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Lowest Landau level bosonization
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We develop a bosonization scheme for the two-dimensional electron gas in the presence of a uniform
magnetic field perpendicular to the two-dimensional system when the filling factor is’erig¢. We show that
the elementary neutral excitations of this system, known as magnetic excitons, can be treated approximately as
bosons and we apply the method to the interacting system. We show that the Hamiltonian of the fermionic
system is mapped into an interacting bosonic Hamiltonian, where the dispersion relation of the bosons agrees
with previous calculations of Kallin and Halperin. The interaction term accounts for the formation of bound
states of two-bosons. We discuss a possible relation between these excitations and the skyrmion-antiskyrmion
pair, in analogy with the ferromagnetic Heisenberg model. Finally, we analyze the semiclassical limit of the
interacting bosonic Hamiltonian and show that the results are in agreement with those derived from the model
of Sondhiet al. for the quantum Hall skyrmion.
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[. INTRODUCTION bosonic Hamiltonian. However, this method can be applied
only in the limit of small external field when a largmtege)
Bosonization of fermionic systems is a nonperturbativenumber of Landau levels are completely filled. A different
method which has become a very useful tool for treating?osonization scheme for the collective dynamics of a spin-
strongly correlated systems in one-dimension. The basic ide§sS 2DEG in the lowest Landau level was developed by
of this approach consists of describing the neutral elementariyOnti and Vignale:® _ _
excitations of the system in a bosonic language, which al- As pointed out above, the two-dimensional electron gas at

lows us to map the sometimes intractable fermionic systerrl‘((:1 is a strongly correlated electron system. It is well

into a more friendly bosonic model. A very detailed descrip- own that the ground state of this system is a spin-polarized

tion of the so-called constructive one-dimensional bosoniza%s(tael Ir\lv\{;/r?lcgp?rgl eﬂf;”g&iﬁg;%%'ﬁzgB/afr']lll}&e Ig'v;ﬁstfléﬁgfiau

tion method, its relations with the field-theoretical approach,ma neL8-11 The elementary neutral excitations are also de-
and some applications can be found in Refs. 1 and 2 and tl“@ gnet y

. cribed as magnetic excitddsvhich, in the long wavelength
references therein. Some efforts have also been made to ex: it ~an be seen as spin wave excitations of the quantum
tend this formalism to higher dimensions. The first attempt ’

. 2 P all ferromagnet. Moreover, the low lying charged excita-
was carried out by Luthérand extended by HaldarteA  ion is described by a charged spin texture, called quantum

bosonization method for a Fermi liquid in any number of )| skyrmion2® This nontrivial excitation can be viewed as
dimensions was constructed by Castro Neto and Fradking configuration in which the spin field at the center points
and also by Houghton and Marstéh. down and then it rotates smoothly as we move radially out-
The quantum Hall effect is one of the most interestingwards from the center until all the spins point up as in the
phenomenon observed in the two-dimensional electron sygyround state. These charged spin textures are topologically
tems(for a review see Refs. 8—L1While the integral quan- stable objects with siz&he number of reversed spjrixed
tum Hall effect can be understood in terms of a noninteractpy the competition between the Coulomb and Zeeman inter-
ing electron model, correlation effects due to the Coulombactions.
interaction between the electrons are important to understand Since the quantum Hall system @t 1 is a quite interest-
the fractional quantum Hall effect. An exception to the aboveing strongly correlated electron system and the bosonization
scenario is the quantum Hall system at filling factor onewas successful in describing the integral quantum Hall sys-
(v=1), where the electron-electron interaction also plays anem atv>1, we would like to extend the methodology de-
important role. veloped by Westfhal, Jet al'? to the case when the system
A bosonization approach for the two-dimensional electrons under the effect of a high external magnetic field, in par-
gas (2DEG) subject to an external perpendicular magneticticular, when the filling factor is one. This is precisely the
field was developed by Westfahl, &t all? In this case, it aim of this paper.
was shown that the elementary neutral excitations of the sys- Following the ideas of Refs. 12 and 17, we start with a
tem, known as magnetic excitohbcan be described in a Landau level description of this system and then we intro-
bosonic language and the Hamiltonian of the interacting twoduce a nonperturbative bosonization approach for it. We fol-
dimensional electron gas was mapped into a quadratibw Tomonaga’s ideas for the one-dimensional electron gas
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in order to show that the neutral excitations of 2DEG, the {me,cn'm'}: Snry Ot » (3
electron-hole pairs callethagnetic excitonscan be treated
approximately as bosons. with n=0,1,2,.. andm=0,1,... yNg—1. Here,N¢:AnB is

We will show that the Hamiltonian of the interacting two- the degeneracy of each Landau level, wig 1/(2712) and
dimensional electron gas at1 can be mapped into an in- A is the area of the system. Substituting E@.in Eq. (1)
teracting bosonic Hamiltonian, where the single particle enwe find that the Hamiltonian of the system is diagonal in the
ergy of the bosons is equal to the energy of the magnetitandau level basis,
excitons derived by Kallin and Halperid.The interaction
between the bosons gives rispT to the fqrmatiqn of tvyo—boson Ho= 2 ﬁwc<n + }>C§m0nm, (4)
bound-states. In analogy with the isotropic Heisenberg nm

model, these bound states can be related to the skyrmion- _ . .
antiskyrmion pair, which is also a neutral excitation of the Wnerewc=eB/(m'c) is the cyclotron frequency. Defining the
system. filling factor v=N/N, as the number of filled Landau levels,

The paper is organized as follows. In Sec. II, we will for v integer, the ground state of the two-dimensional elec-
present the bosonization scheme for the 2DEG=t, i.e., ON gas(2DEG) is obtained by completely filling the low-
the bosonic operators will be defined. The bosonic represerSt Landau levels,

tation of the density and spin operators will be derived and =1 Ny-1
we will show the relation between the lowest Landau level s =11 11 < |o), (5)
(LLL) projection formalism and the bosonization method; neo meo

the reorganization of the Hilbert space will also be discussed. ,
In Sec. Ill, we will apply the method to study the interacting where|0) is the vacuum state. o _
two-dimensional electron gas at 1. Finally, in Sec. IV, we Now, if we consider the electronic spin and restrict the
will analyze the semiclassical limit of the interacting bosonicHilbert space to the lowest Landau level=0) only, the
Hamiltonian derived in the previous section following the fermionic field operator$2) become
procedure of Mooret all® 1 .
Vi) =2 =€ "Gy p(=ir ek,
m V2l

Il. THE BOSONIZATION METHOD FOR THE 2DEG
AT v=1 1

V(=3 ==&, ey,  (6)
m

A. Bosonic operator definition V27l

Let us consideN spinless noninteracting electrons mov-
ing in the x—y plane (two-dimensional electron gasn an

external fieldB=B,z. The system is described by the Hamil-
tonian

wherec! creates a spinr electron in the lowest Landau
level with guiding centem. These creation and annihilation
fermionic operators also obey the anticommutation relations,

4 — —
{CITn(T’Cm/g"} - {Cmmcm’o-’} - O,

1 - _ e 2
Ho= 2m*f dorw (r)(—lﬁV +EA(r)) P(r), (1)

* . . . {CTlac 4 ’}:5 '5( 'y (7)
wherem’ is the effective mass of the electron in the host Mmoo T e

semiconductofsee Appendix AandW'(r) is the fermionic  with o=1 or |.
field operator. In the symmetric gauge, the vector potential In addition to the kinetic energy ter, [Eq. (1)], we
A(r)=—(r XB)/2 and therefore the fermionic field operators should also include a Zeeman energy tekfg in the total

can be written in a Landau level basis (@ppendix B Hamiltonian of the system,
1 _1r12/412 % . 1 *
Wi(r) =X (nmir)eh,= > ==& G, ek, Hz=->g ugB> f Prow! (W, (r), (8)
nm n,m V2l 2 P
- whereg >0 is the effective electrog-factor (see Appendix
W(r) = 2 (r[nmicam= > ==& " Gy nlir /1) Com, A) and ug is the Bohr magneton. Substituting E¢8) in the
n,m nm 2l expressiongl) and(8), the total Hamiltonian of the 2DEG,

(2 H=Hy+Hz, yields

wherer=x+iy, |=Ac/(eB) is the magnetic length and the 1 + 1., +
function G n(X) is defined in Appendix C. The fermionic H= 52 AWCrngCmo = 59 1eB2 0, Cry- (9)
operatorc| . creates an electron in the Landau lemelith " m7
guiding centem and obeys canonical anticommutation rela-We can see thak( is also diagonal in the Landau level basis
tions and the kinetic energy term is simply a constant. The one
vt particle energy eigenvalues areg'mg/2 and g ug/2
{Chm G} = 1Chm o} = 0, whereas the degeneracy of each energy eigenstatg. is
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@) polq) = f d?r eI ()W (1)

g n=0 _
} S W U s =3 J Pre T (mle ) [ )l v

= > (mle T2t o

m,m’
n=0 =2y G la)ch, Covos (11)

A A mm

whereq=q,+iq, and the operatoz is defined by Eq(C1).
Observe that the action @f,(q) on |[FM) does notreate any
electron-hole pair excitations.

FIG. 1. Schematic representation @ the 2DEG ground state The spin density operator is defined (&s=1)
at v=1 (quantum Hall ferromagngtind (b) the elementary neutral

excitation(the electron-hole pajirg is the Zeeman energy.

m=0 m=1 m= m=N¢—1

1 A
S(r) = 5 2 W0 G0 W 4(0),
For v=1, the ground state of the 2DE(FM), is obtained P
by completely filling the spin up lowest Landau levghe  where the components of the vectoare the Pauli matrices.
quantum Hall ferromagngt However, we will define the spin density operat&fér) and
S(r) only by the nonzero matrix element. In terms of the

Ny T fermionic field operators we have
[FMy= 11 cfyl0), (10)
m=0

S'(r) = Winw(r),

as illustrated in Fig. (). In this case, each guiding center is
occupied by only one electron with spin U4gM) is an ei- S () =wlr)w,(r).
genvector of the operatds, (the z component of the total
spin whose eigenvalue is equal /2.

The neutral elementary excitations of the system ar

In analogy with Eq(11), it is easy to show that the Fourier
éransform of these spin operators is given by

electron-hole pairs or spin flips as one spin up electron is gl +
annihilated and one spin down electron is created in the S'(g) = 2 G (19)Crn G | (12)
guantum Hall ferromagndiFig. 1(b)]. These excited states mm
|¥) can be constructed by acting with the spin oper&or
=S~iS, on the ground statf=M), S(q) =2 G (la)ch o 1. (13)
mm’
|W) =« ST|FM).

After some algebra, it is possible to show that the commuta-

In the bosonization approach for the one-dimensional election relation between the operatd#s(q) and S(q) is pro-
tron gas, the annihilation and creation bosonic operators afeortional to the Fourier transform of the density operators
derived from the electron density operatptk) as the p;(r) andp (r) (see Appendix B
electron-hole pair excitations can be obtained by acting with ~ " o)
p(k) on the ground state of the systérhln order to define (S8, 1=€79 Zpy(q+q") - €92 (q+q).
the bosonic operators, the commutation relation between the
electron density operatord(k) with different momenta is Now, as the average values @f(q) andp (q) in the ground
analyzed. We will follow the same procedure, but here westate(10) are(p;(q+q’))=Nydg+q:,0 @and(p (q+q’))=0, re-
will analyze the spin density operato®(r)=S(r)+iS(r) spectively, the average value of the commut@@r, S;,] is
andS (r)=S(r)-iS,(r) in order to define the bosonic opera-
tors for the 2DEG aw=1. More precisely, we are interested <[S:;,S;,]) = e‘“Q|2’2N¢5q+q,,O. (14
in the Fourier transform of these spin operators.

Before doing that, we need to say some words about th&he above expression will allow us to define the bosonic
density operator of spior electrons, which is defined as operators as a function of the fermionic operato:;s,, and

Crm o

po(r) = ‘I’Z(r)\lf(,(r). If we define the operators, and bg by

With the aid of the expression(§) and the definition of the

1 e
= —— ql lagr
function Gy, v (X) (Appendix Q, it is possible to show that g V,Nd)e' Sq (15)

045339-3



R. L. DORETTO, A. O. CALDEIRA, AND S. M. GIRVIN PHYSICAL REVIEW B71, 045339(2009

2, To sum up, we can say that the sthgéFM) is a neutral
b’r = e|Iq| 14 (16) N .

o= Sy elementary excitation of the 2DEG at=1 which corre-
sponds to either a spin-flip or a magnetic exciton with mo-

and if we approximate the commutation relation between thénéntumg.
by and bg by its average value in the ground st&i®),

T T B. Density operator
[bqqu/] = <[bqqu/]> = 5q,q': (17)

Although the bosonic operators are not directly derived
from the electron density operator as in the one-dimensional
tors. In analogy with the Tomonaga’s model for one- electron gas, the_ latter is a very useful operator when the
dimensional electron gas, we will assume that Eij) is Coulpmb interaction bgtween th_e electrons Qf_ the ZE?EG is
exact!920 This is the main approximation of our method. considered. In this section, we will show that it is possible to

Observe that this approximation is quite similar to the oneWrite down the electron density operator as a product of the

i T
adopted in the random phase approximatbn. bosonic operatorg, andbg.
Therefore, after this point, we will assume that ThTe bosonic  representation of any operata?
=0O(Cyp ,» Chr.») Can be obtained by applying this operator on

we can say thab, and bg are approximately bosonic opera-

m,o?
1 the eigenstate€1), which span the bosonic Hilbert space,
by= ——e "> Gy (-lach e, (18)
VN(ﬁ mm’ (bT)nq (bT)nq
Olingh =0\ [1 2= |IFm) = | O,IT = |IFM™)
1 2
T = — _“ql 14 , T , bT n,
0= N 2 Gnm(la)Cy G0 (19 122 0wy, 22
mm /ng!
q Vg
are bosonic operators, which obey the canonical commutastarting with the expressions 6f andb/ as a function of the
tion relations fermionic operators' andc,,,, we can calculate the value
—— B of O|FM) as well as the commutation relati{)@,bg], which
[b 'bq’] =[bg,by]=0, (20) allows us to obtain the value of the commutator in E2R).

Following the above procedure, let us derive the expres-
[b bT,] =5 sion of the density operator of spin up electrgngk) as a
ara function of theb's. It is quite easy to show that
The quantum Hall ferromagné¢M) is the vacuum state . w2
for the bosons as the action of the fermionic operegpr, on [pT(k),ba] = - g K74g 'qu’Zqu,
|[FM) is equal to zero. Therefore the bosonic Hilbert space ISvhere kq=1%2-(k X g). Using the property(C12 of the

spanned by applying the operatof on the quantum Hall  ¢nciion G (X), We can see that the value pfik)|FM) is
ferromagnet any number of times simply a constant

\n, T\n, R 2
= I %01 %Lem, P (K)IFM) = €2 3 Gy (it o M)
gelng} VNg! q Vng! m,m’

with n,=0 and=n,<N,. = & oNg|FM). (23
The statebg|FM) is a linear combination of electron-hole After some algebra, we end up with

excited states as illustrated in Figh), where both the elec- ‘
tron and the hole have spin down. In fact, the bosonic opera- - K2/ ny(by)

p ) p p (k)|{n }) - _ 2 e [Ik|</4 |kDp/2bT p D
tor b{ is similar to the operatoe! (q), with n=p=0, dis- ! a B k+p n!
cussed in Ref. 12. This operator creates the neutral 4 oy
excitations known as magnetic excitons when it is applied on > g) ¢ EM) + N

. . - - I n

the ground state of the noninteracting two-dimensional elec- il r [FM) + G Ny l{ o)

gelngla#p VNg:
tron gas[Eq. (5)]. a K

The momentuny is canonically conjugate to the vector = - g Ky e kP2l bol{ng})
Ro=(RE+RN)/2. Here, the vectorR$ and R} are, respec- P
tively, the position of the guiding centers of the electron and + g N[N (24)

the hole excited in the system as defined in Appendix B.

HenceR is the center of mass of the guiding centers of theln the second step above, we used the fact that

excited electron and hole. In addition, the momentiis a t\n, — t\n ol — tyn -1 t\n

good quantum number because the total momentum of a o (Bp)" =[5, (bp)"] + ()%l = np(lo)"%™"+ (byp) "y,
two-dimensional system of charged particles in an externaind thatb,|[FM)=0. As Eq.(24) is valid for any eigenstate of
magnetic field is conserved when the total charge of the syshe bosonic Hilbert space, i.e., it is an operator identity, we
tem is zerc’? can conclude that
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~ _ 2 i —_
pi(K) = & Ny — e Y ektzpl b, (25) (9,51 # Sqr
g
. _ _ _ A In fact, we should also follow the procedure described in
is the bosonic representation of the density operattq). Sec. I B in order to calculate the bosonic form of the opera-
In the same way, the expression of the operatdk) in  tors S, andS,.
terms of theb’s is given by From Eg. (13) and (19) it is possible to show that
, _ [S;,bg]:o. Therefore the action & on the eigenstatd®1)
p (k) = e K74y erkialzpl, b, (26) s related to the action of this operator on the quantum Hall
q ferromagne{FM) only
asp,(k)|FM)=0 and
R — SiHngh = [s- 1 @—] s+ T1 %L 1)
~ — o |Ik|“/4 +ikOg/2, = s .
[pi(k)'bq] =g W tgrikia bk+Q' K k qelng} ‘/n_q! qelng} \/’? )

An alternative procedure to obtain E¢25) and(26) con-
sists of looking for an expression in terms of this which ) . )
satisfies the commutation relatio®, b ]. For instance, for ~Unlike the results for the electron density opera®f-M)is
the electron density operatop,(k), the commutator NOjusta constant, but rather proportional to a linear combi-

L] . T . .
[p1(k),bl]ebl,, and therefore we can conclude that the ex-nation of the termsGy,  (19)Cy, Coy(|[FM). In this case, it
pression ofp; (k) in terms of theb’s should be a linear com- ;eemg quite reason.able ftohcon5|der B and define the
bination of the operatobT+kbq. Choosing the coefficients osonic representation of the operafyras
properly, we easily find the first term of E(5). In order to S = \;’N—(be—\lk\zmbl. (29)
obtain the complete expression, it is necessary to add the _ _ _
term related to the action qﬁT(k) on |FM). In the next In the next section, we will show that ER9) is very well
SectionS, we will adopt this procedure as it is Simp'er tharfjeﬁned because it satisfies the commutation relations be-

0

the one previously discussed. tween the spin density operators as well as between the spin
Finally, from Egs.(25) and(26), we arrive at the bosonic density and electron density operators.
form of the density operator On the other handS:|FM)=O [See Eq(lZ)] and hence

the bosonic representation of the opera®pris completely
P = p1(K) +p (K) = & oNy, + 2ie—|lk\2/42 sin(k Dq/Z)qubq. determined b¥ the commutation relation between this spin

q operator and,
(27) dia4, -
o . | [S5,b}1 = ——(&"972p (k + ) - &% 9%, (k + )
Notice thatp, is quadratic in the bosonic operators. VN
2 2 e
C. Spin density operators = VNge . /45'(‘"“ - We e
Ng
In this section, we will derive the bosonic representation KO(-p)-q0
of the spin operators, S;, and S.. We will see that the X > co 9=p)=q p)bLmqbp- (30)
obtained forms for these operators are similar to the ones of p 2

the formalism suggested by Dyson to study spin waves in
ferromagnetic systert.

Since thez-component of the spin density operator can beg
defined as

s the first term of Eq(30) is proportional tod, 4, we can
onclude that the operat& should present a term linear in
k. Moreover, the second term is a linear combination of
products of the forrTprbp, which implies thatS; should
have a term proportional to the produzibb. Choosing the

1
Sir)= E(W}r(r)%(r) =W (r)), coefficients properly, we end up with the bosonic form of the
operatorS;
the expression of the Fourier transform of this operator as a — o 1 )
function of the bosonic operators follows immediately from S, = INge K4 — —g k74
Egs.(25) and(26), VN,
kO@-p)-q Dp) ;
1 1 xEooa( by rq+pbpbg,  (32)
Sﬁ:E[PT(k)_Pi(k)]:E@,ONd; Py 2 k+g+p~p™d

which satisfies the commutation relati¢30).
As pointed out earlier, the representatid@8), (29), and
(31) are similar to the one previously considered by Dy%bn.
In spite of defining the bosonic operatdys and b; from  An important point of this formalism is that, althougth the
Egs.(15) and(16), respectively, the latter do not correspond Hermiticity requirementS;=(S,)" does not hold, the usual
to the bosonic representation §f and S, as commutation relations between the spin operators are satis-

- &K cogk g/2)bf,qbg. (28)
q
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fied. A detailed review of this formalism can be found in Ref. This result implies that, within the LLL subspace, the charge
24. As we will show in the next section, the representationand spin excitations are entangfeds it will be discussed in
(28), (29), and(31) derived using the bosonization method Secs. 1l C and 1V, the charged excitation of the interacting
also preserve the commutation relation between the spin demwo-dimensional electron gas at=1 is described by a
sity operators. charge spin texturéquantum Hall skyrmion'®
Finally, after some algebra, it is possible to show that the
commutation relations between the spin operaﬁérsi, and
In this section, we will show that, using the bosonic rep-S; are given by
resentation of the operatofg, , S, andS,, the commuta-
tion relations between them are in agreement with the results _ 2ea2 [ ik + 10l 2ant
derived from the formalism of the lowest Landau level [S;,qu] =9 cogk Dal2)\Nye e Bicsg
(LLL) projection. = a2 cog 00/2)Seeq, (35)
The LLL projection is a formulation of the quantum me-
chanics in the restricted subspace formed by the lowest Lan-
dau level as developed by Girvin and J&cta brief review ) i )
of this formalism is presented in Refs. 8 and.18n impor-  [S, 1=~ € %2 cogk 0q/2)| VNye k174,
tant consequence of the projection of the electron density and

D. LLL projection

spin density operators on the LLL subspace is that the com- oIk + 1%

mutation relations between those operators are modified, i.e., -

the projected spin operators do not commute with the elec- \e"N¢

tron density operator and do not follow the canonical com- ,

mutation relations between spin operators either. xS cos<(k *a+p) Op-p ))bT bob.,
From Eq.(27), it is quite easy to show that the commu- o 2 krqrprp’ PP

tation relation between electron density operators with dis- ,
tinct momenta is given by = - ™92 cogk 00/2) ., (36)

[Py, pg] = 4692 sin(q Dk /2)e7l + 1ol

+ _ |22 _ oa-lkZa-ig%4
((k+q) Dp) ; [S S =Nge Oq,—k — 2€ cogk Oq/2)
X > sm(— (o VNP o F8 (32
> +q+pp

2 (k+q)Op
xS COS(T bl
p

We can see thdf, pq] is proportional to a linear combina-

tion of the productbl,LqJ,pbp with coefficients equal to + 2 IKZa-1al4 ik Ca/2
sin(k+q)Op/2]. This result indicates that the commutator € sink Da/2)
should be related to the electron density opergtgg. In « S sin (k+q) Op), + b
fact, if we compare Eq(32) with Eq. (27), we find that . 2 k+q+pp
PN .12k, . ~
[Pk: Pg] = 2i€"™ 92 sin(k 00/2)pgek. (33 = 2d k2 cogk 00/2)S1q
which agrees with the result obtained from the LLL projec- +ig’k a2 sink Da/2)p (37)
k+q -

tion formalism. In the LLL projection approach, it is proved

that the projected electron density operators with different ) . )
momenta obey an algebra similar to the one of the translatiof92in. all the commutation relation85—(37) are in agree-

operators in a magnetic field. When a particle in a magneti@€nt with the results calculated in the LLL projection for-

field is translated along the parallelogram generated by thEnalism. o o
vectorskl? and gl?, the particle acquires a phase equal to It is not surprising that our bosonization approach for the

qOk. As a consequence of that, the commutdfar, p,] is 2DEG atv=1 recovers the results obtained with the LLL
not equal to zero, contrary to the behavior of t?1e non_projection. Remember that all operators considered until this

projected operators moment were expanded in terms of the fermionic creation

In the same way, from expressio(&7) and (28), we find and annihilation operatorqﬂw and c,,,, with the aid of ex-

that the commutator betweén and < is also different from  Pressions(6), which are the fermionic field operators pro-
= Sa jected in the LLL. In addition, as discussed in detail in Ap-

Zero. ) 5 pendix C, the functiorGy, ,y(x) is the matrix element in the
[P, ] = 2ie"™* 92 sin(k Dg/2)e M+ 1al74 lowest Landau level basis of the projected operafd#’.
(k+q) Op When the Fourier transform of any operator is calculated
X E C05<—>bl+q+pbp using the LLL projection formalism, it is necessary to con-
p 2 sider the expression of the projected opera&dit’.

1 , Returning to the previous section, we can also conclude
= =8¢ 00q0NG — 2ie" ™92 sin(k 0a/2)S . that the operatoS; is very well defined by Eq(29) as this
2 one preserves the commutation relation between the electron
(34 density and spin density operators within the LLL subspace.
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E. Hilbert space moving in a cyclotron orbit with radius equal to the magnetic

In the bosonization approach for the one-dimensional€Ndth | whose guiding center is located at a distance
electron gas, HaldaA® proved that the Hilbert space [vV2m+1 from the origin of the coordinate system. Therefore

spanned by an arbitrary combination of the fermionic crethe largest distance between the electron and the hole in the

ation and annihilation operators acting on the vacuum stat8'agnetic g&non corresponds =N, and it is roughly
IN=0), is identical to the Hilbert space spanned by an arbi-£dual_to V2Nyl. Since the momentum CUIOff iy
trary combination of the bosonic creation operators acting orr V2N¢/l, the number of points in the momentum space is
the set of alN-particle ground statedl)o, with N e Z, which ~ given by
is the vacuum state for the bosdns. A 212N, (Gmax

The above assumption can be elegantly proved by calcu- >1 :—ﬂzf d’q= —ﬂl‘éf qdqf do=N2, (40
lating the grand canonical partition functions of the noninter- q 4 4 0
gcgng fe(rjn;mnlchan;j bosomq Harrr]nltgnlan;, vv_here thﬁ lgt;e[{/vhereA is the system area.
Is derived irom the former using the bosonization method 1or £ the ahove analysis, the number of states with
the one-dimensional electron gas. Since all terms of the Paosons is gi
" . . . . given by
tition function are positive quantities, the relation between

the two functions allows us to compare the degree of degen- PE =1,
eracy of the fermionic and bosonic Hilbert spaces. For the
2DEG atv=1, we have been considering a system consti- PE‘:NZ

tuted by a fixed number of particlés=N,, therefore we will
analyze the canonical partition function.

2
In Sec. Il A we showed that the Hamiltonian of the 2DEG P5= N(Z,,+ TNfb'_
at v=1 is given only by the Zeeman terfisee Eq.(9)], (Ng - 2)!2!

which is diagonal in the Landau level basis. The energy ei-
genvalues can be written d§,=ng-gN,/2, where Gsn
<N, is the number of electrons with spin down. The degen-
eracyPﬁ of each energy eigenstate can be easily calculated,
A=(o) ()G
N n n ni(Ng-n)!/

1
B_ 2 (N2 2
Py = !NE(N5+1)~~[Nt+(n 1], n=1,

hence the canonical partition function for the bosonic Hamil-

- . S tonian can be written as
Hence the fermionic partition function is given by

Ny
Ny 2 B _ B,N,2 B_—n
N ZB=efNy/2| 1+ D, PBe™g | 41
25 = Tr(e ') = efNd2Y ( n¢) e ", (39) 0 ( E " 0
n=0

, Since 28> zF, we can conclude that the bosonic Hilbert
with B=1/(KgT). o ) . space is bigger than the femionic one. Even having removed
On the other hand, as it will be discussed in Sec. lll A, theihe states wit= N,, from the partition function(41), we
bosonic HamiltoniafEg. (44)] derived from the noninteract-  stj|| have unphysical states in the bosonic Hilbert space.
ing fermionic one[Eq. (9)] using the bosonization scheme is  There is only one fermionic and one bosonic subspace of
diagonal in the basis of the eigenstatés;}) [Eq. (21)].  the corresponding Hilbert spaces which are identical. Notice
Therefore the canonical partition function is simply given bythat the first two terms of Eq$38) and(41) are equal, which

Ny implies that the fermionic subspace spanned by the quantum
Zg:Tr(e—BHg)z <{nq}|e‘5Hg|{nq}) = BNy «PEe—n,Bg_ Hall ferromagnet,||.:M>,.and the states wi'gh oqu one spin
g} n=0 down (n=1) are identical to the bosonic Hilbert space

(39) spanr_1ed by the vacuum and the states (_)f one—bb&Em/I).
This overcompleteness of the bosonic Hilbert space can

Here Pﬁ is the number of eigenstates witkbosons and be easily understood. From expressidB88) and (41), we
n=X4n,. Notice that the eigenstates with>N, are not in- ~ can see that the number of states of two-bosons is roughly
cluded in the above sum as those states correspond to a nutwice the number of fermionic states with two spin down
ber of electron-hole excitations greater than the number ofn=2). If we consider, for instance, a state of two-bosons
fermionsN. constituted by two bosons of momerga andqs,, such that

The values ofP? are determined by the number of points [lq4/, |lg, <1, in the fermionic language, it can be seen as in
in the momentum space. The maximum momentum valudig. 2(a). Notice that this state is equivalent to the one which
can be estimated if we remember that a boson of momentuis constituted by two bosons of momeitaandq,, such that
g, created by the action of the operahéron the stat¢FM),  |lga, |lgs>1 [Fig. 2(b)]. Based on that, we can say that we
can be described as an electron-hole pair whose distance bare “double counting” the number of states of two-bosons.
tween the center of their guiding centergris=1%/q|. More-  Of course, this problem becomes worse as we take into ac-
over, as discussed in Appendix B, a particle in the lowestount states ofi bosons(n>2). Besides that, we can still
Landau level with guiding centen corresponds to a particle study the low-energy physics of the system as, in this case,
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(@) to the lowest Landau level subspace, is given by the Zeeman
e _ term only [Eq. (9)]. In the Landau level basis, it can be
} T\ R written as
g \ -
\ s
A - A .
qQ 9, Ho=Hz=- 59; % O'C:rn(rcma- (42
(b)
ES whereg=g’ ugB>0.
V- — v — - In order to find out the bosonic form of the Hamiltonian
g} Tt~ 7 (42), it is necessary to calculate the commutation relation
4 _--a7 Taso 4 betweerniH, and the bosonic creation operataj
% g llala
m=0 m=l m=2 @ om=N2 melyl [Ho.bg] =~ —gE 2 ——0Gyy(lg)

7 mn,n’ v ¢
FIG. 2. Schematic representation of a two-bosons statég|,

gzl <1 and() [iq|fias| > 1. X [y on o]
oS Ll aac . = abl
we have a small number of bosons with momentigh< 1 92 \s"N,pe Gn, (10)Cp Crry = gbg. (43)
n,n

present in the system. As we will see in the next section, the

energy .Of the boson_s Incréases .W'th the momenfé&m. Since the above commutator is proportionabgoHo should
.(51)]' Itis \{vo_rth mentioning that this same problem appearspresent a term of the forrgz, b by, Which gives the same
in a description of a bilayer quantum Hall system at tOtaIcommutauon relation as in on}43) Moreover the action of

n a0 :
f'lrlwmg factrc])r Oni(llf_l)' Her% th? sp%ntaneous énterlayerﬁt on |[FM) is equal to a constant ,ON,/2. Therefore we
phase coheren(L1]) state can be viewed as a condensate of.3, onclude that the bosonic form of the Zeeman term is

interlayer particle-hole pairgéexcitonsg, which, in the very
dilute regime, can be treated as pointlike bosons. The corre- 1
sponding bosonic Hilbert space is also overcomplete. Ho= gz b(‘;bq - §9N¢- (44)
This problem could be fixed, for instance, introducing a
constraint which restricts the bosonic Hilbert space to the
physical states only. However, this is quite a hard task. Fof he same result can be obtained in a more rigorous way by
example, it isnot possible to follow the ideas of the well- explicitly calculating the action of{, on the eigenstates
known expansions of the spin operators in terms of bosond22),
such as the Schwinger boson representafidn. this case,

thelocal spin operators are written as a function of tbeal
pin op Holingh) = HO<H —“—IFM>) lHo,H —‘*—}IFND

bosons operatora, andg;, namely ng!

S=a3, §=3a =(@a-37)2.
The constraint is easily determined as it is related to the fact
that the number of bosons on the sitshould be twice the g
spinS, i.e., a'a,—a'a=2S. The same ideaannotbe applied S - =gN H %)—“:M) (45)
to our case as the bosonic operatbfsandb, are not local. 9 k- g ¢

q ke{nq}

In fact, they involve a linear combination of electron-hole
excitations where the particles are localized in different guid-This analysis shows that the Hamiltonian of the noninteract-
ing centers. Until now, we have not found a systematic waying two-dimensional electron gas at1, restricted to the
of introducing a constraint in our formalism. lowest Landau level, is recast in a noninteracting bosonic
system, whose dispersion relation is constant.

H _q_Ho“:'VD

IIl. INTERACTING TWO-DIMENSIONAL ELECTRON
GAS AT v=1

. . . L B. Interacting electron system
In this section, we will apply the bosonization method

developed for the 2DEG at=1 to study the interacting two- Now, we will consider an interacting two-dimensional
dimensional electron gas at=1. We will show that the electron gas at=1, where the particles are restricted to the
Hamiltonian of this interacting system is mapped into anlowest Landau level. The Hamiltonian of the system is
interacting bosonic model.
: . H="Ho+ Hint- (46)
A. Noninteracting electron system

As pointed out in the last section, the Hamiltonian of theHere, H, is given by Eq(42) and the interacting term can be

noninteracting two-dimensional electronsiat1, restricted  written as
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1 1.25
Him=§2 szrdzr’\PZ(r)‘P;,(r’)
(T,O', ] - —
XV(Ir =" )W (r")W,(r), (47)
where V(|r|)=€?/(er) is the Coulomb potential ane the 5 0.75} —
dielectric constant of the host semicondudfeee Appendix v
A). Substituting Eq(6) in H;y, it is possible to write down > o5k 1
the interacting term as a function of the density operators of = 7
electronso as
1 Pk 0.25| .
== —V(K)p,(K)p, (= k), 48
Hing 2§,f4n2“p"”””() (48) o
. o . % 2 4 6 8 10
whereV(K) is the Fourier transform of the Coulomb potential [qfl
in 2D,
FIG. 3. Dispersion relation of the bosoftsg. (51), with g=0],
2mwe? in units of the Coulomb energg?/(el) as a function of the momen-
ek umg.

andk=|k|. Using the bosonic form of the density operators

p,(k), we can write down the interacting term as a function ]

of the bosonic creation and annihilation operators. Substitut- Ho= = Ha=— 1 f PRVKIN.. 8, ~eIK4

ing Egs. (25 and (26) in Eq. (48), we have four distinct 2 3 4772% (KINgdic

terms, Hjw=H1+H,+Hz+H, The first one is a constant ] .

related to the positive background, X sin(k Op/2)bybg.

1 The last term igquartic in the bosonic operators. Rewriting
Hi= Qf d?kV(K) & o, 'H, in normal-ordering in the operatols we end up with a

quadratic and a quartic term in the bosonic operators, namely

whereas the second and third terms are

1 . ) 1 _ :
Hy= ﬁE dkV(k)e %12 sin(k Op/2)sin(k 0a/2)by ,qbgb) by = ﬁ% f d2kV(k)e K2 sirp(k Oa/2)bfb,

1 e
+5 53 dPkV(K)e M2 sin(k Dp/2)sink 0a/2)bf,obf_bgb, = 1 \/22 (1 -9l o(|1g|74) )bfb,
p.q € q

1
+5 52 | dkvke M sintk Opf2) x sink 0a/2)bl.qb}-babp. (49)
P
[
Herelo(x) is the modified Bessel function of the first kifd. & [= i .
Now, adding the bosonic form of the noninteracting Wo=g+ 5(1—9 o741 o(|1g[2/4)) (5

Hamiltonian[Eq. (44)] to H;,, we will arrive at the expres-
sion of the total Hamiltonian of the interacting electrons as a

function of the bosonic operators, This curve is plotted in Fig. 3 for the cage=0. The energy
of the bosons is given in units of the Coulomb energy
1 5 €2/ (el).
H=—-"gN,+ > qu:;bq +=> V(k)e'“k‘z’zsin(k Op/2) The Hamiltonian(50) describes a system of interacting
2 q ‘Ak,p,q two-dimensional bosons. The ground state is the vacuum

state|FM) [Eq. (10)] and its energy is equal 1ﬁo=—%gN¢.
This result implies that the ground state of the two-
dimensional electron gas at=1 does not change as we
where the dispersion relation of the bosons is given by moved from the noninteracting to the interacting system. As

X sin(k 0a/2)bf,qbh-0gbp, (50)
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pointed out earlier, the ground state of the interacting two- A possible relation between the dynamical soliton and the
dimensional electron gas is the quantum Hall ferromagnebound states oh-magnons of the Heisenberg model was
even in the limit of vanishing Zeeman ener@y— 0). discussed by Schneid&r.For the isotropic model, the dy-
The elementary neutral excitations are described by thgamical soliton solutions of Tjon and Wrightwere semi-
bosonsb, whose dispersion relation, is equal to the previ- ~classically quantized via the Bohr-Sommerfeld-de Broglie
ous diagrammatic calculations of Kallin and Halpé#iand ~ condition. Following this procedure, trecomponent of the
the results of Bychkoet al.14 The long wavelength excita- total magnetization assumes only integer values. Conse-

tions can be considered as the spin wave excitations of thgu_entg_, tlr}e;precessional frdequenmys alsfo qugngzea‘.‘ For h
quantum Hall ferromagnet, while the ones with large mo-SPIN S=1/2, a correspondence was found between the

menta correspond to a quasielectron-quasinole pair as tH]?-magnons and the dynamical soliton spectra. This result im-

i ; ies that the dynamical soliton of the one-dimensional fer-
articles are very far apart. Remember that, as discussed [} . . i
gec_ A the diz}/tancepbetween the guiding centers of th romagnetic Heisenberg model can be considered as a bound

Qtate ofn-magnons. This analysis was also applied to the
excited electron and hole |s|=1?q]. g y PP

he ab | b initial . easy-axis and anisotropic exchange Heisenberg models, but
The above results corroborate our initial associaec.  {he correspondence between the two spectra was found only
Il A) between the bosonis and the magnetic excitons de- i, the limit of large quantum numbers.

scribed in Ref. 13. As a matter of fact, within our bosoniza-  Those characteristics are similar to the solutions of the
tion method, we go beyond the diagrammatic calculdfi@s  sine-Gordon mode¥ Two possible solutions of the classical
we end up with an interaction between the bosons. In thequations of motion are the topological solitt static lo-
next section, we will study the resulting interacting bosoniccalized solutioh and the breather solution, which resembles
model. an oscillating soliton-antisoliton paifdynamical soliton
with topological charge equal to zefa good review about
C. Bound states of two-bosons topological and dynamical solitons is presented in Rej. 33
In this section, we will study the states of two-bosons.After the quantization of these solutions, the soliton corre-
More precisely, we will check if the interacting bosonic sponds to a quasiparticigermion of the massive Thirring
model (50) can describe the formation of bound states ofmode) while the internal degrees of freedofoscillating
two-bosons. Our initial motivation is based on previous re-modes of the breather solution correspond to bound states.

sults of the one-dimensional ferromagnetic Heisenbergbince the lowest energy bound state can be considered as an
model. elementary bosoof the theory, the internal degrees of free-

The problem of two interacting spin wavésagnons in dom of the breather solution correspond to bound states of
the ferromagnetic Heisenberg model was analyzed pi-bosons. The number of the latter is determined by the cou-

Dyson23 who derived a bound state condition when the totaiP!ing constant of the theory. .
momentum of the pair is equal to zero. For an arbitrary value, 't IS Well known that the low lying charged excitations of
of the spinS, it was verified that this condition is not fulfilled 1€ two-dimensional electron gassat 1 is the quént“{g Hall
in two and three dimensions and it was concluded that boungkYrmion, which carries an unusual spin distributidris
states of two spin waves do not exist, in contradiction to theéVe Will see in the next section, this excitation is described by
results for the one-dimensional mod@After that, this prob- & 9eneralized nonlinear sigma model in terms of a unit vector
lem was also discussed by Wofisvho, in opposition to field n(r) which is r_elat_ed to the eIectronl_c sp[sfae Eq.
Dyson’s results, proved the existence of bound states of twf2)]- The skyrmion is given by the topological soliton solu-
spin waves for any value of the sgBand the dimensionality tion of the nonlinear sigma model with a finite size, which is
of the system. A review about this topic is presented in Refdetérmined by the competition between the Coulomb and
24. Zeeman energies. Far=1, the topological charge of this
On the other hand, Tjon and WrigAstudied the dynami- Solution is equal to the electrical charge. _
cal solitons of the one-dimensional ferromagnetic Heisen- AS our bosonization method for the 2DEG &t 1 gives
berg model. The dynamical soliton is a solution of the dy-US an interacting boson model to.descnbe the interacting
namical equations of motion, localized in space, with zerdWo-dimensional electron gas at1, it seems reasonable to

topological charge and whose total energy, total field moStudy the bound states of two-bosons in order to find out a

mentum, and-component of the total magnetization possible relation between them and the spectrum of a bound
skyrmion-antiskyrmion pair.
Mzzf dxS(x), Since the total and relative momenta of a boson pair are

are constants of motion. Writing the components of the spirg'vt(.en l:;y P=pf+ t?] art1)d Q=_(p;q)/ 2|t re_sg)%ctwelyb the !?tter-
operator aS+iS’=Sé? sin 9 andS’=Scos6, whereSis the acting term of the bosonic HamiltonigB0) can be written

spin of the system, the general form of the dynamical solitorf'S

con e e =2 3 Vi K249
6= 0(r —vt), G=wt+ p(r —vt). Alro 2
Here,v is the translational velocity of the soliton ands the (kO(P/2-Q)
precessional frequency of the magnetization in the frame of X S'”( > )
reference moving with the soliton, i.e., an internal degree of " "
freedom. X b2 41-qPpr2-k+qPPr2+QPRI2q - (52)
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We can easily see that a state of two-bosons of the kind -3 ¢ Eo(q) + Ecs — Exlbl oo bl EM
|®)=Db bT|FM> is not an eigenstate of the total Hamiltonian 2 Dp(@)[Ep(0) + Ery ~ Ep 1/2P-q 1/2P+q| )
(50. T erefore it is necessary to consider a linear combina-

tion of those states. The more general form of a state of +2 2 U(K,P,)Pp(q +K)b] pp_ybl op4 ol FM).
two-bosons with total momentui® can be written as k#0q
Changing the sum over momenta to an integral
|Dp) = >, Pp(q)b o qbl/2P+q|FM>- (53

q s f
In this case, the total momentum of the pair is also a good AE 4
quantum number for the same reasons as discussed at the end
of Sec. Il A. Remember that a state of two-bosons can b&'€
considered as a two electron-hole pair whose total charge is

e find the following eigenvalue problem

Zero.

[e - Ep(q)]®Pp(q) = f d*kKp(k = 0,q)Pp(k),  (57)

For a fixed value of the total momentur the energy of

the state(53) is given by the Schrédinger equation

wheree=Ep—Egy, and the kernel of the integral equation is

given by
H|Dp) = Ep|Dp). (54 K = a2
. . . . A k-q)O(P/2+
We will consider the action ofdp) of the quadratic and Kp(k—q,q)=2—Ce Si <( DO OD)
quartic terms of the total Hamiltonia(b60) separately. For 7 |k-q 2
Ho, we have k-q)OP/R2-
o o < sin (( q) 2( D\ 58)
Ho|Pp) = X Pp(q)[Ho,b] 5 p-gD12 prgllFM)
a In the two expressions above, all momenta are measured in
+ > ®o(a)b! b HAFM units of the inverse magnetic length, i.g+q/l.
Eq" P @Wbipabin pig olFM) For the one-dimensional Heisenberg model, the analog
eigenvalue problem can be solved analytically as the kernel
=2 Pp(@) (W12 pg+ Wi prg) of the integral equation is separaBfe! However, Kp(k
4 Eplg) -q,q) is not of the same kind and therefore our eigenvalue
% bt 5 \FM) problem(57) will be solved numerically.
LZPar 1A By The numerical solution of the above eigenvalue problem
+ S do(@bi o b Eo |FM can be determined using the quadrature techm@ukhis
% P Wbi pobivz pig & method consists of replacing the integral over momentum by
a set of algebraic equations
=[Ep(q) + Ery]| Pp).
(55) [~ En(ai)]®p(a;) = 2 CKp(q; — 0,0 Pp(0), (59)

j#i

Observe thatEp(q) is the energy of two noninteracting WhereC; are the quadrature coefficients. The system of equa-
bosons. On the other hand, for thg,, after some algebra, it tions can be symmetrized multiplying byC;,

is possible to show that

Hin Pp) = E Dp( q)[HInt’bIIZP quIZ P+q]|FM>
+ E q)P(q)bllz P—qb;r.lz P+qum|FM>
q

=2 2 UK,P,q)®p(q)
k#0,9
X b, P—q+ka/2 prq-kIFM),
where

2 k O(P/2+ q)>
- < k22 g 222
U(k,P,q) = V(k)e ( >

X sin(%).

[ - En(ai) [C/2Pp(q)]
~ E CillzKP(q]‘

IEdl
- q;,0:)C A CH ®p(q))].
(60)

After this discretization, for a fixed value of the total mo-
mentumP, we can calculate the eigenvalues of E8Q) us-

(56)  ing the usual matrix techniques.

The choice of the pointg; and of the values of the coef-
ficients C; are related to the parametrization adopted. For
one-dimensional problems, there are several parametriza-
tions, for instance, the Gaussian quadrafirahich allows
us to calculate the eigenvalues with good precision. How-
ever, for two-dimensional problems, there are a fewer num-
ber of available parametrizations and therefore it is possible
only to find a good estimate for the eigenvalues.

Substituting expression&k5) and (56) in the Schrodinger In order to solve the eigenvalue problé60) we consid-

equation(54) and changingy— q+k, we have

ered a parametrization which is applied to calculate two-
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FIG. 5. Schematic representation of the quasiparticles consid-

FIG. 4. Dispersion relation of the state of two-bosons, in units of .
. ered by Rezayi in Ref. 37a) the quantum Hall ferromagnet plus
the Coulomb energg?/(el) as a function of the total momentum g . )
one spin down electron ar®) the spin down electron plus a spin-

for g=0. Solid line: lowest energy bound state; shaded area: con- o
) ) ; wave excitation.
tinuum of the scattering states; dashed line: energy of the

guasielectron-quasihole pair plus one spin wids®. (61)]. See text _ _ )
for details. at v=1. Based on numerical calculations, it was shown that

. . . . _ _ __the energy(E,) of a state formed by the quantum Hall ferro-
dimensional integrals over a circular region. In this case, it isnagnet pius one spin down electri@ee Fig. )] is greater
necessary to introduce a cutoff for large momentum in ordefnan the energy(E,) of the state constituted by one spin

to define the integration region. All the parameters of thisdown electron plus a spin-wave excitatiffig. 5(b)J. In the
gquadrature as well as a set of parametrizations for mumpl?hermodynamic limit it was shown ' that.E “E
integral calculations can be found in Ref. 36. ! Lo

Figure 4 shows the dispersion relation of the states 0,f:0.05432/ el. This result implies that instead of a single spin

two-bosons as a function of the total momentBnHere, we down qua5|electr'on, the quaS|part.|cIe of the ZDEG’a.ﬂ‘
assume thafj=0. The eigenvalue problem was solved usingShould be constituted by a qua3|electron boundhspin

a 61 point quadrature and only bosons with momenfigh ~ WaVes. Based on that, Sondhi and coworkers suggested that
<2 were considered. The solid line is the lowest energyn€ charged excitation of the 2DEG at1 should be de-
eigenvalue state while the shaded area is the continuum &fribed by a charged spin texture.

scattering states. Once the lowest energy state of two-bosons Notice that we can compare the spectrum of the bound
is below the continuum of scattering states, we can say thatates of two-bosons with Rezayi numerical results. Let us
this lowest energy eigenvalusolid line) corresponds to a consider a state constituted by a quasielectron-quasihole pair
bound state of two-bosons. The distance between the soliery far apart and a spin wave with momentyh|<1

line and the bottom of the shaded area is the binding energfound to either the quasielectron or the quasihole. Zhe
There are also other bound states above the one shown @omponent of the total spin of this stateS%2. Since the

Fig. 4, but the analysis of those states is limited by the nuenergy of a quasielectron-quasihole pair very far apart corre-
merical method. sponds to the limiflk| - of the dispersion relatiof51),

As pointed out at the beginning of this section, we want tothe energy of the state described above is simply
check if there is a possible relation between the bound states

of two-bosons and a bound skyrmion-antiskyrmion pair ex- .
citation. In this way, we should compare our results with the Een-sw= (V71/2 — 0.054€?/ €. (61)
ones derived from the model of Sondttial,*® namely, with o
the value of the energy of a noninteracting skyrmion- The dashed line in Fig. 4 correspondsHoy, s, We can
antiskyrmion pair, which can be calculated from the expresS€e that our results are in good agreement with the previous
sion derived by Sondtet al. for the energy of the skyrmion ones of Rezayi's. More precisely, our calculations indicated
[Eq. (7) of Ref. 16. However, this kind of comparison is not that, in the limit [IP|—, the dispersion relation of the
appropriate here as ttecomponent of the total spin of the bound states of two-bosons is asymptoticEoy, . In this
system is a good quantum number. Notice that the states stenario, we can understand the behavior of the dispersion
two-bosons hav&*=2 (the z component of the total spin in relation of the bound states of two-bosons. As the total mo-
relation to the quantum Hall ferromaghethile a skyrmion- mentum|IP| decreases, for instance, the quasielectron bound
antiskyrmion pair described by the Sondhi's model #&s to the spin wave approaches the quasihole, increasing the
>2. Remember that this model is suitable to describe thénteraction between them and therefore lowering the energy
skyrmion only in the limit of very small Zeeman energy of the system. Notice that this behavior is in good agreement
(g—0). In this case, the excitation is constituted by a largewith the solid line in Fig. 4.
number of spin-flips. Therefore we can conclude that the bound states of two-
In a work previous to Ref. 16, Rezdficonstructed a bosons are appropriate to describe the skyrmion-
family of wave functions for the quasiparticles of the 2DEG antiskyrmion pair excitation, in the limit of large Zeeman
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energy, when the excitation is formed by a small number of
spin-flips. 0= f drQ(r) - S(r) = f d*g[Q7(q)S], + Q¥ () S, ].

We should mention that Coopérstudied the dynamical
soliton solutions with zero topological charge of the nonlin- (65
ear sigma model without the extra terms of the Sondhi’'s
model. The calculated spectrum is qualitative similar to theHere, S(r) is the spin operatom(r) is a unit vector, and
one illustrated in Fig. 4. For small momentum, the excita-Q(r)=zxf(r) defines the rotation angle. Assuming that
tions correspond to free spin waves and, as the momentuf(r) corresponds to small tilts away from tfzedirection,
increases, the dispersion relation continuously approachqse(q) vanishes whetig|> 1.
the energy value of a noninteracting soliton-antisoliton pair. | this long wavelength approximation, it was shown that
However, this description is valid only in the limit of a large the average value of the electron density operator in the state
number of spin waves, which is very far from the region of (g4) is equal to the topological charge density of the vector
our analysis. _ . _ field n(r) [Eq. (63)]. Moreover, after projecting the Coulomb

A final word about the Hilbert space. Notice that in the hytential in the lowest Landau level subspace, its average
above analysis we consider the bosonic Hilbert space constiy e in the staté64) is equal to functional energy derived
tuted by the vacuum staf&q. (10)] and the states of tWo- ¢om the Lagrangian densit§62).
bosons[Eq. (53)]. As discussed in Sec. Il E, the number of |5 sec. |11 C, we showed a possible relation between the
the states of two-boson is greater than the number of fermigyymion-antiskyrmion pair excitation and the bound states
onic states with two spin-flips over the quantum Hall ferro- ¢ty hosons. Therefore, if we consider a semiclassical limit

magnet. However, in order to solve the eigenvalue probleny the interacting bosonic Hamiltonid80) in the same way
(60), a cutoff for large boson momentum was introducedas jt was done in Ref. 18 we can check if it is possible to
which restricted the bosonic subspace and therefore we b@scqver the results of Sondat al 6

lieve that the solution of Eq60) does not involve unphysi- Let us assume that E464) is a good approximation to
cal states. describe the skyrmion. Substituting the expressi@1$ and
IV. BOSONIZATION AND COHERENT STATES (29 in Eq.(65) and approximatingia only by the linear term

in the bosonic annihilation operator, we can write down the
In this section, we will consider the semiclassical limit of state(64) as a function of the bosonic operatoas
the interacting bosonic Hamiltonigb0). We will show that,
starting from Eq.(50), it is possible to recover the energy |sk>:e‘Ne‘iO|FM> (66)
functional of the quantum Hall skyrmion. ’
As mentioned in Sec. Il C, Sondekt all® suggested that _ _
the quantum Hall skyrmion can be described by a generaivhere the operatad is redefined as
ized nonlinear sigma model in terms of a unit vector field
n(r) which is related to the electronic spin. The effective 1

Lagrangian density of the model is given by 0= gz\ﬁ'\%f dzqﬂébl’ (67)
1 1 , 1.
Letr= EpoA(n) Son = EPS(Vn) + 59 popgn - B and the constant/=[ N,/ 2(8m)?][d%qQ; 07, The value of
the constanB will be determined later. Observe that the state
_ ff dzr,Q(r)Q(r'). 62 (66) is a coherent state of the bosdms
2¢ Ir=r’| Changing the sum over momenta into an integral in the

expression of the bosonic representation of the electron den-
sity operatorpy [Eg. (27)] the average value of this operator
in the statg(66) is given by

Here, ps is the spin stiffnesgsee Appendix A A(n) is the
vector potential of a unit monopolée*%,.4,=n%, po
=1/(2#1?) is the average electronic density, ag@) is the

topological charge density or skyrmion density which is 1 N2
given by (sKpy|sk = iE(_Z(/%e_kZMJ d’g sin(k 0a/2) Q50
a
1
q(r)= Eeaﬁn (3,0 X dgn), (63) (68)

with a, b, c=x, y, z, @, B=X, y, ande*” is the antisymmetric |n the above expression, the momenta are measured in units
tensor. of the inverse magnetic lengthIn the long wavelength ap-

On the other hand, Moon and co-workers suggested aBroximation [remember that)“(q) is different from zero
alternative approach to study the quantum Hall skyrmifon. only when|ig|<1], we have

In this case, the charged excitation is described by the state

In(r)) =e"°[FM), (64) e sink 0g/2) ~k Ogl2=2- (k X q)/2,
where the operato is a nonuniform spin rotation which
reorients the local spin from the directi@to A(r), and therefore Eq(68) can be written as
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2
(sHinls = 222 [ oz (@ + K000 X (40

N2,8

T o5 35

d?re™™ 2. (Vne x Vnh).
(69)

In the second step, we use the fact ¥t )=2Xn(r), hence
O*=-n¥, OY=n*, and Q*=0. From Eq.(69), the Fourier
transform ofp, is given by

N 1
—""—B—eaﬁz -(Vn*x VnP).

p(r) = (sKp:|sk = 22 8

(70)

As we have assumed th€k(r) corresponds to a small rota-
tion angle of the local spirkn*~0 andn?~ 1. Therefore we
can write
€apz- (VN* X V1P) = €,,n2- (Vn* X V1P
~ €n - (9,n X dgn),

as it was done in Ref. 18. Moreover, if we choose the value

of the constanB:4ﬂ2/N§), Eqg.(70) is in agreement with the
definition of the topological charge densit§3).

Following the same approximations, we will calculate the

average value of the energy of the ste for the interact-

ing bosonic Hamiltoniari50). The average value of the qua-

dratic term of the Hamiltonia50) is given by

2
f d’qw, Q2,0 (72)

(SKHalsK = 453

Considering the long wavelength limit of the dispersion re-

lation (51), i.e.,

1
Wg =g+ ZfB||Q|2v
Eq. (71) can be written as

(sKHolsK = (Hz) + (Hg), (72)

where the Zeeman term is given by

12 2 _
(Hz) = 4(277)39f d qQ_qu,

and the gradient term by

2 _
J d’q(10)?Q%, Q.

_ 8
(Hg) = 4 4(2m)3

Here, the constantz is defined in Appendix A.
Rescaling the momenta By* and calculating the Fourier

PHYSICAL REVIEW B71, 045339(2009

1, 1
(sKHz|sK = -9 ugB— f d?r(n*)2 + (n%)?
2 47

=~ - %g’wsi J d’rn - (2B)
1
2
In the second step above, we use the identity

2= (M2 + ()2 + ("~ 1)?=2-2n -2

1 *
+59 #eB5—Ny. (73
In-2
and the fact that, within our approximatiom?—1/<1. On
the other hand, the gradient term assumes the form

(sKHolsk) = _Psf rl(VO)?+ (VO]

~ 2 f VN0, 74

2

whereps is the spin stiffness as defined in H§2).
Finally, for the interacting term of the HamiltonidB0),
we have

> Vk)e M2 sin(k Dp/2)
ZAszﬁk p.q
X sin(k Dq/Z)Qk+p a-k{?

1
_—2|2(87T2)2J d?kV(k/)

x f Fpz-((p+ k)00 X (pOLD)

<Hint>

T,

xfdzq‘z-((q K) Qg X (a02))

= %f d?rd?r'V(r = r")q(r)q(r’), (75)
whereV(r —r')=€?/(er —r'|) is the Coulomb potentiaty(r)
is the topological charge density as defined in &), and
the vectorr is measured in units df

From Egs.(73), (74), and(75), we can conclude that the
average value of the energy of the st is given by

1 1., 1
(skH|sk = Epg f d’r[Vn(r)]* + 59 ueB5 N,
1, 1(,
2g MBzwfd rn-B
eZ ’
+ —J d2rd2r’—Q(r)q(r ). (76)
2¢€l [r=r’|

Notice that Eq(76) is equal to the energy functional derived
from the Lagrangian densit$?2) for a static configuration of
the vector fieldn(r).

It is important to mention that the choice of the constant

transform, we can show that the Zeeman term can be writte3, based on the fact that E§70) should be equal to the

as

topological charge density63) related to the vector field
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n(r), gave us the correct values of the coefficients of the TABLE I. Energy scales for the 2DEG.
Zeeman(73), gradient(74), and interacting75) terms.
In addition to the approach discussed in Ref. 18, a differEnergy scales (K)
ent method to derive an effective field theory for the quan- .
tum Hall skyrmion is presented in Refs. 39-41. fiwe heB/(*m ©) 18.78
g g ugB 0.338
e e/ (e) 50.40/B
V. SUMMARY e 7l 2¢, 63.16/B
We developed a bosonization approach for the 2DEG afs &/ (16V2) 1258

v=1 using the fact that, at some level of approximation, the
elementary neutral excitations of the system can be treated as ) ) )
bosons. The Hamiltonian of the 2DEG &t 1, the electron electron mass and the dielectric constant of the semiconduc-
density, and spin density operators were bosonized. WET IS €=13.

showed thgt the bosonic representatlon_of the spin density APPENDIX B: CHARGED PARTICLE IN A

operators is analogou's to .the one considered by Dyson to PERPENDICULAR MAGNETIC FIELD

study the ferromagnetic Heisenberg model. Furthermore, we _ o

showed that the developed bosonization method is closely Let us consider an electron moving in tkey plane un-
related to the LLL projection formalism developed by Girvin der the action of a constant perpendicular magnetic f&ld

and Jach. =Byz. The Hamiltonian of the system is given by
The method was applied to study the interacting two- 1 e 2
dimensional electron gas at=1. The Hamiltonian of the H:%<p+EA(r)) , (B1)

fermionic system was recast in an interacting two-

dimensional boson model. We showed that the dispersiofherep is the momentum canonically conjugated tandA
relation of the bosons is equal to the previous diagrammatigs the vector potential. In the symmetric gauge,
calculations of Kallin and Halperin. Within our bosonization

approach, we can go beyond the latter results as we also A(r) :—lr X B=—180(y3<—x§/).

found an interaction between the bosons. 2 2

Finally, we showed that the derived interacting bosonlcClassically, the electron moves in a circular orbit with angu-

model can describe the quasiparticle-quasihole pair excitg: _ .
tion of the 2DEG atv=1. On one hand, we showed that thea}ar frequencywc—eB/mc(cyclotror! frequency In this case,
tpe modulus of the particle velocity

interaction between the bosons accounts for the formation o
bound states of two bosons. Our results agree with the pre- 1 e

viously developed numerical approach of Rezayi's, who V= p+EA(r)

studied the quasiparticles of the system. On the other hand,

we showed that the semiclassical limit of the interactingdnd the position of the center of the cyclotron orlgitiiding
bosonic Hamiltonian recovers the energy functional derivecentey

from the model suggested by Sontetial. to describe the 5%V
quantum Hall skyrmion. Ro=r+

c

are constants of motion.
Defining the complex variable¥=v,+ivy, P=p,+ip,,
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APPENDIX A: ENERGY AND LENGTH SCALES FOR THE Now, if we apply the canonical quantization rule for the ca-
2DEG nonical conjugate variables and p, the commutation rela-

tions betweerV andZ, are given by
In Table I, we show the cyclotrofiw,, Zeemang, and 2B
Coulombe, energies and the value of the constastandps, [VVI]=-—F=- 2I2vv§,
in Kelvin, as a function of the magnetic fieB. The mag- m
netic lengthl = \#c/(eB) =256 /\B is measured in angstroms
and the magnetic fielB in Tesla. The electron effective mass [Zo,Z0] = 2h =92
in the GaAs quantum well isn'=0.07n,, wherem, is the 05T ’
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[V',Z01=[V,Z,] =0, use the properties of these operators to write the above ma-

. . ) ) trix element as a product
wherel is the magnetic length. Introducing two independent

ladder operatorsl and g, such that[d,d"]=[g,g']=1 and (nme™ " |n'm’) = exp(= 10|2) Gy (1) Gy (= 1),
[d,g]=[d,g"]=0, we can write (C3)
V= —i\s’EIdeT, where the function§,,v(Iq) andG,,,(-1q") are defined as
. = IS =
Z,=2lg. (B2) G (1) = (mlexp(—ilag'/V2)exp(— ilg"g/V2)|m'),
It is easy to prove that the operatdrsand Z, defined as in G. (=19 = (nlexaila” d/\2)exailad/v2) I’
Eq. (B2) satisfy the above commutation relations. oo (Z107) = {nlexplila” d/v2)explilqd'/v2)|n’).
Therefore the HamiltoniafB1) can be written as (C4
Now, if we taken=n’=0 in Eq. (C3), we have the matrix
Ho= ﬁWc(d d+ 5) (B3)  element of the operat@" in the lowest Landau level ba-
sis,
whose energy eigenvaluélsandau levelsare given b T
oy eigenvalués pare given by (e ') = expl- la[%2) G (10).  (CH)
Enm= ﬁWc<n+ 1) (B4) Inthe LLL projection formalism, the above expression cor-
responds to the matrix element of projected operattt’

and the energy eigenvectors by [compare Eq(C5) with Eq. (25.1.13 of Ref. 10. .
Using the properties of the ladder operators, it is possible

(d )”(GJJr)m|00> to show that the functio®, v(Iq) can be written as a linear
ynilm combination of the generalized Laguerre polynomials

L™ ™ (Ig2/2), i.e.,
1

10,0 = ==e" 4", L (=ilg"\™ ™ gl
(r V272 G (lg) = 6(m = m) i( |”_ ) Ly ‘m(%)

1 2/212 ir 2

= ———¢ "G (—) B5 m't(—ilg )™ -’ [lal®
<r|nm> V,27lee m+n,n | ( ) + H(m m ) E > )

Here the functiorG,., n(x) is defined in Appendix C. (C6)
Semiclassically, the statam) can be seen as an electron

in a cyclotron orbit with radius equal th/2n+1 and the

gggtrﬁirnlgt?aaggt:tma distante2m+1 from the origin of the (i) Relations between the function and its complex con-
A detailed analysis of this problem is presented in Ref. 10!ugate:

Our formalism is similar to the one presented in this refer- g _(Ig)=G_. _(-1g)=G_, (=10) =Gy (9",

ence with the replacemengs— b' andd’— -ia. i mm mm i

[nm) =

From expression&C4) and(C6) we can prove the following
properties of the functio®, . (19).

Gmar(il0) =G, (g7 =G, (=ilg")

. = (=)™ Gy ml). (C7)
‘We want to calculate the matrix element of the operator ’
€97 in the Landau level basis. Writing=q,+iq, andr=x (i) The Fourier transform of the product of two func-
+iy, we can expand the latter in terms of the ladder operatorgons:

d andg defined in Appendix Bsee Eq(B2)], .
& 192G, (1)Gy (- 10")

APPENDIX C: THE Gy, (Ig) FUNCTION PROPERTIES

1 =
r:Z:ZO_WcV: V2l(g-di, &9 :J dre (', m’|r)(r|n,m)
therefore the matrix element becomes
(nmle7n'm’y = (nmlexg - i(qr" + q'r)/2]jn'm’) = ﬁ dPreiar — G
= (nmexd il (ag+ g i i
~ (g'd+qd")2]jn'm). (C2) X(T>G” m<|_> €8)

Since the ladder operatocsand g are related only to the (i) The sum of the product of two functions: as the Lan-
Landau levels and the guiding centers, respectively, we cadau level basign,m) is a complete basis, we have
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> Gy (1) Gy (1K)
|

= > (mlexp(- ilgb'/\2)
|

X exp(— ilq " b/\2)|1)(1|exp- ikb/12)

xexp(— ik b/\2)|m’)
2 *

B —-1“qk
o

(iv) Orthogonality relation: using the orthogonality rela-

)Gmm,(lq +1k).  (C9)

PHYSICAL REVIEW B 71, 045339(2005
_ 2 *
> e MP2G (= 1K) G (IK) = NS ndy - (C1D)
k

(v) The trace:
a2

2l

ir
XGm,()(?)

% e—\r]z/zl2 e|r|2/212G0,0(0) =N, 8q).

IS ) —ir
E f dPre 4T, |21 GO,m( )
m

!
ligl*r2
e .
= ) 12 f d2re"’q'r

2 Gm,m(ZQ) =

tions of the generalized Laguerre polynomials, we can show 1

that

_ . 2
J ke ™26 (= 1K) Gy (1K) = 2 O

(C10

and changing the integral over momenta by a sum,

and
operatord Egs.(12) and(13)], we have

(C12

APPENDIX D: THE COMMUTATOR [S;,S;,]

If we consider the expressions of the spin opera@rs
in terms of the fermionic annihilation and creation

— Nl 112 ’ - 219 14112 ’
[%lsq’] =e lat72-la" 72 2 Gm,m/(lq)Gn,n’(lq )[CInTCm’laCELCn/I] =€ laf*r241a’l /2< 2 Gm,n('Q)Gn,n'(lq )C:nTCn/T

mm’,n,n’

_ 2 12 12+ ! ,
- 2 Gn,m(lq,)Gm,m’(lcﬂcllcm’i) =€ (\Iq\ /2+|Iq ‘ /2)(6 aa /22 Gm,n(lq + Iq )CLTCnT -

mm’,n

t — J2%aq" " 124-1q + 1q” 22 t 129" 12|lg + 19" (%12 t
+|CI)leCn1> =g Zgrlarla’2R G (1g+1q")ch oy — €709 2Tl TS G (lg” +1g)eh e -
mn m,n

Now, if we compare the above result with the expressions of

the electron density operatops(q) [Eg. (11)], we can con-
clude that

m,n,n’

_1241*
e 92 Gy (lg’
m,n

mn

(D1)

[S;.5,1= €92, (q+q") -T2, (q+q"). (D2)
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