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Velocity dependence of atomic-scale friction: A comparative study
of the one- and two-dimensional Tomlinson model
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We present a comparative analysis of the velocity dependence of atomic-scale friction for the Tomlinson
model, at zero and finite temperatures, in one and two dimensions, and for different values of the damping.
Combining analytical arguments with numerical simulations, we show that an appreciable velocity dependence
of the kinetic friction forceFy,., for small scanning velocitiess (from 1 nm/s toum/s), is inherent in the
Tomlinson model. In the absence of thermal fluctuations in the stick-slip regime, it has the form of a power-law
Ff,ic—Foocvg with B=2/3,irrespective of dimensionality and value of the damping. Since thermal fluctuations
enhance the velocity dependence of friction, we provide guidelines to establish when thermal effects are
important and to which extent the surface corrugation affects the velocity dependence.
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I. INTRODUCTION gime, the velocity dependence can be quite complex, espe-
cially at intermediate-large velocities, where the system dis-
Although friction is a common phenomenon in everydayplays bifurcations, chaotic motion, resonances, and
experience, the fundamental mechanisms governing frictiopysteresi¢* In the overdamped regime, Robbins and
at the atomic level are still under discussion. For macroMiisef® suggest velocity independent friction.
scopic contacts the friction force is found to be independent An increase of the friction force has been observed for
of the sliding velocity, but no consensus has been reached @mall velocities also in Refs. 6, 7, and 9 and it has been
the velocity dependence at the nanometer scale. A very povattributed to thermally activated proces§és$:1° By means
erful technique for measuring atomic-scale friction is pro-of a simple thermal activation probabilistic analysis in 1D,
vided by atomic force microscopyAFM).12 Since scanning Gneccoet al? have obtained a logarithmic increase of fric-
velocities accessible by AFM are very small, typically from tion with scanning velocity which fits their experimental data
nm/s to fewum/s, it is relevant to study friction dynamics in quite well. A similar dependence had been obtained using a
this regime. Velocity dependence of friction is relevant bothsimple stress-modified thermally activated Eyring mddel.
for applications and from a fundamental point of view, anda recent work, Sangt al!® have corrected this logarithmic
has been discussed in several ARRfs. 3-11 and quartz  relation at not too small velocities: they proposdrewy??
crystal microbalanc@ experimental studies as well as theo- dependence of the friction force, whesg is the scanning
retical works®-1113-1Depending on the investigated systemsvelocity. However, recent experiments showing an increase
and on the experimental conditions, different and somewhabf friction with velocity’* do not display the logarithmic be-
contradictory results for the velocity dependence have beehavior related to thermal activation, but rather suggest an
found. In the original experiments of Maée al3 the authors  athermal power-lavwf behavior, as found in related systems,
state that the frictional forces of a tungsten tip on graphitessuch as charge density wavksand in boundary
show little dependence on velocity for scanning velocities udubrication?2
to 400 nm/s. A similar behavior up to velocities of several In view of the contradictory results presented above, here
um/s has also been reported in the work of Zworekeal.'°  we reexamine this issue for Tomlinson-like models in 1D and
where friction on different carbon structures has been stud2D, for different values of the damping, and both with and
ied. The authors of Ref. 10 claim that a one-dimensionalvithout thermal effects. In particular, we focus on the impor-
(1D) Tomlinson model af=0 can reproduce a velocity in- tance of the athermal contribution to the velocity dependence
dependent friction force for scanning velocities up toof friction, which is intrinsically present in the Tomlinson
~1 um/s, while giving a linear increase of friction for model. We show by means of a combined analytical and
higher velocities. At variance with the 1D case, in the 2Dnumerical analysis that the exponghts independent of the
version of the Tomlinson model at=0, which has been spatial dimension and of the damping. Then we discuss the
recently analyzed by Priolet al,!! a smooth increase of role of thermal fluctuations, establishing guiding rules to un-
friction for velocities lower tharn~-300 nm/s has been found. derstand where thermal effects become dominant.
In view of the results of Zworneet al. for the 1D case, the In Sec. Il we illustrate the model studied and the numeri-
authors argue that this effect should be peculiar of the 2kal techniques. In Sec. Il we discuss the results for the ather-
model, due to the nonlinear coupling between the two demal velocity dependence of friction and in Sec. IV we in-
grees of freedom in the system. The role of damping has natlude thermal fluctuations. Finally, we present some
been addressed in Refs. 10 and 11. In the underdamped resncluding remarks in Sec. V.
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Il. MODEL termmanug, which vanishes fovs— 0. Notice that the kinetic
The Tomlinson modé? has been successfully used to de_frlctlon force.for vs—0 is not equal to.the static friction
rIlorc:e Faic Since it results from dynamical effects and not

scribe the motion of a tip and to model the scan process i . : : SRS
_ : . -~ by the interaction potential,.. The kinetic friction force-;
24-27 _ ts fric
AFM. In particular, this model can reproduce the stick is defined as the mean value of the lateral foFge k (vt

slip motion observed in experiments and can be used t0 ) timel014.27g , iodi i fth
study frictional dynamics. Here we consider the 1D Tomlin- X ovfer Ime- y "’t‘fs“m'”g a periodic mation of the
son model and its extension in 2D &0 andT+#0. A  YPe Of EQ.(6), Fric can be written as

cantilever tip of massn interacts with the surface via a pe- v [Madvs
riodic potential Vi and is attached by a spring of elastic Fric = (F = — F,dt. (8)
constank, to a support moving at constant velocityalong NacJo

the x direction. For the 1D case we choogg of the form It is easy to show that the definition E@) is equivalent to

Vi(X) =Vg[1 - cog2mx/a,)], (1)  calculating the friction force from the energy dissipatidw

i i _in one period
wherea, is the lattice constant of the substrate. The elastic P

interaction between the tip and the support is nadus
) ) AW=my X%dt. 9
Vei(X) = 5K(X = X%, 2 0
where the support positiox, is The friction force is given by
Xs=vd. (3) AW
. . ° . ) L . . Fiic=——- (10)
It is assumed that the tip is a pointlike object, representing nay

the average over many atoms of the real tip-surface contact. Here we extend the model to deal with the motion at zero

Energy dissipation in this model is introduced by adding a;nq finite temperature on a 2D lattice, as done in Refs. 11
damping term proportional to the tip velocity in the equationnq 27 forT=0. The tip-surface interaction is
of motion. Thermal fluctuations are taken into account by a

stochastic force, in the framework of the Langevin approach. Vis(X,y) =V, cog2mx/a,)cog2mylay), (1)

Thus, the equation of motion in 1D becomes ) ]
where a, and a, are the lattice parameters in thkeandy

mX+ mzX + (27Vo/a)sin(2mx/a,) + K (x —vd) = (1), directions, respectively. Whem,=\3a, the substrate has the
(4) symmetry of a hexagonal closed-packed lattice. The elastic

interaction is
with the random forcef(t) satisfying the conditiongf(t))

=0 and(f(t)f(0))=2mzkgT&(t), where(---) indicates an en- Vei(X,y) = k(X —v) 2+ 5K (y = V92, (12
semble averagey is the damping parameter akd is Bolt-
zmann's constarf® The static friction force in this model is
simply given by the force needed to overcome the potenti
barrier:

wherek, denotes the spring constant in thedirection and
a¥s=constant represents the scanning line of the support. The
equations of motion can be written in 2D as

27V, mx+ mzx — (2mVo/a)sin(2mx/a,)cog2myla,) + k(X — v4)
- (5) _
ax - fX(t)y
Now we discuss the behavior of the 1D modelTat0, i.e., . . )
whenf(t)=0 in Eq.(4). In this situation the solution of Eq. MY+ M7y — (2mVo/ay)cos2mx/a,)sin(2mylay) + Ky = Ys)

Fstatic_

(4) for T=0 is periodic, with periocha,/vs** =f,(0), (13)
X(t+nafvg =x(t) +na, for integern. (6)  wheref, andf, are independent stochastic forces satisfying
Usually n=1 for not too smally. the same properties dsn Eq. (4). In this case we also have

Elastic instabilities leading to nonadiabatic jumps be-& component of the lateral force aloggi.e., Fy=ky(ys-y).
tween metastable states occur for soft cantilever spring conthe definition of the friction force in Eq(8) can be gener-

stants, in particular whéf?? alized in 2D as
[
o< - sl e Rp=tmVon g Fire = (R0 + (F)2. (14)
X (9X2 X=X , oo kxa.)z( '

m

We have solved the nonlinear equatigdsand(13) using a
wherex,,=na, denotes the position of the minima Wf.. In Runge-Kutta 4 algorithm with initial conditions

this case stick-slip motion, often observed in AFM experi- _ Cray _ Con

ments, is expected and the kinetic friction force is finite in x(0)=0, x0)=0, y(©)=0, y(0)=0 (15

the limit vs— 0. Conversely, foﬂ/0< 1, uniform sliding oc-  and for different values of the scanning veloaityand of the
curs and energy dissipation comes only from the viscouscanning lineys.
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SO To our knowledge the athermal velocity dependence of
28| atomistic dry friction has been scarcely investigated up to
502,6' now: it has been studied in the limit of large velocititand
oy in the context of boundary lubricatidd Here we discuss the

N A velocity dependence of dry friction for small scanning ve-

0 1.2 3 45 86 7 8 locities, in the stick-slip regime, which is described by Eq.

(b) (16). In this case, the value of the exponghtan be calcu-
z lated analytically for the Tomlinson model, yieldigF2/3,
£ e e rree—" as we will show below. The same kind of behavior has been
found in the field of elastic manifolds, for the dynamics of
oot 6676 4 10 charge density waves driven by an electric fiéland for the
vs [um/s] motion of a contact line on a heterogeneous surfaééThis

FIG. 1. Frictional forceFs. as a function of sliding velocity law characterizes the athermal motion of strongly pinned

in the 1D Tomlinson model, plotted on a line@) and on a log-log sygtemivo> 1 in our terminology, moving at constant ve-
scale (b) for Vo=1 eV, m=10"1%kg, K,=10 N/m, a,=0.316 nm locity.
(Vo=7), and 7=2\K,/m=6.3x 1(° 5. The increase ofy for Considering for simplicity the 1D case and following Ref.

small velocities is hidden using a log-log scale. The dotted line in21, We look for a solutiox(t) of Eq. (4) in the athermal case
(a) is a power-law fit to the data of the forfy;.—Foxv2® for vs  [f(t)=0] of the form
<2 um/s.
X(t) = xa(t) + (1), (17
Ill. ATHERMAL VELOCITY DEPENDENCE OF FRICTION
wherex, is the adiabatic solution of E¢4), i.e., the solution

At T=0 the dynamics can be described by the equationfor v,— 0, and 6 is a perturbation. The adiabatic solution
of motion (4) and (13) without the stochastic forces. We satisfies Eq.(4) neglecting the first(inertial) and second
choose values of the parameters which are typical of AFMdamping term
experiments:m=101%kg, k,=10 N/m/?7?° a,=0.316 nm
[in 2D we seta,=0.548 nm, corresponding to the hexagonal- 27Vy . [ 27Xa
packed structure of MoB001) (Ref. 27 andk,=k,], giving Ke(Xa = vgt) = = n—— .
a resonance frequenag,/m of the order of 10 Hz, which
is characteristic of AFM experiments. In principle, the cor- gy, Eq.(8) it follows that
rugationV, of the tip-surface potential depends on the load-
ing force, which is not considered in 1D and 2D models: - _ Yy o — _ _ - _
typically V, ranges from 0.2 to 2 eV, as found in different Fric = (Ke(vst = Xa = 6)) = Kl (vt = Xa)) = k(6) = Fo — k(6),

(18)

X X

studies’®31 Thus we takev,=1 eV. These values of the pa-
rameters give/,=7, yielding stick-slip motionVy>1) and

allowing us to compare directly our results with those of
Zworneret al.in 1D.2° The time step used in the calculations
is ~0.1 ns, a value which is needed to account for the fast

oscillations in the underdamped regime. The choice;a$

(19

having definedFy,=Fy;.(vs—0). Thus, the final goal is to

work out the dependence of

g na,/vg
(O)y=— o(t)dt (20)

quite delicate and it may affect the dynamical behavior of the na,J,

system. Usually a critical damping=2vk,/m (Ref. 27 is

assumed. Here we study the problem for different values Oﬁn vs. First we notice that f090>1 the inertial terrmX can

e neglected with respect to the damping termx near a
slip event. This can be straightforwardly seen in the adiabatic
limit. In fact, differentiating Eq(18) with respect to time we
obtain

n, in the underdamped, overdamped and critically dampe
regime. For each fixed scanning velocity we compute the
friction force Fy., averaging over many stick-slip periods
(usually 10 afT=0 and 100 afl # 0), according to Eqs(8)
and (14). The behavior of~;;. as a function ofv, in 1D is
shown for critical damping in Fig.(& on a linear scale and o \2 2mx
in Elg. 1(b) on the most commonly used qu-log scHfle. kxXA‘kxvs=‘<_> Vo cog( A)XA, (21)
Notice that the log-log scale hides the velocity dependence ay Ay

for small velocitiesSvs<1.5 um/s), where the friction force _ )

varies by more than 10%. The data in Figa)lcan be fitted ~ 9iving for X, andXa

quite accurately by a power law of the form

Z\=Xp= ks
A= AAT 2
Fiic = Fo+ cvf (16) Kk + (2_77) vy cos( 277XA>

X

ay
with 8=2/3 andc a constant depending on the parameters
of the model and on the space dimension. and
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dz, (ks ( X) V, sin (ZWXA)

e el

respectively. Then the condition
[Xal < 71| (24

2m\3 27X
kxvsvo(—w) sin( T A)
ay, a,

< 7.
21 \? 27%a | |2 g
ke+| — | Vpco
aX a'X

becomes

(25)

PHYSICAL REVIEW Br1, 045413(2005

1/2
|§A|>(—Usax ) - (32)

27y \/\7% -1

Equation (32) is easily fulfilled for largeV, (or large 7)
and/or smalbg. For example, with our choice of parameters,

yielding V=7, and p=6x 10° s, condition (32) is valid

for velocities up tovg~um/s. Havmg now demonstrated
that we can neglect the inertial term, we can expand the
equation of motion(without the termmX) nearxg:

Since energy dissipation takes place mostly near the fast slip

events, we focus on the behavior of E&5) near the slip

point x,, determined by

dVier 2 (27TX)
= - Xg) + —Vysin
dx x( s) a, 0 a,

d VtO'[ (277)2 <Z7TX)
— =kt V =0, 26b
dx a,) ° co ay (260)

0, (269

where V,;=Vs*+ Vg is the total potential energy. From Eq.

(26b) the positionx, of the tip right before a slip event is
a. ~
Xg= —= arccos$Vy). (27)
2

Equation(26a gives the positiorx(so)

slip point:
~ 1
x(so):&[\/vé—l+arcco€— :)} (28)

21 Vo

Near the slip point we can set

Xa(t) =Xg + éa(t) (29)
with
ay
|&al < o (30)

Using Eqgs.(7) and(26b) and the relations

sin(%> = sin(zw—xo) + (2—7T>c <2WX°>§A,

ay ay ay

o 2] - 25) - 2] 25,
a'X ax aX a

Eq. (25) becomes

Us

Us B
27 = N2 _
;\/Vé—léi (Vo 1én
X

< 7. (31

of the support at the

mné = kot + %(1—?)3% sin( 27;:0>§2, (33
where
§=X-Xo (34)
and
St=t—t, (35)

ty being the time at which the slip takes place. Following
Ref. 21, with the change of variables

£=C3y, (363

8t =Cu ¥, (36b)

where C=(a./2m)[(Vo/2mz)sin2mxy/a)]™3, Eq. (33
takes the form of a Riccati equation:

dx Ky

dr =X+ m7]T (37
It can be showft that the major contribution to the integral
(20) comes from a timest=st;=t;—t, such thatst ocvsl’3.
Whent~t,; the solutiony(7) of the Riccati equation has a
divergence of the forny(7) ~1/(m— 7). Note thatét, is the
slip time, i.e., the time it takes for the tip to go from the
metastable positiox=x, to the next metastable position
=x;. For the adiabatic solution the slip occurs instanta-
neously, whiledt is finite for finitevg and this is responsible
for the velocity dependent correction of the friction force. In
fact, whent~t; £~ x;—Xg is of order 1(e.g., independent of
vg), and 9=x—x,=E&-¢&, is of order 1 as well. Thus

== f o(t)dt o« v23, (39)

which proves that the exponet appearing in Eq(16) is
B=2/3.This shows that the dependence of friction on veloc-
ity is a dynamical effect which is due to the finitalthough
small scanning velocity, as it can be seen in Fig. 2, where
the tip positionx as a function of the support positioq is
plotted. The important feature is that the slip events are not
instantaneous, as highlighted in the inset of Fig. 2, showing a
finite slip time which depends ow. Only if the slip events
were really instantaneous a velocity independent friction
force would naturally follow from the definitio8), giving

Fric =Fo- Therefore, the source of athermal velocity depen-

Since Eq.(30) holds we can neglect the second term with dence of friction is the non adiabaticity of the motion of the

respect to the first, obtaining

tip for finite vs. Furthermore the slip position tends to move
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FIG. 2. Tip position as a function of support position in the 1D :
Tomlinson model for different values of the scanning veloditgm FIG. 4. Frictional forceFy;. as a function of sliding velocity

INeft to rightvs=1.5, 15, 300, 750 nm/s, 1pm/s, n=2yK,/m, and in the 1D Tomlinson model fok~/0:7 and different values of the
Vo=7. The inset is a blow up of the region around the first slip yamping parameter: from bottom to ta(\Vk/m)=0.4, 1.5, 2, 10,
event. 100. The dotted lines are fit to the numerical data of the form

Fiic—Fo>v?, with B=2/3. In the mosunderdamped casgower
rightwards for increasing.. This means that the integral of line) the friction force is lower because the tip performs jumps of
F,=k,(xs—x) over one period two lattice parameters.

1 (™ _ ke (na)® ke [
Firic = naJ, " “ha, 2 na . xdx (39 meet the condition of critical damping. The behaviorFf,

VS v, for values ofn ranging from strongly underdamped to
increases with increasing,, since the second term on the strongly overdamped, is reported in Fig. 4. All curves start
right side of Eq.(39) decreases. Figure 3 shows the slip timefrom the same valu&,, except for very lows (see discus-
ots as a function o, as measured from the numerical so- sion below, and can be fitted by Eq16) with the same
lution of the equation of motion. The behavior éf; is in  value of 8=2/3, suggesting that the functional form of the
very good agreement with the scaling relation velocity dependence of friction is robust with respect to the
strength of the damping. The velocity range of validity of Eq.

-1/3
s v, (40) (16) decreases for large;, because the viscous regime
which is the law expected from the discussion following Eq.(Firic ~M7ug) sets in for smaller values af; (for example,
(37). the data in Fig. 4 are fitted up tog=1.2 um/s for 7
=2\k,/mand up tovs=0.3 um/s for »=100Vk,/m). As ex-
A. Effect of damping pected, at a fixed value o> 0, Fy,;. increases withy, since

energy dissipation increases by increasing the dam{sieg

The effect of the damping parameter on the velocity de 5, Fq (9)]. Moreover the value of in Eq. (16) is larger for

pendence of friction has not been investigated so far in the, ger , reflecting the fact that the variation Bt is more
literature, because the typical choice is to assume critic ronounced for the highest values of

damping |n.order to damp out th_e fast OSC|IIat|on§ of the tip Note that for high damping we find velocity dependent
after the slip events and to avoid jumps of the tip of MOrC¢riction contrary to the qualitative expectation of Ref. 20.

than one lattice parameter. Nevertheless, it would be desikpg 5,thors of Ref. 20 argue that in the overdamped regime
able to know the dynamical behavior of the tip for a range ofy,, peak velocity of the tip, corresponding to a slip event, is

values of 5, since experimental situations do not always, ~nstant equal toV,/ (m7a,). This would imply that the

020 amount of energy dissipated, which is proportional to the tip

velocity according to Eq(9), should not depend ons. On
016 ] the contrary, we find appreciable dependence also in this
] case. As it can be seen from Fig. 5, the peak velocity of the
o2 ] tip is not a constant, but increases appreciably by increasing
< : Vs
“0.08 : The lower curve in Fig. 4, corresponding to the highly
1 underdamped valug=0.4, is characterized by a much lower
004 i friction force, because the tip in this case can perform jumps
: with periodicity of two lattice parametefs.e., n=2 in Eq.
*®o 0z 97 o5 05 1o T2 74 15 15 20 (6)]. This makes the lateral force drop to lower values after a

slip event with respect to the critically damped situation, as
FIG. 3. Slip time as a function of scanning velocity in the 1D shown in Fig. 6, resulting in a small&,. Notice that in Fig.
Tomlinson model for critical damping ard,=7. The points con- 6 we also plot the so-called “mechanistic Tomlinson loop,”
nected by the solid line are obtained by numerical simulationsi-€., Fx=(27Vo/a,)sin(2mx/a,) as a function ofx, as ob-
while the dotted line is a power-law fit to the data of the foftg ~ tained from Eq.(263. The slip events correspond to transi-
s tions between stable branches of this loop.

va
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24}
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. 220
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16}
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FIG. 5. Tip velocity as a function of support position in the 1D FIG. 7. Friction force as a function of scanning velocity~in 1D
Tomlinson model for different scanning velocitigeom left to right ~ (upper curvg and 2D Tomlinson model, for critical dampiny/y
vs=15, 15, 300, 750 nmjsin the overdamped casdn =7 and different values of; (from bottom to topy;=0.274, 0.137,
=100/k,/m) and for Vo=7. The horizontal line is the value 0.1, and 0.05nm

2Vl (Mmnay). . _

with the same exponem®=2/3. Thevalues of the param-
etersky andc can be different in 1D and 2D. Specificalfy

is always lower in 2D. In fact, in 1D the tip is necessarily
As already mentioned in the introduction, this problemmoved along an atom row, while in 2D, depending on the

was recently studied in Ref. 11 using a 2D Tomlinson modelScanning lingys, the motion of the tip can occur also between
where a velocity dependent friction force was observed eveRtOm rows. For the hexagonal lattice we have chosen, the
for scanning velocities less than 300 nm/s. Since for 1 interaction between the tip and the surface is the weakest
motion no velocity dependence had been previously found i§'Nen yS:aV/Ai (b(;ttonl (():urvr?_ (ﬁ Fig. Y.’dWh'Ie.t'rt] ;ﬁacfgs Its
Ref. 10, the authors attributed this dependence to the co mamg:ug]”\\//z u:f gzys_y’é’\i’né% tﬁgn&')rfj \ggion g‘f thecgs?
pling between the two degrees of freedom of the system. Ou pper ¢ mg 9 o P
results for the 1D Tomlinson model already give a depen_surface interaction is directly related to the friction fofée,
dence on velocity, and it is interesting to look at the effect Ofdiff_erent scanning lines result in differe_nt values of friction:
an extra dimension on this dependence. Indeed, as it can li: 1S feature_ allows for example 1o obiain 2D surfa_ce maps in
seen in Fig. 7, the behavior &%;. vsvsin 2D for different M experlmentqsge, for exa”.‘p'e' Ref:)ZWe notice that
values of the scanning direction is very similar to that in the absolutg var|§t|on OFic with velocity in the IO\.NeSt
1D. Thus, in spite of the 2D character of the tip motion curves of Fig. 7 is more pronounced, thu§ ;upportlng 0 a
clearly visible in Fig. 8, no dramatic effect of the dimension- frﬁrst?);rigt(itg:tisthoenIdillz]e?[i) Tﬁef' d%:ferzlrjwtt '\t/;u'erzpo?cr:ﬁgt trhee;f
ality on the velocity dependence of friction can be noticed. ctorc in Eq. (16) gnd ot to a chanae of the exoon pt
This result is actually not surprising, because the Tomlinso g ge of the exponght
model is a mean-field model and the functional form of con-. herefore, We can argue that no gua!|tat|ve differences arise
stituent relations, such aBy(v) should not change with in the velocity dependence of friction in the 2D case and that
dimensionalit Thus Eo(.’LG)rIiCs expected 1o hold als?) 12D the common mechanism which produces the observed be-
Y- P ' havior atT=0 can be ascribed to the delayed athermal mo-
tion of the tip with respect to the support.

/\\/\/.‘\/‘k/\/\\\\-
TN N

\
N 0

B. Role of dimensionality

N W s

<
P

""‘ﬁ

Fx [nN]

|
|
i
|

a1
LARRARN AVVVVY

.0 0.5 1.0 15 2.0
0"0%.5 1.0

15 20 25

x[nm
FIG. 6. Lateral force as a function of tip position for two values o
of the damping parameter: critically damped 2vk,/m (solid line) FIG. 8. Trajectory of the tip in the 2D Tomlinson model for
and underdampeg}=0.4yk,/m (dashed ling The reduced corruga- critical dampingVo=7 andvs=7.5 nm/s. The circles connected by
tion is Vo=7 and the scanning velocity;=300 nm/s. Notice the the solid line indicate the positions of the tip in the plane during
presence of jumps with periodicitya? in the underdamped case. the dynamics. The regions where the distribution of points is denser
The upper and lower horizontal lines indicate the friction force forare the sticking domains, where the tip stays predominantly for
7=2Vk/M(F¢ic=2.33 NN and 7=0.4vk,/m(F¢;.=1.01 nN, re- most of the time. Note that the tip slips from one sticking domain to
spectively. The dotted line represefts=(27Vy/ay)sin(2mx/a,), as  the other following a zig-zag pattern around the scanning direction

obtained from Eq(26a. (indicated by the dashed ling;=0.137 nm.
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FIG. 9. Lateral force as a function of tip position in the 1D FIG. 10. Velocity dependence of friction force in the 1D Tom-
Tomlinson model for critical dampingT=300 K andV,=7, for  linson model aff=0 (upper curvgandT=300 K (lower curve for
different scanning velocitiegonsolid lines from bottom to topg critical damping andvy=7. The solid line is a fit of the data for
=15, 15, 300, 750 nmjs The solid line representsF, T=300 K, using Eqg.(42) in the small velocity regime(vg
=(27Vyla,)sin(2mx/a,), as obtained from Eq269 (see also Fig. <2 um/s).

6). The inset shows a blow up of the region around a slip event.

T=0. We can use Ed42) to fit the data of the 2D model as
IV. EFFECT OF THERMAL FLUCTUATIONS well. In fact, as we have discussed in Sec. Il B, the mean
At finite temperature we integrate numerically the full field character of the Tomlinson model, preserves the same

equations of motior(4) and (13). Due the presence of the form of the velocity dependence of energy dissipation.
stochastic forces, the motion of the tip is quite noisy and Th_e different behawor of the frlptlon force _Wlth scanning
averages over long trajectoriésontaining up to 100 peri- velocity at T#0 is due to the activated motion of the tip,

odg have to be considered in order to have a reliable valudvhich lowers the friction force with respect to the athermal
of the friction force. A typical behavior of the lateral force in Situation. This can be easily understood from a sketch of the

1D for different velocities and critical damping af evolution of the total potentiaV,, during the scanning,

=300 K is displayed in Fig. 9. The height of the maximum Which is given in Fig. 12. While af=0 a slip event can
for a fixed v, is not constant and the effect of the scanning®ccur only when the energy barriaE (i.e., the difference

velocity on the position of the slip is rather pronounced everP&tWween the maximum and the minimum &) vanishes,
for small ve In fact, theoretical investigations based onthermal fluctuations can activate jumps of the tip from a
simple analytical approaches in 1(Refs. 9 and 1P and metastable minimum to the next even for finkE, when the

numerical simulations of the 1D Tomlinson modele o  cantilever has reached a position which is smaller than the

(Ref. 19 have shown that temperature is effective in over-ON€ needed for a slip ak=0: specifically thermal effects
coming the energy barrielAE, activating jumps of the tip start to be significant as soon A& |s.fe\./v t|me§kBT_. This
between minima of the total potential energy, for temperaNas the effect to lower the energy dissipated in a jump, and
tures such thaAE =ksT. The thermal activation gives rise to thus the friction force. The energy barrier is given by

a linear logarithmic dependence of friction on velocity for AE(t) = Vie XmaxH) ] = Vie Xmin()1, (43

very small scanning velocitiés ) N
wherexq,, andX,ax are, respectively, the positions of a meta-

Fiic = Fc < In(vy). (4D stable minimum and maximum &f,.
For a larger range of, the following functional form has ~_Figure 13 compares the velocity dependence of the
been propose# friction force for three values 0¥, in the stick-slip regime
Firic = Fc > |In(vs)|2/3- (42 3.0
The constant valu€. is the lateral force corresponding to a 2l 1?0 "]

slip event atT=0. Equation(42) is obtained by assuming

Vo>1 andVy>kgT. As is shown in Fig. 10, where we com- s22] e
pare Fyi. VS vg for T=0 andT=300 K, the main source of sl ®
velocity dependence of friction is due to thermal fluctuations e

in the system. The data foF=300 K can be fitted by a 141
logarithmic behavior with exponent which is very close to
the value 2/3 of Eq(42). To our knowledge theoretical ap- . . .
proaches of velocity dependence of friction at finite tempera- 0.001 oot va Bims] 1 10

ture have been restricted to 1D models. Here we report re-

sults of numerical simulations also for the 2D Tomlinson FIG. 11. Velocity dependence of friction force in the 1pper
model, using the same parameters as for the modékat curve and 2D(lower curve Tomlinson model fofT=300 K, criti-
Not surprisingly, Fig. 11 shows that the velocity dependenceal damping and/,=7. The solid lines are fits to the data using Eq.
of friction is very similar in 1D and 2D, as we have found for (42) in the small velocity regimgvs<2 um/s).

I 2D
10}
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FIG. 12. Total potential energy,q as a function of tip position FIG. 13. Friction force as function of scanning velocity f:z};

x for three values of the cantilever positian (from bottom to top =2 90:4, ande:Y. The filled circles connected by the dotted
*s=0.287, 0.382, 0.413 nmThe horizontal lines indicate the val- jines are the data foF=0, while the open circles connected by the
ues of the minimuntVyy;,) and the maximuniV,) of the potential  gashed lines correspond to the data Ter300 K. The solid lines

for each curve. The potential barrier A==Via—Vmin. The upper  are fits to the data af=300 K, according to Eq(44), with expo-
curve corresponds taE=0, while the middle curve to the case | -0 37 for V=2, «=0.56 for Vy=4, anda=0.67=2/3 for

whereAE=kgT. T/O:?. The minimum value of the scanning velocity in the plot is
- vs=1.5 nm/s.

(Vo=0.28, 0.57 and 1 ey with k,=10 N/m (yielding V,

=2, 4, and 7, respectivelyboth forT=0 andT=300 K. At of the athermal processes characterizing the dynamics, which
the smallest scanning velocity considered, in going ffom  4re responsible for a power-law velocity dependence of the
=0 to T=300 K, Fg;. decreases only by a factor 1.2 fgy  friction force at small scanning velocities, while at finite
=7, but by a factor 15 fof/ozz_ Indeed, by increasinﬁo, temperature a creep regime takes place, giving rise to a loga-
the friction forceFy;., in the stick-slip regime, tends to its rithmic behavior of the friction force as a function of veloc-
maximum valueF i, and the relative variation in the stick- ity. At variance with previous claims in the literature, these
slip signal decreases. As a consequence, the role of thermalfiependences apply both in 1D and 2D. We have also sug-

activated processes will be less strong for Ia?g)e More- gested in a semiquantitative manner in which conditions
over, the relative variation oF;. with v is much more thermal effects are expected to be important for the frictional
’ rc S

) dynamics. Experimentally, the possibility to observe a veloc-
pronounced for the lowest value ¥, and the velocity de- v gependent frictional force may crucially depend on the
pendence of friction becomes weaker for larygr nature of the system, which determines the corrugatign

The slope of the curves at=300 K slightly changes by on the stiffness of the cantilever and on the applied loading
increasingv, and we find that the value 2/3 of the exponentforce, which in turns affects the value ®f. Our model is
of the logarithmic behaviofEq. (42)] is recovered for the simplified in the sense that the cantilever i; trgated as a
largestV, we have used. This is in compliance with the ap-Pintlike object and the formdof energy d|33|pr?t|on, taken
oroximation used to derive EG42), namely. Vo> 1 andVi into account by introducing a damping term in the equations

. of motion, is purely phenomenological. Of course, in real
>kgT. More generally the data can be fitted by situations finite contacts between the tip and the surface are

Fric — Fe > |In(vg)|“, (44) involved and energy dissipation comes into play through
_ more complex mechanisms. However, a simple description
where the exponent depends o1V,. In particular, from our  based on the Tomlinson model contains the essential ingre-
data we obtaina(Vy=2)=0.37, a(V,=4)=0.57, anda(V, dients of the problem and can still capture the main dynami-
=7)=0.67. A change of the slope of the velocity-friction cal feature_s determining energy_dlssmatlon. We expect our
curves can also be appreciated in Fig) bf Ref. 19, where study_ tq stimulate further theoretical and experimental work
data for different temperatures are presented. This indicatéd! this issue.
that thermal effects critically depend on the surface corruga-
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