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We consider charge transport through a nanoscopic object, e.g., single molecules, short nanotubes, or quan-
tum dots, that is weakly coupled to metallic electrodes. We account for several levels of the molecule/quantum
dot with level-dependent coupling strengths, and allow for relaxation of the excited states. The current–voltage
characteristics as well as the current noise are calculated within first-order perturbation expansion in the
coupling strengths. For the case of asymmetric coupling to the leads we predict negative-differential-
conductance accompanied with super-Poissonian noise. Both effects are destroyed by fast relaxation processes.
The nonmonotonic behavior of the shot noise as a function of bias and relaxation rate reflects the details of the
electronic structure and level-dependent coupling strengths.
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I. INTRODUCTION

The field of molecular electronics1 is driven by the quest
for functional electronic devices that are smaller than those
produced by standard semiconductor technology. The micro-
scopic size and the reproducibility in the production of mol-
ecules provide decisive advantages even if many, identical,
molecules should be needed to build fault-tolerant devices. A
negative differential conductancesNDCd, a promising fea-
ture for functional devices, has been found recently in or-
ganic molecules.2 Furthermore, many-body effects such as
the Coulomb blockade and Kondo effect, known from semi-
conductor quantum dots,3 have been observed in molecular
devices4,5 and carbon nanotubes.6–8

Since the typical single-particle level spacing of quantum
dotssor short nanotubesd is small—often only a fraction of a
meV—low temperatures are required for the resolution of
transport through individual levels. Low temperatures are
also helpful for the observation of quantum or shot noise. For
example, at temperatures above 30 K noise transport through
molecules between gold break junctions9 appears to be domi-
nated by 1/f-like noise, believed to be generated by ther-
mally induced fluctuations of the gold atoms. Such effects
are suppressed at sub-Kelvin temperatures, at which the shot
noise associated with the discreteness of the charge of the
transfered electrons10 can be detected. Both the current and
the shot noise depend on details of the discrete level spec-
trum and the coupling strengths of these levels to the
electrodes.11–13 The combined measurements of current and
shot noise, thus, provide a “spectroscopic” tool to gain infor-
mation about the level structure.

Negative differential conductance through multilevel sys-
tems can occur when two adjacent levels have different cou-
pling strengths to the leads. Once the level with weaker cou-
pling is occupied, transport through the other level is
suppressed, which reduces the total current. For molecules, it
is well known that the coupling of different molecular orbit-
als to the electrodes may vary strongly due to differences in

the spatial structure of the corresponding wave functions.14

In metallic single-walled nanotubessSWNTsd, two bands
cross the Fermi surface as the doping level is varied. For
short tubes, these bands break up in a set of single-particle
levels, separated by a level spacingdE of about 1 meV or
lessssee also Ref. 7 for multiwalled nanotubesd. In general,
these levels differ in their spatial structure and coupling
strength, particularly if they are derived from two different
bands at different points of the one-dimensional Brillouin
zone. For semiconducting nanotubes similar considerations
hold.8 NDC has also been observed in semiconductor quan-
tum dots.15

To study transport through systems which display a NDC,
we start from an effective model of a few single-particle
levels with couplings to the electrodes which vary strongly
from level to level, and which also may differ for the source
and drain electrodes. Furthermore, we include the possibility
of relaxation among the levels: at finite bias voltage, elec-
trons might enter the moleculesquantum dot or nanotubed at
a high-lying excited state. Provided that the relaxation is fast
as compared to the tunneling, the molecule might relax to the
ground state or other low-lying state before the electron has
the chance to leave the molecule. The relaxation is accom-
panied by the emission of a boson, either a photon or a
phonon. Such relaxation processes can have a strong impact
on the negative differential conductance by destroying the
blocking mechanism.14,16 Related modelsswithout coupling
to a bosonic bath and relaxationd were studied in Refs.
17–19.

The main purpose of this work is to study shot noise for
the model described above in the regime where NDC might
occur. We predict that in the absence of relaxation, the NDC
is accompanied with super-Poissonian noise. This is formally
similar to transport through semiconducting resonant tunnel-
ing devices,20 though the origin of NDC in these devices
schemical potential passes through the semiconductor band
edged is entirely different from the one discussed here. Re-
laxation processes enhance the current and reduce the noise
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in the NDC regime. The shot noise shows rather rich behav-
ior depending on the coupling and relaxation strength. In
particular, we find that the shot noise is a nonmonotonic
function of the relaxation rate. This behavior contrasts with
the current, which monotonically increases as the relaxation
rate becomes larger. We are able to present analytic results
for the shot noise, which might be useful for the interpreta-
tion of future experiments. We also relate our results to mod-
els of transport through several quantum dots.

II. THE MODEL

As a model for electron transport through a molecule or
nanotube withM molecular orbitalsslevelsd and Coulomb
interaction we consider a generalized Anderson impurity
model coupled to a bosonic bath, described by the Hamil-

tonianĤ=ĤL+ĤR+ĤM +ĤT,L+ĤT,R+Ĥph with

Ĥr = o
ks

eksraksr
† aksr , s1d

ĤM = o
ls

elscls
† cls + Uo

l

nl↑nl↓ + EcSo
ls

nlsD2
s2d

ĤT,r = o
lks

stl
raksr

† cls + h.c.d, s3d

Ĥph = o
q

vqdq
†dq + o

q,s,l,l8

gq
l,l8sdq

† + dqdcls
† cl8s, s4d

where l =1,… ,M and r =L ,R. Here, ĤL and ĤR model the
noninteracting electrons with density of statesre=okdsv
−ekrd in the left and right electrodesaksr

† , aksr are the Fermi
operators for the states in the electrodesd. The molecule term

ĤM describes a “molecule” withM relevant molecular orbit-
als of energyels and Coulomb interaction on the molecule
scls

† , cls are Fermi operators for the molecular levels, and
nls=cls

† cls is the number operatord. The charging energyEc
accounts for the classical energy cost to add charge on a
confined system with many electrons and ions that are not
explicitly considered in the Hamiltonian. It is the standard
term for accounting for the effects of Coulomb repulsion
between electrons in orbitals with large spatial extent, as
realized in quantum dots and nanotubes. In addition, the
Hubbard-like term with energyU punishes double occu-
pancy within the same orbital. This is most relevant for more
localized orbitals as realized in small molecules. The two
kinds of interaction terms are the most important parts of the
full two-body interactions present in a real moleculesquan-
tum dot, nanotubed. Other terms could be considered by
much more elaborate models, as done in Ref. 21 for the
computation of theI –V characteristics. For the NDC/
relaxation effects on the shot noise that we wish to study, the
above simple molecule model suffices. According to which
physical systemsmolecule, quantum dot, or nanotubed one
wishes to describe, the parameters of the model can be suit-
ably chosen.

Tunneling between leads and molecule levels is modeled

by ĤT,L and ĤT,R. The coupling strength is characterized by

the intrinsic linewidthGl
r =2putl

ru2re, wheretl
r are the tunnel-

ing matrix elements. In order to allow for relaxation between

different molecular levels, we addĤph, which describes a
bosonic bathswheredq

†, dq are the corresponding Bose op-
eratorsd coupled to the molecule by the coupling constants

gq
l,l8, l Þ l8. This allows relaxation processes where electrons

on the molecule can change the orbital by emitting or ab-
sorbing a boson. Note that a diagonal coupling,l = l8, would
not be associated with relaxation but would give rise to
“boson-assisted tunneling” leading to additional steps in the
I –V characteristics when the boson bath has a discrete
spectrum.22–24 Since in the present paper we are not inter-
ested in those boson-assisted tunneling processes, we take
into account off-diagonal coupling contributions only. To be
specific, we assume in the following that the bosonic bath
consists of photons, although vibrational effects due to
phonons could also be described within our model. For sim-

plicity, we assume the constantsgq
l,l8=s1−dl,l8dgph to be in-

dependent ofl , l8, andq, and introduce the couplingaph as
aphsvd=2pgph

2 rbsvd, where rbsvd=oqdsv−vqd is the den-
sity of states of the bosonic bath. For the relaxation due to
photons we choose a power law behaviorrbsvd~v3, corre-
sponding to photons with three spatial degrees of freedom.
For the case of phonon-mediated relaxation, which we are
not going to discuss in detail in the present paper, the density
of states is sharply peaked around the vibration modes of the
molecule. The above model is an extension of the Anderson
impurity model with one levelsand in the absence of relax-
ation effectsd, which was described and discussed in Ref. 12.

We are interested in transport through the molecule, in
particular in the currentI and theszero-frequencyd current

noise S. They are related to the current operatorÎ =sÎR

− ÎLd /2, with Î r =−ise/"dolksstl
raksr

† cls−h.c.d being the cur-

rent operator for electrons tunneling into leadr, by I =kÎl and

S=E
−`

`

dtkdÎstddÎs0d + dÎs0ddÎstdl s5d

wheredÎstd= Îstd−kÎl.

III. DIAGRAMMATIC TECHNIQUE

For the calculation of the currentI and current noiseS, we
use the diagrammatic technique developed in Ref. 24 and
expanded for the description of the noise in Ref. 12. In
lowest-order perturbation theory in the coupling strengthsGl

r,
the following expressions for the current and the noise were
found:

I =
e

2"
eTW Ipst, s6d

S=
e2

"
eTsW IIpst + W IPWIpstd. s7d

The boldface indicates matrix notation related to the molecu-
lar state labelsx sfor the M level system there are 4M differ-
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ent statesd. The vectore is given by ex=1 for all x. The
zeroth-order stationary probabilitiespst can be expressed in
terms of first-order transition ratesWx,x8 sforming a matrix
Wd between two molecular statesx andx8 as

pst = sW̃d−1v. s8d

The matrix W̃ is identical toW but with one sarbitrarily
chosend row x0 being replaced withsG ,… ,Gd. Then the vec-
tor v is given byvx=Gdxx0

. The total transition ratesWx,x8
sin the absence of relaxationd are the sum of transition rates
associated with electron tunneling through either the left or
the right barrier,Wx,x8=Wx,x8

R +Wx,x8
L .

The matrix elements ofW I and W II are given by
Wx,x8

I =sWx,x8
R −Wx,x8

L dfQsNx8−Nxd−QsNx−Nx8dg and Wx,x8
II

= 1
4sWx,x8

R +Wx,x8
L ds1−2 dxx8d, whereNx is the total number of

electrons on the molecule within the statex. The indicesI or
II indicate that one or two vertices in the corresponding dia-
gram are due to current operators present in the definition for
the currentI and the noiseS.

The matrixP is associated with the propagation between
two blocksW I containing one current operator each. To low-
est order inG,

P = sW̃d−1Q s9d

with Qx8x=spx8
st −dx8,xds1−dx8,x0

d, i.e.,P is of orderG−1, thus
leading to a nonvanishing contribution of the second part in
Eq. s7d even in lowestsfirstd order perturbation theory in the
coupling to the electrodes. Similar expressions for the calcu-
lation of current and noise were derived by other means by
Hershfieldet al. in Ref. 25 and Korotkov in Ref. 26.

In order to include relaxation processes, we need to ex-
tend the theory of Ref. 12 by introducing corresponding tran-
sition ratesWx,x8

ph . Assuming weak coupling to the bosonic
bathsin addition to weak tunnelingd, we only keep contribu-
tions to either first order inaph or to first order inG. The total
transition rates are, thus, given byWx,x8=Wx,x8

L +Wx,x8
R

+Wx,x8
ph , where Wx,x8

ph describe pure relaxation whileWx,x8
L

andWx,x8
R model pure tunneling. We have

Wx8,x
r = 2preo

s

f r
+sEx8,xdUo

l

tl
rkx8ucls

† uxlU2
+ f r

−s− Ex8,xd

3Uo
l

tl
rkx8uclsuxlU2

s10d

for x8Þx, together withWx,x
r =−ox8ÞxWx8,x

r . Ex8,x=Ex8−Ex

is the energy difference between the many-body statesx and
x8. Here, fsxd=1/fexpsx/Td+1g is the Fermi function,
f+sxd= fsxd and f−sxd=1−fsxd, and f r

±sxd= f±sx−mrd. The
bosonic rates are

Wx8,x
ph = o

s

bsEx8,xdUo
lÞl̄

kx8ucls
† cl̄suxlU2

s11d

for x8Þx, and Wx,x
ph =−ox8ÞxWx8,x

ph , where
bsxd=sgnsxdaphsxdnbsxd, with the Bose function
nbsxd=1/fexpsx/Td−1g. While the presence of relaxation

leads to a modification ofpst andP, the matricesW I andW II

are not affected.
The rules for calculating the irreducible blocksW de-

scribing electron tunneling and relaxation are as follows.
s1d For a given orderk draw all topologically different

diagrams with 2k vertices connected byk tunneling selec-
trond lines or bosonsphotond lines sfor orders kù2 both
kinds of lines might be contained in a diagramd. Assign the
energiesEx to the propagators, and energiesvlsl =1,… ,kd to
each one of these lines.

s2d For each of thes2k−1d segments enclosed by two
adjacent vertices there is a resolvent 1/sDEj + i0+d with
j =1,… ,2k−1, whereDEj is the difference of the left-going
minus the right-going energies.

s3d Each vertex containing dot operatorsBn swith n dif-
ferent operator structuresd gives rise to a matrix element
kx8uBnuxl, wherexsx8d is the dot state enteringsleavingd the
vertex with respect to the Keldysh contoursfor our model we
have:B1=cls

† , B2=cls, B3=cls
† cl̄sd.

s4d The contribution of a tunneling line of reservoirr
is grls

± svld=Gr
l /2p f±svl −mrd, taking the plus sign if the

line is going backward with respect to the closed time
path, and the minus sign if it is going forward. The same
way the contribution of a bosonic line is given by
bs±vld=sgnsvldaphsvldnbs±vld.

s5d There is an overall prefactors−ids−1dc, wherec is the
total number of vertices on the backward propagator plus the
number of crossings of tunneling linessno bosonic linesd
plus the number of vertices connecting the stated with ↑.

s6d Integrate over the energiesvl of the tunneling and
boson lines and sum over all reservoir and spin indices.

IV. RESULTS

In the following we discuss current and shot noise for
the model of Eqs.s1d–s4d with two single-particle levels
sM =2→ l =1, 2d in first order perturbation theory in the tun-
nel couplingsGr and the couplingaph to the bosonic bath.
We express the different coupling parametersGl

r, aph in units
of a scaleG that has the same order of magnitude as the
largest of the tunnel couplingsGl

r. sIn the case of equal tun-
nel couplings, the natural choice isG1

R=G1
L=G1

R=G2
L=G.d Our

perturbation expansion is valid for temperatures larger than
the tunnel couplings. Throughout this paper, we choose
kBT=10G. The molecule can acquire 16 possible states, as
each level can be either unoccupied, occupied with spin↑ or
↓, or doubly occupied. The system described is characterized
by level energiese1 ande2, the “Hubbard” repulsionU, and
the charging energyEc. Furthermore, the electron and photon
reservoirs have temperatureT sset asT=0.05 meVd and are
connected to the molecule via the coupling parametersGl

r

andaph.
Transport is achieved by applying a bias voltageVbias,

which is dropped symmetrically at the electrode-molecule
tunnel junctions, meaning that the energies of the molecular
states are independent of the applied voltage even if the cou-
plings Gl

r are not symmetric. The shape of potential profile
ssize of potential dropsd is governed by the electrostatic Pois-
son equation, i.e., the capacitances of the molecule to the left
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and right electrodes. In the weak coupling limit that we con-
sider here, modifications of the couplings do not effect the
potential profile. The effects of asymmetric voltage drop and
a possible gate voltage are straightforward to anticipate, but
would only obscure the results presented below.

An illustration of the transport situation is shown in Fig.
1. The Fano factor, which is given by the noise-to-current
ratio, F=S/2eI, provides additional information about trans-
port properties not contained in the current–voltage charac-
teristics alone. Therefore we are interested in studying its
dependence on different couplings to the electrodes, the
strength of relaxation, the Coulomb charging energy, etc. in
order to make predictions of the importance of those param-
eters for a given experiment.27

We focus on the easiest case which exhibits NDC. The set
of energy parameters he1=−0.5 meV, e2=0.5 meV,
U=1.5 meV,Ec=1 meVj28 describes a molecule that is un-
charged at zero bias, as the energy to occupy the first single
particle level ise1+Ec=0.5 meV sstate D1d. Without cou-
pling to the boson bath and in contrast to the one level sys-
tem discussed in Ref. 12 we find a negative differential con-
ductancesNDCd regime, see Fig. 2, in dependence on the
different coupling strength between the molecular orbitals
and the reservoirs, as was previously discussed in Refs. 14,
16, and 17. The shot noise behaves qualitatively similar, the
important quantitative details are discussed in the following.

If we chose equal tunnel coupling,Gl
r =G ssolid lined, we

find that current and shot noiseS increase, each time, as a

new transport “channel”scontrolled by the excitation ener-
giesd opens. This leads to plateaus, separated by thermally
broadened steps. The first four plateaus are shown and dis-
cussed in the following. At a bias voltage of 1 mV, sequential
transport through the stateD1 with one electron on the lower
lying level becomes possible. At 3 mV, additional transport
through theD2 state opens up, with the upper level being
occupied with one electron. The different regions of interest
are labeled byI i, Si with i =0, 1, 2. For a bias voltage above
5 mV, transport channels with two or more electrons on the
molecule open up. In the large-bias regimesnot indicated in
the plotsd and for symmetric coupling, the values
Imax=se/"d2G and Smax=se2/"d2G are reached. If now the
coupling parameterG2

R is suppressed with respect to the other
couplings, this leads to suppressed curves for the current and
shot noise in region 2, resulting in NDC at the threshold of 3
mV, when the stateD2 becomes relevant, see in Fig. 2 for
G2

R=0.1G and 0.01G. The reason for the NDC is a combina-
tion of the Pauli principle, Coulomb blockade, and sup-
pressed coupling, as discussed in Refs. 14,21. In our case, an
electron, entering the upper molecular orbital from the left
electrode, cannot leave the molecule if the coupling of this
orbital to the right electrode is entirely suppressed. Transport
through the lower molecular orbital is also not possible,
since the simultaneous occupation of both orbitals is ener-
getically forbidden in the considered bias regime. The elec-
tron gets stuck in the upper molecular orbital blocking other
electrons from tunneling through the molecule. Conse-
quently, the current collapses.

Since in lowest-order perturbation theory inG the plateau
heightsare given by the coupling parameters only, we find
that for G2

R,2/3G NDC can be observed, whereas the shot
noise is suppressed below its lower bias plateau only if
G2

R,0.1G. This difference can already give a rough idea
about the coupling strengthG2

R for a given set of current and
noise measurements. If the shot noise is sufficiently sup-
pressed in the NDC region, a peak in the shot noise appears
around the resonance energy of the second level. This peak is
due to temperature induced fluctuations that in certain situa-
tions enhance the shot noise over the surrounding plateau
values swhere temperature fluctuations are exponentially
suppressedd. As the resonance is approached from lower bias,
within the range of temperature broadening, the noise “de-
tects” the opening of the second transport channel and in-
creases. If the bias is beyond the resonance, the redistribution
of occupation has taken place and the noise is algebraically
suppressed. The result is the observed peak with width of the
temperature. However, the peak height is only determined by
the coupling parameters and is independent of the tempera-
ture. The current never shows such a peak, as it decreases
proportional to the loss of occupation of the first level, the
transport channel with “good” coupling.

The effect of NDC on the Fano factor, which is given by
F=S/2eI, is shown in Fig. 3. At small bias, eV!kBT, the
noise is dominated by thermal noise, described by the well
known hyperbolic cotangent behavior which leads to a diver-
gence of the Fano factor.10,29 The plateau for bias voltages
below 1 mVsregion 0d corresponds to the Coulomb blockade
regime, where transport is exponentially suppressed. In the
regions 1s2d transport through the stateD1sD2d is possible.

FIG. 1. Sketch of the couplings and processes in the considered
model.

FIG. 2. Current I and shot noise S vs voltage for
kBT=0.05 meV, e1=−0.5 meV, e2=0.5 meV, U=1.5 meV,
Ec=1 meV, symmetric biassmL=−mR=eV/2d, andG1

L=G2
L=G1

R=G.
The height of the plateaus labeled byi =0, 1, 2 are discussed in the
text and depend on the choice of the coupling parameters. For sup-
pressed couplingG2

R current and shot noise break down leading to
negative differential conductancesNDCd at a threshold energy. The
curves are normalized toImax=se/"d2G and Smax=se2/"d2G,
respectively.
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The suppressed coupling strengthG2
R does not affect the pla-

teau heightF1, whereasF2 reaches values larger then 1, and
up to 3.17 This “super-Poissonian” noisesF.1d is predicted
for G2

R,0.44G. If the bias is larger than 5 mV tunneling
through states is allowed where both orbitals are occupied
simultaneously, i.e., the molecule can be doubly occupied.
The Fano factor is sub-Poissonian againsF,1d in this re-
gime. Comparing Figs. 2 and 3 graphically allows one to
determine roughly the strength of the suppression ofG2

R. In
general, however, depending on the underlying energy pa-
rameterssgiving the ordering of a sequence of plateausd and
the coupling parameterssgiving their heightd other values for
the Fano factor are possible. In the Coulomb blockade re-
gime sregion 0d, for example, there can also be super-
Poissonian noise, if both energy levels are below the equi-
librium Fermi energy. Super-Poissonian noise is also
possible for a single Anderson level, if the spin degeneracy is
lifted by a magnetic fieldsin the Coulomb blockade regimed
or by ferromagnetic leads, see Refs. 30,31. The energy and
coupling parameters can be fully determined only by consid-
ering several transport regimes, e.g., by application of a gate
voltage.

It should be noted that the nonmonotonic behavior of the
Fano factor in regions 1 and 2 is entirely due to the second
term of the noise expression Eq.s7d that accounts for “propa-
gation” sand transitionsd of molecular states between the two
current vertices at different times.17 On the plateaus of re-
gions 1 and 2 the first term of Eq.s7d is alwayssi.e., for any
coupling/relaxation parameter valuesd identical to the current
times the electric chargee. Therefore it contributes a term
1/2 to the Fano factorF=S/2eI.

Let us consider next the effect of relaxation processes on
the current and shot noise curves. In Fig. 4 we keep the same
set of energy parameters as in Fig. 2 and fix the coupling
strength G2

R at 0.01G suppressed relatively to the other
molecule-electrode couplings. Now a parameteraph de-
scribes the coupling of the molecule with a boson bath. A
value ofaph=0.01G is below even the relatively weak dipole
coupling of photons to molecule states of small aromatic
molecules such as benzene.21 For this small photon coupling
ssolid lined current and shot noise are still reduced in region
2 relative to the plateau heightsI1=1/3 andS1=10/27 in
region 1. If nowaph increases, we find that bothI andS also
increase in the NDC region, at least initially. If the value

aph=2G is exceeded, the NDC is gonessee also Fig. 6,
dashed lined. The behavior of the shot noise peak at the reso-
nance energy is now further complicated by the effect of
relaxation. The noise value at the resonance energy is non-
monotonic, i.e., it first decreases and then increases again
with increasing relaxation. This is due to redistribution of
occupation by the relaxation processes in favor of the first
level.

For our chosen parameters, the valueaph=2G is larger
than a reasonable molecule-photon coupling. However, pho-
non svibrationald couplings could easily be strong enough to
achieve such fast relaxation. On the other hand, molecule
vibrations have a discrete spectrum, much different to the
power law assumed in our calculations. Relaxation due to
phonons can be only effective if the energies of a phonon and
the electronic excitation match within the smearing provided
by temperature. This obviously depends on the details of the
molecule and cannot be discussed within the model consid-
ered here. The destruction of NDC by bosonic transition
rates is easily explained. An electron which formerly was
stuck on the upper molecular orbital can now relax onto the
lower molecular orbital, from which tunneling to the right
electrode is possible via the couplingG1

R.
For the Fano factor in Fig. 5 an increase ofaph leads to a

decreasing value for the plateauF2, which passes the Pois-
sonian valueF=1 at aph,0.34G. Different to the current,

FIG. 3. Fano factorF vs bias voltage for the same parameters as
in Fig. 2 and various coupling parametersG2

R. The NDC effect
results in a super-Poissonian value for the Fano factor.

FIG. 4. CurrentI and shot noiseS vs voltage for the same
parameters as in Fig. 2 but fixed couplingG2

R=0.01G. Coupling to a
bosonic bath allows for relaxation processes. The coupling param-
eter aph is varied relative toG. The NDC effect is destroyed by
strong relaxation.

FIG. 5. Fano factor vs bias voltage for the same parameters as in
Fig. 4 and various couplings to a bosonic bathaph. The super-
Poissonian value of the Fano factor vanishes due to strong relax-
ation processes.
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however, the Fano factor does not show monotonic behavior
with increasingaph. The dashed-dotted line corresponding to
aph=1G lies below the dotted one withaph=10G. The non-
monotonic behavior is even more pronounced for the shot
noise. It has a maximum and a minimum for 0.2,aph/G
,1 before increasing again ataph.G, see Fig. 6. The rich-
ness of the noise behavior in the NDC regime might allow a
detailed determination of coupling-parameter values.

Contrary to thesmonotonicd aph-dependence of the cur-
rent, which can be explained by a redistribution of occupa-
tion probability from the “blocking” upper level to the “con-
ducting” lower level, it is difficult to present a simple
physical picture for the nonmonotonic shot noise behavior in
the NDC region. As noted above, it is the second term of the

noise expression Eq.s7d that is responsible for variation of
the noise with coupling parameters. For our set of param-
eters, the second term of Eq.s7d has a peak at about
aph,0.16G and a minimum ataph,1.66G, where it almost
reaches zero. The increase of this term at smallaph is again
explained by the lifting of the blockade, i.e., the redistribu-
tion of occupation probability. The decrease after the maxi-
mum is the result of asneard cancellation of contributions
from the different states participating in transport. Some of
the state contributions are negative and counter the positive
contributions that produce the maximum. Such a nonmono-
tonicity with coupling parameters is only possiblesin first
order perturbation theoryd for a reducible observable like the
shot noise, where aside from the stationary occupation prob-
abilities the “molecule propagator”fin the form ofP of Eq.
s9dg also plays an important role.

Since in lowest-order perturbation theory temperature
only leads to a thermal broadening of the steps, the plateau
heights in the different transport regimes are given by the
coupling parameters, both the tunnel coupling as well as the
relaxation strength. However, note that the actual relaxation
rate depends also on the position of the energy levels via the
boson density of states. This will complicate matters in the
general case with many levels, which are not equidistant
from each other. In our case with two levels, we can extract
analytical expressions for the plateau values current, noise,
and Fano factor within the low bias transport regimes as
indicated in Figs. 2–5. We find for the plateau of the NDC-
region 2sS2=2I2F2d

I2 =
G1

Rsaph + G2
RdsG1

L + G2
Ld/G

2G2
Lsaph + G1

Rd + s2G1
L + G1

Rdsaph + G2
Rd

s12d

for the current and

F2 =
aphsaph + 2G2

RdfsG1
Rd2 + 4sG1

L + G2
Ld2g + f8G1

LG2
LsG1

R − G2
Rd2 + 4sG1

LG2
R + G2

LG1
Rd2 + sG1

RG2
Rd2g

f2G2
Lsaph + G1

Rd + s2G1
L + G1

Rdsaph + G2
Rdg2 s13d

for the Fano factor. Since only bosonic transition between
singly occupied levels 1 and 2 are possible in this bias re-
gion, the above expressions include only one bosonic rate
aphsDE=e2−e1d. Since the temperature is much smaller than
DE, only relaxation processes matter for the plateau values.
For completeness, we also give the expressions for the trans-
port regime 1stransport through the lower level onlyd. They
can be found from the above by setting the couplingsG2

L and
aph equal to 0. Then electrons can never enter the upper level
at positive bias, leading to an effective one level system with
the result12

I1 =
2G1

RG1
L

s2G1
L + G1

Rd2G
; F1 =

4sG1
Ld2 + sG1

Rd2

s2G1
L + G1

Rd2 . s14d

The derivation of analytical expressions in the low bias
regime allows us a quick study of current, noise, and Fano

factor for arbitrary coupling situations. For the special situa-
tion whereG1

L,R=G−G2
L,R and aph=0 the Fano factorF2 is

presented in a contour plotssee Fig. 7d. This choice allows
the coupling parameters to the left and right reservoir to vary
sindependentlyd between 0 andG, while having the sum of
the couplings to each reservoir fixed. Although not all of the
possible coupling situations can be visualized this way, the
following features which can be extracted from this plot are
valid in general: A super-Poissonian Fano factorF.1 can
only be found if G1

RÞG2
R and additionallyG1

LÞ0, G2
LÞ0.

Furthermore, a Fano factorF.3 is possible only if
G1

LÞG2
L besides the above conditions. In the absence of re-

laxation processessaph=0d we can also find a point symme-
try of F2. This symmetry is broken ifaphÞ0, as adsorption
and emission rates of bosons differ due to the boson occupa-
tion factors.

FIG. 6. Fano factorsleft axisd, current, and shot noisesright
axisd vs coupling to the bosonic bath for the same set of parameters
as in Fig. 4 and 5. The valuesI1, S1, F1 of the first plateau do not
depend on the bosonic coupling parameter, whereas on the second
plateausNDC regiond both the shot noise and the Fano factor show
a nonmonotonic dependence.
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The special case with the settingsGl
L→Gl

L /2 describes
spinless transport through a two-level system in the absence
of relaxation processes. This situation was discussed in Ref.
19 where values of the Fano factor between 1/2 and 3 were
found in the case of equal couplingsG1

L=G2
L. In the caseG1

L

ÞG2
L we can even find Fano factors with values much larger

than 3, as the shot noise is strongly enhanced compared to a
current that is still sizable itselfsnot exponentially sup-
pressedd, see Fig. 7. This again only happens for a special set
of coupling parameters, thus allowing a detailed analysis of
the coupling parameters, if such high values for the Fano
factor were observed in experiment.

Besides the super-Poissonian noise with Fano factors
F.1 due to positive correlations and values between
1/2,F,1 in the sub-Poissonian regime, we can also find
values of coupling parameters in which the Fano factor drops
to values below 1/2. This behavior, however, can only be

observed in the presence of relaxations, when the coupling
strengthsG1

L andG2
R are suppressed relative to the other tun-

nel couplings. If the above couplings are vanishing, there is
only one path for the electrons to tunnel through the mol-
ecule, namely from the left electrode to the upper molecular
orbital, then via relaxation onto the lower molecular orbital
until finally the electrons leave the molecule by tunneling to
the right electrode. By choosing specificallyG1

L=G2
R=0 and

G1
R=2G2

L=aph the value of the Fano factor can be minimized
and is found to be 1/3. The probabilities to find an unoccu-
pied molecule or an occupied molecule with one electron in
the lower level doublet or in the upper level doublet are all
equal in this casesP0=PD1

=PD2
=1/3d. This special situation

reminds us of a system where a chain of quantum dots are
coupled in series, having interdot tunnel couplings of the
same size as the couplings of the chain ends to the leads. For
an infinite chain of such dotsseffectively a one-dimensional
wired the Fano factor also reaches 1/3.32,33

In summary, we have discussed the interplay of Coulomb
interactions, level-dependent coupling, and relaxation in a
model suitable for quantum dots, molecules, and short nano-
tubes. We find super-Poissonian shot noise in a bias region
where the electronic current is suppressed due to blocking
effects. Relaxation due to bosonic excitations has a strong
impact on both current and shot noise in this region, for
example, the shot noise behaves nonmonotonically as a func-
tion of the coupling strength to the bosonic bath. The Fano
factor snoise-to-current ratiod can become arbitrarily large in
the blocking regime. In another special set of couplings the
Fano factor can be reduced to 1/3, resembling that of a one-
dimensional wire.
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