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We develop a bosonization scheme for the two-dimensional electron gas in the presence of a uniform
magnetic field perpendicular to the two-dimensional system when the filling factor is onesn=1d. We show that
the elementary neutral excitations of this system, known as magnetic excitons, can be treated approximately as
bosons and we apply the method to the interacting system. We show that the Hamiltonian of the fermionic
system is mapped into an interacting bosonic Hamiltonian, where the dispersion relation of the bosons agrees
with previous calculations of Kallin and Halperin. The interaction term accounts for the formation of bound
states of two-bosons. We discuss a possible relation between these excitations and the skyrmion-antiskyrmion
pair, in analogy with the ferromagnetic Heisenberg model. Finally, we analyze the semiclassical limit of the
interacting bosonic Hamiltonian and show that the results are in agreement with those derived from the model
of Sondhiet al. for the quantum Hall skyrmion.
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I. INTRODUCTION

Bosonization of fermionic systems is a nonperturbative
method which has become a very useful tool for treating
strongly correlated systems in one-dimension. The basic idea
of this approach consists of describing the neutral elementary
excitations of the system in a bosonic language, which al-
lows us to map the sometimes intractable fermionic system
into a more friendly bosonic model. A very detailed descrip-
tion of the so-called constructive one-dimensional bosoniza-
tion method, its relations with the field-theoretical approach,
and some applications can be found in Refs. 1 and 2 and the
references therein. Some efforts have also been made to ex-
tend this formalism to higher dimensions. The first attempt
was carried out by Luther3 and extended by Haldane.4 A
bosonization method for a Fermi liquid in any number of
dimensions was constructed by Castro Neto and Fradkin5

and also by Houghton and Marston.6,7

The quantum Hall effect is one of the most interesting
phenomenon observed in the two-dimensional electron sys-
temssfor a review see Refs. 8–11d. While the integral quan-
tum Hall effect can be understood in terms of a noninteract-
ing electron model, correlation effects due to the Coulomb
interaction between the electrons are important to understand
the fractional quantum Hall effect. An exception to the above
scenario is the quantum Hall system at filling factor one
sn=1d, where the electron-electron interaction also plays an
important role.

A bosonization approach for the two-dimensional electron
gas s2DEGd subject to an external perpendicular magnetic
field was developed by Westfahl, Jr.et al.12 In this case, it
was shown that the elementary neutral excitations of the sys-
tem, known as magnetic excitons,13 can be described in a
bosonic language and the Hamiltonian of the interacting two-
dimensional electron gas was mapped into a quadratic

bosonic Hamiltonian. However, this method can be applied
only in the limit of small external field when a largesintegerd
number of Landau levels are completely filled. A different
bosonization scheme for the collective dynamics of a spin-
less 2DEG in the lowest Landau level was developed by
Conti and Vignale.15

As pointed out above, the two-dimensional electron gas at
n=1 is a strongly correlated electron system. It is well
known that the ground state of this system is a spin-polarized
state in which all electrons completely fill the lowest Landau
level with spin up polarizationsquantum Hall ferro-
magnetd.8–11 The elementary neutral excitations are also de-
scribed as magnetic excitons13 which, in the long wavelength
limit, can be seen as spin wave excitations of the quantum
Hall ferromagnet. Moreover, the low lying charged excita-
tion is described by a charged spin texture, called quantum
Hall skyrmion.16 This nontrivial excitation can be viewed as
a configuration in which the spin field at the center points
down and then it rotates smoothly as we move radially out-
wards from the center until all the spins point up as in the
ground state. These charged spin textures are topologically
stable objects with sizesthe number of reversed spinsd fixed
by the competition between the Coulomb and Zeeman inter-
actions.

Since the quantum Hall system atn=1 is a quite interest-
ing strongly correlated electron system and the bosonization
was successful in describing the integral quantum Hall sys-
tem atn@1, we would like to extend the methodology de-
veloped by Westfhal, Jr.et al.12 to the case when the system
is under the effect of a high external magnetic field, in par-
ticular, when the filling factor is one. This is precisely the
aim of this paper.

Following the ideas of Refs. 12 and 17, we start with a
Landau level description of this system and then we intro-
duce a nonperturbative bosonization approach for it. We fol-
low Tomonaga’s ideas for the one-dimensional electron gas
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in order to show that the neutral excitations of 2DEG, the
electron-hole pairs calledmagnetic excitons, can be treated
approximately as bosons.

We will show that the Hamiltonian of the interacting two-
dimensional electron gas atn=1 can be mapped into an in-
teracting bosonic Hamiltonian, where the single particle en-
ergy of the bosons is equal to the energy of the magnetic
excitons derived by Kallin and Halperin.13 The interaction
between the bosons gives rise to the formation of two-boson
bound-states. In analogy with the isotropic Heisenberg
model, these bound states can be related to the skyrmion-
antiskyrmion pair, which is also a neutral excitation of the
system.

The paper is organized as follows. In Sec. II, we will
present the bosonization scheme for the 2DEG atn=1, i.e.,
the bosonic operators will be defined. The bosonic represen-
tation of the density and spin operators will be derived and
we will show the relation between the lowest Landau level
sLLL d projection formalism and the bosonization method;
the reorganization of the Hilbert space will also be discussed.
In Sec. III, we will apply the method to study the interacting
two-dimensional electron gas atn=1. Finally, in Sec. IV, we
will analyze the semiclassical limit of the interacting bosonic
Hamiltonian derived in the previous section following the
procedure of Moonet al.18

II. THE BOSONIZATION METHOD FOR THE 2DEG
AT n=1

A. Bosonic operator definition

Let us considerN spinless noninteracting electrons mov-
ing in the x−y plane stwo-dimensional electron gasd in an
external fieldB=B0ẑ. The system is described by the Hamil-
tonian

H0 =
1

2m*E d2rC†sr dS− i" ¹ +
e

c
Asr dD2

Csr d, s1d

where m* is the effective mass of the electron in the host
semiconductorssee Appendix Ad andC†sr d is the fermionic
field operator. In the symmetric gauge, the vector potential
Asr d=−sr 3Bd /2 and therefore the fermionic field operators
can be written in a Landau level basis assAppendix Bd

C†sr d = o
n,m

knmur lcnm
† = o

n,m

1
Î2pl2

e−ur u2/4l2Gm+n,n
* sir /ldcnm

† ,

Csr d = o
n,m

kr unmlcnm= o
n,m

1
Î2pl2

e−ur u2/4l2Gm+n,nsir /ldcnm,

s2d

wherer =x+ iy, l =Î"c/ seBd is the magnetic length and the
function Gm+n,nsxd is defined in Appendix C. The fermionic
operatorcnm

† creates an electron in the Landau leveln with
guiding centerm and obeys canonical anticommutation rela-
tions

hcnm
† ,cn8m8

† j = hcnm,cn8m8j = 0,

hcnm
† ,cn8m8j = dnn8dmm8, s3d

with n=0,1,2,… andm=0,1,… ,Nf−1. Here,Nf=AnB is
the degeneracy of each Landau level, withnB=1/s2pl2d and
A is the area of the system. Substituting Eqs.s2d in Eq. s1d
we find that the Hamiltonian of the system is diagonal in the
Landau level basis,

H0 = o
n,m

"wcSn +
1

2
Dcnm

† cnm, s4d

wherewc=eB/ sm*cd is the cyclotron frequency. Defining the
filling factor n=N/Nf as the number of filled Landau levels,
for n integer, the ground state of the two-dimensional elec-
tron gass2DEGd is obtained by completely filling then low-
est Landau levels,

uGSl = p
n=0

n−1

p
m=0

Nf−1

cnm
† u0l, s5d

whereu0l is the vacuum state.
Now, if we consider the electronic spin and restrict the

Hilbert space to the lowest Landau levelsn=0d only, the
fermionic field operatorss2d become

Cs
†sr d = o

m

1
Î2pl2

e−ur u2/4l2G0,ms− ir * /ldcms
† ,

Cssr d = o
m

1
Î2pl2

e−ur u2/4l2Gm,0sir /ldcms, s6d

where cms
† creates a spins electron in the lowest Landau

level with guiding centerm. These creation and annihilation
fermionic operators also obey the anticommutation relations,

hcms
† ,cm8s8

† j = hcms,cm8s8j = 0,

hcms
† ,cm8s8j = dm,m8ds,s8, s7d

with s=↑ or ↓.
In addition to the kinetic energy termH0 fEq. s1dg, we

should also include a Zeeman energy termHZ– in the total
Hamiltonian of the system,

HZ– = −
1

2
g*mBBo

s
E d2rsCs

†sr dCssr d, s8d

whereg* .0 is the effective electrong-factor ssee Appendix
Ad andmB is the Bohr magneton. Substituting Eqs.s6d in the
expressionss1d and s8d, the total Hamiltonian of the 2DEG,
H=H0+HZ–, yields

H =
1

2o
m,s

"wccms
† cms −

1

2
g*mBBo

m,s
scms

† cms. s9d

We can see thatH is also diagonal in the Landau level basis
and the kinetic energy term is simply a constant. The one
particle energy eigenvalues are −g*mB/2 and g*mB/2
whereas the degeneracy of each energy eigenstate isNf.

R. L. DORETTO, A. O. CALDEIRA, AND S. M. GIRVIN PHYSICAL REVIEW B71, 045339s2005d

045339-2



For n=1, the ground state of the 2DEG,uFMl, is obtained
by completely filling the spin up lowest Landau levelsthe
quantum Hall ferromagnetd

uFMl = p
m=0

Nf−1

cm↑
† u0l, s10d

as illustrated in Fig. 1sad. In this case, each guiding center is
occupied by only one electron with spin up.uFMl is an ei-
genvector of the operatorSz sthe z component of the total
spind whose eigenvalue is equal toNf /2.

The neutral elementary excitations of the system are
electron-hole pairs or spin flips as one spin up electron is
annihilated and one spin down electron is created in the
quantum Hall ferromagnetfFig. 1sbdg. These excited states
uCl can be constructed by acting with the spin operatorS−

=Sx− iSy on the ground stateuFMl,

uCl ~ S−uFMl.

In the bosonization approach for the one-dimensional elec-
tron gas, the annihilation and creation bosonic operators are
derived from the electron density operatorr̂skd as the
electron-hole pair excitations can be obtained by acting with
r̂skd on the ground state of the system.1,2 In order to define
the bosonic operators, the commutation relation between the
electron density operatorsr̂skd with different momenta is
analyzed. We will follow the same procedure, but here we
will analyze the spin density operatorsS+sr d=Sxsr d+ iSysr d
andS−sr d=Sxsr d− iSysr d in order to define the bosonic opera-
tors for the 2DEG atn=1. More precisely, we are interested
in the Fourier transform of these spin operators.

Before doing that, we need to say some words about the
density operator of spins electrons, which is defined as

r̂ssr d = Cs
†sr dCssr d.

With the aid of the expressionss6d and the definition of the
function Gm,m8sxd sAppendix Cd, it is possible to show that

r̂ssqd =E d2r e−iq·rCs
†sr dCssr d

= o
m,m8

E d2re−iq·rkmur lkr um8lcms
† cm8s

= o
m,m8

kmue−isqz†+q*zd/2um8lcms
† cm8s

= e−ulqu2/2 o
m,m8

Gm,m8slqdcms
† cm8s, s11d

whereq=qx+ iqy and the operatorz is defined by Eq.sC1d.
Observe that the action ofr̂ssqd on uFMl does notcreate any
electron-hole pair excitations.

The spin density operator is defined ass"=1d

Ssr d =
1

2o
a,b

Ca
†sr dŝa,bCbsr d,

where the components of the vectorŝ are the Pauli matrices.
However, we will define the spin density operatorsS+sr d and
S−sr d only by the nonzero matrix element. In terms of the
fermionic field operators we have

S+sr d ; C↑
†sr dC↓sr d,

S−sr d ; C↓
†sr dC↑sr d.

In analogy with Eq.s11d, it is easy to show that the Fourier
transform of these spin operators is given by

S+sqd = e−ulqu2/2 o
m,m8

Gm,m8slqdcm ↑
† cm8 ↓, s12d

S−sqd = e−ulqu2/2 o
m,m8

Gm,m8slqdcm ↓
† cm8 ↑. s13d

After some algebra, it is possible to show that the commuta-
tion relation between the operatorsS+sqd and S−sqd is pro-
portional to the Fourier transform of the density operators
r̂↑sr d and r̂↓sr d ssee Appendix Dd,

fSq
+,Sq8

− g = el2qq8* /2r̂↑sq + q8d − el2q8q* /2r̂↓sq + q8d.

Now, as the average values ofr̂↑sqd and r̂↓sqd in the ground
states10d are kr̂↑sq+q8dl=Nfdq+q8,0 and kr̂↓sq+q8dl=0, re-
spectively, the average value of the commutatorfSq

+,Sq8
− g is

kfSq
+,Sq8

− gl = e−ulqu2/2Nfdq+q8,0. s14d

The above expression will allow us to define the bosonic
operators as a function of the fermionic operatorscm s

† and
cm s.

If we define the operatorsbq andbq
† by

bq ;
1

ÎNf

eulqu2/4S−q
+ , s15d

FIG. 1. Schematic representation ofsad the 2DEG ground state
at n=1 squantum Hall ferromagnetd and sbd the elementary neutral
excitationsthe electron-hole paird. g is the Zeeman energy.
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bq
† ;

1
ÎNf

eulqu2/4Sq
−, s16d

and if we approximate the commutation relation between the
bq andbq

† by its average value in the ground states10d,

fbq,bq8
† g < kfbq,bq8

† gl = dq,q8, s17d

we can say thatbq andbq
† are approximately bosonic opera-

tors. In analogy with the Tomonaga’s model for one-
dimensional electron gas, we will assume that Eq.s17d is
exact.19,20 This is the main approximation of our method.
Observe that this approximation is quite similar to the one
adopted in the random phase approximation.21

Therefore, after this point, we will assume that

bq =
1

ÎNf

e−ulqu2/4 o
m,m8

Gm,m8s− lqdcm ↑
† cm8 ↓, s18d

bq
† =

1
ÎNf

e−ulqu2/4 o
m,m8

Gm,m8slqdcm ↓
† cm8 ↑, s19d

are bosonic operators, which obey the canonical commuta-
tion relations

fbq
†,bq8

† g = fbq,bq8g = 0, s20d

fbq,bq8
† g = dq,q8.

The quantum Hall ferromagnetuFMl is the vacuum state
for the bosons as the action of the fermionic operatorcm8 ↓ on
uFMl is equal to zero. Therefore the bosonic Hilbert space is
spanned by applying the operatorbq

† on the quantum Hall
ferromagnet any number of times

uhnqjl = p
qehnqj

sbq
†dnq

Înq!
u0l = p

q

sbq
†dnq

Înq!
uFMl, s21d

with nqù0 andonqøNf.
The statebq

† uFMl is a linear combination of electron-hole
excited states as illustrated in Fig. 1sbd, where both the elec-
tron and the hole have spin down. In fact, the bosonic opera-
tor bq

† is similar to the operatoren,p
† sqd, with n=p=0, dis-

cussed in Ref. 12. This operator creates the neutral
excitations known as magnetic excitons when it is applied on
the ground state of the noninteracting two-dimensional elec-
tron gasfEq. s5dg.

The momentumq is canonically conjugate to the vector
R0=sR0

e+R0
hd /2. Here, the vectorsR0

e and R0
h are, respec-

tively, the position of the guiding centers of the electron and
the hole excited in the system as defined in Appendix B.
HenceR is the center of mass of the guiding centers of the
excited electron and hole. In addition, the momentumq is a
good quantum number because the total momentum of a
two-dimensional system of charged particles in an external
magnetic field is conserved when the total charge of the sys-
tem is zero.22

To sum up, we can say that the statebq
† uFMl is a neutral

elementary excitation of the 2DEG atn=1 which corre-
sponds to either a spin-flip or a magnetic exciton with mo-
mentumq.

B. Density operator

Although the bosonic operators are not directly derived
from the electron density operator as in the one-dimensional
electron gas, the latter is a very useful operator when the
Coulomb interaction between the electrons of the 2DEG is
considered. In this section, we will show that it is possible to
write down the electron density operator as a product of the
bosonic operatorsbq andbq

†.
The bosonic representation of any operatorO

=Oscm,s
† ,cm8,sd can be obtained by applying this operator on

the eigenstatess21d, which span the bosonic Hilbert space,

Ouhnqjl = OSp
q

sbq
†dnq

Înq!
DuFMl = FO,p

q

sbq
†dnq

Înq!
GuFMl

+ p
q

sbq
†dnq

Înq!
OuFMl. s22d

Starting with the expressions ofO andbq
† as a function of the

fermionic operatorscms
† andcm8s, we can calculate the value

of OuFMl as well as the commutation relationfO ,bq
†g, which

allows us to obtain the value of the commutator in Eq.s22d.
Following the above procedure, let us derive the expres-

sion of the density operator of spin up electronsr̂↑skd as a
function of theb’s. It is quite easy to show that

fr̂↑skd,bq
†g = − e−ulku2/4e−ik∧q/2bk+q

† ,

where k ∧q= l2ẑ·sk 3qd. Using the propertysC12d of the
functionGm,m8sxd, we can see that the value ofr̂↑skduFMl is
simply a constant,

r̂↑sK duFMl = e−ulku2/2 o
m,m8

Gm,m8slkdcm↑
† cm8↑uFMl

= dk,0NfuFMl. s23d

After some algebra, we end up with

r̂↑skduhnqjl = − o
pehnqj

e−ulku2/4−ik∧p/2bk+p
† npsbp

†dnp−1

Înp!

3 p
qehnqj,qÞp

sbq
†dnq

Înq!
uFMl + dk,0Nfuhnqjl

= − e−ulku2/4o
p

e−ik∧p/2bk+p
† bpuhnqjl

+ dq,0Nfuhnqjl. s24d

In the second step above, we used the fact that

bpsbp
†dnp = fbp,sbp

†dnpg + sbp
†dnpbp = npsbp

†dnp−1 + sbp
†dnpbp

and thatbpuFMl=0. As Eq.s24d is valid for any eigenstate of
the bosonic Hilbert space, i.e., it is an operator identity, we
can conclude that
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r̂↑skd = dk,0Nf − e−ulku2/4o
q

e−ik∧q/2bk+q
† bq s25d

is the bosonic representation of the density operatorr̂↑skd.
In the same way, the expression of the operatorr̂↓skd in

terms of theb’s is given by

r̂↓skd = e−ulku2/4o
q

e+ik∧q/2bk+q
† bq, s26d

as r̂↓skduFMl=0 and

fr̂↓skd,bq
†g = e−ulku2/4e+ik∧q/2bk+q

† .

An alternative procedure to obtain Eqs.s25d ands26d con-
sists of looking for an expression in terms of theb’s which
satisfies the commutation relationfO ,bq

†g. For instance, for
the electron density operatorr̂↑skd, the commutator
fr̂↑skd ,bq

†g~bq+k
† and therefore we can conclude that the ex-

pression ofr̂↑skd in terms of theb’s should be a linear com-
bination of the operatorbq+k

† bq. Choosing the coefficients
properly, we easily find the first term of Eq.s25d. In order to
obtain the complete expression, it is necessary to add the
term related to the action ofr̂↑skd on uFMl. In the next
sections, we will adopt this procedure as it is simpler than
the one previously discussed.

Finally, from Eqs.s25d ands26d, we arrive at the bosonic
form of the density operator

r̂k = r̂↑skd + r̂↓skd = dk,0Nf + 2ie−ulku2/4o
q

sinsk ∧ q/2dbk+q
† bq.

s27d

Notice thatr̂k is quadratic in the bosonic operators.

C. Spin density operators

In this section, we will derive the bosonic representation
of the spin operatorsSk

z, Sk
+, and Sk

−. We will see that the
obtained forms for these operators are similar to the ones of
the formalism suggested by Dyson to study spin waves in a
ferromagnetic system.23

Since thez-component of the spin density operator can be
defined as

Szsr d =
1

2
sC↑

†sr dC↑sr d − C↓
†sr dC↓sr dd ,

the expression of the Fourier transform of this operator as a
function of the bosonic operators follows immediately from
Eqs.s25d and s26d,

Sk
z =

1

2
fr↑skd − r↓skdg =

1

2
dk,0Nf

− e−ulku2/4o
q

cossk ∧ q/2dbk+q
† bq. s28d

In spite of defining the bosonic operatorsbq andbq
† from

Eqs.s15d ands16d, respectively, the latter do not correspond
to the bosonic representation ofSk

+ andSk
− as

fSq
+,Sq8

− g Þ dq,q8.

In fact, we should also follow the procedure described in
Sec. II B in order to calculate the bosonic form of the opera-
tors Sk

+ andSk
−.

From Eq. s13d and s19d it is possible to show that
fSk

−,bq
†g=0. Therefore the action ofSk

− on the eigenstatess21d
is related to the action of this operator on the quantum Hall
ferromagnetuFMl only

Unlike the results for the electron density operator,Sk
−uFMl is

not just a constant, but rather proportional to a linear combi-
nation of the termsGm,m8slqdcm↓

† cm8↑uFMl. In this case, it
seems quite reasonable to consider Eq.s16d and define the
bosonic representation of the operatorSk

− as

Sk
− ; ÎNfe−ulku2/4bk

†. s29d

In the next section, we will show that Eq.s29d is very well
defined because it satisfies the commutation relations be-
tween the spin density operators as well as between the spin
density and electron density operators.

On the other hand,Sk
+uFMl=0 fsee Eq.s12dg and hence

the bosonic representation of the operatorSk
+ is completely

determined by the commutation relation between this spin
operator andbq

†,

fSk
+,bq

†g =
eulqu2/4

ÎNf

sel2kq* /2r↑sk + qd − el2k*q/2r↓sk + qdd

= ÎNfe−ulku2/4dk,−q −
2

ÎNf

e−ulku2/4

3 o
p

cosSk ∧ sq − pd − q ∧ p

2
Dbk+p+q

† bp. s30d

As the first term of Eq.s30d is proportional todk,−q, we can
conclude that the operatorSk

+ should present a term linear in
bk. Moreover, the second term is a linear combination of
products of the formbk+p

† bp, which implies thatSk
+ should

have a term proportional to the productb†bb. Choosing the
coefficients properly, we end up with the bosonic form of the
operatorSk

+

Sk
+ = ÎNfe−ulku2/4b−k −

1
ÎNf

e−ulku2/4

3 o
p,q

cosSk ∧ sq − pd − q ∧ p

2
Dbk+q+p

† bpbq, s31d

which satisfies the commutation relations30d.
As pointed out earlier, the representationss28d, s29d, and

s31d are similar to the one previously considered by Dyson.23

An important point of this formalism is that, althougth the
Hermiticity requirementSk

+=sS−k
− d† does not hold, the usual

commutation relations between the spin operators are satis-
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fied. A detailed review of this formalism can be found in Ref.
24. As we will show in the next section, the representation
s28d, s29d, and s31d derived using the bosonization method
also preserve the commutation relation between the spin den-
sity operators.

D. LLL projection

In this section, we will show that, using the bosonic rep-
resentation of the operatorsr̂k, Sk

z, Sk
+, andSk

−, the commuta-
tion relations between them are in agreement with the results
derived from the formalism of the lowest Landau level
sLLL d projection.

The LLL projection is a formulation of the quantum me-
chanics in the restricted subspace formed by the lowest Lan-
dau level as developed by Girvin and Jach25 sa brief review
of this formalism is presented in Refs. 8 and 10d. An impor-
tant consequence of the projection of the electron density and
spin density operators on the LLL subspace is that the com-
mutation relations between those operators are modified, i.e.,
the projected spin operators do not commute with the elec-
tron density operator and do not follow the canonical com-
mutation relations between spin operators either.

From Eq.s27d, it is quite easy to show that the commu-
tation relation between electron density operators with dis-
tinct momenta is given by

fr̂k,r̂qg = 4el2k·q/2 sinsq ∧ k/2de−ulk + lqu2/4

3 o
p

sinS sk + qd ∧ p

2
Dbk+q+p

† bp. s32d

We can see thatfr̂k , r̂qg is proportional to a linear combina-
tion of the productbk+q+p

† bp with coefficients equal to
sinfsk +qd∧p /2g. This result indicates that the commutator
should be related to the electron density operatorr̂q+k. In
fact, if we compare Eq.s32d with Eq. s27d, we find that

fr̂k,r̂qg = 2iel2k·q/2 sinsk ∧ q/2dr̂q+k , s33d

which agrees with the result obtained from the LLL projec-
tion formalism. In the LLL projection approach, it is proved
that the projected electron density operators with different
momenta obey an algebra similar to the one of the translation
operators in a magnetic field. When a particle in a magnetic
field is translated along the parallelogram generated by the
vectorsk l2 and ql2, the particle acquires a phase equal to
q∧k. As a consequence of that, the commutatorfr̂k , r̂qg is
not equal to zero, contrary to the behavior of the non-
projected operators.8

In the same way, from expressionss27d ands28d, we find
that the commutator betweenr̂k andSq

z is also different from
zero,

fr̂k,Sq
zg = 2iel2k·q/2 sinsk ∧ q/2de−ulk + lqu2/4

3 o
p

cosS sk + qd ∧ p

2
Dbk+q+p

† bp

=
1

2
dk,0dq,0Nf

2 − 2iel2k·q/2 sinsk ∧ q/2dSk+q
z .

s34d

This result implies that, within the LLL subspace, the charge
and spin excitations are entangled.8 As it will be discussed in
Secs. III C and IV, the charged excitation of the interacting
two-dimensional electron gas atn=1 is described by a
charge spin texturesquantum Hall skyrmiond.16

Finally, after some algebra, it is possible to show that the
commutation relations between the spin operatorsSq

z, Sk
+, and

Sq
− are given by

fSk
−,Sq

zg = el2k·q/2 cossk ∧ q/2dÎNfe−ulk + lqu2/4bk+q
†

= el2k·q/2 cossk ∧ q/2dSk+q
− , s35d

fSk
+,Sq

zg = − el2k·q/2 cossk ∧ q/2dFÎNfe−ulk + lqu2/4b−k−q

−
e−ulk + lqu2/4

ÎNf

3 o
p,p8

cosS sk + q + pd ∧ sp − p8d
2

Dbk+q+p+p8
† bpbp8G

= − el2k·q/2 cossk ∧ q/2dSk+q
+ , s36d

fSk
+,Sq

−g = Nfe−ulku2/2dq,−k − 2e−ulku2/4−ulqu2/4 cossk ∧ q/2d

3 o
p

cosS sk + qd ∧ p

2
Dbk+q+p

† bp

+ 2e−ulku2/4−ulqu2/4 sinsk ∧ q/2d

3 o
p

sinS sk + qd ∧ p

2
Dbk+q+p

† bp

= 2el2k·q/2 cossk ∧ q/2dSk+q
z

+ iel2k·q/2 sinsk ∧ q/2dr̂k+q. s37d

Again, all the commutation relationss35d–s37d are in agree-
ment with the results calculated in the LLL projection for-
malism.

It is not surprising that our bosonization approach for the
2DEG at n=1 recovers the results obtained with the LLL
projection. Remember that all operators considered until this
moment were expanded in terms of the fermionic creation
and annihilation operatorscms

† and cms with the aid of ex-
pressionss6d, which are the fermionic field operators pro-
jected in the LLL. In addition, as discussed in detail in Ap-
pendix C, the functionGm,m8sxd is the matrix element in the
lowest Landau level basis of the projected operatore−iq·r .
When the Fourier transform of any operator is calculated
using the LLL projection formalism, it is necessary to con-
sider the expression of the projected operatore−iq·r .

Returning to the previous section, we can also conclude
that the operatorSq

− is very well defined by Eq.s29d as this
one preserves the commutation relation between the electron
density and spin density operators within the LLL subspace.
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E. Hilbert space

In the bosonization approach for the one-dimensional
electron gas, Haldane26 proved that the Hilbert space
spanned by an arbitrary combination of the fermionic cre-
ation and annihilation operators acting on the vacuum state
uN=0l0 is identical to the Hilbert space spanned by an arbi-
trary combination of the bosonic creation operators acting on
the set of allN-particle ground statesuNl0, with NPZ, which
is the vacuum state for the bosons.1

The above assumption can be elegantly proved by calcu-
lating the grand canonical partition functions of the noninter-
acting fermionic and bosonic Hamiltonians, where the latter
is derived from the former using the bosonization method for
the one-dimensional electron gas. Since all terms of the par-
tition function are positive quantities, the relation between
the two functions allows us to compare the degree of degen-
eracy of the fermionic and bosonic Hilbert spaces. For the
2DEG at n=1, we have been considering a system consti-
tuted by a fixed number of particlesN=Nf, therefore we will
analyze the canonical partition function.

In Sec. II A we showed that the Hamiltonian of the 2DEG
at n=1 is given only by the Zeeman termfsee Eq.s9dg,
which is diagonal in the Landau level basis. The energy ei-
genvalues can be written asEn=ng−gNf /2, where 0øn
øNf is the number of electrons with spin down. The degen-
eracyPn

F of each energy eigenstate can be easily calculated,

Pn
F = SNf

n
D ·SNf

n
D = S Nf!

n!sNf − nd! D
2

.

Hence the fermionic partition function is given by

Z0
F = Trse−bH0

F
d = ebgNf/2o

n=0

Nf SNf

n
D2

e−nbg, s38d

with b=1/sKBTd.
On the other hand, as it will be discussed in Sec. III A, the

bosonic HamiltonianfEq. s44dg derived from the noninteract-
ing fermionic onefEq. s9dg using the bosonization scheme is
diagonal in the basis of the eigenstatesuhnqjl fEq. s21dg.
Therefore the canonical partition function is simply given by

Z0
B = Trse−bH0

B
do

hnqj
khnqjue−bH0

B
uhnqjl = ebgNf/2o

n=0

Nf

Pn
Be−nbg.

s39d

Here Pn
B is the number of eigenstates withn-bosons and

n=oqnq. Notice that the eigenstates withn.Nf are not in-
cluded in the above sum as those states correspond to a num-
ber of electron-hole excitations greater than the number of
fermionsNf.

The values ofPn
B are determined by the number of points

in the momentum space. The maximum momentum value
can be estimated if we remember that a boson of momentum
q, created by the action of the operatorbq

† on the stateuFMl,
can be described as an electron-hole pair whose distance be-
tween the center of their guiding centers isur u= l2uqu. More-
over, as discussed in Appendix B, a particle in the lowest
Landau level with guiding centerm corresponds to a particle

moving in a cyclotron orbit with radius equal to the magnetic
length l whose guiding center is located at a distance
lÎ2m+1 from the origin of the coordinate system. Therefore
the largest distance between the electron and the hole in the
magnetic exciton corresponds tom=Nf and it is roughly
equal to Î2Nfl. Since the momentum cutoff isqmax

=Î2Nf / l, the number of points in the momentum space is
given by

o
q

1 =
A

4p2E d2q =
2pl2Nf

4p2 E
0

qmax

qdqE du = Nf
2 , s40d

whereA is the system area.
From the above analysis, the number of states withn

bosons is given by

P0
B = 1,

P1
B = Nf

2 ,

P2
B = Nf

2 +
Nf

2 !

sNf
2 − 2d!2!

,

¯,

Pn
B =

1

n!
Nf

2sNf
2 + 1d¯fNf

2 + sn − 1dg, n ù 1,

hence the canonical partition function for the bosonic Hamil-
tonian can be written as

Z0
B = ebgNf/2S1 + o

n=1

Nf

Pn
Be−nbgD . s41d

SinceZ0
B@Z0

F, we can conclude that the bosonic Hilbert
space is bigger than the femionic one. Even having removed
the states withnùNf from the partition functions41d, we
still have unphysical states in the bosonic Hilbert space.

There is only one fermionic and one bosonic subspace of
the corresponding Hilbert spaces which are identical. Notice
that the first two terms of Eqs.s38d ands41d are equal, which
implies that the fermionic subspace spanned by the quantum
Hall ferromagnet,uFMl, and the states with only one spin
down sn=1d are identical to the bosonic Hilbert space
spanned by the vacuum and the states of one-bosonbq

†uFMl.
This overcompleteness of the bosonic Hilbert space can

be easily understood. From expressionss38d and s41d, we
can see that the number of states of two-bosons is roughly
twice the number of fermionic states with two spin down
sn=2d. If we consider, for instance, a state of two-bosons
constituted by two bosons of momentaq1 andq2, such that
ulq1u, ulq2u,1, in the fermionic language, it can be seen as in
Fig. 2sad. Notice that this state is equivalent to the one which
is constituted by two bosons of momentaq3 andq4, such that
ulq3u, ulq4u@1 fFig. 2sbdg. Based on that, we can say that we
are “double counting” the number of states of two-bosons.
Of course, this problem becomes worse as we take into ac-
count states ofn bosonssn.2d. Besides that, we can still
study the low-energy physics of the system as, in this case,
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we have a small number of bosons with momentumulqu,1
present in the system. As we will see in the next section, the
energy of the bosons increases with the momentumfEq.
s51dg. It is worth mentioning that this same problem appears
in a description of a bilayer quantum Hall system at total
filling factor onesnT=1d.27 Here, the spontaneous interlayer
phase coherents111d state can be viewed as a condensate of
interlayer particle-hole pairssexcitonsd, which, in the very
dilute regime, can be treated as pointlike bosons. The corre-
sponding bosonic Hilbert space is also overcomplete.

This problem could be fixed, for instance, introducing a
constraint which restricts the bosonic Hilbert space to the
physical states only. However, this is quite a hard task. For
example, it isnot possible to follow the ideas of the well-
known expansions of the spin operators in terms of bosons,
such as the Schwinger boson representation.28 In this case,
the local spin operators are written as a function of thelocal
bosons operatorsai and ãi, namely

Si
+ = ai

†ãi, Si
− = ãi

†ai, Si
z = sai

†ai − ãi
†ãid/2.

The constraint is easily determined as it is related to the fact
that the number of bosons on the sitei should be twice the
spin S, i.e., ai

†ai − ãi
†ãi =2S. The same ideacannotbe applied

to our case as the bosonic operatorsbq
† andbq are not local.

In fact, they involve a linear combination of electron-hole
excitations where the particles are localized in different guid-
ing centers. Until now, we have not found a systematic way
of introducing a constraint in our formalism.

III. INTERACTING TWO-DIMENSIONAL ELECTRON
GAS AT n=1

In this section, we will apply the bosonization method
developed for the 2DEG atn=1 to study the interacting two-
dimensional electron gas atn=1. We will show that the
Hamiltonian of this interacting system is mapped into an
interacting bosonic model.

A. Noninteracting electron system

As pointed out in the last section, the Hamiltonian of the
noninteracting two-dimensional electrons atn=1, restricted

to the lowest Landau level subspace, is given by the Zeeman
term only fEq. s9dg. In the Landau level basis, it can be
written as

H0 ; HZ = −
1

2
go

s
o
m

scms
† cms, s42d

whereg=g*mBB.0.
In order to find out the bosonic form of the Hamiltonian

s42d, it is necessary to calculate the commutation relation
betweenH0 and the bosonic creation operatorbq

†,

fH0,bq
†g = −

1

2
go

s
o

m,n,n8

e−ulqu2/4

ÎNf

sGn,n8slqd

3 fcms
† cm8s,cn↓

† cn8↑g

= go
n,n8

1
ÎNf

e−ulqu2/4Gn,n8slqdcn↓
† cn8↑ = gbq

†. s43d

Since the above commutator is proportional tobq
†, H0 should

present a term of the formgoqbq
†bq, which gives the same

commutation relation as in Eq.s43d. Moreover, the action of
H0 on uFMl is equal to a constant, −gNf /2. Therefore we
can conclude that the bosonic form of the Zeeman term is

H0 = go
q

bq
†bq −

1

2
gNf. s44d

The same result can be obtained in a more rigorous way by
explicitly calculating the action ofH0 on the eigenstates
s21d,

H0uhnqjl = H0Sp
q

sbq
†dnq

Înq!
uFMlD = FH0,p

q

sbq
†dnq

Înq!
GuFMl

+ p
q

sbq
†dnq

Înq!
H0uFMl

= Sg o
kPhnqj

nk −
1

2
gNfDp

q

sbq
†dnq

Înq!
uFMl. s45d

This analysis shows that the Hamiltonian of the noninteract-
ing two-dimensional electron gas atn=1, restricted to the
lowest Landau level, is recast in a noninteracting bosonic
system, whose dispersion relation is constant.

B. Interacting electron system

Now, we will consider an interacting two-dimensional
electron gas atn=1, where the particles are restricted to the
lowest Landau level. The Hamiltonian of the system is

H = H0 + Hint. s46d

Here,H0 is given by Eq.s42d and the interacting term can be
written as

FIG. 2. Schematic representation of a two-bosons state:sad ulq1u,
ulq2u,1 andsbd ulq3u,ulq4u @1.
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Hint =
1

2 o
s,s8

E d2rd2r8Cs
†sr dCs8

† sr 8d

3Vsur − r 8udCs8sr 8dCssr d, s47d

where Vsur ud=e2/ serd is the Coulomb potential ande the
dielectric constant of the host semiconductorssee Appendix
Ad. Substituting Eq.s6d in Hint, it is possible to write down
the interacting term as a function of the density operators of
electronss as

Hint =
1

2 o
s,s8

E d2k

4p2Vskdrsskdrs8s− kd, s48d

whereVskd is the Fourier transform of the Coulomb potential
in 2D,

Vskd =
2pe2

ek
,

and k= uk u. Using the bosonic form of the density operators
r̂sskd, we can write down the interacting term as a function
of the bosonic creation and annihilation operators. Substitut-
ing Eqs. s25d and s26d in Eq. s48d, we have four distinct
terms, Hint=H1+H2+H3+H4. The first one is a constant
related to the positive background,

H1 =
1

8p2E d2kVskddk,0,

whereas the second and third terms are

H2 = − H3 = −
i

4p2o
p
E d2kVskdNfdk,0e

−ulku2/4

3 sinsk ∧ p/2dbq
†bq.

The last term isquartic in the bosonic operators. Rewriting
H4 in normal-ordering in the operatorsb, we end up with a
quadratic and a quartic term in the bosonic operators, namely

H4 =
1

2p2o
p,q
E d2kVskde−ulku2/2 sinsk ∧ p/2dsinsk ∧ q/2dbk+q

† bqbp−k
† bp =

1

2p2o
q
E d2kVskde−ulku2/2 sin2sk ∧ q/2dbq

†bq

+
1

2p2o
p,q
E d2kVskde−ulku2/2 sinsk ∧ p/2dsinsk ∧ q/2dbk+q

† bp−k
† bqbp =

e2

el
Îp

2o
q

s1 − e−ulqu2/4I0sulqu2/4ddbq
†bq

+
1

2p2o
p,q
E d2kVskde−ulku2/2sinsk ∧ p/2d 3 sinsk ∧ q/2dbk+q

† bp−k
† bqbp. s49d

HereI0sxd is the modified Bessel function of the first kind.29

Now, adding the bosonic form of the noninteracting
HamiltonianfEq. s44dg to Hint, we will arrive at the expres-
sion of the total Hamiltonian of the interacting electrons as a
function of the bosonic operators,

H = −
1

2
gNf + o

q
wqbq

†bq +
2

A o
k,p,q

Vskde−ulku2/2sinsk ∧ p/2d

3 sinsk ∧ q/2dbk+q
† bp−k

† bqbp, s50d

where the dispersion relation of the bosons is given by

wq = g +
e2

el
Îp

2
s1 − e−ulqu2/4I0sulqu2/4dd . s51d

This curve is plotted in Fig. 3 for the caseg=0. The energy
of the bosons is given in units of the Coulomb energy
e2/ seld.

The Hamiltonians50d describes a system of interacting
two-dimensional bosons. The ground state is the vacuum
stateuFMl fEq. s10dg and its energy is equal toE0=−1

2gNf.
This result implies that the ground state of the two-
dimensional electron gas atn=1 does not change as we
moved from the noninteracting to the interacting system. As

FIG. 3. Dispersion relation of the bosonsfEq. s51d, with g=0g,
in units of the Coulomb energye2/ seld as a function of the momen-
tum q.
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pointed out earlier, the ground state of the interacting two-
dimensional electron gas is the quantum Hall ferromagnet
even in the limit of vanishing Zeeman energysg→0d.

The elementary neutral excitations are described by the
bosonsb, whose dispersion relationwq is equal to the previ-
ous diagrammatic calculations of Kallin and Halperin13 and
the results of Bychkovet al..14 The long wavelength excita-
tions can be considered as the spin wave excitations of the
quantum Hall ferromagnet, while the ones with large mo-
menta correspond to a quasielectron-quasihole pair as the
particles are very far apart. Remember that, as discussed in
Sec. II A, the distance between the guiding centers of the
excited electron and hole isur u= l2uqu.

The above results corroborate our initial associationsSec.
II A d between the bosonsb and the magnetic excitons de-
scribed in Ref. 13. As a matter of fact, within our bosoniza-
tion method, we go beyond the diagrammatic calculation13 as
we end up with an interaction between the bosons. In the
next section, we will study the resulting interacting bosonic
model.

C. Bound states of two-bosons

In this section, we will study the states of two-bosons.
More precisely, we will check if the interacting bosonic
model s50d can describe the formation of bound states of
two-bosons. Our initial motivation is based on previous re-
sults of the one-dimensional ferromagnetic Heisenberg
model.

The problem of two interacting spin wavessmagnonsd in
the ferromagnetic Heisenberg model was analyzed by
Dyson,23 who derived a bound state condition when the total
momentum of the pair is equal to zero. For an arbitrary value
of the spinS, it was verified that this condition is not fulfilled
in two and three dimensions and it was concluded that bound
states of two spin waves do not exist, in contradiction to the
results for the one-dimensional model.30 After that, this prob-
lem was also discussed by Wortis31 who, in opposition to
Dyson’s results, proved the existence of bound states of two
spin waves for any value of the spinSand the dimensionality
of the system. A review about this topic is presented in Ref.
24.

On the other hand, Tjon and Wright32 studied the dynami-
cal solitons of the one-dimensional ferromagnetic Heisen-
berg model. The dynamical soliton is a solution of the dy-
namical equations of motion, localized in space, with zero
topological charge and whose total energy, total field mo-
mentum, andz-component of the total magnetization,

Mz =E dxSzsxd,

are constants of motion. Writing the components of the spin
operator asSx+ iSy=Seif sinu andSz=Scosu, whereS is the
spin of the system, the general form of the dynamical soliton
can be written as33

u = usr − vtd, f = wt + fsr − vtd.

Here,v is the translational velocity of the soliton andw is the
precessional frequency of the magnetization in the frame of
reference moving with the soliton, i.e., an internal degree of
freedom.

A possible relation between the dynamical soliton and the
bound states ofn-magnons of the Heisenberg model was
discussed by Schneider.34 For the isotropic model, the dy-
namical soliton solutions of Tjon and Wright32 were semi-
classically quantized via the Bohr-Sommerfeld-de Broglie
condition. Following this procedure, thez-component of the
total magnetization assumes only integer values. Conse-
quently, the precessional frequencyw is also quantized.34 For
spin S=1/2, a correspondence was found between the
n-magnons and the dynamical soliton spectra. This result im-
plies that the dynamical soliton of the one-dimensional fer-
romagnetic Heisenberg model can be considered as a bound
state ofn-magnons. This analysis was also applied to the
easy-axis and anisotropic exchange Heisenberg models, but
the correspondence between the two spectra was found only
in the limit of large quantum numbers.

Those characteristics are similar to the solutions of the
Sine-Gordon model.35 Two possible solutions of the classical
equations of motion are the topological solitonsa static lo-
calized solutiond and the breather solution, which resembles
an oscillating soliton-antisoliton pairsdynamical solitond
with topological charge equal to zerosa good review about
topological and dynamical solitons is presented in Ref. 33d.
After the quantization of these solutions, the soliton corre-
sponds to a quasiparticlesfermion of the massive Thirring
modeld while the internal degrees of freedomsoscillating
modesd of the breather solution correspond to bound states.
Since the lowest energy bound state can be considered as an
elementary bosonof the theory, the internal degrees of free-
dom of the breather solution correspond to bound states of
n-bosons. The number of the latter is determined by the cou-
pling constant of the theory.

It is well known that the low lying charged excitations of
the two-dimensional electron gas atn=1 is the quantum Hall
skyrmion, which carries an unusual spin distribution.16 As
we will see in the next section, this excitation is described by
a generalized nonlinear sigma model in terms of a unit vector
field nsr d which is related to the electronic spinfsee Eq.
s62dg. The skyrmion is given by the topological soliton solu-
tion of the nonlinear sigma model with a finite size, which is
determined by the competition between the Coulomb and
Zeeman energies. Forn=1, the topological charge of this
solution is equal to the electrical charge.

As our bosonization method for the 2DEG atn=1 gives
us an interacting boson model to describe the interacting
two-dimensional electron gas atn=1, it seems reasonable to
study the bound states of two-bosons in order to find out a
possible relation between them and the spectrum of a bound
skyrmion-antiskyrmion pair.

Since the total and relative momenta of a boson pair are
given by P=p+q and Q=sp−qd /2, respectively, the inter-
acting term of the bosonic Hamiltonians50d can be written
as

Hint =
2

A o
k,P,Q

Vskde−ulku2/2 sinSk ∧ sP/2 + Qd
2

D
3 sinSk ∧ sP/2 − Qd

2
D

3 bP/2+k−Q
† bP/2−k+Q

† bP/2+QbP/2−Q. s52d
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We can easily see that a state of two-bosons of the kind
uFl=bq

†bp
†uFMl is not an eigenstate of the total Hamiltonian

s50d. Therefore it is necessary to consider a linear combina-
tion of those states. The more general form of a state of
two-bosons with total momentumP can be written as

uFPl = o
q

FPsqdb1/2P−q
† b1/2P+q

† uFMl. s53d

In this case, the total momentum of the pair is also a good
quantum number for the same reasons as discussed at the end
of Sec. II A. Remember that a state of two-bosons can be
considered as a two electron-hole pair whose total charge is
zero.

For a fixed value of the total momentumP, the energy of
the states53d is given by the Schrödinger equation

HuFPl = EPuFPl. s54d

We will consider the action onuFPl of the quadratic and
quartic terms of the total Hamiltonians50d separately. For
H0, we have

s55d

Observe thatEPsqd is the energy of two noninteracting
bosons. On the other hand, for theHint, after some algebra, it
is possible to show that

HintuFPl = o
q

FPsqdfHint,b1/2 P−q
† b1/2 P+q

† guFMl

+ o
q

FPsqdb1/2 P−q
† b1/2 P+q

† HintuFMl

= 2 o
kÞ0,q

Usk,P,qdFPsqd

3 b1/2 P−q+k
† b1/2 P+q−k

† uFMl, s56d

where

Usk,P,qd =
2

AVskde−ulku2/2 sinSk ∧ sP/2 + qd
2

D
3 sinSk ∧ sP/2 − qd

2
D .

Substituting expressionss55d and s56d in the Schrödinger
equations54d and changingq→q+k, we have

0 = o
q

FPsqdfEPsqd + EFM − EPgb1/2P−q
† b1/2P+q

† uFMl

+ 2 o
kÞ0,q

Usk,P,qdFPsq + kdb1/2P−q
† b1/2P+q

† uFMl.

Changing the sum over momenta to an integral

1

Ao
q

→E d2q

4p2 ,

we find the following eigenvalue problem

fe − EPsqdgFPsqd =E d2kKPsk − q,qdFPskd, s57d

wheree=EP−EFM and the kernel of the integral equation is
given by

KPsk − q,qd = 2
ec

p

e−uk − qu2/2

uk − qu
sinS sk − qd ∧ sP/2 + qd

2
D

3 sinS sk − qd ∧ sP/2 − qd
2

D . s58d

In the two expressions above, all momenta are measured in
units of the inverse magnetic length, i.e.,q→q / l.

For the one-dimensional Heisenberg model, the analog
eigenvalue problem can be solved analytically as the kernel
of the integral equation is separable.24,31 However, KPsk
−q ,qd is not of the same kind and therefore our eigenvalue
problems57d will be solved numerically.

The numerical solution of the above eigenvalue problem
can be determined using the quadrature technique.29 This
method consists of replacing the integral over momentum by
a set of algebraic equations

fe− EPsqidgFPsqid < o
jÞi

CjKPsqj − qi,qidFPsqjd, s59d

whereCj are the quadrature coefficients. The system of equa-
tions can be symmetrized multiplying byÎCj,

fe − EPsqidgfCi
1/2FPsqidg

< o
jÞi

Ci
1/2KPsqj

− qi,qidCj
1/2fCj

1/2FPsqjdg.

s60d

After this discretization, for a fixed value of the total mo-
mentumP, we can calculate the eigenvalues of Eq.s60d us-
ing the usual matrix techniques.

The choice of the pointsqi and of the values of the coef-
ficients Ci are related to the parametrization adopted. For
one-dimensional problems, there are several parametriza-
tions, for instance, the Gaussian quadrature,29 which allows
us to calculate the eigenvalues with good precision. How-
ever, for two-dimensional problems, there are a fewer num-
ber of available parametrizations and therefore it is possible
only to find a good estimate for the eigenvalues.

In order to solve the eigenvalue problems60d we consid-
ered a parametrization which is applied to calculate two-
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dimensional integrals over a circular region. In this case, it is
necessary to introduce a cutoff for large momentum in order
to define the integration region. All the parameters of this
quadrature as well as a set of parametrizations for multiple
integral calculations can be found in Ref. 36.

Figure 4 shows the dispersion relation of the states of
two-bosons as a function of the total momentumP. Here, we
assume thatg=0. The eigenvalue problem was solved using
a 61 point quadrature and only bosons with momentumuk l u
ø2 were considered. The solid line is the lowest energy
eigenvalue state while the shaded area is the continuum of
scattering states. Once the lowest energy state of two-bosons
is below the continuum of scattering states, we can say that
this lowest energy eigenvaluessolid lined corresponds to a
bound state of two-bosons. The distance between the solid
line and the bottom of the shaded area is the binding energy.
There are also other bound states above the one shown in
Fig. 4, but the analysis of those states is limited by the nu-
merical method.

As pointed out at the beginning of this section, we want to
check if there is a possible relation between the bound states
of two-bosons and a bound skyrmion-antiskyrmion pair ex-
citation. In this way, we should compare our results with the
ones derived from the model of Sondhiet al.,16 namely, with
the value of the energy of a noninteracting skyrmion-
antiskyrmion pair, which can be calculated from the expres-
sion derived by Sondhiet al. for the energy of the skyrmion
fEq. s7d of Ref. 16g. However, this kind of comparison is not
appropriate here as thez component of the total spin of the
system is a good quantum number. Notice that the states of
two-bosons haveSz=2 sthe z component of the total spin in
relation to the quantum Hall ferromagnetd while a skyrmion-
antiskyrmion pair described by the Sondhi’s model hasSz

@2. Remember that this model is suitable to describe the
skyrmion only in the limit of very small Zeeman energy
sg→0d. In this case, the excitation is constituted by a large
number of spin-flips.

In a work previous to Ref. 16, Rezayi37 constructed a
family of wave functions for the quasiparticles of the 2DEG

at n=1. Based on numerical calculations, it was shown that
the energysE1d of a state formed by the quantum Hall ferro-
magnet plus one spin down electronfsee Fig. 5sadg is greater
than the energysE2d of the state constituted by one spin
down electron plus a spin-wave excitationfFig. 5sbdg. In the
thermodynamic limit, it was shown thatE1−E2
=0.054e2/ e l. This result implies that instead of a single spin
down quasielectron, the quasiparticle of the 2DEG atn=1
should be constituted by a quasielectron bound ton-spin
waves. Based on that, Sondhi and coworkers suggested that
the charged excitation of the 2DEG atn=1 should be de-
scribed by a charged spin texture.

Notice that we can compare the spectrum of the bound
states of two-bosons with Rezayi numerical results. Let us
consider a state constituted by a quasielectron-quasihole pair
very far apart and a spin wave with momentumulku!1
bound to either the quasielectron or the quasihole. Thez
component of the total spin of this state isSz=2. Since the
energy of a quasielectron-quasihole pair very far apart corre-
sponds to the limitulku→` of the dispersion relations51d,
the energy of the state described above is simply

Ee−h−sw< sÎp/2 − 0.054de2/el . s61d

The dashed line in Fig. 4 corresponds toEe−h−sw. We can
see that our results are in good agreement with the previous
ones of Rezayi’s. More precisely, our calculations indicated
that, in the limit ulPu→`, the dispersion relation of the
bound states of two-bosons is asymptotic toEe−h−sw. In this
scenario, we can understand the behavior of the dispersion
relation of the bound states of two-bosons. As the total mo-
mentumulPu decreases, for instance, the quasielectron bound
to the spin wave approaches the quasihole, increasing the
interaction between them and therefore lowering the energy
of the system. Notice that this behavior is in good agreement
with the solid line in Fig. 4.

Therefore we can conclude that the bound states of two-
bosons are appropriate to describe the skyrmion-
antiskyrmion pair excitation, in the limit of large Zeeman

FIG. 4. Dispersion relation of the state of two-bosons, in units of
the Coulomb energye2/ seld as a function of the total momentumP
for g=0. Solid line: lowest energy bound state; shaded area: con-
tinuum of the scattering states; dashed line: energy of the
quasielectron-quasihole pair plus one spin wavefEq. s61dg. See text
for details.

FIG. 5. Schematic representation of the quasiparticles consid-
ered by Rezayi in Ref. 37:sad the quantum Hall ferromagnet plus
one spin down electron andsbd the spin down electron plus a spin-
wave excitation.
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energy, when the excitation is formed by a small number of
spin-flips.

We should mention that Cooper38 studied the dynamical
soliton solutions with zero topological charge of the nonlin-
ear sigma model without the extra terms of the Sondhi’s
model. The calculated spectrum is qualitative similar to the
one illustrated in Fig. 4. For small momentum, the excita-
tions correspond to free spin waves and, as the momentum
increases, the dispersion relation continuously approaches
the energy value of a noninteracting soliton-antisoliton pair.
However, this description is valid only in the limit of a large
number of spin waves, which is very far from the region of
our analysis.

A final word about the Hilbert space. Notice that in the
above analysis we consider the bosonic Hilbert space consti-
tuted by the vacuum statefEq. s10dg and the states of two-
bosonsfEq. s53dg. As discussed in Sec. II E, the number of
the states of two-boson is greater than the number of fermi-
onic states with two spin-flips over the quantum Hall ferro-
magnet. However, in order to solve the eigenvalue problem
s60d, a cutoff for large boson momentum was introduced
which restricted the bosonic subspace and therefore we be-
lieve that the solution of Eq.s60d does not involve unphysi-
cal states.

IV. BOSONIZATION AND COHERENT STATES

In this section, we will consider the semiclassical limit of
the interacting bosonic Hamiltonians50d. We will show that,
starting from Eq.s50d, it is possible to recover the energy
functional of the quantum Hall skyrmion.

As mentioned in Sec. III C, Sondhiet al.16 suggested that
the quantum Hall skyrmion can be described by a general-
ized nonlinear sigma model in terms of a unit vector field
nsr d which is related to the electronic spin. The effective
Lagrangian density of the model is given by

Lef f =
1

2
r0Asnd · ]tn −

1

2
rSs¹nd2 +

1

2
g*r0mBn ·B

−
e2

2e
E d2r8

qsr dqsr 8d
ur − r 8u

. s62d

Here,rS is thespin stiffnessssee Appendix Ad, Asnd is the
vector potential of a unit monopoleseabc]aAb=ncd, r0

=1/s2pl2d is the average electronic density, andqsr d is the
topological charge density or skyrmion density which is
given by

qsr d =
1

8p
eabn · s]an 3 ]bnd, s63d

with a, b, c=x, y, z, a, b=x, y, andeab is the antisymmetric
tensor.

On the other hand, Moon and co-workers suggested an
alternative approach to study the quantum Hall skyrmion.18

In this case, the charged excitation is described by the state

unsr dl = e−iOuFMl, s64d

where the operatorO is a nonuniform spin rotation which
reorients the local spin from the directionẑ to n̂sr d,

O =E d2rVsr d ·Ssr d =E d2qfV−sqdS−q
+ + V+sqdS−q

− g.

s65d

Here, Ssr d is the spin operator,nsr d is a unit vector, and
Vsr d= ẑ3 n̂sr d defines the rotation angle. Assuming that
Vsr d corresponds to small tilts away from theẑ direction,
Vssqd vanishes whenulqu@1.

In this long wavelength approximation, it was shown that
the average value of the electron density operator in the state
s64d is equal to the topological charge density of the vector
field nsr d fEq. s63dg. Moreover, after projecting the Coulomb
potential in the lowest Landau level subspace, its average
value in the states64d is equal to functional energy derived
from the Lagrangian densitys62d.

In Sec. III C, we showed a possible relation between the
skyrmion-antiskyrmion pair excitation and the bound states
of two bosons. Therefore, if we consider a semiclassical limit
of the interacting bosonic Hamiltonians50d in the same way
as it was done in Ref. 18 we can check if it is possible to
recover the results of Sondhiet al.16

Let us assume that Eq.s64d is a good approximation to
describe the skyrmion. Substituting the expressionss31d and
s29d in Eq. s65d and approximatingSq

+ only by the linear term
in the bosonic annihilation operator, we can write down the
states64d as a function of the bosonic operatorb as

uskl = e−Ne−iOuFMl, s66d

where the operatorO is redefined as

O ;
1

8p2
ÎbNfE d2qVq

+bq
†, s67d

and the constantN=fbNf /2s8pd2ged2qVq
+V−q

− . The value of
the constantb will be determined later. Observe that the state
s66d is a coherent state of the bosonsb.

Changing the sum over momenta into an integral in the
expression of the bosonic representation of the electron den-
sity operatorr̂k fEq. s27dg the average value of this operator
in the states66d is given by

kskur̂kuskl = i
1

2

Nf
2b

s2pd5e−k2/4E d2q sinsk ∧ q/2dVq
+Vq+k

− .

s68d

In the above expression, the momenta are measured in units
of the inverse magnetic lengthl. In the long wavelength ap-
proximation fremember thatVssqd is different from zero
only whenulqu!1g, we have

e−k2/4 sinsk ∧ q/2d < k ∧ q/2 = ẑ · sk 3 qd/2,

and therefore Eq.s68d can be written as
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kskur̂kuskl =
iNf

2b

27p5E d2qẑ· ssq + kdVq+k
− d 3 sqVq

+d

= −
Nf

2b

25p3eabE d2re−ik·r ẑ · s¹na 3 ¹ nbd.

s69d

In the second step, we use the fact thatVsr d= ẑ3nsr d, hence
Vx=−ny, Vy=nx, and Vz=0. From Eq. s69d, the Fourier
transform ofr̂k is given by

r̂sr d ; kskur̂r uskl = −
Nf

2b

4p2

1

8p
eabẑ · s¹na 3 ¹ nbd.

s70d

As we have assumed thatVsr d corresponds to a small rota-
tion angle of the local spin,¹nz<0 andnz<1. Therefore we
can write

eabẑ · s¹na 3 ¹ nbd < eabnzẑ · s¹na 3 ¹ nbd

< eabn · s]an 3 ]bnd,

as it was done in Ref. 18. Moreover, if we choose the value
of the constantb=4p2/Nf

2, Eq. s70d is in agreement with the
definition of the topological charge densitys63d.

Following the same approximations, we will calculate the
average value of the energy of the stateuskl for the interact-
ing bosonic Hamiltonians50d. The average value of the qua-
dratic term of the Hamiltonians50d is given by

kskuH0uskl =
l2

4s2pd3E d2qwqV−q
+ Vq

−. s71d

Considering the long wavelength limit of the dispersion re-
lation s51d, i.e.,

wq < g +
1

4
eBulqu2,

Eq. s71d can be written as

kskuH0uskl < kHZ–l + kHGl, s72d

where the Zeeman term is given by

kHZ–l =
l2

4s2pd3gE d2qV−q
+ Vq

−,

and the gradient term by

kHGl =
eB

4

l2

4s2pd3E d2qslqd2V−q
+ Vq

−.

Here, the constanteB is defined in Appendix A.
Rescaling the momenta byl−1 and calculating the Fourier

transform, we can show that the Zeeman term can be written
as

kskuHZ–uskl =
1

2
g*mBB

1

4p
E d2rsnxd2 + snyd2

< −
1

2
g*mB

1

2p
E d2rn · sẑBd

+
1

2
g*mBB

1

2p
Nf. s73d

In the second step above, we use the identity

un − ẑu2 = snxd2 + snyd2 + snz − 1d2 = 2 − 2n · ẑ

and the fact that, within our approximation,unz−1u!1. On
the other hand, the gradient term assumes the form

kskuH0uskl =
1

2
rSE d2rfs¹Vxd2 + s¹Vyd2g

<
1

2
rSE d2rf¹nsr dg2, s74d

whererS is the spin stiffness as defined in Eq.s62d.
Finally, for the interacting term of the Hamiltonians50d,

we have

kHintl =
1

2ANf
2 o

k,p,q
Vskde−ulku2/2 sinsk ∧ p/2d

3 sinsk ∧ q/2dVk+p
− Vq−k

− V−p
+ V−q

−

< −
1

2l2s8p2d2E d2kVsk/ld

3E d2pẑ· ssp + kdVp+k
− 3 spVp

+dd

3E d2qẑ· ssq − kdVq−k
− 3 sqVq

+dd

=
1

2l
E d2rd2r8Vsr − r 8dqsr dqsr 8d, s75d

whereVsr −r 8d=e2/ seur −r 8ud is the Coulomb potential,qsr d
is the topological charge density as defined in Eq.s70d, and
the vectorr is measured in units ofl.

From Eqs.s73d, s74d, ands75d, we can conclude that the
average value of the energy of the stateuskl is given by

kskuHuskl =
1

2
rS

0E d2rf¹nsr dg2 +
1

2
g*mBB

1

2p
Nf

−
1

2
g*mB

1

2p
E d2rn ·B

+
e2

2 e l
E d2rd2r8

qsr dqsr 8d
ur − r 8u

. s76d

Notice that Eq.s76d is equal to the energy functional derived
from the Lagrangian densitys62d for a static configuration of
the vector fieldnsr d.

It is important to mention that the choice of the constant
b, based on the fact that Eq.s70d should be equal to the
topological charge densitys63d related to the vector field
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nsr d, gave us the correct values of the coefficients of the
Zeemans73d, gradients74d, and interactings75d terms.

In addition to the approach discussed in Ref. 18, a differ-
ent method to derive an effective field theory for the quan-
tum Hall skyrmion is presented in Refs. 39–41.

V. SUMMARY

We developed a bosonization approach for the 2DEG at
n=1 using the fact that, at some level of approximation, the
elementary neutral excitations of the system can be treated as
bosons. The Hamiltonian of the 2DEG atn=1, the electron
density, and spin density operators were bosonized. We
showed that the bosonic representation of the spin density
operators is analogous to the one considered by Dyson to
study the ferromagnetic Heisenberg model. Furthermore, we
showed that the developed bosonization method is closely
related to the LLL projection formalism developed by Girvin
and Jach.

The method was applied to study the interacting two-
dimensional electron gas atn=1. The Hamiltonian of the
fermionic system was recast in an interacting two-
dimensional boson model. We showed that the dispersion
relation of the bosons is equal to the previous diagrammatic
calculations of Kallin and Halperin. Within our bosonization
approach, we can go beyond the latter results as we also
found an interaction between the bosons.

Finally, we showed that the derived interacting bosonic
model can describe the quasiparticle-quasihole pair excita-
tion of the 2DEG atn=1. On one hand, we showed that the
interaction between the bosons accounts for the formation of
bound states of two bosons. Our results agree with the pre-
viously developed numerical approach of Rezayi’s, who
studied the quasiparticles of the system. On the other hand,
we showed that the semiclassical limit of the interacting
bosonic Hamiltonian recovers the energy functional derived
from the model suggested by Sonhdiet al. to describe the
quantum Hall skyrmion.
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APPENDIX A: ENERGY AND LENGTH SCALES FOR THE
2DEG

In Table I, we show the cyclotron"wc, Zeemang, and
Coulombec energies and the value of the constantseB andrs,
in Kelvin, as a function of the magnetic fieldB. The mag-
netic lengthl =Î"c/ seBd=256/ÎB is measured in angstroms
and the magnetic fieldB in Tesla. The electron effective mass
in the GaAs quantum well ism* =0.07me, whereme is the

electron mass and the dielectric constant of the semiconduc-
tor is e<13.

APPENDIX B: CHARGED PARTICLE IN A
PERPENDICULAR MAGNETIC FIELD

Let us consider an electron moving in thex−y plane un-
der the action of a constant perpendicular magnetic fieldB
=B0ẑ. The Hamiltonian of the system is given by

H =
1

2m
Sp +

e

c
Asr dD2

, sB1d

wherep is the momentum canonically conjugated tor andA
is the vector potential. In the symmetric gauge,

Asr d = −
1

2
r 3 B = −

1

2
B0syx̂− xŷd.

Classically, the electron moves in a circular orbit with angu-
lar frequencywc=eB/mc scyclotron frequencyd. In this case,
the modulus of the particle velocity

v =
1

m
Sp +

e

c
Asr dD

and the position of the center of the cyclotron orbitsguiding
centerd

R0 = r +
ẑ3 v

wc

are constants of motion.
Defining the complex variablesV=vx+ ivy, P=px+ ipy,

Z=x+ iy, andZ0=R0x+ iR0y, in the symmetric gauge, the con-
stants of motion can be written as

V =
1

m
P +

1

2
iwcZ,

Z0 = Z +
i

wc
V.

Now, if we apply the canonical quantization rule for the ca-
nonical conjugate variablesr and p, the commutation rela-
tions betweenV andZ0 are given by

fV,V†g = −
2"wc

m
= − 2l2wc

2,

fZ0,Z0
†g =

2"

mwc
= 2l2,

TABLE I. Energy scales for the 2DEG.

Energy scales sKd

"wc "eB/ sm*cd 18.78B

g g*mBB 0.33B

ec e2/ seld 50.40ÎB

eB
Îp /2ec 63.16ÎB

rs ec/ s16Î2pd 1.25ÎB
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fV†,Z0g = fV,Z0g = 0,

wherel is the magnetic length. Introducing two independent
ladder operatorsd and g, such thatfd,d†g=fg,g†g=1 and
fd,gg=fd,g†g=0, we can write

V = − iÎ2lwcd
†,

Z0 = Î2lg. sB2d

It is easy to prove that the operatorsV andZ0 defined as in
Eq. sB2d satisfy the above commutation relations.

Therefore the HamiltoniansB1d can be written as

H0 = "wcSd†d +
1

2
D , sB3d

whose energy eigenvaluessLandau levelsd are given by

En,m = "wcSn +
1

2
D sB4d

and the energy eigenvectors by

unml =
sd†dnsg†dm

În!m!
u00l,

kr u0,0l =
1

Î2pl2
e−r2/4l2,

kr unml =
1

Î2pl2
e−ur u2/4l2Gm+n,nS ir

l
D . sB5d

Here the functionGm+n,nsxd is defined in Appendix C.
Semiclassically, the stateunml can be seen as an electron

in a cyclotron orbit with radius equal tolÎ2n+1 and the
center located at a distancelÎ2m+1 from the origin of the
coordinate system.

A detailed analysis of this problem is presented in Ref. 10.
Our formalism is similar to the one presented in this refer-
ence with the replacementsg→b† andd†→−ia.

APPENDIX C: THE Gm,m8„lq… FUNCTION PROPERTIES

We want to calculate the matrix element of the operator
e−iq·r in the Landau level basis. Writingq=qx+ iqy and r =x
+ iy, we can expand the latter in terms of the ladder operators
d andg defined in Appendix Bfsee Eq.sB2dg,

r = Z = Z0 −
i

wc
V = Î2lsg − d†d, sC1d

therefore the matrix element becomes

knmue−iq·r un8m8l = knmuexpf− isqr* + q*rd/2gun8m8l

= knmuexpf− il ssqg+ q*g†d

− sq*d + qd†dd/Î2gun8m8l. sC2d

Since the ladder operatorsd and g are related only to the
Landau levels and the guiding centers, respectively, we can

use the properties of these operators to write the above ma-
trix element as a product

knmue−iq·r un8m8l = exps− ulqu2/2dGm,m8slqdGn,n8s− lq*d,

sC3d

where the functionsGm,m8slqd andGn,n8s−lq*d are defined as

Gm,m8slqd ; kmuexps− ilqg†/Î2dexps− ilq*g/Î2dum8l,

Gn,n8s− lq*d ; knuexpsilq*d/Î2dexpsilqd†/Î2dun8l.

sC4d

Now, if we taken=n8=0 in Eq. sC3d, we have the matrix
element of the operatore−iq·r in the lowest Landau level ba-
sis,

kmue−iq·r um8l = exps− ulqu2/2dGm,m8slqd. sC5d

In the LLL projection formalism, the above expression cor-
responds to the matrix element of projected operatore−iq·r

fcompare Eq.sC5d with Eq. s25.1.11d of Ref. 10g.
Using the properties of the ladder operators, it is possible

to show that the functionGm,m8slqd can be written as a linear
combination of the generalized Laguerre polynomials

Lm8
m−m8sulqu2/2d, i.e.,

Gm,m8slqd = usm8 − mdÎ m!

m8!
S− ilq*

Î2
Dm8−m

Lm
m8−mS ulqu2

2
D

+ usm− m8dÎm8!

m! S− ilq
Î2

Dm−m8
Lm8

m−m8S ulqu2

2
D .

sC6d

From expressionssC4d andsC6d we can prove the following
properties of the functionGm,m8slqd.

sid Relations between the function and its complex con-
jugate:

Gm,m8slqd = Gm,m8
* s− lq*d = Gm8,m

* s− lqd = Gm8,mslq*d,

Gm,m8silqd = Gm,m8
* silq*d = Gm8,m

* s− ilq*d

= s− idm−m8Gm8,mslq*d. sC7d

sii d The Fourier transform of the product of two func-
tions:

e−ulqu2/2Gm,m8slqdGn,n8s− lq*d

=E d2re−iq·rkn8,m8ur lkr un,ml

=
1

2pl2
E d2re−iq·r − eur u2/2l2Gn+m,n

3S ir

l
DGn8,m8+n8S− ir

l
D . sC8d

siii d The sum of the product of two functions: as the Lan-
dau level basisun,ml is a complete basis, we have
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o
l

Gm,lslqdGl,m8slkd

= o
l

kmuexps− ilqb†/Î2d

3 exps− ilq*b/Î2dullkl uexps− ilkb†/Î2d

3exps− ilk*b/Î2dum8l

= expS− l2q*k

2
DGm,m8slq + lkd. sC9d

sivd Orthogonality relation: using the orthogonality rela-
tions of the generalized Laguerre polynomials, we can show
that

E d2ke−ulku2/2Gm,m8s− lk*dGn,n8slkd =
2p

l2
dm,ndm8,n8,

sC10d

and changing the integral over momenta by a sum,

o
k

e−ulku2/2Gm,m8s− lk*dGn,n8slkd = Nfdm,ndm8,n8. sC11d

svd The trace:

sC12d

APPENDIX D: THE COMMUTATOR †Sq
+,Sq8

−
‡

If we consider the expressions of the spin operatorsSq
+

and Sq
− in terms of the fermionic annihilation and creation

operatorsfEqs.s12d and s13dg, we have

fSq
+,Sq8

− g = e−ulqu2/2−ulq8u2/2 o
m,m8,n,n8

Gm,m8slqdGn,n8slq8dfcm↑
† cm8↓,cn↓

† cn8↑g = e−ulqu2/2−ulq8u2/2S o
m,n,n8

Gm,nslqdGn,n8slq8dcm↑
† cn8↑

− o
m,m8,n

Gn,mslq8dGm,m8slqdcn↓
† cm8↓D = e−sulqu2/2+ulq8u2/2dSe−l2q*q8/2o

m,n
Gm,nslq + lq8dcm↑

† cn↑ − e−l2q8*q/2o
m,n

Gm,nslq8

+ lqdcm↓
† cn↓D = el2qq8* /2e−ulq + lq8u2/2o

m,n
Gm,nslq + lq8dcm↑

† cn↑ − el2q8q* /2e−ulq + lq8u2/2o
m,n

Gm,nslq8 + lqdcm↓
† cn↓. sD1d

Now, if we compare the above result with the expressions of
the electron density operatorsr̂ssqd fEq. s11dg, we can con-
clude that

fSq
+,Sq8

− g = el2qq8* /2r̂↑sq + q8d − el2q8q* /2r̂↓sq + q8d. sD2d
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