=0, i.e.,
when fstd=0 in Eq. s4d. In this situation the solution of Eq.
s4d for T=0 is periodic, with periodnax/vs:

14

xst + nax/vsd = xstd + nax for integern. s6d

Usually n=1 for not too smallh.
Elastic instabilities leading to nonadiabatic jumps be-

tween metastable states occur for soft cantilever spring con-
stants, in particular when24,27

kx , U −
]2Vts

]x2 U
x=xm

, i.e.,Ṽ0 ;
4p2V0

kxax
2 . 1, s7d

wherexm=nax denotes the position of the minima ofVts. In
this case stick-slip motion, often observed in AFM experi-
ments, is expected and the kinetic friction force is finite in

the limit vs→0. Conversely, forṼ0,1, uniform sliding oc-
curs and energy dissipation comes only from the viscous

termmhvs, which vanishes forvs→0. Notice that the kinetic
friction force for vs→0 is not equal to the static friction
force Fstatic, since it results from dynamical effects and not
by the interaction potentialVts. The kinetic friction forceFfric
is defined as the mean value of the lateral forceFx=kxsvst
−xd over time.10,14,27By assuming a periodic motion of the
type of Eq.s6d, Ffric can be written as

Ffric = kFxl ;
vs

nax
E

0

nax/vs

Fxdt. s8d

It is easy to show that the definition Eq.s8d is equivalent to
calculating the friction force from the energy dissipationDW
in one period

DW= mhE
0

nax/vs

ẋ2dt. s9d

The friction force is given by

Ffric =
DW

nax
. s10d

Here we extend the model to deal with the motion at zero
and finite temperature on a 2D lattice, as done in Refs. 11
and 27 forT=0. The tip-surface interaction is

Vtssx,yd = V0 coss2px/axdcoss2py/ayd, s11d

where ax and ay are the lattice parameters in thex and y
directions, respectively. Whenay=Î3ax the substrate has the
symmetry of a hexagonal closed-packed lattice. The elastic
interaction is

Velsx,yd = 1
2kxsx − vstd2 + 1

2kysy − ysd2, s12d

whereky denotes the spring constant in they direction and
ys=constant represents the scanning line of the support. The
equations of motion can be written in 2D as

mẍ+ mhẋ − s2pV0/axdsins2px/axdcoss2py/ayd + kxsx − vstd

= fxstd,

mÿ+ mhẏ − s2pV0/aydcoss2px/axdsins2py/ayd + kysy − ysd

= fystd, s13d

where fx and fy are independent stochastic forces satisfying
the same properties asf in Eq. s4d. In this case we also have
a component of the lateral force alongy, i.e., Fy=kysys−yd.
The definition of the friction force in Eq.s8d can be gener-
alized in 2D as

Ffric = ÎkFxl2 + kFyl2. s14d

We have solved the nonlinear equationss4d ands13d using a
Runge-Kutta 4 algorithm with initial conditions

xs0d = 0, ẋs0d = 0, ys0d = 0, ẏs0d = 0 s15d

and for different values of the scanning velocityvs and of the
scanning lineys.
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III. ATHERMAL VELOCITY DEPENDENCE OF FRICTION

At T=0 the dynamics can be described by the equations
of motion s4d and s13d without the stochastic forces. We
choose values of the parameters which are typical of AFM
experiments:m=10−10 kg, kx=10 N/m,7,27,29 ax=0.316 nm
fin 2D we setay=0.548 nm, corresponding to the hexagonal-
packed structure of MoS2s001d sRef. 27d andkx=kyg, giving
a resonance frequencyÎkx/m of the order of 105 Hz, which
is characteristic of AFM experiments. In principle, the cor-
rugationV0 of the tip-surface potential depends on the load-
ing force, which is not considered in 1D and 2D models:
typically V0 ranges from 0.2 to 2 eV, as found in different
studies.30,31 Thus we takeV0=1 eV. These values of the pa-

rameters giveṼ0=7, yielding stick-slip motionsṼ0.1d and
allowing us to compare directly our results with those of
Zwörneret al. in 1D.10 The time step used in the calculations
is ,0.1 ns, a value which is needed to account for the fast
oscillations in the underdamped regime. The choice ofh is
quite delicate and it may affect the dynamical behavior of the
system. Usually a critical dampingh=2Îkx/m sRef. 27d is
assumed. Here we study the problem for different values of
h, in the underdamped, overdamped and critically damped
regime. For each fixed scanning velocityvs, we compute the
friction force Ffric, averaging over many stick-slip periods
susually 10 atT=0 and 100 atTÞ0d, according to Eqs.s8d
and s14d. The behavior ofFfric as a function ofvs in 1D is
shown for critical damping in Fig. 1sad on a linear scale and
in Fig. 1sbd on the most commonly used log-log scale.10

Notice that the log-log scale hides the velocity dependence
for small velocitiessvs,1.5 mm/sd, where the friction force
varies by more than 10%. The data in Fig. 1sad can be fitted
quite accurately by a power law of the form

Ffric = F0 + cvs
b s16d

with b.2/3 andc a constant depending on the parameters
of the model and on the space dimension.

To our knowledge the athermal velocity dependence of
atomistic dry friction has been scarcely investigated up to
now: it has been studied in the limit of large velocities14 and
in the context of boundary lubrication.22 Here we discuss the
velocity dependence of dry friction for small scanning ve-
locities, in the stick-slip regime, which is described by Eq.
s16d. In this case, the value of the exponentb can be calcu-
lated analytically for the Tomlinson model, yieldingb=2/3,
as we will show below. The same kind of behavior has been
found in the field of elastic manifolds, for the dynamics of
charge density waves driven by an electric field21 and for the
motion of a contact line on a heterogeneous surface.32,33This
law characterizes the athermal motion of strongly pinned

systemssṼ0.1 in our terminologyd, moving at constant ve-
locity.

Considering for simplicity the 1D case and following Ref.
21, we look for a solutionxstd of Eq. s4d in the athermal case
ffstd=0g of the form

xstd = xAstd + ustd, s17d

wherexA is the adiabatic solution of Eq.s4d, i.e., the solution
for vs→0, and u is a perturbation. The adiabatic solution
satisfies Eq.s4d neglecting the firstsinertiald and second
sdampingd term

kxsxA − vstd = −
2pV0

ax
sinS2pxA

ax
D . s18d

From Eq.s8d it follows that

Ffric = kkxsvst − xA − udl = kxksvst − xAdl − kxkul = F0 − kxkul,

s19d

having definedF0;Ffricsvs→0d. Thus, the final goal is to
work out the dependence of

kul ;
vs

nax
E

0

nax/vs

ustddt s20d

on vs. First we notice that forṼ0@1 the inertial termmẍcan
be neglected with respect to the damping termmhẋ near a
slip event. This can be straightforwardly seen in the adiabatic
limit. In fact, differentiating Eq.s18d with respect to time we
obtain

kxẋA − kxvs = − S2p

ax
D2

V0 cosS2pxA

ax
DẋA, s21d

giving for ẋA and ẍA

zA ; ẋA =
kxvs

kx + S2p

ax
D2

V0 cosS2pxA

ax
D s22d

and

FIG. 1. Frictional forceFfric as a function of sliding velocityvs

in the 1D Tomlinson model, plotted on a linearsad and on a log-log
scale sbd for V0=1 eV, m=10−10 kg, Kx=10 N/m, ax=0.316 nm

sṼ0=7d, and h=2ÎKx/m.6.33105 s−1. The increase ofFfric for
small velocities is hidden using a log-log scale. The dotted line in
sad is a power-law fit to the data of the formFfric −F0~vs

2/3 for vs

,2 mm/s.
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ẍA = żA =
dzA

dxA
zA =

skxvsd2S2p

ax
D3

V0 sinS2pxA

ax
D

Fkx + S2p

ax
D2

V0 cosS2pxA

ax
DG3 , s23d

respectively. Then the condition

uẍAu ! huẋAu s24d

becomes

kxvsV0S2p

ax
D3UsinS2pxA

ax
DU

Fkx + S2p

ax
D2

V0 cosS2pxA

ax
DG2 ! h. s25d

Since energy dissipation takes place mostly near the fast slip
events, we focus on the behavior of Eq.s25d near the slip
point x0, determined by

dVtot

dx
= kxsx − xsd +

2p

ax
V0 sinS2px

ax
D = 0, s26ad

d2Vtot

dx2 = kx + S2p

ax
D2

V0 cosS2px

ax
D = 0, s26bd

where Vtot=Vts+Vel is the total potential energy. From Eq.
s26bd the positionx0 of the tip right before a slip event is

x0 =
ax

2p
arccossṼ0d. s27d

Equations26ad gives the positionxs
s0d of the support at the

slip point:

xs
s0d =

ax

2pFÎṼ0
2 − 1 + arccosS−

1

Ṽ0
DG . s28d

Near the slip point we can set

xAstd = x0 + jAstd s29d

with

ujAu !
ax

2p
. s30d

Using Eqs.s7d and s26bd and the relations

sinS2pxA

ax
D . sinS2px0

ax
D + S2p

ax
DcosS2px0

ax
DjA,

cosS2pxA

ax
D . cosS2px0

ax
D − S2p

ax
DsinS2px0

ax
DjA,

Eq. s25d becomes

* vs

2p

ax

ÎṼ0
2 − 1jA

2

−
vs

sṼ0
2 − 1djA* ! h. s31d

Since Eq.s30d holds we can neglect the second term with
respect to the first, obtaining

ujAu @ S vsax

2phÎṼ0
2 − 1

D1/2

. s32d

Equation s32d is easily fulfilled for largeṼ0 sor large hd
and/or smallvs. For example, with our choice of parameters,

yielding Ṽ0.7, andh.63105 s−1, condition s32d is valid
for velocities up tovs,mm/s. Having now demonstrated
that we can neglect the inertial term, we can expand the
equation of motionswithout the termmẍd nearx0:

mhj̇ = kxvsdt +
1

2
S2p

ax
D3

V0 sinS2px0

ax
Dj2, s33d

where

j = x − x0 s34d

and

dt = t − t0, s35d

t0 being the time at which the slip takes place. Following
Ref. 21, with the change of variables

j = C2vs
1/3x, s36ad

dt = Cvs
−1/3t, s36bd

where C;sax/2pdfsV0/2mhdsins2px0/axdg−1/3, Eq. s33d
takes the form of a Riccati equation:

dx

dt
= x2 +

kx

mh
t. s37d

It can be shown21 that the major contribution to the integral
s20d comes from a timedt=dts; t1− t0 such thatdts~vs

−1/3.
When t, t1 the solutionxstd of the Riccati equation has a
divergence of the formxstd,1/st1−td. Note thatdts is the
slip time, i.e., the time it takes for the tip to go from the
metastable positionx=x0 to the next metastable positionx
=x1. For the adiabatic solution the slip occurs instanta-
neously, whiledts is finite for finitevs and this is responsible
for the velocity dependent correction of the friction force. In
fact, whent, t1 j,x1−x0 is of order 1se.g., independent of
vsd, andu=x−xA=j−jA is of order 1 as well. Thus

kul .
vs

nax
E

t0

t1

ustddt ~ vs
2/3, s38d

which proves that the exponentb appearing in Eq.s16d is
b=2/3.This shows that the dependence of friction on veloc-
ity is a dynamical effect which is due to the finitesalthough
smalld scanning velocity, as it can be seen in Fig. 2, where
the tip positionx as a function of the support positionxs is
plotted. The important feature is that the slip events are not
instantaneous, as highlighted in the inset of Fig. 2, showing a
finite slip time which depends onvs. Only if the slip events
were really instantaneous a velocity independent friction
force would naturally follow from the definitions8d, giving
Ffric =F0. Therefore, the source of athermal velocity depen-
dence of friction is the non adiabaticity of the motion of the
tip for finite vs. Furthermore the slip position tends to move
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rightwards for increasingvs. This means that the integral of
Fx=kxsxs−xd over one period

Ffric =
1

nax
E

0

nax

Fxdxs =
kx

nax

snaxd2

2
−

kx

nax
E

0

nax

xdxs s39d

increases with increasingvs, since the second term on the
right side of Eq.s39d decreases. Figure 3 shows the slip time
dts as a function ofvs, as measured from the numerical so-
lution of the equation of motion. The behavior ofdts is in
very good agreement with the scaling relation

dts ~ vs
−1/3, s40d

which is the law expected from the discussion following Eq.
s37d.

A. Effect of damping

The effect of the damping parameter on the velocity de-
pendence of friction has not been investigated so far in the
literature, because the typical choice is to assume critical
damping in order to damp out the fast oscillations of the tip
after the slip events and to avoid jumps of the tip of more
than one lattice parameter. Nevertheless, it would be desir-
able to know the dynamical behavior of the tip for a range of
values of h, since experimental situations do not always

meet the condition of critical damping. The behavior ofFfric
vs vs, for values ofh ranging from strongly underdamped to
strongly overdamped, is reported in Fig. 4. All curves start
from the same valueF0, except for very lowh ssee discus-
sion belowd, and can be fitted by Eq.s16d with the same
value of b=2/3, suggesting that the functional form of the
velocity dependence of friction is robust with respect to the
strength of the damping. The velocity range of validity of Eq.
s16d decreases for largeh, because the viscous regime
sFfric ,mhvsd sets in for smaller values ofvs sfor example,
the data in Fig. 4 are fitted up tovs=1.2 mm/s for h
=2Îkx/m and up tovs=0.3 mm/s for h=100Îkx/md. As ex-
pected, at a fixed value ofvs.0, Ffric increases withh, since
energy dissipation increases by increasing the dampingfsee
also Eq.s9dg. Moreover the value ofc in Eq. s16d is larger for
largerh, reflecting the fact that the variation ofFfric is more
pronounced for the highest values ofh.

Note that for high damping we find velocity dependent
friction contrary to the qualitative expectation of Ref. 20.
The authors of Ref. 20 argue that in the overdamped regime
the peak velocity of the tip, corresponding to a slip event, is
a constant equal to 2pV0/ smhaxd. This would imply that the
amount of energy dissipated, which is proportional to the tip
velocity according to Eq.s9d, should not depend onvs. On
the contrary, we find appreciable dependence also in this
case. As it can be seen from Fig. 5, the peak velocity of the
tip is not a constant, but increases appreciably by increasing
vs.

The lower curve in Fig. 4, corresponding to the highly
underdamped valueh=0.4, is characterized by a much lower
friction force, because the tip in this case can perform jumps
with periodicity of two lattice parametersfi.e., n=2 in Eq.
s6dg. This makes the lateral force drop to lower values after a
slip event with respect to the critically damped situation, as
shown in Fig. 6, resulting in a smallerF0. Notice that in Fig.
6 we also plot the so-called “mechanistic Tomlinson loop,”
i.e., Fx=s2pV0/axdsins2px/axd as a function ofx, as ob-
tained from Eq.s26ad. The slip events correspond to transi-
tions between stable branches of this loop.

FIG. 2. Tip position as a function of support position in the 1D
Tomlinson model for different values of the scanning velocitysfrom
left to right vs=1.5, 15, 300, 750 nm/s, 1.5mm/s,h=2ÎKx/m, and

Ṽ0=7. The inset is a blow up of the region around the first slip
event.

FIG. 3. Slip time as a function of scanning velocity in the 1D

Tomlinson model for critical damping andṼ0=7. The points con-
nected by the solid line are obtained by numerical simulations,
while the dotted line is a power-law fit to the data of the formdts
~vs

−1/3.

FIG. 4. Frictional forceFfric as a function of sliding velocityvs

in the 1D Tomlinson model forṼ0=7 and different values of the
damping parameter: from bottom to toph / sÎkx/md=0.4, 1.5, 2, 10,
100. The dotted lines are fit to the numerical data of the form
Ffric −F0~vs

b, with b=2/3. In the mostunderdamped caseslower
lined the friction force is lower because the tip performs jumps of
two lattice parameters.
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B. Role of dimensionality

As already mentioned in the introduction, this problem
was recently studied in Ref. 11 using a 2D Tomlinson model,
where a velocity dependent friction force was observed even
for scanning velocities less than 300 nm/s. Since for 1D
motion no velocity dependence had been previously found in
Ref. 10, the authors attributed this dependence to the cou-
pling between the two degrees of freedom of the system. Our
results for the 1D Tomlinson model already give a depen-
dence on velocity, and it is interesting to look at the effect of
an extra dimension on this dependence. Indeed, as it can be
seen in Fig. 7, the behavior ofFfric vs vs in 2D for different
values of the scanning directionys is very similar to that in
1D. Thus, in spite of the 2D character of the tip motion,
clearly visible in Fig. 8, no dramatic effect of the dimension-
ality on the velocity dependence of friction can be noticed.
This result is actually not surprising, because the Tomlinson
model is a mean-field model and the functional form of con-
stituent relations, such asFfricsvsd should not change with
dimensionality. Thus Eq.s16d is expected to hold also in 2D,

with the same exponentb=2/3. Thevalues of the param-
etersF0 andc can be different in 1D and 2D. SpecificallyF0
is always lower in 2D. In fact, in 1D the tip is necessarily
moved along an atom row, while in 2D, depending on the
scanning lineys, the motion of the tip can occur also between
atom rows. For the hexagonal lattice we have chosen, the
interaction between the tip and the surface is the weakest
whenys=ay/4 sbottom curve of Fig. 7d, while it reaches its
maximum value forys=0, which coincides with the 1D case
supper curve of Fig. 7d. Since the corrugation of the tip-
surface interaction is directly related to the friction force,31

different scanning lines result in different values of friction.
This feature allows for example to obtain 2D surface maps in
AFM experimentsssee, for example, Ref. 2d. We notice that
the absolute variation ofFfric with velocity in the lowest
curves of Fig. 7 is more pronounced, thus supporting to a
certain extent the claim of Ref. 11. But it is important that
this variation is only due to the different values of the pref-
actor c in Eq. s16d and not to a change of the exponentb.
Therefore, we can argue that no qualitative differences arise
in the velocity dependence of friction in the 2D case and that
the common mechanism which produces the observed be-
havior atT=0 can be ascribed to the delayed athermal mo-
tion of the tip with respect to the support.

FIG. 5. Tip velocity as a function of support position in the 1D
Tomlinson model for different scanning velocitiessfrom left to right
vs=1.5, 15, 300, 750 nm/sd in the overdamped casesh
=100Îkx/md and for Ṽ0=7. The horizontal line is the value
2pV0/ smhaxd.

FIG. 6. Lateral force as a function of tip position for two values
of the damping parameter: critically dampedh=2Îkx/m ssolid lined
and underdampedh=0.4Îkx/m sdashed lined. The reduced corruga-

tion is Ṽ0=7 and the scanning velocityvs=300 nm/s. Notice the
presence of jumps with periodicity 2ax in the underdamped case.
The upper and lower horizontal lines indicate the friction force for
h=2Îkx/msFfric =2.33 nNd and h=0.4Îkx/msFfric =1.01 nNd, re-
spectively. The dotted line representsFx=s2pV0/axdsins2px/axd, as
obtained from Eq.s26ad.

FIG. 7. Friction force as a function of scanning velocity in 1D

supper curved and 2D Tomlinson model, for critical damping,Ṽ0

=7 and different values ofys sfrom bottom to topys=0.274, 0.137,
0.1, and 0.05 nmd.

FIG. 8. Trajectory of the tip in the 2D Tomlinson model for

critical damping,Ṽ0=7 andvs=7.5 nm/s. The circles connected by
the solid line indicate the positions of the tip in thexy plane during
the dynamics. The regions where the distribution of points is denser
are the sticking domains, where the tip stays predominantly for
most of the time. Note that the tip slips from one sticking domain to
the other following a zig-zag pattern around the scanning direction
sindicated by the dashed line,ys=0.137 nmd.
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IV. EFFECT OF THERMAL FLUCTUATIONS

At finite temperature we integrate numerically the full
equations of motions4d and s13d. Due the presence of the
stochastic forces, the motion of the tip is quite noisy and
averages over long trajectoriesscontaining up to 100 peri-
odsd have to be considered in order to have a reliable value
of the friction force. A typical behavior of the lateral force in
1D for different velocities and critical damping atT
=300 K is displayed in Fig. 9. The height of the maximum
for a fixed vs is not constant and the effect of the scanning
velocity on the position of the slip is rather pronounced even
for small vs. In fact, theoretical investigations based on
simple analytical approaches in 1DsRefs. 9 and 19d and
numerical simulations of the 1D Tomlinson model atTÞ0
sRef. 19d have shown that temperature is effective in over-
coming the energy barriersDE, activating jumps of the tip
between minima of the total potential energy, for tempera-
tures such thatDE.kBT. The thermal activation gives rise to
a linear logarithmic dependence of friction on velocity for
very small scanning velocities9

Ffric − Fc ~ lnsvsd. s41d

For a larger range ofvs the following functional form has
been proposed:19

Ffric − Fc ~ ulnsvsdu2/3. s42d

The constant valueFc is the lateral force corresponding to a
slip event atT=0. Equations42d is obtained by assuming

Ṽ0.1 andV0@kBT. As is shown in Fig. 10, where we com-
pareFfric vs vs for T=0 andT=300 K, the main source of
velocity dependence of friction is due to thermal fluctuations
in the system. The data forT=300 K can be fitted by a
logarithmic behavior with exponent which is very close to
the value 2/3 of Eq.s42d. To our knowledge theoretical ap-
proaches of velocity dependence of friction at finite tempera-
ture have been restricted to 1D models. Here we report re-
sults of numerical simulations also for the 2D Tomlinson
model, using the same parameters as for the model atT=0.
Not surprisingly, Fig. 11 shows that the velocity dependence
of friction is very similar in 1D and 2D, as we have found for

T=0. We can use Eq.s42d to fit the data of the 2D model as
well. In fact, as we have discussed in Sec. III B, the mean
field character of the Tomlinson model, preserves the same
form of the velocity dependence of energy dissipation.

The different behavior of the friction force with scanning
velocity at TÞ0 is due to the activated motion of the tip,
which lowers the friction force with respect to the athermal
situation. This can be easily understood from a sketch of the
evolution of the total potentialVtot during the scanning,
which is given in Fig. 12. While atT=0 a slip event can
occur only when the energy barrierDE si.e., the difference
between the maximum and the minimum ofVtotd vanishes,
thermal fluctuations can activate jumps of the tip from a
metastable minimum to the next even for finiteDE, when the
cantilever has reached a position which is smaller than the
one needed for a slip atT=0: specifically thermal effects
start to be significant as soon asDE is few timeskBT. This
has the effect to lower the energy dissipated in a jump, and
thus the friction force. The energy barrier is given by

DEstd = Vtotfxmaxstdg − Vtotfxminstdg, s43d

wherexmin andxmax are, respectively, the positions of a meta-
stable minimum and maximum ofVtot.

Figure 13 compares the velocity dependence of the
friction force for three values ofV0 in the stick-slip regime

FIG. 9. Lateral force as a function of tip position in the 1D

Tomlinson model for critical damping,T=300 K and Ṽ0=7, for
different scanning velocitiessnonsolid lines from bottom to topvs

=1.5, 15, 300, 750 nm/sd. The solid line representsFx

=s2pV0/axdsins2px/axd, as obtained from Eq.s26ad ssee also Fig.
6d. The inset shows a blow up of the region around a slip event.

FIG. 10. Velocity dependence of friction force in the 1D Tom-
linson model atT=0 supper curved andT=300 K slower curved for

critical damping andṼ0=7. The solid line is a fit of the data for
T=300 K, using Eq. s42d in the small velocity regimesvs

,2 mm/sd.

FIG. 11. Velocity dependence of friction force in the 1Dsupper
curved and 2Dslower curved Tomlinson model forT=300 K, criti-

cal damping andṼ0=7. The solid lines are fits to the data using Eq.
s42d in the small velocity regimesvs,2 mm/sd.
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sV0=0.28, 0.57 and 1 eVd, with kx=10 N/m syielding Ṽ0
=2, 4, and 7, respectivelyd, both for T=0 andT=300 K. At
the smallest scanning velocity considered, in going fromT

=0 to T=300 K, Ffric decreases only by a factor 1.2 forṼ0

=7, but by a factor 15 forṼ0=2. Indeed, by increasingṼ0,
the friction forceFfric, in the stick-slip regime, tends to its
maximum valueFstatic, and the relative variation in the stick-
slip signal decreases. As a consequence, the role of thermally

activated processes will be less strong for largeṼ0. More-
over, the relative variation ofFfric with vs is much more

pronounced for the lowest value ofṼ0, and the velocity de-

pendence of friction becomes weaker for largerṼ0.
The slope of the curves atT=300 K slightly changes by

increasingṼ0 and we find that the value 2/3 of the exponent
of the logarithmic behaviorfEq. s42dg is recovered for the

largestṼ0 we have used. This is in compliance with the ap-

proximation used to derive Eq.s42d, namely,Ṽ0.1 andV0
@kBT. More generally the data can be fitted by

Ffric − Fc ~ ulnsvsdua, s44d

where the exponenta depends onṼ0. In particular, from our

data we obtainasṼ0=2d=0.37, asṼ0=4d=0.57, andasṼ0

=7d=0.67. A change of the slope of the velocity-friction
curves can also be appreciated in Fig. 1sad of Ref. 19, where
data for different temperatures are presented. This indicates
that thermal effects critically depend on the surface corruga-
tion and on temperature.

V. DISCUSSION AND CONCLUSIONS

In this paper we have investigated the velocity depen-
dence of sliding friction at the atomic scale within the frame-
work of the Tomlinson model. We have emphasized the role

of the athermal processes characterizing the dynamics, which
are responsible for a power-law velocity dependence of the
friction force at small scanning velocities, while at finite
temperature a creep regime takes place, giving rise to a loga-
rithmic behavior of the friction force as a function of veloc-
ity. At variance with previous claims in the literature, these
dependences apply both in 1D and 2D. We have also sug-
gested in a semiquantitative manner in which conditions
thermal effects are expected to be important for the frictional
dynamics. Experimentally, the possibility to observe a veloc-
ity dependent frictional force may crucially depend on the
nature of the system, which determines the corrugationV0,
on the stiffness of the cantilever and on the applied loading
force, which in turns affects the value ofV0. Our model is
simplified in the sense that the cantilever is treated as a
pointlike object and the form of energy dissipation, taken
into account by introducing a damping term in the equations
of motion, is purely phenomenological. Of course, in real
situations finite contacts between the tip and the surface are
involved and energy dissipation comes into play through
more complex mechanisms. However, a simple description
based on the Tomlinson model contains the essential ingre-
dients of the problem and can still capture the main dynami-
cal features determining energy dissipation. We expect our
study to stimulate further theoretical and experimental work
on this issue.
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FIG. 13. Friction force as function of scanning velocity forṼ0

=2, Ṽ0=4, and Ṽ0=7. The filled circles connected by the dotted
lines are the data forT=0, while the open circles connected by the
dashed lines correspond to the data forT=300 K. The solid lines
are fits to the data atT=300 K, according to Eq.s44d, with expo-

nent a=0.37 for Ṽ0=2, a=0.56 for Ṽ0=4, anda=0.67.2/3 for

Ṽ0=7. The minimum value of the scanning velocity in the plot is
vs=1.5 nm/s.

FIG. 12. Total potential energyVtot as a function of tip position
x for three values of the cantilever positionxs sfrom bottom to top
xs=0.287, 0.382, 0.413 nmd. The horizontal lines indicate the val-
ues of the minimumsVmind and the maximumsVmaxd of the potential
for each curve. The potential barrier isDE=Vmax−Vmin. The upper
curve corresponds toDE=0, while the middle curve to the case
whereDE.kBT.
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