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We calculate the Coulomb scattering amplitude for two electrons injected with opposite momenta in an
interacting two-dimensional electron gass2DEGd. We include the effect of the Fermi-liquid background by
solving the two-dimensionals2Dd Bethe-Salpeter equation for the two-particle Green function vertex in the
ladder and random phase approximations. This result is used to discuss the feasibility of producing spin-EPR
pairs in a 2DEG by collecting electrons emerging from collisions at ap /2 scattering angle, where only the
entangled spin singlets avoid the destructive interference resulting from quantum indistinguishability. Further-
more, we study the effective 2D electron-electron interaction due to the exchange of virtual acoustic and
optical phonons and compare it to the Coulomb interaction. Finally, we show that the 2D Kohn-Luttinger
pairing instability for the scattering electrons is negligible in a GaAs 2DEG.
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I. INTRODUCTION

Recent experiments1,2 have allowed for the imaging of the
coherent electron flow in a two-dimensional electron gas
s2DEGd, demonstrating a roughly directional injection
through a quantum-point contactsQPCd tuned to its lowest
transversal mode. We propose here to use such a setup to
investigate Coulomb scattering in 2D, by measuring the scat-
tering cross section. This provides a natural motivation for
solving a long-lasting problem in Fermi-liquid theory: find-
ing the scattering amplitude for the Coulomb interaction in a
2D system, including the effect of the many-particle back-
ground of the interacting Fermi sea. We derive3 the scattering
amplitude f by solving the Bethe-Salpeter equation in the
ladder approximation and for electrons in the Cooper chan-
nel sopposite momentad.4,5 This solution provides a useful
addition to Fermi-liquid theory applied to electron-electron
interaction. The development of Fermi-liquid theory, which
goes back over many decades, includes discussions of
screening,6 the lifetime of quasiparticles,7,8 the renormaliza-
tion factorZ of the Green function,9,10 the effective mass,10,11

and scattering.12–14 An additional issue is how strongly the
Coulomb scattering is affected by the effective electron-
electron interaction mediated by the exchange of virtual
phonons, which have been studied, for instance, in the con-
text of Coulomb dragssee, e.g., Ref. 15d and screening.16

Another extension concerns the effect of lower
dimensionality13,17 in Kohn-Luttinger superconductivity,12

and the question of the strength of superconducting fluctua-
tions sif anyd, which could, in principle, spoil the Coulomb
scattering.

A second motivation for this work comes from the current
efforts devoted to solid-state implementations of quantum
information protocols using the spin of individual electrons
as qubits.18–20 In particular, the experimental demonstration
of entangledsEPRd pairs of spin-qubit is still a present-day

challenge and has motivated a number of theoretical propos-
als for entanglers, i.e., devices creating mobilesspin-d en-
tangled electrons. These proposals relied on energy filtering
via quantum dots18,21–23and carbon nanotubes,24 and/or the
use of superconductors.21,24–26 Other schemes are in closer
relation with optics, and use beam splitters for spin,27

orbital,28 or particle-hole entanglement.29,30

We propose3 here a simple idea for the creation of spin-
entangled pairs in a 2DEG, inspired by the well-known in-
terference effect foundin vacuumfor the scattering of indis-
tinguishable particles.31,32 Using the fact that electron pairs
in the singletstripletd spin state behave like spinless bosons
sfermionsd in spin-independent collisions, we propose to col-
lect electrons emerging from electron-electron collisions
with a scattering angleu=p /2. In this situation, the destruc-
tive interference is complete for triplets; hence, the collected
electrons must be in the entangled singlet stateuSl=su↑ ↓ l
− u↓ ↑ ld /Î2, which is one the EPR states desirable for quan-
tum information protocols. The question now arises whether
this two-particle exchange effect survives in the presence of
a sea of interacting electrons. Using our solution for the scat-
tering amplitudef, we will show that the entanglement cre-
atedsor rather, postselectedd by the collision should be ob-
servable in a realistic 2DEG.

We emphasize that our study of electron-electron interac-
tion is motivated by the prospect of seeing experimental con-
trol on the propagation of electrons in 2DEGs and on their
quasiparticle properties. The experiments of Refs. 1 and 2
have used electron scattering off a scanning probe micro-
scopesSPMd tip to image both quantum interferences and
raylike propagation of electrons, including diffraction. They
have also shown control over the quasiparticle lifetimes for
hot electrons, in good agreement with Fermi-liquid theory.
The theoretical work presented here indicate that such ex-
perimental studies can be extended to more general Fermi-
liquid effects involving two quasiparticles.33
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We start in Sec. II by describing the envisioned setup and
the mechanism for the production of EPR pairs. We write
down in Sec. III the problem in a Fermi-liquid approach and
solve the Bethe-Salpeter equation in the ladder approxima-
tion, using random-phase approximationsRPAd and consid-
ering the Cooper channelsopposite incident momentad. The
solution for the scattering amplitudesthe t matrixd is written
in Eq. s38d in terms of a Fourier series, with explicit expres-
sions for the coefficients. We study in Sec. IV the scattering
cross section and address in more detail the issue of the
production and detection of the EPR pairs. We investigate in
Sec. V the electron-electron interaction mediated by phonons
and show that it does not have a significant effect on scatter-
ing. In Sec. VI we show that no superconducting instabilities
arise from the Kohn-Luttinger mechanism.12 We finally con-
sider in more detail the case of smallrs in the Appendixes.
We derive in Appendix A analytical expressions for the scat-
tering amplitude and its derivative atu=p /2. In Appendix B
we develop a different calculation valid for very smallrs,
which is needed to estimate the contribution of forward-
scattering states.

II. SETUP AND PRODUCTION OF EPR PAIRS

The setup for the study of Coulomb collisions in a 2DEG
is described in Fig. 1. Two quantum point contactssQPCd
tuned into their lowest transversal mode filter electrons es-
caping from two thermal reservoirs,1 and allow them to col-
lide with incident momentap1.−p2 and final momenta
p18 ,p28. A way to measure the scattering length is to use a
SPM tip and to record the conductance across the sample,
which provides an estimate for the local electron flux;1 alter-
natively, one can define “bins” spanning different angles and
collect the current in the drain contactsfsee Fig. 1sadg. For
the production of EPR pairs, described in Fig. 1sbd, the elec-
trons are collected at two detectors placed so that only col-
lisions with a scattering angleu within a small windowdu
aroundp /2 are collected:uP fp /2−du ,p /2+dug. We intro-
duce the conserved total momentumP=p1+p2=p18+p28, the

relative momentap= 1
2sp1−p2d, p8= 1

2sp18−p28d, and the scat-
tering angleu= / sp8 ,pd fsee Fig. 1scdg. The most favorable
arrangement is the Cooper channel5

p2 . − p1, s1d

as it yields conservation of the individual energies:p1.p2
.p18.p28, where pi = upiu. As a consequence, the scattering
angleu. / sp18 ,p1d can be easily determined, while the EPR
pairs have the same energy and should therefore arrive in the
detectors at the same time. We consider incoming electrons
with small excitation energiesji ="2pi

2/2m−EF!EF above
the Fermi energyEF="2kF

2 /2m of the 2DEGsm is the effec-
tive massd.34

Now we describe in more detail the production of spin-
entangled electrons. First, we use the fact that the two-
particle interference is totally destructive for fermions collid-
ing with a scattering angleu=p /2, while, in contrast, the
scattering of bosons is enhanced compared to the classical
value. This is seen in the corresponding cross sectionssB/F
= ufsud± fsp−udu2. Second, the fermionic character of a pair
of particles also depends on its spin state:9,31,32a spin-singlet
electron pair

uSl = su↑↓l − u↓↑ld/Î2 s2d

behaves, in a spin-independent collision, like a bosonic pair
because of its symmetrical orbital wave function, while the
triplets

uT0l = su↑↓l + u↓↑ld/Î2; uT±l = u↑↑l,u↓↓l s3d

behave like fermions. It is then clear that ap /2 scattering
experiment could distill the singlet part of uncorrelated pairs
of electrons—at least in free space.

It might seem surprising to be able to collect spin-singlet
states when starting from two electrons having no spin cor-
relationssthey come from two independent unpolarized res-
ervoirsd. However, a spin-singlet component is always
present, as seen from the change of basis for the density
matrix describing the two-spin state

FIG. 1. Setup. Two quantum-point contacts allow the injection of electrons from two reservoirs with initial momentap1.−p2. sad
Measuring the conductance as a function of the SPM tip position gives an estimate of the electron flux1 and, thereby, of the differential
scattering lengthlsud stopd. Alternatively, one can define “bins” spanning different angles and collect the current in the drain contacts
sbottomd. sbd EPR setup. The electrons are collected in two detectorsswith an aperture angle 2dud placed such that only electrons emerging
from collisions with a scattering angle aroundp /2 are detected. Because of antisymmetrization, the scattering amplitude identically vanishes
for the spin-triplet states, allowing only the spin-entangled singletssEPR pairsd to be collected.scd Scattering parameters. The initial sp1,p2d
and finalsp18 ,p28d momenta are connected by a circle of radiusp8=p due to energy and momentum conservation, where the relative momenta
arep=sp1−p2d /2, p8=sp18−p28d /2 andu= / sp ,p8d is the scattering angle. The Cooper channel is defined by 2a= / sp1,−p2d→0.
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r =
1

4
1 =

1

4 o
s,s8=↑,↓

uss8lkss8u =
1

4
uSlkSu +

1

4 o
m=0,±

uTmlkTmu,

s4d

whereuss8l corresponds to the two-electron state where the
electron injected from the firstssecondd reservoir has spins
ss8d.

A real detector has a small, but finite aperture angle 2du
aroundu=p /2, so that triplets will always be present. To
examine the efficiency of this collision entangler, we will
define the ratioR between the number of scattered triplets
and singletsNT/S in Sec. IV. We will find

R =
NT

NS
. du2U f8sp/2d

fsp/2d
U2

s5d

and show thatuf8 / f u2,1 at u=p /2. Therefore, the number
of triplets, which we want to avoid as they can be in an
unentangled product stateuT±l, is negligible for smalldu.

III. CALCULATION OF THE SCATTERING
AMPLITUDE

In this section we study the scattering between two elec-
trons that are both above the Fermi surface—as opposed to
the standard calculation of the electron lifetime due to scat-
tering of one electron above the surface with all the electrons
present below the surface.5,6 We consider a clean 2D Fermi
liquid with Coulomb interaction, neglecting impurity scatter-
ing sthe mean-free path can be around 10mm, which is
larger than the sizeL.1 mm of the envisioned setup1d. The
effect of phonons will be considered in Sec. V.

A. RPA and Bethe-Salpeter equation

In 2D, the scattering amplitudef for two particles with a
relative momentump is linked to the t matrix via the
relation35

fsud = −
m

"2Î2pp
tsud, s6d

with the corresponding scattering cross sections“length” in
2Dd lsud= ufsudu2. The 2D Coulomb interaction in vacuum
is36,37

VCsqd =E dre−iq·rVCsrd =
2pe0

2

q
, s7d

wheree0
2=e2/4pe0er. We included the dielectric constanter

of GaAs and setp=kF for future comparisons with the scat-
tering in GaAs. The corresponding exact scatteringt matrix
is given by35

tCsud =
§

sinuu/2u
"2Îp

m

Gs 1
2 + i§d

Gs1 − i§d
eip/4−2i§ lnusin u/2u, s8d

with Gsxd the gamma function and§=me0
2/kF"2. This yields

utCsudu =
"2Îp§ tanhsp§d

msinuu/2u
. s9d

Note thatutCuÞVC, contrary to the situation in 3D.

Next we include the effect of the many-particle back-
ground and calculate thet matrix in the presence of the
Fermi sea. Thet matrix is given by the vertex functiont
=Gsv1,2→j1,2d appearing in the two-particle Green function4

fsee Fig. 2sadg. We note that the arrangementp2=−p1 corre-
sponds to the well-known Cooper channel, discussed, for
instance, in the context of Cooper instability.5 Consequently,
we adopt the approach used by Kohn and Luttinger in their
work on intrinsic superconductivity in a 3D Fermi liquid.12

However, our calculation differs in two ways. First, we con-
sider a 2D system where the screened potential is nonana-
lytic sbecause of the modulusq= uqu instead ofq2 in 3Dd.
Second, we are interested in the scattering amplitude, while
Kohn and Luttinger focused on the instability in the vertex
arising from spherical harmonics of the crosseds“exchange”d
diagramsseeL3 belowd.

The two-particle Green function in real space is

Gs18s28s1s2
s18,28;1,2d = s− id2kTc18s18

c28s28
c1s1

† c2s2

† l,

s10d

with the notationi =sxi ,tid, si = ↑ ,↓ are the spin indices, and
T the time-ordering operator. For a spin-independent Hamil-
tonian we can write4,12

Gs18s28s1s2
s18,28;1,2d

= Gs1dGs2ds2pd3

3fds18 − 1dds18s1
ds28s2

− ds18 − 2dds18s2
ds28s1

g

+ si/"dGs18dGs28dG−s18,28;1,2dGs1dGs2d, s11d

with the single-particle Green functionGsid and the
santi-dsymmetrized vertex G±s18 ,28 ;1 ,2d=Gs18 ,28 ;1 ,2d
±Gs18 ,28 ;2 ,1d, expressed in terms of the unsymmetrizedG.
We consider the singlet and triplet basishuSl , uT0l , uT±lj and

FIG. 2. sad The two-particle Green function and the Bethe-
Salpeter equation for the vertexG. We only show the direct dia-
gramssi.e., without the exchange onesd. sbd Lowest-order diagrams
sL1,2,3d contributing to the irreducible vertexL. The wavy lines
denote the screened Coulomb interactionV, given in RPA by re-
suming the bubble diagrams.
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introduce the corresponding creation operators

aS/T0

† s1,2d = 1/Î2sc1↑
† c2↓

† 7 c1↓
† c2↑

† d, s12d

aT±

† s1,2d = c1↑
† c2↑

† ,c1↓
† c2↓

† , s13d

which we use to define the related two-particle Green func-
tions

GS/T0
s18,28;1,2d = − kTaS/T0

s18,28daS/T0

† s1,2dl

= 1
2hG↑↓↑↓ + G↓↑↓↑ 7 G↑↓↓↑ 7 G↓↑↑↓j,

s14d

GT±
s18,28;1,2d = − kTaT±

s18,28daT±

† s1,2dl = G↑↑↑↑,↓↓↓↓,

s15d

where we have dropped the arguments18 ,28 ;1 ,2d for ease
of notation. Usings11d, we find that the spin and orbital
symmetry of the pair of particles is directly reflected in the
vertexG

GS/Ts18,28;1,2d = − Gs1dGs2dfds18 − 1d ± ds18 − 2dgs2pd3

+ si/"dGs18dGs28dG±s18,28;1,2dGs1dGs2d,

s16d

whereT denotes one of the triplet statesT0,±. From Eq.s16d
we see that the vertexsand, therefore, the scattering ampli-
tuded has either a bosonicssymmetricd or fermionic santi-
symmetricd behavior, depending on the spin state. Therefore,
we calculate theunsymmetrizedvertexG giving the t-matrix
t and the scattering amplitudef, and santidsymmetrize the
latter according to the spin state.

From now on we consider the Green function in momen-
tum and frequency space. Taking into account conservation
of momentum and frequency, the vertex satisfies the Bethe-
Salpeter equation4,12

Gsp̃8,p̃; P̃d = Lsp̃8,p̃; P̃d +
i

"s2pd3 E dk̃Lsk̃,p̃; P̃d

3Gsk̃1dGsk̃2dGsp̃8,k̃; P̃d, s17d

illustrated in Fig. 2sad. We have introduced the irreducible

vertex L, the intermediate momentak̃1,2= P̃/2±k̃ given in

terms of the relative momentumk̃, the frequencyv, and the
notation p̃=sp ,vd. All the possible exchange diagrams
should be included inL while avoiding double-counting
physically equivalent diagrams. We first consider zero tem-
peraturekBT=0, and discuss finiteT effects later.

In a first stage, we use the random-phase approximation
sRPAd for the many-electron background.4 This yields the
screened interaction

Vsq̃d =
VCsqd

1 − VCsqdx0sq̃d
, s18d

given in terms of the bubble susceptibilityx0, with the mo-
mentum transferq̃=sq ,vqd= p̃8− p̃. The RPA requires a high
density, which is controlled in 2D via the parameterrs

=me0
2/ s"2Îpnd!1, wheren is the electronic sheet density.

First, one can consider the static limit6

x0sq,vq = 0d = −
m

p"2F1 − Qsq . 2kFdÎ1 −S2kF

q
D2G

s19d

because the dependence ofx0 with vq is smooth and, there-
fore, can be neglected in the integration of intermediate fer-
mionic lines, which, as we shall see below, selects only in-
termediate statesk at the Fermi surface:jk=0⇒"vq=jk
−j1=0 for j1=0. Note that the divergence in thevq integra-
tion of Vsq̃d,1/svq−vpd near the plasmon frequencyvp

disappears because it is an odd function ofv. Next, the
q-dependent part ofx0sq,vq=0d in 2D vanishes at the Fermi
surface, asq.2kF sinuu /2u ,2kF. This justifies the standard
Thomas-Fermi screening

Vsqd =
2pe0

2

q + ks
, s20d

with the screening momentumks=2me0
2/"2=kFrs

Î2.
Within RPA, the renormalized one-particle Green function

is given by5

Gsk̃d .
Z

vk − jk
* − i Im Ssk̃d

s21d

for smallvk andjk. In 2D, for GaAs andkBT,jk→0, one has
the renormalization factor9,10 Z=1−rss1/2−1/pd /Î2.0.62,
the renormalized mass10 m* =mf1−lns1/rsdrs/pg.0.96m
entering injk

* , and the broadeningsinverse lifetimed7 ImS
,j2lnj. The latter vanishes for particles near the Fermi sur-
face sjk→0d, which corresponds to well-defined quasiparti-
cle states. For simplicity,38 we setZ=1, m* = m, and, there-
fore, approximate the renormalized Green function by the
free propagator

Gsk̃d . G0sk̃d =
1

vk − jk
. s22d

We now consider the irreducible vertexL in lowest orders
in V, as mV/p"2,me0

2/kF, rs!1. The lowest-order dia-
grams are shown in Fig. 2sbd; they are the single-interaction
line L1, the vertex renormalizationL2, and the crossed dia-
gramL3

L1 = Vsqd, s23d

L2 = Vsqd
1

s2pd2 E dk1Bsk1,q̃dfVsk1 − p1d + Vsp28 − k1dg,

s24d

L3 =
1

s2pd2 E dk1Bsk1,Q̃dVsk1 + p28dVsk1 + p2d, s25d

with q̃= p̃18− p̃1 andQ̃= p̃28− p̃1. The function
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Bsk,q̃d =
nsk + qd − nskd

jk+q − jk − "v ± ih
s26d

arises from the frequency integration of the bubble diagram
and involves the Fermi occupation factorsnskd=Qs−jkd
at kBT=0. We can estimateL2.VsqdVskFdedk1Bsk1,
q̃d / s2pd2=VsqdVskFdx0sq̃d.−Vsqdks/kF sapart from negligi-
bly small integration regionsd, and similarly forL3. Hence,39

L2,3/L1, rs!1 and we can keep only the single-interaction
line L.L1=V, which corresponds to theladder approxima-
tion. The criterion for the validity of the ladder approxima-
tion is usually expressed4 by lkF!1. This low-density re-
gime is nevertheless consistent with RPA, as can be seen,
e.g., from the Born approximation

t . VC ⇒ lkF ,
1

2p
FmVCskFd

"2 G2

, S ks

kF
D2

! 1. s27d

In summary, we need to solve the following Bethe-Salpeter
equation

Gsp̃8 − p̃; P̃d = Vsp8 − pd +
i

"s2pd3 E dk̃Vsk̃ − p̃d

3G0sk̃1dG0sk̃2dGsp̃8 − k̃; P̃d, s28d

wherek̃1,2=
1
2P̃± k̃.

B. Energy integration and logarithmic factor

We now follow the derivation of the Cooper instability,5

including a discussion of the less standard case of particles
that are not in the Cooper channel, i.e., withp1Þ−p2. Before
solving Eq.s28d to all orders, we first consider its second-

order iteration, Gs2dsp8−p ; P̃d=Vsp8−pd+ i /"s2pd3edk̃Vsk
−pdGsk̃1dGsk̃2dVsp8−kd. The vk integration of the Green
functions yields4

Dsk1,k2d ª
i

2p"
E dvkG0Sk1,

V

2
+ vkDG0Sk2,

V

2
− vkD

=
Nsk1,k2d

j1 + j2 − jk1
− jk2

+ 2ihNsk1,k2d
, s29d

with the function Nsk1,k2dª1−nsk1d−nsk2d. The P̃ fre-
quency"V has been set toj1+j2 to retrieve thet matrix, and
h can be set to 0 in the denominator. We now consider the
Cooper channelp=p1=−p2,k =k1=−k2, which gives q
= up8−pu=2p sinuu /2u, and nsk1d=nsk2d=Qs−jkd⇒Nskd
=sgnsjkd. This yields a single discontinuity in the numerator
whenjk=0, which coincides with the zero of the denomina-
tor sjk=jd when considering a vanishing excitation energy
for the incident particles,j=j1,2→0.

As a consequence, the main contribution to the energy
integration comes from virtual states at the Fermi surface,
i.e., jk.0. We setk=kF in V and integrate only onDskd
=Dsk ,kd. The dominant term comes from both sides around
k=kF and yields the factor40

n ª

1

2p
E

0

`

dkkDskd .
m

2p"2 log
j

EF
. s30d

This logarithmic divergencesas j→0d plays a crucial role
here. It allows us to neglect thek dependence ofV, as it
selects only intermediate states at the Fermi surfacestheir
contribution is logarithmically dominant asj→0d. This is
the main effect of the fermionic background on the scatter-
ing, apart from the screening.

We now consider finite temperatures withnskd
=s1+ejk/kBTd−1. For j,kBT!EF, we find

nsTd .
m

4p"2Hlog
j2 − skBTd2

EF
2

+
j

kBT
Flog

kBT − j

kBT + j
− piG + 2J . s31d

For j@kBT we recovers30d, while for j!kBT we find

nsTd .
m

2p"2 log
kBT

EF
. s32d

This logarithmic factors32d is the 2D equivalent of the one
found in the discussion of the Cooper instability for both
phonon-mediated4 or Kohn-Luttinger12 superconductivity,
with the 2D density of staten2D=m/ s2p"2d instead of the
3D one.

Different cutoffs arise if the Cooper channel condition
sP=0d is not strictly respected. For instance, experiments
might require a small but finite angle 2a= / sp1,−p2d!1
between the incident particles to prevent misalignment, in
which case we have a total momentumP=2p1 sina.2kFa
if p1=p2 and up1−kFu, P!kF. Alternatively, particles might
be injected in perfect opposite directionsa=0d, but with a
different energysthis can arise, e.g., in case of hot electrons,
see Sec. IV Id, i.e., p1Þp2, leading toP= up1−p2u. In these
cases, we find atT=0

Nsk,fd = Qsk − k+d − Qsk− − kd, s33d

wherek±=ÎkF
2 −sP sinfd2± P cosf, andf is the integration

angle for k ff= / sk ,pd+p /2 if aÞ0; f= / sk ,pd if p1

Þp2g. In the limit up1,2−kFu! P, we find

nsfd .
m

2p"2 logS P

kF
sinufuD , s34d

where we recall thatP=2kFa or up1−p2u.
Therefore, the divergencesdue to the single discontinuity

of the two Fermi surfaces for particles in the Cooper chan-
neld is cut off by maxhj /EF ,kBT/EF ,P/kFj. Away from the
Cooper channelsP.kFd, or for large temperaturesskBT,j
.EFd, the logarithmic factor disappears; in that case, the fact
that only virtual states having the Fermi energysk.kFd con-
tribute to higher orders does not apply. Whenp1,2.kF, we
must make sure that the ingoing and outgoing states are
available, i.e.,p1,2,p1,28 .kF. For p /2 scattering andaÞ0,
we have p1,28 =p1scosa±sin ad⇒p1&kFs1+ad fsee Fig.
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1scdg, thena=P/2kF,j /EF. Similarly for p1Þp2, we need
p2=p1−P.kF⇒ P/2kF,j1/EF. As a consequence, the cut-
off is determined by eitherj or kBT.

Before proceeding with the solution of the Bethe-Salpeter
equation, we comment on the difference with the standard
scattering theory in vacuum, where the scatteringt matrix is
given by the Lippmann-Schwinger equation31 tE

vac=V
+VGE

vactE
vac for an incoming energyE. As the single-particle

Green functionGE
vacskd=1/sE−Ekd is an odd function around

the divergence atEk=E, no divergence develops and no se-
lection of intermediate statesk occurs.

In the case of a Fermi sea, the Lippmann-Schwinger equa-
tion is replaced by the Bethe-Salpeter equationswhich can be
written symbolicallyG=V+VDGd, and GE

vac corresponds to
the factorD fEq. s29dg. This is seen by settingEF=0, giving
Nsk1,k2d→1 and, thus,D→GE

vacskd for the relative momen-
tum k =sk1−k2d /2. The difference between the Fermi sea
and the vacuum cases lies in the numeratorNsk1,k2d, which
is a direct effect of Fermi statistics and assigns a negative
sign to the exchange processes, where the transitions occur
via two statesk1,k2,kF below the Fermi surface, as com-
pared to the direct processes via intermediate states above
the Fermi surfacek1,2.kF ssee Fig. 3d. In the Cooper chan-
nel, this factor is responsible for the selection of intermediate
states at the Fermi energysk1,2.kFd via the logarithmic-
divergences30d; the latter arises becauseNskd=sgnsjkd im-
plies thatDsjkd,1/ujku is an even functionsafter settingj
=0d. We emphasize that the selection of virtual states at the
Fermi energysk.kFd disappears away from the Cooper
channelfsee Eq.s34dg.

C. Solution as a Fourier series

We can repeat the integration over the frequency and en-
ergy described above at every order. This results in a new
Bethe-Salpeter equation

tsud = Vsud + n
1

2p
E dfVsfdtsu − fd, s35d

with the screened 2D Coulomb potential at the Fermi surface

vsfd =
2pe2

2kF sinuf/2u + ks
. s36d

To solve this integral equation, we expandv in a Fourier
series,

vsfd = o
n=−`

`

vne
inf, vn =

1

2p
E

−p

p

dfVsfde−inf s37d

as well astsfd. The solution of the Bethe-Salpeter equation
is then simply given by

tsud = o
n

vn

1 − nvn
einu. s38d

This expression for the Coulomb-scatteringt matrix of two
electrons in the Cooper channelsp2=−p1d, in the presence of
a Fermi sea, is the main result of the paper. We note that the
procedure followed here is not valid for very smallrs
!j /EF ,kBT/EF, which will be addressed later in Appendix
B.

D. Fourier coefficients ofv„f…

For the Fourier coefficients ofvsfd, we integrates37d in
the complex plane withz=eif/2. We find

vn =
4e0

2

kF cosg
o

odd mù1

`
cossmgd
2n + m

, s39d

with

sing =
ks

2kF
=

rs

Î2
. s40d

For numerical estimates, it is more convenient to write the
result as

vn = −
2e0

2

kF cosg
hLn + Anj, s41d

Ln = lnFtanSg

2
DGcoss2ngd −

p

2
sins2ngd, s42d

An = 2 o
odd mù1

2n−1
cosfgs2n − mdg

m
. s43d

For instance, forn=0 we have

v0 = −
2e0

2

kF cosg
lnFtanSg

2
DG . s44d

1. Integral approximation

For smallrs the sums39d is smooth and can be approxi-
mated by an integral, giving

FIG. 3. Scattering with a fermionic background.sad Direct vir-
tual transition: the initial statesp1,2 first go to the available inter-
mediate statek1,2.kF s1d, and then go to the final statesp1,28 s2d.
This process is represented by a termcp8

† ckck
†cp. sbd Exchange pro-

cess corresponding tocp8
† ck

†ckcp: intermediate states withk1,2,kF

first fill the final statesp1,28 , creating a particle-hole excitations1d;
the holes are subsequently filled by the initial statesp1,2 s2d. The
effect of the many-particle fermionic background manifests itself in
the functionNsk1,k2d in Eq. s29d, which adds a negative sign for the
exchange process, and is therefore responsible, in the Cooper chan-
nel, for the logarithmic terms30d that selects states at the Fermi
surface,k1,2.kF. In vacuum, we have only casesad, so Nsk1,k2d
=1 and all states contribute with the same sign; this yields no di-
vergence, and therefore no selection.
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vn .
2e0

2

kF cosg
Hsins2ngdFp

2
− Sis2ng + gdG

− coss2ngdCis2ng + gdJ , s45d

where Si and Ci are the sine and cosine integrals. This ex-
pression can also be obtainedsfor largend with a linear ex-
pansion of the sine invsfd.2pe0

2/ sks+kFufud before calcu-
lating the Fourier coefficients. For realistic parameters, it is
very accurate already fornù1. It yields the asymptotics for
n@1

vn .
e0

2

2kFg2 cosg

1

n2 . s46d

Hence, the largen dependence is polynomial,vn,n−2,
which reflects the fact that the potentialvsfd is nonanalytic.
This is in contrast with the 3D case, where the coefficients of
the spherical harmonics decomposition are12 s2pe0

2/kF
2dQls1

+rs
1/22−1/4d, and their decay is exponential inl sQl is the

Legendre function of the second kindd.

2. Small rs approximation

We now expands45d in small rs and find

vn . −
2e0

2

kF
Hlns2ngd +

1

2
− pngJ→ −

2e0
2

kF
lns2ngd.

s47d

This expression is not valid for very largen, as we expanded
to lowest order inng. It remains finite in the limitrs→0
becausee0

2, rs.

IV. SCATTERING LENGTH AND EPR PAIRS

We now apply our result to a realistic GaAs 2DEG and
study the dependence of the scattering amplitude on the scat-
tering angleu, on rs, and on temperature, before discussing
the production and detection of spin-entangled electron pairs.

A. The different scattering lengths

We define the scattering length for singlets and triplets

lS/Tsud = ufsud ± fsu − pdu2, s48d

following s16d. We recall the scattering amplitudefsud de-
fined in s6d,

fsud =
m

"2Î2pkF

tsud, s49d

with the t matrix given bys38d. Unpolarized sources contain
1/4 of singlets and 3/4 of tripletsfsee Eq.s4dg, which yields
the scattering length

lsud = 1
4lSsud + 3

4lTsud. s50d

We also define the scattering lengthls1d obtained from the
Born approximation with the amplitude

f s1dsud =
m

"2Î2pkF

vsud, s51d

as well as the corresponding bare scattering lengthslC and
lC

s1d, obtained by replacingtsud with tCsud and vCsud, given
by Eqs.s8d and s7d. We point out that§=rs/Î2.

B. Total scattering length

We now take typical parameters for a 2D GaAs electron
gas,37 er =13.1, rs=0.86, and a sheet densityn=1015 m−2,
and assumej,kBT=10−2EF sT=20 mKd. First, we estimate
the magnitude of the scattering and calculate the total scat-
tering length integrated overp

ltot =E
0

p

dulsud = 1
4lS

tot + 3
4lT

tot = 3.39 nm, s52d

with

lS
tot = 7.92 nm, lT

tot = 1.88 nm. s53d

This is consistent with the ladder approximation, which re-
quiresltotkF=0.54,1. We now use the Born approximation
s51d and writeltot

s1d=ldir
s1d−lex

s1d. We find for the direct part

ldir
s1d =E

0

2p

duufsudu2 = lF
tang

cosg
H1 − 2 sing tang

3arctanhSÎ1 − sing

1 + sing
DJ s54d

with the Fermi wavelengthlF=2p /kF, and we recall that
sing=rs/Î2. The exchange term is

lex
s1d = ReE

0

p

dufsudfsu − pd

= lF
sin2 g

cos 2g
HlogSsing +

1

sing
D − tang arctanhscosgdJ ,

s55d

which yieldsltotal
s1d =11.0 nm. We see here that the Born ap-

proximation significantly overestimates the exact results52d.
For smallrs, we can further approximateldir

s1d.lFrs/Î2 and
lex

s1d.slFrs
2/2dlogsÎ2/rsd, which gives an even greater

length,ltot
s1d.17.2 nm. In the limitrs→0, the strength of the

Coulomb interactione0
2~ rs also vanishes. As a consequence,

the cross section remains finite—despite the forward-
scatteringsq=0d divergence of the unscreened Coulomb po-
tential.

C. Angular dependence

We compare in Fig. 4 the angular dependence of the dif-
ferent scattering lengths for unpolarized electrons. We first
see that the main effect of the Fermi sea is to reduce signifi-
cantly the scattering by one order of magnitude compared to
the vacuum case. The large renormalization is related to the
relatively large value ofrs=0.86 sand the large screening
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ks,kFd, which strongly reduces the forward-scattering diver-
gence of the bare scatteringlC,lC

s1dsu→0d. Furthermore, we
notice that the Born approximationls1d is not valid in the
Cooper channel, as higher-order terms reduce the scattering
amplitude. The fact that higher terms contribute significantly,
despite the weakness ofVsqd, is due to their logarithmic
enhancement by the factorn.

The angular dependence of the exact scattering lengthl is
similar, but not identical to the Born approximation result
ls1d, as shown in the inset of Fig. 4. Importantly,lsud is a
smooth, monotonicsfor u,p /2d function, so that the inter-
ference mechanism survives for the production of EPR pairs
at u=p /2.

D. rs dependence and Born approximation

We show in Fig. 5 a plot of the scattering length as a
function of the densityn or rs=me0

2/"2Îpn stop axis; we
keepe0 constantd, for the angleu=p /2 shence, only the sin-
glet channel contributesd. There is a strong dependence,n−1

of the scattering, which could be studied experimentally by
varying n via a top gate. This dependence also roughly ap-
plies tols1d andlC, while lC

s1d,VC
2 /kF,n−3/2.

The Born approximationtsud.vsud is reached when the
logarithmic factor disappearssn→0d and does not enhance
higher-order termsfsee Eq.s38dg. This occurs at high tem-
peratureskBT→EF, for hot electronsj.EF, or for electrons
that are not in the Cooper channelsP.kFd. The Born ap-
proximation is also reached in the very smallrs,0.01 limit
snot shownd, whennvn!1. For even smallerrs one can ne-
glect ks in V, which yields the Born approximation of the
bare Coulomb potentialt.VC. We note that the effect of the
Fermi sea is intrinsic in our calculationsby restricting the
intermediate states to the Fermi surfaced, which, therefore,

cannot recover in thers→0 limit the exact result for the bare
Coulomb interactions8d.

E. Dependence onT, j, and a

Two effects appear when one varies the temperature
T, the excitation energyj of the incident electrons or the
impact angle a= / sp1,−p2d /2 sa finite up1−p2u plays
the same roled. The first one is a change in the factor
n appearing in the denominator 1−nvn of the t matrix s38d.
For finite a, one should, in principle, integratensfd
=sm/2p"2dlogs2a sinufud over the intermediate anglef
= / sk ,pd in the Bethe-Salpeter equationtsfd=vsfd
+s1/2pdedfnsfdvsfdtsfd. However, the dependence of
nsfd is smoothslogarithmicd compared to the behavior of the
Coulomb potential at the Fermi surface,vsfd,1/sf+rs

Î2d.
Therefore, we neglect this dependence and set, e.g.,f
.p /3 in nsfd, which gives a constantn.sm/2p"2dlogsad.
Hence, we take

n =
m

2p"2 logSmaxH j

EF
,
kBT

EF
,aJD . s56d

The effect of this dependence on the scattering lengthl at
u=p /2 is shown in Fig. 6. In Fig. 6sad we fix j /EF=10−3,
kBT/EF=10−2 and varya swe recall that the Fermi tempera-
ture is EF /kB=162 Kd. First, l is constant whena
,kBT/EF and then increases slowlysthe horizontal scale is
logarithmicd as n decreases; fora→1⇒n→0, we recover
the Born approximationls1d. The functionl is exactly the
same if one interchangesj andkBT fFig. 6sbdg or permutes
all the three parametersj, kBT, anda fFigs. 6scd–6sfdg.

Second, we take into account the requirement that the
outgoing statesp1,28 are not occupiedsand, hence, available
for the outgoing scattering statesd, by introducing the factor
F=f1−nsj18dgf1−nsj28dg=ns−j18dns−j28d, plotted in Fig. 6
sright vertical axisd. At u=p /2 we have p1,28
=p1scosa±sin ad⇒j1,28 =j±EF sins2ad fsee Fig. 1scdg;
hence, for a largea the final statej28,0 will be already

FIG. 4. Scattering lengthlsud for a GaAs 2DEG with sheet
densityn=431015 m−2 andkBT=EF /100=2 K, for unpolarized in-
cident electrons. We compare the exact results50d for a 2D Fermi
gas to its Born approximationls1d, and to the bare scattering result
swith no screeningd lC andlC

s1d fsee Eq.s51dg. The main effects of
the many-body background is to remove theu=0 divergence by
screening the Coulomb interaction and to significantly reduce the
Born approximation via the logarithmic corrections in Eq.s38d. The
inset shows the ratio of the exact scattering lengthlsud to the Born
approximation resultls1d.

FIG. 5. Scattering lengthl at u=p /2 as a function of the den-
sity n ssee the correspondingrs=me0

2/"2Îpn on the top axisd. The
inset shows the comparison with the Born approximation and the
bare scattering.
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occupied and the scattering into this channel will be prohib-
ited. The transition across the Fermi surface always occurs at
the largest quantityfe.g., atkBT@j in Fig. 6sadg and is sharp
when temperature is negligiblefFigs. 6sbd–6sddg. Note that
here we consider that the initial statesp1,2 are always filled
si.e., with occupation 1d, being either injected from the QPC
or thermally excited.

In Fig. 6sad the maximum value ofF swhenaEF!kBTd is
F=1/4 because the final energiesuj1,28 u!kBT lie within the
temperature windowns0d=1/2. Thesame occurs in Fig. 6scd
for j!kBT, while F=1 for j@kBT. For negligible tempera-
ture fFigs. 6sbd and 6sddg F saturates to 1 whenaEF!j. We
finally note thatsfor the factorFd, Fig. 6sed corresponds to
the opposite of Figs. 6sad and 6sfd is opposite of 6scd and 6sbd
is opposite of 6sdd.

We can now consider the combined effect ofl andF by
defining the “observational” scattering lengthlF, giving the
scattering length as could be measured in a real experiment.
As a function of a, it only reproducesF by showing a
smooth 6sad and sharp 6sbd step. In Fig. 6scd, it first increases
slowly because of the smooth transition fromF=1/4→1 in
the region of constantl ssmalljd, before following the loga-
rithmic increase ofl slargejd. In Fig. 6sdd the transition is

sharp and starts atlF=0. In Fig. 6sed, the transition is
smooth, and the measurable lengthlF follows l but is re-
duced by a factor of 4. In Fig. 6sfd, there is an interesting
nonmonotonic behavior in the region abovekBT/EF.a;
however, it requires an extremely smalla, e.g.,a.0.2°, not
reachable in a realistic experiment. We note that the right-
most parts of the graphssabove 10−1d are only indicative
because they do not correspond to regime assumed in the
derivation ofl skBT/EF ,j /EF ,a!1d.

The scattering length vanishes logarithmically,l
,1/ logsnVd→0 when allkBT, j, and a→0. It is reminis-
cent of the vanishing of the inverse lifetime of a single qua-
siparticle excitation scattering with other electrons below the
Fermi surface, when its excitation energy vanishes.7 How-
ever, the two cases are completely different: the lifetime di-
verges because of phase-space constraints due to the Fermi
statistics; in our case, the scattering of two particlesabove
the Fermi sea vanishes because of the renormalization due to
the Fermi sea.

F. Quantum oscillations

In addition to the destructive and constructive interference
at u=p /2, quantum oscillations can be seen in thebarescat-

FIG. 6. “Observational” scat-
tering lengthlF at u=p /2 as a
function of the impact anglea fsad
and sbdg, the excitation energyj
fscd and sddg, and temperatureT
fsed andsfdg sleft axisd. The Fermi
occupation factorF=f1−nsj18dgf1
−nsj28dg sright axisd enforces the
requirement that the outgoing
states j1,28 =j±EF sins2ad are
available for the outgoing scatter-
ing states. The dependence of the
“bare” l comes fromn s56d and is
the same in all graphs. The arrows
indicate the position of the fixed
values, e.g.,j /EF=10−3, kBT/EF

=10−2 sad, j /EF=10−2, kBT/EF

=10−3 sbd, etc.
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tering sof singlets, triplets, or unpolarized sourcesd as a con-
sequence of the angle-dependent phase§ lnusinu /2u appear-
ing in Eq.s8d. The number of oscillations is roughly given by
§=rs/Î2, as illustrated in Fig. 7. We see that the oscillations
are absent forn=431015 m−2 and only appear at lower den-
sity. At u=p /2, the quantum amplitude for unpolarized
sources is half of the classical one given bylC

cl= ufCsudu2
+ ufCsu−pdu2 because the triplet contribution vanishes.

For the many-particle result, such quantum oscillations
could arise from the small imaginary part appearing with the
logarithm in nsTd=sm/2p"2dflnskBT/EFd+sp /2dig, as it
yields an angle-dependent phase when summing up the Fou-
rier series. However, the phase is of the order
1/ lnskBT/EFd!1, and the oscillations are not visible.

G. Production of EPR pairs

We now consider the setup of Fig. 1sbd with detectors
placed at an angleu.p /2. The triplet channel is nonzero
because of the small aperture angle 2du of the detectors. The
scattering lengths for the singlet and triplet channels into the
detectors read

l̄S/Tsu,dud = 2E
u−du

u

du8ufsu8d ± fsp − u8du2, s57d

which we use to define the ratio

Rsu,dud =
NT

NS
=

3l̄T

l̄S

s58d

between the numberNT/S of singlet and triplets collected in
the detectors. Here we have allowed for the case where the
average scattering angleu deviates fromp /2. We show a
plot of Rsu ,dud in Fig. 8 for du=5° and 10°. We find very
low values, Rs90° ,5°d=0.183% or Rs85° ,5°d
.Rs90° ,10°d.0.7%, which shows that the collision entan-
gler is efficient because singlets are predominantly collected
in the detectors, even foru=80°. We note that such a devia-
tion from p /2 would occur experimentally because the elec-
trons injected through the QPCs have an angular spread. This
spread could, however, be reduced by the use of a lense-
shaped top gate implementing a refractive medium for the
electron motion.2

Expanding indu we find

l̄S/Tsu,dud . 2dusf ± fexd2 +
2

3
du3fsf8 7 fex8 d2

− sf ± fexdsf9 ± fex9 dg + Osdu4d s59d

with

f ; fsud, fex ; fsu − pd s60d

and8 denotesd/du. Foru=90°,du=5°, and neglectingf9 we
get

Rs90°,dud = U f8sp/2d
fsp/2d

U2

du2 = 0.178 % , s61d

which is close to the exact valueR=0.183% found above.
Thus the Taylor approximation is accurate, and it is clear that
the triplet contribution can be made arbitrarily small by re-
ducing the aperturedu. We note that our calculation gives a
ratio uf8 / f u of the order unity for a wide range of parameters,
kBT/EF=10−1–10−10 andrs=0.1–1. Using the Born approxi-
mation we find a significantly lower valuesdu=5°d

FIG. 7. Scattering length for the bare Coulomb interaction
fgiven by Eq.s8dg compared to the classical value given bylC

cl

= ufCsudu2+ ufCsu−pdu2: sad §=0.6 corresponding to n=4
31015 m−2 and sbd §=2 sn=431014 m−2d.

FIG. 8. RatioRsudud of the number of triplets and singlets col-
lected in the detectors, placed at an angleu and with an aperture
du=5°,10°.
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Rs90°,dud .
1

4srs + 1d2du2 = 0.05 % , s62d

which would be more advantageous for EPR productionssee
the discussion on hot electrons in Sec. IV Id.

H. Current

We now estimate the singlet current collected in the de-
tectors for a given input currentI. We neglect the angular
dispersion of the incident electronssdue to diffraction on the
edge of the QPCd by assuming that the electrons occupy the
lowest transverse mode in the QPC, and that the remaining
spread could, in principle, be compensated by the use of a
lensing effect.2 This gives longitudinal plane wavesswith
wave vectorsp1,2d having a transverse widthw roughly given
by half the width of the QPC.

We first note that the scattering length for the singlet

channel is small,l̄S=0.24 nm. Takingw=100 nm, we find
the probability

PS=
1

4

l̄S

w
= 0.06% s63d

for the singlets to be scattered into the detectors. First, we
assume that the electrons are injected simultaneously from
the reservoirs, which can be achieved by opening and closing
both QPCs at the same time. This yields a singlet current of

IS= PSI = 0.6 pA. s64d

We have considered a given current ofI =1 nA, which cor-
responds to a frequency in the GHz range for the opening
and closing of the QPCs. Otherwise, the electrons are in-
jected at random times, given by a Poisson process with rate
Win=e/ I. Then the probability of finding two electrons inside
the scattering regionsi.e., in stateup1,p2ld is roughly P12
=sWout/Wind2, whereWout is the rate of escape from the scat-
tering region into the drain contactssFig. 1d. Finally, we find
the total scattering probability of two electrons

Ptot =
ltot

w
= 3.4% s65d

si.e., not necessarily into the detectord.
An additional interesting topic is the noise41 of the de-

tected current. As this is outside the scope of the present
work, we only present heuristic arguments. As the scattering
probability is very small, one can assume that subsequent
pairs do not interact with each other. This implies that the
zero-frequency noise induced by the scattering should be
mainly given by the partition noise

Ssv = 0d ~ IPSs1 − PSd . IPS,

which becomes Poissonian forPS!1. The pulsed injection
of the electron via, e.g., the periodic lowering of the QPC
barriers, reduces the stochastic nature of the tunneling
through the QPC if the lowering is sufficiently fast. On the
other hand, this periodic change should lead to a more com-
plex noise behavior for finite frequencies.42

I. Hot electrons

It is interesting to consider the case of hot electrons with
larger excitation energiesj se.g., a fraction of the Fermi en-
ergy EF of the scattering regiond, obtained by applying a dc
bias voltageDV across the input QPCs. It can be problematic
to have incident electrons with such a wide range of energy
as this allows a mismatch of the incident energiessj1Þj2d
after averaging over both incident energy ranges, which in-
troduces uncertainties in the scattering anglessee Fig. 1d. To
avoid this situation, one can raise the QPC heights such as to
allow only a very small range of electrons to go above the
QPC barrier.2 For hot electrons withj.EF, the exact result
moves toward the Born approximationfsee Eq.s62d and Fig.
4g. Hence, the scattering length increasesfbecause the loga-
rithmic factor decreasesn, logsj /EFdg, while the triplet/
singlet ratio becomes more favorablesi.e., smallerd. On the
other hand, the scattering length becomes smaller for higher
momentum fas V,1/sk+ksdg. Taking, e.g.,eDV=3 meV
.EF /52, one finds values that are more favorable than for

cold electrons: the singlet length is doubledl̄S
s1d=0.56 nm,

while the triplet/singlet ratio is halvedR=0.10%. Note that
hotter electrons have a smaller lifetime because of the in-
creased phase space that is available for scattering with elec-
trons below the Fermi surface.7 Estimates of the electron-
electron scattering lengthle-e have been obtained2 for a GaAs
2DEG using imaging techniques via an SPM, in good agree-
ment with theoretical predictions.7 In our case, one hasle-e
.1.2 mm, which is similar to the scaleL.1 mm of our
envisioned setup. Hence, one can expect some reduction of
the signal due to relaxation into the Fermi sea, roughly given
by ,e−L/le-e,0.3.

J. Detection of entanglement

An important question is to demonstrate that the collected
electrons are indeed spin-entangled EPR pairs. We propose
here three ways to answer this question experimentally. The
first one is to refocus the scattered electrons into a beam
splitter and carry out noise measurements in one outgoing
lead; in this situation enhanced noisesbunchingd is a signa-
ture of the desired singlet state, while zero noise corresponds
to entangled or unentangled triplets.43 However, this method
would probably require some bridges to avoid the source
reservoirs. The second one is to carry out tests of violation of
Bell inequality,28,44,45 by measuring single-spin projections
via a single-electron transistor coupled to a spin-filtering de-
vice. The latter can be a quantum dot in the Coulomb block-
ade regime46 or a QPCsRef. 47d in a strong in-plane mag-
netic field. The third method consists in adding ap-i-n
junction,48,49 allowing the recombination of the entangled
electrons with unentangled holes into photons; one should
then carry out the test of the Bell inequality with the photons,
by measuring their entangled polarization modes.

In addition, we mention that the interference mechanism
responsible for the vanishing of the triplets atp /2 could be
demonstrated by polarizing the incoming electrons spin,
which can be achieved by applying a large in-plane magnetic
field to turn the QPCs into spin filters,47 or by replacing them
with quantum dots.46 The current recorded at the detectors,
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which is proportional to the fraction of incoming singlets
rS=s1−P2d /2, should then rapidly decrease as the polariza-
tion P of the spins increase.

K. Creation of localized, nonmobile entanglement

In this section, we discuss a way to produce static spin-
entangled electrons, described in Fig. 9. We propose to re-
place the two “injection” QPCs with two quantum dots, each
with an even number of electrons, so that two excess elec-
trons are in the singlet ground state.50 Lowering the tunnel-
ing barrier defining the dots allows for the simultaneous in-
jection of one electronsof the singlet pair in each dotd into
the scattering region. If these electrons are detected atp /2
by the detector, then we know that they must be in a spin-
singlet stateswith certainty 1−NT/NSd. As spin is conserved
during the Coulomb scattering, the total spin for the two
electrons left in the two dots must be zero, which corre-
sponds to the spin-singlet state. Therefore, one has created a
localized snonmobiled entangled pair of electrons separated
by an interdot distancel ,1 mm. This instantaneous “cre-
ation” sobtained by postselectiond is a dramatic illustration of
Einstein’s “spooky action at a distance.” Contrary to the
standard EPR paradox, it does not manifest itself in the re-
sults of measurement correlations, but in the “creation” of a
nonlocal sin the sense of nonoverlapping wave functionsd
quantum state. Such a process, similar in some sense to en-
tanglement swapping or quantum teleportation, could be use-
ful in a scalable quantum computer to create entangled pairs

without having to go through the standard sequence of swap-
ping state, which requires moving one electron to neighbor-
ing site of the other one, entangling them by local
interaction,18 and moving the electron back to its original
place. However, we note that our scheme requires a large
number of collisions, of the order of 1/PS; this number
scales fortunately more slowlys,1/dud with the aperturedu
than the precisions,NS/NT,1/du2d.

V. ELECTRON-PHONON AND ELECTRON-ELECTRON
INTERACTION

In this section we investigate the question of whether
phonons can influence the scattering amplitude in a signifi-
cant way. We first note that the scattering of electrons on real
phonons can be neglected here, as it is strongly suppressed at
low temperature. This is illustrated, for instance, by the ab-
sence of phonon effects in the experiments of Refs. 1 and 2.
However, the effective electron-electron interaction arising
from the exchange of virtual phonons does not depend on
temperature, so that it could play a role in the electron-
electron scattering. Our goal here is to estimate it and com-
pare it to the screened Coulomb interaction that we have
considered thus far. We shall see that the contribution of
acoustic phononssdeformation and piezoelectric couplingd is
negligible, while the polar phonons give a smooth monotonic
decrease of the electron-electron interaction that is less than
20%, and as such does not change qualitatively the results
presented in Sec. IV.

A. 2D phonon-mediated electron-electron interaction

In 3D, the effective electron-electron interaction is given
by5

He-e
ph =

1

2V
o
kW,kW8

o
qW

ckW+qW
† ckW8−qW

† ckW8ckWW
phsqWd, s66d

whereV is the normalization volume,qW =sq ,qzd ,kW ,kW8 are 3D
vectors, andq ,k ,k8 are 2D vectors in the plane of the 2DEG
sin the following we keep the notationq= uqud. The electron-
electron interaction matrix element reads

WphsqWd = uMsqWdu2
2

"V

vphsqd
v2 − v2sqd

, s67d

wherevphsqd is the phonon dispersion andMsqWd is the ma-
trix element for the electron-phonon interaction

He-ph =
1

V
o
qW

o
kWs

ckW+qW,s
† ckWssbqW + b−qW

† dMsqWd. s68d

Here bqW
† and ckW

† are phonon and electron creation operators.
We shall consider the lowest order inWph, which in the Coo-
per channel allows us to take the static limitv=0 as all the
energies involved in the scattering are the same,Ei .EF.

The electron-phonon interactionMsqWd as well as the ef-
fective interactionWphsqWd are always 3D as they involve cou-
pling of the 2D electrons with the bulk 3D phonons. There is
no 3D screening of the bare ion-electron Coulomb interac-

FIG. 9. Creation of nonmobile entanglement. Each input QPC is
replaced by a quantum dotsL and Rd containing two excess elec-
trons. The ground state in each dot is the singlet with total spin
SL+SL8=SR+SR8=0 sad. One injects one electron from each dot
se.g.,L8 andR8d, and allows them to scatter. When they are detected
at ap /2 scattering angle, we know that they are in the singlet state
SL8+SR8=0 sbd. As the total spin is conserved, the two remaining
electrons in dotsL andR are also in the singlet stateSL+SR=0 and,
therefore, form a localized EPR pair whose members are separated
by the interdot distancel.
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tion, as there are no mobile charges in the bulk. Now we
define an effective 2D interactionW2Dsqd, which we shall
compare to the unscreened 2D Coulomb interactionVC. We
assume that the electron wave function is separable into a
plane waveukl and a confined lateral functionucl. For in-
stance, one can take an infinite square well of widthL

cszd =
2

L
sinSpz

L
D , s69d

which yields the width of the 2DEG

d = kz2 − kz2ll1/2 = LÎ 1

2p2 −
1

6
. 0.18L. s70d

We prefer to consider the alternative variational solution of
the triangular well present at the interface,37

ucszdu2 = 1
2k3z2e−kz s71d

with the width

d =
Î3

k
, s72d

as it allows for simple analytical expressions. We define the
effectiveW2D

ph sq=k −k8d by

kk18,c;k28,cuWphuk1,c;k2,cl = dsk1 + k2 − k18 − k28dW2D
ph sqd

s73d

and get15

W2D
ph sqd =E dzE dz8ucszdu2ucsz8du2Wphsq;z− z8d

=
1

2p
E dqzW

phsq,qzduIsqzdu2, s74d

with Wphsq ,zd=s1/2pdedqWphsq ,qzde−iqz and the form fac-
tor

Isqzd =E dzeiqzzucszdu2. s75d

The latter is particularly simple for the triangular well,
Isqzd=siqz/k−1d−3. Our goal is to find the strength of this
additionale-e interaction relative to the unscreened Coulomb
potentialVC, by defining the ratio

r =
W2D

ph

VC
sq = kFd. s76d

Parameters for GaAs. We consider a well of widthd
=5 nm, and take the following parameters51 for GaAs: the
mass densityrm=5320 kg/m3, the deformation potential
constant D=−7 eV, the piezoelectric constanteh14=1.44
3109 eV/m, the acoustic sound velocityc=3700 m/sswe
assume here thatc is the same for both longitudinal and
transverse phononsd, the opticalslongitudinal and transversed
phonon frequencies"vLO=36.6 meV,"vTO=33.8 meV, the
ionic plasmon frequencyVp,i =85.5 meV, and, finally, the
low- and high-frequency dielectric constantses0d=12.9,
es`d=10.89.

B. Acoustic phonons: Coupling to the deformation potential

We first consider electrons coupled to the acoustic
phonons via the deformation potential. The electron-phonon
matrix element is52

MsqWd = DÎV
"

2ric
uqW u. s77d

whereD is the deformation constant,ri is the mass density,
and the dispersion relation isvphsqWd=cuqW u. The static effec-
tive e-e interaction is a constant

WphsqWd = −
D2

ric
2 , s78d

which yields in 2D for the triangular wells71d

W2D
ph sqd = −

D2

ric
2

3k

16
. s79d

The ratios76d becomes

rsqd = − q
D2

ric
2e2

3Î3

16d
=

q=kF

− 1.43 10−3, s80d

which shows that the effective interactionW2D
ph can be ne-

glected for deformation potential coupling.

C. Acoustic phonon: Piezoelectric coupling

For piezoelectric coupling, the matrix element reads52

MsqWd =
eh14

er
ÎV

"

2rivphsqd
AsqWd, s81d

with the polarization constanteh14 and the anisotropy factor

AsqWd = H9qz
2q4/2uqW u6 sLAd

s8qz
4q2 + q6d/4uqW u6 sTAd J s82d

for longitudinal sLA d or transversesTAd phonons. It can be
replaced byALA =0, ATA =1/4 for a 2Dsystem constraining
momentum transfers toqz=0. This gives

Mq =
eh14

er
ÎV

"

8ricuqW u
. s83d

The statice-e interaction is therefore proportional to the 3D
Coulomb interaction,

WphsqWd = −
1

ri
S h14

2cer
D2e2

q2 . s84d

Performing the transformations74d, we find for small q
&kF /10 the effective 2D potential

W2D
ph sqd = −

1

ri
S h14

2cer
D2 e2

2q
. s85d

This corresponds to the 3D→2D transformation of the Cou-
lomb potential, i.e., 1 /uqW u2→2/q. Finally, we get

r = −
pe0

rier
Sh14

c
D2

= − 1.53 10−5. s86d

Hence, the 2D piezoelectric contribution is also negligible.
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D. Optical phonons: Polar coupling

The electron-phonon matrix element is5

MsqWd =ÎF 1

es`d
−

1

es0dG2pe0
2

uqW u2
"vLOV, s87d

wherees0d and es`d are the static- and high-frequency di-
electric constants. Forv=0, this yields

WphsqWd = − F 1

es`d
−

1

es0dG4pe0
2

uqW u2
. s88d

Hence, the effective 2D potential is, for smallq,

W2D
ph sqd . − F 1

es`d
−

1

es0dG2pe0
2

q
, s89d

and we get the ratio

r . − erF 1

es`d
−

1

es0dG = − 19 % . s90d

As the ratiour u is rather large, it is important to consider here
the more accurate expression, valid for largerq, found by
performing the integrations74d with the triangular well so-
lution s71d

W2D
ph sqd = − F 1

es`d
−

1

es0dG2pe0
2

q

k

8sk2 − q2d3

3s− 3q5 + 10q3k2 − 15qk4 + 8k5d, s91d

which is plotted in Fig. 10. We find the rather unexpected
result that virtual sopticald phonons give a significant
contribution—the ratio isur u,20%. However, the effect of
W2D

ph is monotonic and will not change qualitatively the scat-
tering of two electrons in a GaAs 2DEG.

VI. KOHN-LUTTINGER INSTABILITY

Having found the scattering vertex in lowest order, we
now consider higher-order diagrams and examine whether

superconducting fluctuations could have an effect on the
scattering. It has been known for a long time12 that in 3D the
second-order crossed diagramL3 in the irreducible vertex
ssee Fig. 2d can lead to a pairing instability and a transition to
superconductivity. The origin lies in the susceptibilityx0 en-
teringL2,3; being nonanalytic, its spherical harmonics have a
polynomial asymptotic decayxl

0, l−4 with respect to the co-
efficient l of the spherical harmonics decomposition, while
the single interaction is analytic and, therefore, yieldsvl
,e−l. As xl

0 oscillates, the irreducible vertex becomes attrac-
tive for sufficiently largel, Ll ,vl

0+L3,l ,0. The transition
temperature is found from the Cooper divergence ofG, i.e.,
by the relation 1=n3DLl, wheren3D is the same as Eq.s32d
with the 2D density of statem/2p"2 replaced by the 3D one.
This yield an infinitesimal temperature,12 kBTc,exps−105d
for a metal withrs=4.5.

In 2D the equivalent transition does not occur because
there is no instability for particles below the Fermi surface;
q,2kF and x0=−N0 have nosnegatived harmonics. It has
been shown, however, that higher-order diagramssin Ld can
lead to a transition.13 Alternatively, finite energy transfers
can induce “pseudopairing” in thed-wave Cooper channel.17

In our work, however, we are not interested in a supercon-
ducting transition; rather, we would like to verify that the
scattering vertex for the injected particles, which are above
the Fermi surface, is not substantially renormalized by the
standardslowest-orderd Kohn-Luttinger instability with no
energy transfer.

The singular part ofL2,3 originates from the function
Bsk ,q̃d evaluated nearq̃=0. Neglecting the variations ofV in
the q integralsfEqs. s24d and s25dg sthis corresponds to ap-
proximating Vsrd by a very short-range potential, e.g., ad
functiond, we evaluateV at the singular points ofB and write

L2 . 2Vs0dVs2kFd E dk1Bsk1,q̃d = − Vs0dVs2kFdx0sq̃d,

s92d

L3 . V2s0d E dk1Bsk1,Q̃d = − V2s0dx0sQ̃d/2, s93d

whereq= up8−pu.2kF andQ= up8+pu.2kF. We see that we
can neglectL2, rsL3; we also take the static limits19d of
x0svd as it varies on a scale,EF. As Q should be slightly
above 2kF, we take

Q = kFs2 + cdcosu/2 s94d

with c=j /EF.2sp−kFd /kF!1 and uuu!1. The Fourier co-
efficients of the crossed diagrams are therefore given by

L3,n = V2s0d
1

2p
E

0

p

du cossnud
m

p"2F1 − Qsū − ud

3SÎ1 −
1

s1 + c/2d2cos2su/2d
DG , s95d

with ū.Î2c. In lowest order inc, we find for the singular
part

FIG. 10. Effective 2De-e interaction W2D
ph from LO polar

phonons as a function of the scattering angleu. We take a well with
a width d=5 nm, and fixq=2kF sinsu /2d andv=0. We compare it
to the unscreened Coulomb interactionVC. Inset: Ratio R
=W2D

ph /VC from s91d; the horizontal line corresponds to the small-q
approximations90d.
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L3,n = V2s0d
m

2p"2

ū

4n
J1snūd s96d

and the asymptotics

L3,n .
n@1

V2s0d
m

8p"2
Îpū

n3 sinsnū − p/4d, s97d

compared12 to l−4 in 3D. Note the oscillatory behavior, which
allows for negative values. The instability temperature can
be estimated by requiring

uL3,nu ù vn ⇒ n . n0 =
4

prs
2ū

, s98d

where we neglected the oscillating sine function and used
Eq. s46d for vn. We find

kBT , EFe−1/uL3,n0
u . EFe−4/rs

3c. s99d

Note that the parameterc appears in 2D because of theQ
function in Eq. s19d and is absent in 3D. For GaAs and
takingc=0.02, we findkBT/EF,e−100, which means that the
attractive effect of the crossed diagram is completely negli-
gible and does not lead to any sizable fluctuations of the
scattering vertex. For a metal withrs.4.5, the transition
temperature in 3D was found12 to be,EFe−40 000. In 2D, we
cannot neglect the sine as in Eq.s98d; numerically, we find
the temperature,EFe−20/c. This can be larger than in 3D for
c.10−4, despite the fact that the asymptotic decay ofvn
,n−2 is much slower than in 3Dsvl ,e−ld.

VII. CONCLUSION

The prospect of experiments probing individual electron
collisions in a 2DEG is a natural motivation to study the
problem of two electrons interacting via Coulomb interaction
in the presence of a Fermi sea. One of the main results of this
work is the expressions38d for the scattering amplitude for
two electrons in the Cooper channel. We found that the pres-
ence of the Fermi sea yields a significant renormalization of
the strength of the scattering, rather similar to the renormal-
ization found in the discussion of the Cooper instability. This
is closely linked to the selection of intermediate states at the
Fermi surface. Away from the Cooper channel, this selection
disappears and the Born approximation is valid. The overall
angular dependence is fairly unmodified and smooth. There
is a sizable dependence on the sheet density, while the de-
pendence on temperature, energy, and impact angle is
strongly influenced by the Fermi occupation factors. The to-
tal scattering length isltot.3 nm, which is of the same order
as the Fermi wavelength.

We discussed how to use such collisions to produce EPR
pairs at a scattering angle ofu=p /2. This mechanism is
rather robust against imprecisions inu, for an output singlet
current around 0.5 pA. The EPR production was found to be
slightly more efficient in the case of hot electrons. We dis-
cussed detection of entanglement and quantum interference
and proposed a way to create localized EPR pairs separated
by mesoscopic distances.

We studied phonon-mediated electron-electron interac-
tion. We found that the dominant contribution comes from
polar coupling to optical phonons, but does not affect quali-
tatively the Coulomb scattering. The strength of the Kohn-
Luttinger superconducting instability was calculated and
shown to be negligible. Finally, we developedsin Appendix
Bd an alternative calculation valid for diverging forward-
scattering contributions and showed them to be negligible in
GaAs.
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APPENDIX A: SMALL rs APPROXIMATION AT u=p /2

Here we derive analytical expressions for thet matrix and
its derivative atu=p /2, which we then use to compute the
ratio R. We first note thattsp /2d is an alternating series

tsp/2d = t0 + 2o
n.1

s− 1dnt2n, sA1d

where tn=vn/ s1−nvnd. We write the differences astn− tn+2

=hn/ fs1−nvnds1−nvn+2dg with hn=vn−vn+2, which allows us
to get the smoother series

tsp/2d =
h0

s1 − nv0ds1 − nv2d
−

h2

s1 − nv2ds1 − nv4d
+ ¯ .

sA2d

Now we use for the denominators the very smallrs approxi-
mation s47d vn.−v̄ log rs, v̄=2e0

2/kF, giving

tsp/2d =
1

s1 + nv̄ log rsd2sh0 − h2 + h4 − h6 + ¯ d.

sA3d

For the numerators we write

hn = 2v̄S cosg

2n + 1
+

cos 3g

2n + 3
D + 2v̄Hcos 5g − cosg

2n + 5

+
cos 7g − cos 3g

2n + 7
+ ¯ J sA4d

and neglect the second term, which is of orderrs. Then

tsp/2d =
2v̄

s1 + nv̄ log rsd2 o
n.0

s− 1dnS 1

4n + 1
+

1

4n + 3
D ,

sA5d

and, finally,

tsp/2d =
2v̄

s1 + nv̄ log rsd2

p

2Î2
. sA6d

This approximation is good for very lowrs; the error is
,10% for rs,0.09, which corresponds, however, to a very
high densityn=431017.
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We proceed similarly for the derivativet8sp /2d

t8su/2d = 2s− t1 + 3t3 − 5t5 + 7t7 − 9t9 + ¯ d sA7d

.
4v̄

s1 + nv̄ log rsd2

3o
n.1

s− 1dnnS 1

4n − 1
+

1

4n + 1
D . sA8d

The sum yields −p /8Î2+ 1
4s−1dN with N→`. Neglecting the

oscillating term,53 we get

t8sp/2d = 1
2tsp/2d. sA9d

We find in this approximation a very simple form for the
ratio

Rsu,dud = 1
4du2. sA10d

This corresponds to the Born approximation resultfEq. s62dg
in the limit of no screeningsrs→0d. This is somewhat sur-
prising, as our resultsA6d still contains both the screening
sfinite rsd and the resumed higher-order termssresponsible
for the termnv̄ in the numeratord. One must further expand
tsp /2d in smallrs in order to recover the Born approximation
with an unscreened potential

tsp/2d . v̄
p

Î2
= rsp

"2

m
= VCsq = kF

Î2d. sA11d

The Fourier series is not well defined in this case because of
the forward-scattering divergenceVCs0d. We also note that
the number of Fourier coefficients required to reach conver-
gence of the numerical Fourier sum increases dramatically to
nmax=70 000 for n=1023 swith the heuristic dependence
nmax, rs

−0.8d, as the potential becomes more peaked.

APPENDIX B: FORWARD SCATTERING WHEN rs\0

Here we consider carefully the limit of vanishingrs→0,
by following a different approach to solve the Bethe-Salpeter
equation, which allows us to study the contribution of
forward-scattering states. These are indeed important in the
very small rs limit, as the unscreenedCoulomb-scattering
cross section has a forward-scattering divergencesi.e., for
vanishing momentum transfers,q=0d in 3D and 2D.

The calculation that was presented in Sec. III is based on
the logarithmically dominant contribution ofn, log c with
c=maxskBT,jd /EF; it is a many-body effect related to the
sharp edge of the Fermi surface that occurs only in the Coo-
per channelp2=−p1. This approach fails in the situation
where rs is very small, when the screening is too small to
reduce the forward divergence of the unscreened Coulomb
potential. In this situation, one must carefully consider the
contribution of forward-scattering intermediate states with
q= uk −pu.0 as they yield at large termV,2pe0

2/ks. For
such states, one must keep the restrictionk.p.kF, but con-
sider the contribution of small anglesf= / sk ,pd, defined
by54

f,uf − uu ! f̄ =
d

p
→ d

p
=

p − kF

p
.

c

2
! 1, sB1d

whered=k−kF, d=p−kF, andu= / sp ,p8d is the scattering
angle. This corresponds to the forward scattering intovirtual
states; we do not yet specify the real scattering angleu be-
tween the initial and final states. We now go back to the
iterations of the Bethe-Salpeter, after the frequency integra-
tion s30d, still considering only the Cooper channel.

1. Angular integral

We introduce the polar notationk i =ski ,fid and write the
potential Vsk1,f1;k2,f2d;Vsk1−k2d, assumingp=sp,0d,
p8=sp,ud. We first consider the angular integrals for thenth
order iteration of the Bethe-Salpeter equation

sB2d

2. Energy integral

First we consider

bsk8,kd =
2pe0

2

ks + uk8 − ku
2pe0

2

ks + uk − pu
. sB3d

We truncate the energy integration to a small rangekP fkF

=p−d ,p+dg around p and define Bsk8d

ª s1/2pdekF

kF+2ddkkDskdbsk8 ,kd. We can expand the lengthy
result in the lowest order inks and find

Bsk8d . i
mp2e0

4

"2ksuk8 − pu
f1 +Osks/pdg. sB4d

Thus, the subsequentk8 integration will be mainly given by a
small region aroundk8=p, as expected. Hence one should set
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k8=p in the exact resultBsk8d before expanding in lowest
order ofks, which yields

Bsk8 = pd . i
mp2e0

4

"2ks
2 f1 +Osks/pdg. sB5d

For the integration ofaskd in Aª s1/2pdekF

kF+2ddkkDskdaskd,
we setk8=p and expand the result. This gives

A . − i
mpe0

2

2"2ks
f1 +Osks/pdg. sB6d

For the last term containing the scattering angleAu

ª s1/2pdekF

kF+2ddkkDskdauskd, we have

Au . = − i
mpe0

2

2q"2 f1 +Osks/pdg = A
ks

q
sB7d

with q=2kF sinuu /2u. Writing the seriest=ont
snd, we find for

the nth-order termsn.0d

tsnd = S f̄

p
Dn−1

An−1AuB =
2pe0

2

q
Dn−1, sB8d

with

D =
i

8p
c =

i

8p

j

EF
. sB9d

3. Result

So far we have only considered the case where all inter-
mediate angles arefi =0, i =1, . . .n, and only the final angle
is the scattering angleu. There aren equivalent cases giving
the same contribution, where the firstj angles are zero and
the remaining ones arefi =u , j , i øn. Thus the expansion
series of the Bethe-Salpeter Equation ist=V+on.0ntsnd. Per-
forming the summation, we get the scatteringt matrix for
Coulomb scattering in the limit of very smallrs!1

t =
2pe0

2

q + ks
+

2pe0
2

q
D

2 − D

s1 − Dd2 =
ks!q2pe0

2

q

1

s1 − Dd2 ,

sB10d

with q=2kF sinuu /2u. We can further expand this result in
D!1⇒ t.2pe0

2/q=VC; however, this merely reflects the
fact that the Born approximation with unscreened potential is
accurate in the limitrs→0 becausee0

2 is also proportional to
rs. We also note that with this result the scattering amplitude
has a phase 2 arctanuDu=2 arctansf̄ /8pd. However, it is in-
dependent from the angleu and, therefore, does not yield
quantum oscillations in the singlet and triplet scattering
lengths as discussed in Sec. IV F.

In the case of forward scattering55 with u=0, the counting
of equivalent arrangements of the intermediate states gives a
factor of 2n instead ofn. The result has a more familiar form,

t =
2pe0

2

ks

1

1 − 2D
. sB11d

As expected, the forward-scattering amplitudesB11d is larger
than sB10d by a factor of,q/ks,1/rs.

4. Comparison

We now compare thenth-order obtained here,trs

snd defined
in Eq. sB8d with the calculation of Sec. III, i.e., themth
Fourier coefficienttm

snd=vmsnvmdn−1. Their ratio is

tm
snd

trs

snd =
vmq

n2pe0
2Snvm

D
Dn−1

,
1

n
FlogS ks

kF
DGnF ks

kF

log c

c
Gn−1

,

sB12d

where have considered the smallrs approximations47d vm
.s2pe0

2/kFdlogsks/kFd. Therefore, the calculation of Sec. III
is valid provided that

rsulog rsu @
p

Î2

c

ulog cu
. sB13d

Taking c=d /kF=0.01, we find that we needrs.0.01, which
is always the case for typical semiconductor material. In con-
clusion, the large value ofrs does not allow one to see the
contribution of forward scattering intosvirtual or reald states.
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