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We calculate the Coulomb scattering amplitude for two electrons injected with opposite momenta in an
interacting two-dimensional electron g€2DEG). We include the effect of the Fermi-liquid background by
solving the two-dimensionalD) Bethe-Salpeter equation for the two-particle Green function vertex in the
ladder and random phase approximations. This result is used to discuss the feasibility of producing spin-EPR
pairs in a 2DEG by collecting electrons emerging from collisions at/2 scattering angle, where only the
entangled spin singlets avoid the destructive interference resulting from quantum indistinguishability. Further-
more, we study the effective 2D electron-electron interaction due to the exchange of virtual acoustic and
optical phonons and compare it to the Coulomb interaction. Finally, we show that the 2D Kohn-Luttinger
pairing instability for the scattering electrons is negligible in a GaAs 2DEG.
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[. INTRODUCTION challenge and has motivated a number of theoretical propos-
als for entanglers i.e., devices creating mobilgpin- en-

Recent experimentg have allowed for the imaging of the tangled electrons. These proposals relied on energy filtering
coherent electron flow in a two-dimensional electron gasvia quantum dof$?1-23and carbon nanotubé$and/or the
(2DEG), demonstrating a roughly directional injection use of superconductof$?4-26Other schemes are in closer
through a quantum-point conta@®PQ tuned to its lowest relation with optics, and use beam splitters for sfin,
transversal mode. We propose here to use such a setup @bital ?® or particle-hole entanglemeff=°
investigate Coulomb scattering in 2D, by measuring the scat- We propose here a simple idea for the creation of spin-
tering cross section. This provides a natural motivation forentangled pairs in a 2DEG, inspired by the well-known in-
solving a long-lasting problem in Fermi-liquid theory: find- terference effect founth vacuumfor the scattering of indis-
ing the scattering amplitude for the Coulomb interaction in atinguishable particle3:3? Using the fact that electron pairs
2D system, including the effect of the many-particle back-in the singlet(triplet) spin state behave like spinless bosons
ground of the interacting Fermi sea. We defitlee scattering  (fermions in spin-independent collisions, we propose to col-
amplitude f by solving the Bethe-Salpeter equation in thelect electrons emerging from electron-electron collisions
ladder approximation and for electrons in the Cooper chanwith a scattering anglé=/2. In this situation, the destruc-
nel (opposite momenje-® This solution provides a useful tive interference is complete for triplets; hence, the collected
addition to Fermi-liquid theory applied to electron-electronelectrons must be in the entangled singlet st&e (|1 |)
interaction. The development of Fermi-liquid theory, which—| | T))/VE, which is one the EPR states desirable for quan-
goes back over many decades, includes discussions @im information protocols. The question now arises whether
screenind, the lifetime of quasiparticle® the renormaliza-  this two-particle exchange effect survives in the presence of
tion factorZ of the Green functiofl,!°the effective mas¥)!*  a sea of interacting electrons. Using our solution for the scat-
and scattering®~4 An additional issue is how strongly the tering amplitudef, we will show that the entanglement cre-
Coulomb scattering is affected by the effective electron-ated(or rather, postselectgddy the collision should be ob-
electron interaction mediated by the exchange of virtuakervable in a realistic 2DEG.
phonons, which have been studied, for instance, in the con- We emphasize that our study of electron-electron interac-
text of Coulomb dragsee, e.g., Ref. 5and screening® tion is motivated by the prospect of seeing experimental con-
Another extension concerns the effect of lowertrol on the propagation of electrons in 2DEGs and on their
dimensionality>’ in Kohn-Luttinger superconductivifi,  quasiparticle properties. The experiments of Refs. 1 and 2
and the question of the strength of superconducting fluctushave used electron scattering off a scanning probe micro-
tions (if any), which could, in principle, spoil the Coulomb scope(SPM) tip to image both quantum interferences and
scattering. raylike propagation of electrons, including diffraction. They

A second motivation for this work comes from the currenthave also shown control over the quasipatrticle lifetimes for
efforts devoted to solid-state implementations of quanturmhot electrons, in good agreement with Fermi-liquid theory.
information protocols using the spin of individual electrons The theoretical work presented here indicate that such ex-
as qubits'®—2%In particular, the experimental demonstration perimental studies can be extended to more general Fermi-
of entangledEPR) pairs of spin-qubit is still a present-day liquid effects involving two quasiparticles.
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FIG. 1. Setup Two quantum-point contacts allow the injection of electrons from two reservoirs with initial monpgniap,. (a)
Measuring the conductance as a function of the SPM tip position gives an estimate of the electramd|uthereby, of the differential
scattering length\(6) (top). Alternatively, one can define “bins” spanning different angles and collect the current in the drain contacts
(bottom. (b) EPR setupThe electrons are collected in two detectwith an aperture angled®) placed such that only electrons emerging
from collisions with a scattering angle around?2 are detected. Because of antisymmetrization, the scattering amplitude identically vanishes
for the spin-triplet states, allowing only the spin-entangled singEERR pairg to be collected(c) Scattering parameterd he initial (p;,p-)
and final(p1,p;) momenta are connected by a circle of raditis p due to energy and momentum conservation, where the relative momenta
arep=(p1—p2)/2, p’=(p;—p,)/2 andh= 2 (p,p’) is the scattering angle. The Cooper channel is defineddsy 2(p;,—p,) — 0.

We start in Sec. Il by describing the envisioned setup andelative momentgp= 2(p1 ps), p’ 2(p1 p5), and the scat-
the mechanism for the production of EPR pairs. We writetering angled= ~ (p’,p) [see Fig. 1c)]. The most favorable
down in Sec. Ill the problem in a Fermi-liquid approach andarrangement is the Cooper chartel
solve the Bethe-Salpeter equation in the ladder approxima-
tion, using random-phase approximatitRPA) and consid- P2=~P1, 1)
ering the Cooper channébpposite incident momentaThe oo . Lo o
solution for the scattering amplitudéhe t matrix) is written as It ylelds conservation of the individual energipg= p

in EqQ. (38) in terms of a Fourier series, with explicit expres- =pi=Pp;, wherep;=|p|. As a consequence, the scattering

sions for the coefficients. We study in Sec. IV the scatterin _glee £ (p1,py) can be easily determined, while th.e E.PR
cross section and address in more detail the issue of tH&!S have the same energy and shou!d thgrefor(_a arrive in the
production and detection of the EPR pairs. We investigate i etr(]actors”at th_e same tlme_. Wfffzor;?lder incoming belectrons
Sec. V the electron-electron interaction mediated by phonon¥!th small excitation energieg =#4p;/2m—-Eg<E above

. _ 2 2 .
and show that it does not have a significant effect on scattefl'® Fermi energ¥e=7kz/2m of the 2DEG(mis the effec-

34
ing. In Sec. VI we show that no superconducting instabilitiest V€ Mas$: L _ . .
ow we describe in more detail the production of spin-

arise from the Kohn-Luttinger mechanisfmWe finally con- _

sider in more detail the case of smallin the Appendixes. entangled electrons. First, we use the fact that the two-

We derive in Appendix A analytical expressions for the Scatpart|cle interference is totally destructive for fermions collid-

tering amplitude and its derivative &t /2. In Appendix B INd With a scattering anglé=/2, while, in contrast, the

we develop a different calculation valid for very small scatterlng_ of bosons is enhanced cor_npared to the_ classical

which is needed to estimate the contribution of forward-value. This is seen in the corresponding cross seciigs

scattering states. =|f(0) £ f(7w—6)|>. Second, the fermionic character of a pair
of particles also depends on its spin stat&€3?a spin-singlet
electron pair

Il. SETUP AND PRODUCTION OF EPR PAIRS 19=(11)- |lT>)/\’E 2)

The setup for the study of Coulomb collisions in @ 2DEG behaves, in a spin-independent collision, like a bosonic pair
Is described in Fig. 1. Two quantum point conta@PQ because of its sp mmetr?cal orbital wave function, while tFr)1e
tuned into their lowest transversal mode filter electrons es: y
caping from two thermal reservoitsand allow them to col- triplets
I|qe I\Nlth incident momentgp;=-p, gnd final momenta T =T +|1IHN2; [T = (3)
pi.P5. A way to measure the scattering length is to use a
SPM tip and to record the conductance across the sampleehave like fermions. It is then clear thatmd2 scattering
which provides an estimate for the local electron fiadter-  experiment could distill the singlet part of uncorrelated pairs
natively, one can define “bins” spanning different angles anaf electrons—at least in free space.
collect the current in the drain contadsee Fig. 1a)]. For It might seem surprising to be able to collect spin-singlet
the production of EPR pairs, described in Figo)1the elec- states when starting from two electrons having no spin cor-
trons are collected at two detectors placed so that only colelations(they come from two independent unpolarized res-
lisions with a scattering anglé within a small windowsé  ervoirg. However, a spin-singlet component is always
aroundw/2 are collectedd e [7/2-66,w/2+560]. We intro-  present, as seen from the change of basis for the density
duce the conserved total momentiwp,;+p,=p;+p,, the  matrix describing the two-spin state
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where|og’) corresponds to the two-electron state where the

zale,;:tron injected from the fir§second reservoir has spir = s:\F N Q\ﬁ o
ag ). — N 3
A real detector has a small, but finite aperture angié 2 &\\\\ AN
around #=/2, so that triplets will always be present. To 0)
examine the efficiency of this collision entangler, we will Al Ay
define the ratioR between the number of scattered triplets i,
and singletdNy5 in Sec. IV. We will find E}\S _ 04
’ 2 y —
N sl f (/2) ) X 0
NS f(7T/2) k,

’ 2__ —
and ,ShOW that_f /f| 1atg= rr/2._Therefore, the num.ber FIG. 2. (a) The two-particle Green function and the Bethe-
of triplets, which we want to avoid as they can be in ANsalpeter equation for the vertdx We only show the direct dia-
unentangled product staf€.), is negligible for smallsg. grams(i.e., without the exchange onegb) Lowest-order diagrams

Ill. CALCULATION OF THE SCATTERING (A129 contributing to the irreducible verteA. The wavy lines
' AMPLITUDE denote the screened Coulomb interactigngiven in RPA by re-

suming the bubble diagrams.

In this section we study the scattering between two elec-
trons that are both above the Fermi surface—as opposed t0 Next we include the effect of the many-particle back-
the standard calculation of the electron lifetime due to scatyround and calculate the matrix in the presence of the
tering of one electron above the surface with all the electrongermj sea. The matrix is given by the vertex function
present below the surfa€.We consider a clean 2D Fermi =T(w, »— & ,) appearing in the two-particle Green function
!iquid with Coulomb interaction, neglecting impurity scatter- [see Ifig. 2a)']. We note that the arrangememt=—p, corre-
ing (the mean-free path can be around 4@, which is  gponds to the well-known Cooper channel, discussed, for
larger than the size =1 um of the envisioned setép The  jnstance, in the context of Cooper instabifit¢onsequently,
effect of phonons will be considered in Sec. V. we adopt the approach used by Kohn and Luttinger in their
work on intrinsic superconductivity in a 3D Fermi liquid.
) _ _ _ However, our calculation differs in two ways. First, we con-

In 2D, the scattering amplitudfor two particles with a  sjder a 2D system where the screened potential is nonana-
relative_momentump is linked to thet matrix via the |ytic (because of the modulug=|q| instead ofg? in 3D).

A. RPA and Bethe-Salpeter equation

relatior?® Second, we are interested in the scattering amplitude, while
m Kohn and Luttinger focused on the instability in the vertex
f(6) = - ——=—t(9), (6)  arising from spherical harmonics of the crosg&kchange)
h*N2mp diagram(seeA 3 below).
with the corresponding scattering cross sectiength” in The two-particle Green function in real space is
2D) N (0)=|f(#)|2. The 2D Coulomb interaction in vacuum - .
i536’37 | | Go’io’é(rlo'z(l 12 111 2) - (_ |)2<Tcl’(riC2’UéCIo'lc£g—2>1
(10
' 27Te(2)
= 1ar =
Vel@) f dre Ve (r) q ' @) with the notationi =(x;,t;), o;=1,| are the spin indices, and

7T the time-ordering operator. For a spin-independent Hamil-

Wheree§=e2/47-reoer. We included the dielectric constagt  ;5ian we can write!2

of GaAs and sep=kg for future comparisons with the scat-

tering in GaAs. The corresponding exact scattetimgatrix Gylv'o0(1,2":1,2)
is given by® rere ,
. =G(1)G(2)(2m)
te(6) = — AT (G 415) s i 8) XL8L = 18,1805, = L' = 28515 801,]
c sing2l m T(1-is) ’ 710170307 010270507
with I'(x) the gamma function ang=mej/k:#2. This yields +(i/7)G(1)G(2')r-(1',2';1,2G6(1)G(2), (11)
#2\ms tanh(7rs) with the single-particle Green functiorG(i) and the
lte(6)| = msindr2 (9)  (anti)symmetrized vertex I'.(1’,2';1,2)=I'(1",2";1,2)
! +I'(1',2";2,1), expressed in terms of the unsymmetrized
Note that|ts| # V¢, contrary to the situation in 3D. We consider the singlet and triplet bagjs),|To),|T.)} and
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introduce the corresponding creation operators :mq’;/(hzv’%)<1, wheren is the electronic sheet density.
= _ First, one can consider the static lifit
ag,TO(l,z) = 1h2(c},c}, = cf ¢}y, (12)
o —o>——ﬂ{1—( > 2 )\/1—<2—kF>2]
ai(l,Z) =cl,ch.clcl), (13 Xqog=U=="23 q F q
which we use to define the related two-particle Green func- (19
tions because the dependencey8fwith wq is smooth and, there-
Ggr.(1',2":1,2) = - (Tagr (1',2')6‘;T (1,2) fore, can be neglected in the integration of intermediate fer-
0 0 0 mionic lines, which, as we shall see below, selects only in-
:%{GTLTL+GlTiT F Gy FGyqyhs termediate state& at the Fermi surfaceg,=00 fiwy=§

(14) —§1=0 for £=0. Note that the divergence in theg, integra-

tion of V(§) ~1/(wq—wp) near the plasmon frequenay,
Gy (17,2':1,2) = —(Tar (1',2))al (1 2)=G disappears because it is an _odd funct_ionaofNext, the .
Tt @™ Tet & JOT A T g-dependent part 0f°(q, w,=0) in 2D vanishes at the Fermi
(15 surface, as|=2kg sin| /2| < 2kg. This justifies the standard

where we have dropped the arguméht,2’;1,2) for ease Thomas-Fermi screening

of notation. Using(11), we find that the spin and orbital 2778(2)

symmetry of the pair of particles is directly reflected in the V(g) = T (20
vertexI’ q+ks

Gg1(1',2":1,2) = - G(1)GQ)[8(1' - 1) + &1 - 2)](27)° with the screening momentuiky= 2mq§/h2=kpr3\f§.

) i , o Within RPA, the renormalized one-particle Green function
+(i/h)G(1)G(2)I'+(1,2";1,2G(1G(2), g given by

(16)
z

whereT denotes one of the triplet stat&g.. From Eq.(16) G(k) = — = (21
we see that the vertefand, therefore, the scattering ampli- w = &~ i Im (k)

tude has either a bosonitsymmetri¢ or fermionic (anti-
symmetrig behavior, depending on the spin state. Therefore ! pyig 3
we calculate theinsymmetrizedertexI' giving thet-matrix the renormalization fact®®Z=1-r(1/2-1/m)/\2=0.62,

t and the scattering amplitude and (antisymmetrize the the r_eno.rmfllized maks m :m.[l.—ln(llrs)rlslﬁ] :70‘96]1
latter according to the spin state. entering in&,, and the broadeningnverse lifetim¢’ Im%,

From now on we consider the Green function in momen-" £Iné. The latter vanishes for particles near the Fermi sur-

tum and frequency space. Taking into account conservatioffice (é— 0), which corresponds to well-defined quasiparti-

of momentum and frequency, the vertex satisfies the Bethecle states. For simplicity, we setZ=1, m*=m, and, there-
Salpeter equatidri? fore, approximate the renormalized Green function by the

free propagator

for small v, and§. In 2D, for GaAs and&gT, &— 0, one has

r=. D) — ~r =. 5 i A (e 3D
F(b =p1P)_A(p !pvP)+ ﬁ(277)3 J dkA(kap7P)

xGlk) G (@' ki P), (17) | N _
_ o _ _ _ We now consider the irreducible vertéxin lowest orders
illustrated in Fig. 2a). We have introduced the irreducible jn v as mv/ﬂ,hZNmeg/kFNrS< 1. The lowest-order dia-

vertex A, the intermediate momenﬂﬁéivzzlz’/zfl; given in  grams are shown in Fig.(B); they are the single-interaction

terms of the relative momentu~k] the frequencyw, and the line A4, the vertex renormalizatio,, and the crossed dia-
notation P=(p,w). All the possible exchange diagrams 9ramAsz
should be included inA while avoiding double-counting
physically equivalent diagrams. We first consider zero tem-
peratureksT=0, and discuss finité effects later.

In a first stage, we use the random-phase approximation
(RPA) for the many-electron backgroufidThis yields the
screened interaction

1

o~ &

G(K) = Gy(k) = (22)

Al = V(Q) ’ (23)

A,=V(g) f dk;B(ky, DIV(k1 = pg) + V(pz —ky)],

(24)

1
(2m)?

V()
V@ =— o=
1-Ve(@)x°@
given in terms of the bubble susceptibilif, with the mo-
mentum transfet=(q, ) =P’ —P. The RPA requires a high _
density, which is controlled in 2D via the parameter with G=p;—P; andQ=p,-p;. The function

(19
1 ~

ho= o f dkyB(ky, QV(ky + py)Viky +ps), (25
)
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B(K ) = nk +q) - n(k)- (26) pi= zijw dkkD(k) =
mJo

brq— &k~ hotin

Iog i (30)

27Tﬁ2

arises from the frequency integration of the bubble diagranThijs logarithmic divergencéas £é— 0) plays a crucial role
and involves the Fermi occupation factongk)=0(-&)  here. It allows us to neglect the dependence oY/, as it

at kgT=0. We can estimateA,=V(q)V(kg) fdk;B(k;,  selects only intermediate states at the Fermi surfaueir

)/ (2m)?=V(q)V(Ke) x°(@) = -V(q)ks/ ke (apart from negligi-  contribution is logarithmically dominant a&— 0). This is

bly small integration regionsand similarly forA;. Hence®®  the main effect of the fermionic background on the scatter-
Ay 3/ A;~r1s<1 and we can keep only the single-interactioning, apart from the screening.

line A=A;,=V, which corresponds to tHadder approxima- We now consider finite temperatures witm(k)
tion. The criterion for the validity of the ladder approxima- =(1+efi’keT)™1, For ¢~k T<Eg, we find

tion is usually expressédy Ake<<1. This low-density re-

gime is nevertheless consistent with RPA, as can be seen, . | - (kgT)?
e.g., from the Born approximation uT) = Amh? o9 Ez
mvc<kF>} (ks)z 3 [ gT-¢_ }
t=Vc0O Nk~ ~| =] <1. (27 lo m|+2¢. 31
ol Ake ~ 277[ 2 e @) Tl FieTe ¢ sy

In summary, we need to solve the following Bethe-Salpetefor é>kgT we recover(30), while for é<kgT we find
equation

B i o w(T) = 2Trﬁ2 log KLT (32
I -P:P)=V(p' - pHWJde(k—TJ)
B N o This logarithmic factor(32) is the 2D equivalent of the one
X Go(K)Go(k)T'(P' = k; P), (29) found in the discussion of the Cooper instability for both
phonon-mediated or Kohn-Luttinget? superconductivity,
Wherel~<1,2 % +k. \évgh the 2D density of state,p=m/(27%2) instead of the
one.

Different cutoffs arise if the Cooper channel condition
(P=0) is not strictly respected. For instance, experiments

We now follow the derivation of the Cooper instabilty, might require a small but finite anglea2 2 (p;,-p,) <1
including a discussion of the less standard case of particlesetween the incident particles to prevent misalignment, in
that are not in the Cooper channel, i.e., with# —p,. Before  which case we have a total momentus 2p; sin a= 2k
solving Eq.(28) to all orders, we first consider its second- if p,=p, and|p,—kg|, P<ke. Alternatively, particles might
order iteration, '@ (p’—p;P)=V(p'—p)+i/#(2m)3 [ dkV(k be injected in perfect opposite directidr=0), but with a
—p)G(T(l)G(kz)V(p’—k). The , integration of the Green different energ}(th|s can arise, e.g., in case of hot electrons,

- - see Sec. V), i.e., p,# p,, leading toP=|p;—p,|. In these
functions yield$ :
cases, we find af=0

B. Energy integration and logarithmic factor

i Q Q
D(kl, 2) 7I'rﬁ f dka()(kl, + wk) Go(kz, 2 (,l)k> N(kr ¢) = G)(k_ k+) - G)(K - k)r (33)
N(ky, k) wherek, = \k2- (P sin ¢)?+ P cos¢, and ¢ is the integration
= L2 , (29)  angle fork [¢ 2(k,p)+ml2 if a#0; ¢p=2(k,p) if py
Gt & &g~ b, + 2Nk ko) +p,). In the limit |p; ,—ke| <P, we find
with the function N(k;,k,):=1-n(k))—n(k,). The P fre-
quency%{) has been set t§, + &, to retrieve the matrix, and V() = 2ﬂ—ﬁz log k_ sin¢)| |, (34

n can be set to 0 in the denominator. We now consider the

Cooper channelp=p;=-p,,k=k;=-k,, which gives q where we recall thaP=2kza or |p;—p,|.

=|p’—p|=2psin6/2], and n(ky)=n(ky,)=O(=&) 0O N(K) Therefore, the divergendeue to the single discontinuity

=sgn(&). This yields a single discontinuity in the numerator of the two Fermi surfaces for particles in the Cooper chan-

when &.=0, which coincides with the zero of the denomina- nel) is cut off by maxé/Eg,kgT/Eg, P/Ke}. Away from the

tor (&=¢) when considering a vanishing excitation energyCooper channe{P=kg), or for large temperaturegT, &

for the incident particles{=¢; ,— 0. =E), the logarithmic factor disappears; in that case, the fact
As a consequence, the main contribution to the energghat only virtual states having the Fermi enef@y=kg) con-

integration comes from virtual states at the Fermi surfacetribute to higher orders does not apply. Wheyn,= kg, we

i.e., &=0. We setk=kg in V and integrate only orD(k) must make sure that the ingoing and outgoing states are

=D(k,k). The dominant term comes from both sides aroundavailable, i.e.p; ,p; ,>kg. For 7/2 scattering andv# 0,

k=kg and yields the factdf we have p; ,=p;(cosazsina)0 py<kg(1+a) [see Fig.
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t(6) = V(0)+V—fd¢V(¢)t(0 ®), (35

with the screened 2D Coulomb potential at the Fermi surface

2me?

2Ke sin| /2] + kg

FIG. 3. Scattering with a fermionic backgrour(d) Direct vir- To solve this integral equation, we expandin a Fourier
tual transition: the initial statep, , first go to the available inter- series,
mediate staté; ,>ke (1), and then go to the final statgs , (2).
This process is represented by a tergmkckcp (b) Exchange pro- ] 1 (" )
cess corresponding top cloke,: intermediate states witky o< ke v()= 2 v, v,= ZTJ doV(¢)e™?  (37)
first fill the final statesp; ,, creating a particle-hole excitatiqi); == o
the holes are subsequently filled by the initial states (2). The a5 well ast(¢). The solution of the Bethe-Salpeter equation
effect of the many-particle fermionic background manifests itself i iNis then simply given by
the functionN(ky,ky) in Eq.(29), which adds a negative sign for the
exchange process, and is therefore responsible, in the Cooper chan- 3 Un  ing
nel, for the logarithmic term{30) that selects states at the Fermi t(6) = 2 1-w e (38)
surface k; ,=kg. In vacuum, we have only cage), so N(k,kp) n "
=1 and all states contribute with the same sign; this yields no diThjs expression for the Coulomb-scatteringatrix of two
vergence, and therefore no selection. electrons in the Cooper chanrighb=—-p,), in the presence of

a Fermi sea, is the main result of the paper. We note that the

1(c)], thena=P/2ke < ¢/Eg. Similarly for p, # p,, we need  procedure followed here is not valid for very small
po=p;—P>keO P/2ke<&,/Eg. As a consequence, the cut- < ¢&/Eg,kgT/Eg, which will be addressed later in Appendix
off is determined by eithef or kgT. B.

Before proceeding with the solution of the Bethe-Salpeter
equation, we comment on the difference with the standard D. Fourier coefficients ofv(¢)
scattering theory in vacuum, where the scattetingatrix is For the Fourier coefficients af(¢), we integrate(37) in

given by the Lippmann-Schwinger equafibntf®*=Vv . . complex plane witlz=€/#2. We find
+VGEYEC for an incoming energ§. As the single-particle

Green functiorG£qk)=1/(E-E,) is an odd function around 4 o, cogmy)

v(e) = (36)

o

the divergence aE,=E, no divergence develops and no se- = , (39
lection of intermediate statéds occurs. ke COSY ogam=1 2N+ M
In the case of a Fermi sea, the Lippmann-Schwinger equayith
tion is replaced by the Bethe-Salpeter equatishich can be
written symbolicallyI’=V+VDI'), and G£¢ corresponds to siny= —= ks _ 5 (40)

the factorD [Eq. (29)]. This is seen by settlnEF:O, giving ke 2
N(ky,ko) — 1 and, thusp — GE{k) for the relative momen-
tum k=(k;-k,)/2. The difference between the Fermi sea
and the vacuum cases lies in the numeratts , k,), which

is a direct effect of Fermi statistics and assigns a negative 9(2)

sign to the exchange processes, where the transitions occur Up=- ke COS {Ln+ A, (41
via two statesk;,k, <kg below the Fermi surface, as com- F Y

pared to the direct processes via intermediate states above

the Fermi surfacé, ,> kg (see Fig. 3. In the Cooper chan- = In[tan(z)]cos(Zny) _m sin(2ny) (42)
nel, this factor is responsible for the selection of intermediate " 2 2 ’

states at the Fermi enerd¥; ,=kg) via the logarithmic-

For numerical estimates, it is more convenient to write the
result as

diyergence(30); the Iatter arises becaua}l{k)=sgr{§0_ im- 2n-1 cod y(2n-m)]
plies thatD(&)~ 1/|&] is an even functior(after settingé A=2 > = (43)
=0). We emphasize that the selection of virtual states at the odd m=1 m

Fermi energy(k=kg) disappears away from the Cooper For instance, fon=0 we have

channel[see Eq(34)]. X
il
vo= ke cosy In[ta 2/ (44)

1. Integral approximation

C. Solution as a Fourier series

We can repeat the integration over the frequency and en-
ergy described above at every order. This results in a new For smallrg the sum(39) is smooth and can be approxi-
Bethe-Salpeter equation mated by an integral, giving
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2

. T
Un ke Cosy{sm(Zny){E - Si2ny + y)]

- cog2ny)Ci(2ny+ y) (45)

where Si and Ci are the sine and cosine integrals. This ex-

pression can also be obtainédr largen) with a linear ex-
pansion of the sine in(¢)22we§/(ks+kF|¢|) before calcu-

lating the Fourier coefficients. For realistic parameters, it is

very accurate already far= 1. It yields the asymptotics for
n>1

&% 1
2k=»? cosyn?’

Hence, the largen dependence is polynomial,~n>2,
which reflects the fact that the potentigl®) is nonanalytic.

(46)

Up =

This is in contrast with the 3D case, where the coefficients of

the spherical harmonics decomposition'&r@me3/k2)Q,(1
+rl/22-14 " and their decay is exponential In(Q, is the
Legendre function of the second kind

2. Small rg approximation

We now expand45) in smallrg and find
2

2
Up="— —eo{ln(Zn'y) + i wny}

2

2
— - io In(2nvy).
ke

(47)

This expression is not valid for very large as we expanded
to lowest order innvy. It remains finite in the limitrg—0
because;~rs.

IV. SCATTERING LENGTH AND EPR PAIRS

We now apply our result to a realistic GaAs 2DEG and
study the dependence of the scattering amplitude on the scat-
tering angled, onrg, and on temperature, before discussing
the production and detection of spin-entangled electron pairs.

A. The different scattering lengths
We define the scattering length for singlets and triplets

Agr(0) =|f(0) + f(6- m)|?, (48)

following (16). We recall the scattering amplitudé€d) de-
fined in (6),

ft(ﬁ
\ 7Tk|:

f(6) = 2 (49)

with thet matrix given by(38). Unpolarized sources contain
1/4 of singlets and 3/4 of triplefsee Eq(4)], which yields
the scattering length

(50)

We also define the scattering lengtf? obtained from the
Born approximation with the amplitude

NO) = 3Ag(6) + SA1(6).

PHYSICAL REVIEW B 71, 045338(2005

Lv(e) (51)

\r

W(6) =

as well as the corresponding bare scattering lengtghand
)\(1 obtained by replacing(6) with tc(6) andvc(6), given
by Egs.(8) and (7). We point out that=r /\2

B. Total scattering length

We now take typical parameters for a 2D GaAs electron
gas?’ ¢=13.1,r,=0.86, and a sheet density=10"> m™2

and assumé<kgT=1072E; (T=20 mK). First, we estimate
the magnitude of the scattering and calculate the total scat-
tering length integrated over

Mot = f don(d) = D'+ D\ P'=3.39 nm, (52
0

with

A=7.92 nm, A®'=1.88 nm. (53)

This is consistent with the ladder approximation, which re-
quiresi,ike=0.54< 1. We now use the Born approximation

(51) and writeA!Y) =" -\D' we find for the direct part

2m
)\d}r)—f delf(9)|? = )\F os {l 2 sinytany

0
1-sin
xarctan){ \/—_Y>} (54)
1+siny

with the Fermi wavelengti\g=2m/ke, and we recall that
siny=r /\2 The exchange term is

A= ReJ def(6)f(6—- m)
0

=\ Sir y lo (sm +i> - tany arctaniicosy) (,
=N o 2y g siny siny Y Y
(55)

which ylelds)\tgt)al—ll.o nm. We see here that the Born ap-

proximation significantly overestimates the exact recad.

For smallrg, we can further approxmaﬂs—:-d —)\Fr /2 and
)\(1 ~()\Fr2/2)log(\ 2/rg), which gives an even greater
Iength )\tot~ 17.2 nm In the limitrs— 0, the strength of the
Coulomb interactiore5 o r also vanlshes As a consequence,
the cross section remains finite—despite the forward-
scattering(q=0) divergence of the unscreened Coulomb po-
tential.

C. Angular dependence

We compare in Fig. 4 the angular dependence of the dif-
ferent scattering lengths for unpolarized electrons. We first
see that the main effect of the Fermi sea is to reduce signifi-
cantly the scattering by one order of magnitude compared to
the vacuum case. The large renormalization is related to the
relatively large value off¢=0.86 (and the large screening
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FIG. 4. Scattering lengti(6) for a GaAs 2DEG with sheet sheet density 7 [m ]
densityn=4x 10'® m~2 andkgT=Ex/100=2 K, for unpolarized in-
cident electrons. We compare the exact reéa®) for a 2D Fermi
gas to its Born approximation'”, and to the bare scattering result
(with no screening\¢ and )\(Cl) [see Eq(51)]. The main effects of
the many-body background is to remove the0 divergence by
screening the Coulomb interaction and to significantly reduce the
Born approximation via the logarithmic corrections in E88). The ~ cannot recover in thes— 0 limit the exact result for the bare
inset shows the ratio of the exact scattering length) to the Born ~ Coulomb interactior(8).
approximation result®.

FIG. 5. Scattering length at #==/2 as a function of the den-
sity n (see the correspondirrg:me%/ﬁzxfwn on the top axis The
inset shows the comparison with the Born approximation and the
bare scattering.

E. Dependence orT, &, and «
ks~ kg), which strongly reduces the forward-scattering diver-

gence of the bare scatterimg,)\g)(ee 0). Furthermore, we
notice that the Born approximation® is not valid in the
Cooper channel, as higher-order terms reduce the scatteri
amplitude. The fact that higher terms contribute significantl
despite the weakness &f(q), is due to their logarithmic
enhancement by the facter

The angular dependence of the exact scattering length

similar, but not identical to the Born approximation result
A, as shown in the inset of Fig. 4. Impp%rtantMG) is a (/2w [dor(u(¢)t(4). However, the dependence of

smooth, monotoni¢for 6< /2) function, so that the inter- v(¢) is smooth(logarithmig compared to the behavior of the

ference mechanism survives for the production of EPR pairS0Ulomb potential at the Fermi surfacg ) ~1/(¢+rsv2).
at O=7/2. Therefore, we neglect this dependence and set, eq.,
= /3 in v(¢), which gives a constani= (m/2m%?)log().

Hence, we take

Two effects appear when one varies the temperature
T, the excitation energy¥ of the incident electrons or the
impact angle a=Z (p1,-p,)/2 (a finite |p;—p, plays
e same role The first one is a change in the factor
Yoy appearing in the denominator 1w, of thet matrix (38).

For finite «, one should, in principle, integrate(q¢)
=(m/2mh?)log(2a sin¢|) over the intermediate angle
=/ (k,p) in the Bethe-Salpeter equatiori(¢)=v(e)

D. rg dependence and Born approximation £ kT
m
We show in Fig 5 a plot of the scattering length as a v=_—>3 Iog(ma =2 ) (56)
H H _ 2 [~ ‘. 27Tﬁ EF EF
function of the densityn or rs—meg/ﬁ Vvarn (top axis; we

keepe, constany, for the angled=/2 (hence, only the sin- The effect of this dependence on the scattering lengtt
glet channel contributg¢sThere is a strong dependence™ #=m/2 is shown in Fig. 6. In Fig. @ we fix é/Er=1073,
of the scattering, which could be studied experimentally bykgT/Er=10"2 and varya (we recall that the Fermi tempera-
varying n via a top gate. This dependence also roughly apture is Eg/kg=162 K). First, A is constant whena
plies toA® and ¢, while A ~V2/k.~n32 <kgT/Er and then increases slow{ghe horizontal scale is
The Born approximation(#) =v(6) is reached when the logarithmig as » decreases; fow— 10 v— 0, we recover
logarithmic factor disappears— 0) and does not enhance the Born approximation™. The function\ is exactly the
higher-order term$see Eq.(38)]. This occurs at high tem- Same if one interchangesandkgT [Fig. 6(b)] or permutes
peratureksT — Eg, for hot electrons:=E, or for electrons  all the three parametets kgT, and « [Figs. Gc)-6(f)].
that are not in the Cooper chann@=kg). The Born ap- Second, we take into account the requirement that the
proximation is also reached in the very smah-0.01 limit ~ outgoing stateg; , are not occupiedand, hence, available
(not shown, whenw,<1. For even smallers one can ne- for the outgoing scattering stajedy introducing the factor
glect ks in V, which yields the Born approximation of the F=[1-n(&)I[1-n(&)]=n(=)n(-&), plotted in Fig. 6
bare Coulomb potentiak= V. We note that the effect of the (right vertical axig. At 6=w/2 we have pj,
Fermi sea is intrinsic in our calculatiofiby restricting the ~=pj(cosatsina) & ,=¢+Epsin(2a) [see Fig. 1o)];
intermediate states to the Fermi surfacehich, therefore, hence, for a largex the final state¢, <0 will be already
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_
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FIG. 6. “Observational” scat-
tering length\F at 6=#/2 as a
function of the impact angle [(a)
and (b)], the excitation energy¥
[(c) and (d)], and temperaturd
[(e) and(f)] (left axig). The Fermi
occupation factolF=[1-n(&;)][1
-n(&)] (right axis enforces the
requirement that the outgoing
states & ,=¢é+Epsin2a) are
available for the outgoing scatter-
ing states. The dependence of the
“bare” N comes fromw (56) and is

scatteringblength [nm]

R

the same in all graphs. The arrows
indicate the position of the fixed
values, e.g.é/Eg=1073, kgT/E¢
=102 (a), £/Er=1072, kgT/Ef
/ =103 (b), etc.

10"k TIE 107 107

S —
10‘1kBT/EF

occupied and the scattering into this channel will be prohibsharp and starts atF=0. In Fig. Ge), the transition is
ited. The transition across the Fermi surface always occurs amooth, and the measurable length follows N\ but is re-

the largest quantitje.g., atkgT> £ in Fig. 6(@)] and is sharp
when temperature is negligib[€igs. §b)—6(d)]. Note that
here we consider that the initial states, are always filled
(i.e., with occupation ), being either injected from the QPC
or thermally excited.

In Fig. 6(@) the maximum value of (whenaEgr<kgT) is
F=1/4 because the final energig4 ,|<kgT lie within the
temperature window(0)=1/2. Thesame occurs in Fig.(6)
for £<kgT, while F=1 for £&>kgT. For negligible tempera-
ture[Figs. Gb) and &d)] F saturates to 1 wheaEg < & We
finally note that(for the factorF), Fig. 6e) corresponds to
the opposite of Figs.(@) and Gf) is opposite of €c) and Gb)
is opposite of ).

We can now consider the combined effecthond F by
defining the “observational” scattering lengtk, giving the

duced by a factor of 4. In Fig.(B, there is an interesting
nonmonotonic behavior in the region abokgT/Eg> «;
however, it requires an extremely smalle.g.,a=0.2°, not
reachable in a realistic experiment. We note that the right-
most parts of the graph@bove 10%) are only indicative
because they do not correspond to regime assumed in the
derivation of\ (kgT/Eg,&/Eg,a<1).

The scattering length vanishes logarithmically,
~1/log(vV) — 0 when allkgT, & anda—0. It is reminis-
cent of the vanishing of the inverse lifetime of a single qua-
siparticle excitation scattering with other electrons below the
Fermi surface, when its excitation energy vanishésow-
ever, the two cases are completely different: the lifetime di-
verges because of phase-space constraints due to the Fermi
statistics; in our case, the scattering of two partidésve

scattering length as could be measured in a real experimerthe Fermi sea vanishes because of the renormalization due to

As a function of «, it only reproducesF by showing a
smooth 6a) and sharp @) step. In Fig. €c), it first increases
slowly because of the smooth transition fréne1/4—1 in

the region of constarX (small ¢), before following the loga-
rithmic increase ok (large ¢). In Fig. 6d) the transition is

the Fermi sea.

F. Quantum oscillations

In addition to the destructive and constructive interference
at #=/2, quantum oscillations can be seen in liage scat-
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800 — ?»C FIG. 8. RatioR(656) of the number of triplets and singlets col-
600 lected in the detectors, placed at an an@land with an aperture

| 660=5°,10°.
400

' Ny 3\
200 R(6,66)= — = —" (59)

0 s

0° 90° 180° between the numbey,s of singlet and triplets collected in

(b) scattering angle 6 /S

the detectors. Here we have allowed for the case where the
FIG. 7. Scattering length for the bare Coulomb interaction@verage scattering angle deV'atef fromﬂ-/g. We show a
[given by Eq.(8)] compared to the classical value given h§ plot of R(#, 66) in Fig. 8 for 59=5° and 10°. We find very
=|fc(0)?+|fc(6-m)|% (@ <=0.6 corresponding to n=4 low values, R(90°,5°9=0.183% or R(85°,5°)
X 10 m=2 and(b) s=2 (n=4x 104 m™?). =R(90°,10° =0.7%, which shows that the collision entan-
gler is efficient because singlets are predominantly collected
tering (of singlets, triplets, or unpolarized sourtes a con- N the detectors, even far=80°. We note that such a devia-
sequence of the angle-dependent phalsgsin 6/2| appear-  tion from 77/2 would occur experimentally because the elec-
ing in Eq.(8). The number of oscillations is roughly given by trons injected through the QPCs have an angular spread. This
s=r¢/+2, as illustrated in Fig. 7. We see that the oscillationsSPréad could, however, be reduced by the use of a lense-
are absent fon=4x 10" m 2 and only appear at lower den- Shaped top gate implementing a refractive medium for the
sity. At 6=m/2, the quantum amplitude for unpolarized electron motior?

sources is half of the classical one given k§=|fc(6)? Expanding in56 we find
+|f(6—m)|? because the triplet contribution vanishes.
For the many-particle result, such quantum oscillations ng(g’ 50) = 286(f + fo, )%+ 2593[(]:/ T fL)?
could arise from the small imaginary part appearing with the 3
Iogarithm in V(T) :(m/277ﬁ2)[|n(kBT/ EF)+(’7T/2)i], as it _ (f + fex)(f” + fgx)] + O(5€4) (59)

yields an angle-dependent phase when summing up the Fou-
rier series. However, the phase is of the order;i
1/In(kgT/Eg) <1, and the oscillations are not visible.

f=1(0), fox=f(0-m) (60
G. Production of EPR pairs and’ denotesd/d6. For =90°, 56=5°, and neglecting”’ we
. . . t
We now consider the setup of Fig(kl with detectors g€
placed at an angl@= /2. The triplet channel is nonzero £ (ml2) | 2

fnl2) 56P=0.178% , (61)

because of the small aperture angi#¥ af the detectors. The R(90°,56) = ‘
scattering lengths for the singlet and triplet channels into the

detectors read which is close to the exact value=0.183% found above.

Thus the Taylor approximation is accurate, and it is clear that
the triplet contribution can be made arbitrarily small by re-

0
N — ’ ’ A4
Ag(6,66) = ZJ de'|f(6") £ f(mr = )%, (57) ducing the aperturéd. We note that our calculation gives a

o ratio |f'/f| of the order unity for a wide range of parameters,
kgT/Er=10'-10'%andr,=0.1-1. Using the Born approxi-
which we use to define the ratio mation we find a significantly lower valugg=>5°)
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I. Hot electrons

———586#=0.05%, 62 . . . :
4(rg+ 1)? ° (62) It is interesting to consider the case of hot electrons with

larger excitation energies (e.g., a fraction of the Fermi en-
ergy Eg of the scattering regionobtained by applying a dc
bias voltageAV across the input QPCs. It can be problematic
to have incident electrons with such a wide range of energy
H. Current as this allows a mismatch of the incident enerdigs# &,)

We now estimate the singlet current collected in the de&fter averaging over both incident energy ranges, which in-
tectors for a given input currert We neglect the angular troduces uncertainties in the scattering ar{gkee Fig. 1. To
dispersion of the incident electrofue to diffraction on the @void this situation, one can raise the QPC heights such as to
edge of the QPLby assuming that the electrons occupy thedllow only a very small range of electrons to go above the

lowest transverse mode in the QPC, and that the remainingPC barrier: For hot electrons wittg=Eg, the exact result
spread could, in principle, be compensated by the use of 210ves toward the Born approximatigsee Eq(62) and Fig.

lensing effec? This gives longitudinal plane wavesvith 4]. Hence, the scattering length increafiescause the loga-

wave vectorp; ,) having a transverse width roughly given rithmic factor decrease®~log(¢/Eg)], while the triplet/
by half the width of the QPC. singlet ratio becomes more favoralfiee., smalle). On the

We first note that the scattering length for the singletOther hand, the scattering length becomes smaller for higher
channel is small\s=0.24 nm. Takingw=100 nm, we find momer;tum[as_ V=1/(ktk]. Taking, e.g.,eAV=3 meV
the probability =Eg/5%, one finds values that are more favorable than for
cold electrons: the singlet length is double )=0.56 nm,
s while the triplet/singlet ratio is halve® =0.10%. Note that
PSZZWZO-%% (63  hotter electrons have a smaller lifetime because of the in-
creased phase space that is available for scattering with elec-
for the singlets to be scattered into the detectors. First, w&ons below the Fermi surfaceEstimates of the electron-
assume that the electrons are injected simultaneously fromlectron scattering length. have been obtainédor a GaAs
the reservoirs, which can be achieved by opening and closingDEG using imaging techniques via an SPM, in good agree-
both QPCs at the same time. This yields a singlet current oment with theoretical predictiorsin our case, one hals
=1.2 um, which is similar to the scalé =1 um of our
Is=Psl =0.6 pA. (64)  envisioned setup. Hence, one can expect some reduction of

We have considered a given currentlafl nA, which cor- the signal due to relaxation into the Fermi sea, roughly given

responds to a frequency in the GHz range for the openingy ~etlee~03,
and closing of the QPCs. Otherwise, the electrons are in-
jected at random times, given by a Poisson process with rate
Wi,=e/l. Then the probability of finding two electrons inside  An important question is to demonstrate that the collected

the scattering regiotti.e., in state|p;,py)) is roughly P;,  electrons are indeed spin-entangled EPR pairs. We propose
= (Wou/ Win)?, whereW,, is the rate of escape from the scat- here three ways to answer this question experimentally. The
tering region into the drain contadfSig. 1). Finally, we find  first one is to refocus the scattered electrons into a beam

R(90°,50) =

which would be more advantageous for EPR productsae
the discussion on hot electrons in Sec. )V |

J. Detection of entanglement

the total scattering probability of two electrons splitter and carry out noise measurements in one outgoing
lead; in this situation enhanced noidminching is a signa-
Piot= Aot =3.4% (65) ture of the desired singlet state, while zero noise corresponds

to entangled or unentangled triplétsHowever, this method

( i ily into the detedt would probably require some bridges to avoid the source

I.€., not necessarnly into the deteotor reservoirs. The second one is to carry out tests of violation of
An additional interesting topic is the nofSeof the de- ell inequality?®4445 by measuring single-spin projections

tected current. As this is outside the scope of the pfes_efﬁa a single-electron transistor coupled to a spin-filtering de-

work, we only present heuristic arguments. As the scatterlngice_ The latter can be a quantum dot in the Coulomb block-

probability is very small, one can assume that subsequergde regimé or a QPC(Ref. 47 in a strong in-plane mag-

pairs do not interact with each other. This implies that thenetiC field. The third method consists in addingpa-n

zero-frequency noise induced by the scattering should bﬁmction,“&49 allowing the recombination of the entangled
mainly given by the partition noise electrons with unentangled holes into photons; one should

Sw=0) = IPg1-Pg = IPg, then carry out the test of the Bell inequality with the photons,
by measuring their entangled polarization modes.
which becomes Poissonian f®<1. The pulsed injection In addition, we mention that the interference mechanism

of the electron via, e.g., the periodic lowering of the QPCresponsible for the vanishing of the triplets7at2 could be
barriers, reduces the stochastic nature of the tunnelingemonstrated by polarizing the incoming electrons spin,
through the QPC if the lowering is sufficiently fast. On the which can be achieved by applying a large in-plane magnetic
other hand, this periodic change should lead to a more confield to turn the QPCs into spin filtef$,or by replacing them
plex noise behavior for finite frequencits. with quantum dot4® The current recorded at the detectors,
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(@) Tetacior without having to go through the standard sequence of swap-
‘ IEl ping state, which requires moving one electron to neighbor-
! ing site of the other one, entangling them by local
--=s ML interaction'® and moving the electron back to its original
AN place. However, we note that our scheme requires a large
v number of collisions, of the order of P this number
S, +8,=0 e Sx+Sp=0 scales fortunately more slowly-1/86) with the aperturesg
than the precisiofi~Ng/ Nt~ 1/56°).
(b) ‘4
|E| V. ELECTRON-PHONON AND ELECTRON-ELECTRON

INTERACTION

In this section we investigate the question of whether
phonons can influence the scattering amplitude in a signifi-
cant way. We first note that the scattering of electrons on real
phonons can be neglected here, as it is strongly suppressed at
low temperature. This is illustrated, for instance, by the ab-
sence of phonon effects in the experiments of Refs. 1 and 2.
However, the effective electron-electron interaction arising
from the exchange of virtual phonons does not depend on

FIG. 9. Creation of nonmobile entanglement. Each input QPC iStemperature, so that it could play a role in the electron-
replaced by a quantum dét andR) containing two excess elec- electron scattering. Our goal here is to estimate it and com-
trons. The ground state in each dot is the singlet with total spifare jt to the screened Coulomb interaction that we have
S +S./=Sr+Sp'=0 (a). One injects one electron from each dot considered thus far. We shall see that the contribution of
(e.g.,L” andR’), and allows them to scatter. When they are detectedacoustic phonon&leformation and piezoelectric coupling
at aw/2 scattering angle, we know that they are in the singlet Statenegligible, while the polar phonons give a smooth monotonic

Su+Sr =0 (b). As the total spin is conserved, the two remaining o -rease of the electron-electron interaction that is less than
electrons in doté andR are also in the singlet stag +Sg=0 and, 2

o o
therefore, form a localized EPR pair whose members are separate(f o, r?[n?:i ﬁ,\SSSUChI\(/joeS not change qualitatively the results
by the interdot distanck presente ec. v.

which is proportional to the fraction of incoming singlets A. 2D phonon-mediated electron-electron interaction

ps=(1-P?)/2, should then rapidly decrease as the polariza- In 3D, the effective electron-electron interaction is given
tion P of the spins increase. by®

. . . 1
K. Creation of localized, nonmobile entanglement HL=—> > CE’+q‘CE’I—qCIZ’CIZth(®' (66)

VD
In this section, we discuss a way to produce static spin- kk 4

entangled elec_trens_, described i_n Fig. 9. We propose 1o r§ynhereV is the normalization volumei=(q,q,),K,K’ are 3D
place the two “injection” QPCs with two quantum dots, eaChvectors, andy,k,k’ are 2D vectors in the plane of the 2DEG

with an even number of electrons, so that two excess elec‘(-In the following we keep the notatiog=|q|). The electron-
trons are in the singlet ground st&fel_owering the tunnel- electron interaction matrix element reads

ing barrier defining the dots allows for the simultaneous in-

jection of one electrortof the singlet pair in each dptnto he s » 2 wp(Q)
the scattering region. If these electrons are detectes/ at W) = [M(9)| AV 02— w3(Q)’ (67)

by the detector, then we know that they must be in a spin-

singlet statgwith certainty 1-N;/Ng). As spin is conserved Wherewy,(q) is the phonon dispersion ad(q) is the ma-
during the Coulomb scattering, the total spin for the twotrix element for the electron-phonon interaction
electrons left in the two dots must be zero, which corre- 1
spon_ds to the spm-smglet state. Therefore, one has created a Heph= —2 2 CEHﬁ Cio(bg+ bfq)M(ﬁ). (68)
localized (nonmobilg entangled pair of electrons separated \ i Ko '

by an interdot distancé~1 um. This instantaneous “cre- t + i

ation” (obtained by postselectidis a dramatic illustration of ~Herebg andc, are phonon and electron creation operators.
Einstein’s “spooky action at a distance.” Contrary to theWe shall consider the lowest order\tP", which in the Coo-
standard EPR paradox, it does not manifest itself in the reper channel allows us to take the static limit-0 as all the
sults of measurement correlations, but in the “creation” of s€nergies involved in the scattering are the safe; Er.
nonlocal (in the sense of nonoverlapping wave functipns ~ The electron-phonon interactidvi(g) as well as the ef-
guantum state. Such a process, similar in some sense to diective interaction\*"(g) are always 3D as they involve cou-
tanglement swapping or quantum teleportation, could be usesling of the 2D electrons with the bulk 3D phonons. There is
ful in a scalable quantum computer to create entangled paimrso 3D screening of the bare ion-electron Coulomb interac-
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tion, as there are no mobile charges in the bulk. Now we B. Acoustic phonons: Coupling to the deformation potential

define an effective 2D interactiow,p(q), which we shall
compare to the unscreened 2D Coulomb interactign\We

We first consider electrons coupled to the acoustic
phonons via the deformation potential. The electron-phonon

assume that the electron wave function is separable into @atrix element &

plane wavelk) and a confined lateral functio). For in-
stance, one can take an infinite square well of width

2 . (mz
2) = L sm(T> , (69)

which yields the width of the 2DEG

L\/i—1~01a_ (70)
272 6

d= <22_ <22> 12 -

h
M(d) =D+ /V—]d|. 77
(@ =D~/ 2piclql 7
whereD is the deformation constang; is the mass density,
and the dispersion relation is,(q)=c|q|. The static effec-
tive e-e interaction is a constant

We prefer to consider the alternative variational solution ofwhich yields in 2D for the triangular well71)

the triangular well present at the interfate,

WD) = 36°2e™ (71)
with the width
_
!’3
d=-=, (72)
K

as it allows for simple analytical expressions. We define th

effective WA (q=k —k’) by
(K3, K5, WPk 1, 4K, 1) = 8K + Ko = K — k) WER(Q)

(73)
and get®
VV‘SB(QFJde dz (2P| ) PWPNq;2- Z')
1
= f da,WP"(q,a,)|1(a1,)|?, (74)

with WPR(q,2)=(1/27) [dgWPN(q, 0,)e % and the form fac-
tor

l(a,) = J dze™|y(2)|. (75

The latter is particularly simple for the triangular well,
1(g,)=(ig,/ k—1)"3. Our goal is to find the strength of this
additionale-e interaction relative to the unscreened Coulomb

potential V¢, by defining the ratio
\Nph
r="2(a=ke). (76)
C

Parameters for GaAsWe consider a well of widthd
=5 nm, and take the following paramet®réor GaAs: the

mass densityp,,=5320 kg/n3, the deformation potential

constantD=-7 eV, the piezoelectric constamth;,=1.44
%X 10 eV/m, the acoustic sound velocit=3700 m/s(we

D
WPN(G) = - —, 78
), e (78)

D? 3k
WES(Q) = - —5—. 79
5o(d) % 16 (79
The ratio(76) becomes

D? 33
=- — = -14x107%, 80
(@ qpicze2 16d (80)

Svhich shows that the effective interactiohh} can be ne-

glected for deformation potential coupling.

C. Acoustic phonon: Piezoelectric coupling
For piezoelectric coupling, the matrix element rédds

_ehg )y,
MO VY 2@

with the polarization constargh,, and the anisotropy factor
902q/2/d]° (LA)
(8a,* +a¥/4(dl®  (TA)
for longitudinal (LA) or transverséTA) phonons. It can be

replaced byA A =0, A;po=1/4 for a 2Dsystem constraining
momentum transfers tq,=0. This gives

e [
a € 8piC|ﬁ|

The statice-e interaction is therefore proportional to the 3D
Coulomb interaction,

1( hy, \2€?
higy—_ =14 ) =
WA= Pi<20€r) 9

Performing the transformatioii74), we find for smallq
=<Kkg/10 the effective 2D potential

h __l<ﬂ>2§
Wen(@ == 2ce) 2q°

(81)

Ag) = { (82

(83)
(84)

(85

assume here that is the same for both longitudinal and This corresponds to the 3B 2D transformation of the Cou-

transverse phonojghe optical(longitudinal and transverge

phonon frequencietw, o=36.6 meV,iwro=33.8 meV, the

ionic plasmon frequencyl,;=85.5 meV, and, finally, the

low- and high-frequency dielectric constants0)=12.9,
€(*)=10.89.

lomb potential, i.e., 16|>°— 2/q. Finally, we get

@(@
pi€\ C

Hence, the 2D piezoelectric contribution is also negligible.

2
) =-1.5% 107°. (86)

045338-13



SARAGA et al. PHYSICAL REVIEW B 71, 045338(2005

superconducting fluctuations could have an effect on the
scattering. It has been known for a long tiththat in 3D the
second-order crossed diagrais in the irreducible vertex
(see Fig. 2can lead to a pairing instability and a transition to
superconductivity. The origin lies in the susceptibility en-
tering A, 3; being nonanalytic, its spherical harmonics have a
polynomial asymptotic deca,g{l0 ~ =% with respect to the co-
efficient| of the spherical harmonics decomposition, while
the single interaction is analytic and, therefore, yields
~e™. As x? oscillates, the irreducible vertex becomes attrac-
tive for sufficiently largel, A, ~v,°+A3,,<0. The transition
100 ; . . . . temperature is found from the Copper divergencd ' of.e.,
0° 00° 0 180° by the relation 1=;pA;, wherevsy is the same as E¢32)
with the 2D density of staten/ 274 replaced by the 3D one.
FIG. 10. Effective 2De-e interaction W83 from LO polar ~ This yield an infinitesimal temperatuté kgT.~exp(—10°)
phonons as a function of the scattering angléVe take a well with ~ for a metal withrg=4.5.
a widthd=5 nm, and fixq=2kg sin(6/2) and w=0. We compare it In 2D the equivalent transition does not occur because
to the unscreened Coulomb interactio.. Inset: Ratio R there is no instability for particles below the Fermi surface;
=V\/§B/VC from (91); the horizontal line corresponds to the small-  q<2ke and x°=-N, have no(negative harmonics. It has

2001

100

V(0) |arb. units]

(=]
T

approximation(90). been shown, however, that higher-order diagréims\) can
lead to a transitioA® Alternatively, finite energy transfers
D. Optical phonons: Polar coupling can induce “pseudopairing” in tretwave Cooper channél.

In our work, however, we are not interested in a supercon-
ducting transition; rather, we would like to verify that the
- 1 1 queg scattering vertex for the injected particles, which are above
M(q) = WﬁwLOV* (87) the Fermi surface, is not substantially renormalized by the
standard(lowest-order Kohn-Luttinger instability with no
where €(0) and e() are the static- and high-frequency di- energy transfer.

The electron-phonon matrix element is

(=) €0)

electric constants. Fap=0, this yields The singular part ofA, 3 originates from the function
1 1 lane B(k,q) evaluated nedaj=0. Neglecting the variations &fin
WPN(G) = - {— - —] 1720 (89) the q integrals[Egs. (24) and (25)] (this corresponds to ap-
(=) €0 ] [q| proximatingV(r) by a very short-range potential, e.g.,6a
Hence, the effective 2D potential is, for small function), we evaluate/ at the singular points d and write
1 1 |27€] ~
WER () = - {— - —] g (89  Ax=2V(0\V(2k) j dkB(k;,8) = = V(OV(2k)x (@),
e(©) €0)] ¢
and we get the ratio (92)
SN S S B 00 _ i}
T e ] ° Az=VA(0) f dk,B(k1,Q) = - VA(0)x°(Q)/2, (93

As the ratio|r| is rather large, it is important to consider here
the more accurate expression, valid for largerfound by
performing the integratiori74) with the triangular well so-
lution (71)

whereq=|p’ —p|=2ke andQ=|p’ +p|=2ke. We see that we
can neglectA,~r.A3; we also take the static limitl9) of
X°(w) as it varies on a scale Eg. As Q should be slightly
above k¢, we take
1 1 |27€} &
W) =—| — - — | — == =ke(2 + /2 94
(@ L(oo) e<o>] 4 8- Q7 ez clcosd o9
X (= 3¢°+ 100°? - 15qk* + 8x°),  (91)

which is plotted in Fig. 10. We find the rather unexpected
result that virtual (optica) phonons give a significant A —VZ(O)i
contribution—the ratio igr| <20%. However, the effect of 8n~ 2
VV‘;B is monotonic and will not change qualitatively the scat-
tering of two electrons in a GaAs 2DEG. ><< \/1 B 1 )]
(1 +c/2)%cos(60/2)] |

with c=&/Eg=2(p—kg)/ke<1 and|6|<1. The Fourier co-
efficients of the crossed diagrams are therefore given by

m _
. dﬁcos(ne)W{l -0(6-0)

(95
VI. KOHN-LUTTINGER INSTABILITY

Having found the scattering vertex in lowest order, wewith 6=1/2c. In lowest order inc, we find for the singular
now consider higher-order diagrams and examine whethgpart
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We studied phonon-mediated electron-electron interac-

Aj —VZ(O) 2—J1(n0) (96) tion. We found that the dominant contribution comes from
2mh* 4 polar coupling to optical phonons, but does not affect quali-
and the asymptotics tatively the Coulomb scattering. The strength of the Kohn-
Luttinger superconducting instability was calculated and
n>1 E shown to be negligible. Finally, we develop&d Appendix
Agp= V2(0)8 ey sm(na ml4), (97)  B) an alternative calculation valid for diverging forward-

scattering contributions and showed them to be negligible in
compareéd to 1™ in 3D. Note the oscillatory behavior, which GaAs.
allows for negative values. The instability temperature can

be estimated by requiring ACKNOWLEDGMENTS
4 We thank C. Egues, V. Golovach, W. Coish, A. Bleszyn-
|Asp|=v,0 N>ng=——, (98)  ski, B. Lee, and M. Yildirim for useful discussions. This
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where we neglected the oscillating sine function and use
Eq. (46) for v,. We find APPENDIX A: SMALL rs APPROXIMATION AT 0=1/2
keT ~ EFe-ll\As,no\ = EFe“"rgC. (99) Here we derive analytical expressions for thmatrix and

) its derivative atd=/2, which we then use to compute the
Note that the parameter appears in 2D because of th  atig R We first note that(/2) is an alternating series
function in Eq. (19 and is absent in 3D. For GaAs and

takingc=0.02, we find<BT/EF~e‘.1°°, which means that the t(m/2) =t + 22 (= 1), (A1)
attractive effect of the crossed diagram is completely negli- n>1

gible and does not lead to any sizable fluctuations of the
scattering vertex. For a metal with=4.5, the transition where t,=v,/(1-vv,). We write the differences a§—ty.,
temperature in 3D was foufito be~EFe‘40 000 |n 2D, we = hn/[(1=1n)(1-wvn.2)] With hy=v, =02, Which allows us
cannot neglect the sine as in E§8); numerically, we find @ g€t the smoother series
the temperature-Ere 2%€, This can be larger than in 3D for . h,
c>10" despite the fact that the asymptotic decayvgf t(w/2) =

~n~2is much slower than in 30y, ~e™). (L-wo(L-wy) (L-wy)(l- Vv4)

(A2)
VIl. CONCLUSION Now we use for the denominators the very smmakpproxi-
The prospect of experiments probing individual electronmatlon(47) vn="vl0grs, v=2¢5/ke, giving
collisions in a 2DEG is a natural motivation to study the
problem of two electrons interacting via Coulomb interaction t(m/2) = (1+ v log rs)z(ho ~hythy=hg+ ).
in the presence of a Fermi sea. One of the main results of this
work is the expressiol38) for the scattering amplitude for (A3)
two electrons in the Cooper channel. We found that the pres=qy the numerators we write
ence of the Fermi sea yields a significant renormalization of
the strength of the scattering, rather similar to the renormal- h = 25( cosy + cos 37) «{COS Sy — cosy
ization found in the discussion of the Cooper instability. This 2n+1 2n+3 2n+5
is closely linked to the selection of intermediate states at the
Fermi surface. Away from the Cooper channel, this selection + C0s 7y—cos + } (A4)
disappears and the Born approximation is valid. The overall 2n+7

angular dependence is fairly unmodified and smooth. Ther
is a sizable dependence on the sheet density, while the de-
pendence on temperature, energy, and impact angle is 1
strongly influenced by the Fermi occupation factors. The to- t(ml2) = mz =" (4n+ 1 4n+3)
tal scattering length is;,;= 3 nm, which is of the same order w10gTs >0
as the Fermi wavelength. (A5)
We discussed how to use such collisions to produce EP%nd finally
pairs at a scattering angle @f=/2. This mechanism is ' '
rather robust against imprecisions dnfor an output singlet v T
current around 0.5 pA. The EPR production was found to be t(ml2) = (1+VU——|OTS)2E
slightly more efficient in the case of hot electrons. We dis- 9 v
cussed detection of entanglement and quantum interferenGehis approximation is good for very low,, the error is
and proposed a way to create localized EPR pairs separateel0% forr,<<0.09, which corresponds, however, to a very
by mesoscopic distances. high densityn=4x 10"".

&nd neglect the second term, which is of ordefmhen

(A6)
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We proceed similarly for the derivativi(/2)

t'(012) = 2(—ty + 3ty = Btg + 7, — Otg + ---) (A7)
M
(1+wlogry?
1 1
X > (- 1)”n< + ) (A8)
=1 4n-1 4n+1

The sum yields /812 +%(-1)N with N— . Neglecting the
oscillating ternm® we get

t'(m2) = 3t(ml2). (A9)

We find in this approximation a very simple form for the

ratio
562

This corresponds to the Born approximation refili. (62)]
in the limit of no screenindr,— 0). This is somewhat sur-

R(6,660) =3 (A10)
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APPENDIX B: FORWARD SCATTERING WHEN rs—0

Here we consider carefully the limit of vanishimg— 0,
by following a different approach to solve the Bethe-Salpeter
equation, which allows us to study the contribution of
forward-scattering states. These are indeed important in the
very smallrg limit, as the unscreenedCoulomb-scattering
cross section has a forward-scattering divergetiee, for
vanishing momentum transferg=0) in 3D and 2D.

The calculation that was presented in Sec. Il is based on
the logarithmically dominant contribution af~log ¢ with
c=maxkgT,&)/Eg; it is a many-body effect related to the
sharp edge of the Fermi surface that occurs only in the Coo-
per channelp,=-p;. This approach fails in the situation
whererg is very small, when the screening is too small to
reduce the forward divergence of the unscreened Coulomb
potential. In this situation, one must carefully consider the
contribution of forward-scattering intermediate states with
q=|k-p|=0 as they yield at large ternt~2me3/ks. For
such states, one must keep the restrickienp =k, but con-
sider the contribution of small angles= 2 (k,p), defined

by54

prising, as our resulfA6) still contains both the screening —d
(finite ro and the resumed higher-order terifniesponsible blop-b0l<p=——

for the termwv in the numeratgr One must further expand PP
t(7r/2) in smallrin order to recover the Born approximation whered=k-kg, 5=p-kg, and 6= 2 (p,p’) is the scattering

I_pke ¢

~-<1, (Bl
> (B1)

with an unscreened potential

2

J— h .
t(m2) = o= =rer— =Ve(q=kev2). (ALl
V2 m

angle. This corresponds to the forward scattering uitial
states; we do not yet specify the real scattering arighe-
tween the initial and final states. We now go back to the
iterations of the Bethe-Salpeter, after the frequency integra-
tion (30), still considering only the Cooper channel.

The Fourier series is not well defined in this case because of

the forward-scattering divergens&-(0). We also note that

1. Angular integral

the number of Fourier coefficients required to reach conver- We introduce the polar notatioh=(k;, ¢;) and write the
gence of the numerical Fourier sum increases dramatically tpotential V(ky, ¢;; ks, ¢) =V(k;—ky), assumingp=(p,0),
Nmax= 70 000 for n=107° (with the heuristic dependence p’=(p, #). We first consider the angular integrals for thté

Nmax~ s, as the potential becomes more peaked.

1 (¢ 1 (¢
2 A V(p, 0:k,, 1)
mJ_g 21T

¢

_dpViky, driky ) X - X
$

order iteration of the Bethe-Salpeter equation

1

2

b
f _ d¢n—] V(kn—Z’ ¢n—2 ;kn—l ’ ¢n—l)v(kn—l ’ ¢n—l;p’ 0)
-¢

-\ n—-1
= (_> V(p, H,k],O)V(kl,O,kz,O) & .V(kn_z,();kn_l,O)V(kn_l,O;p,O).
w

= ean—?)

2. Energy integral
First we consider
2med 2med
K+ |K' =Kl ks+ k= p|

We truncate the energy integration to a small rakgd ke
=p-4,p+J] around p and define  B(k')

b(k’,k) = (B3)

=b(ky_p:kp_1)

(B2)

::(1/27r)fﬁi+2‘9dkkD(k)b(k’ ,k). We can expand the lengthy
result in the lowest order iks and find

4

_mr’e
n2kJk' = pl
Thus, the subsequekt integration will be mainly given by a

small region aroun#t’ =p, as expected. Hence one should set

B(K') =i [1+O(kdp)]. (B4)
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k'=p in the exact resulB(k’) before expanding in lowest
order ofks, which yields

772 4
Bk =p) = in;ﬁ—kgeo[l +O(kJp)]. (B5)

For the integration of(k) in A::(1/277)fti+25dkkD(k)a(k),
we setk’=p and expand the result. This gives

mmes

A=-i
"2,

[1+0O(kdp)]. (B6)

For the last term containing the scattering anglg
:=(1/2m) f';g?ﬁdkko(k)ag(k), we have

mﬂ'e% _ KS
thz[l +O(k/p)] —Aq (B7)

Aoz =—j

with q= 2k sin|6/2|. Writing the serieg=3t™, we find for
the nth-order term(n>0)

—\n-1 2
2
"= (1’) A= T 0D, (B8)
™ q
with
[ i &
D=—c¢c=——. B9
8’7TC 8w Er (B9
3. Result

PHYSICAL REVIEW B 71, 045338(2005

t_27-re3+2we§ 2-D s<027e] 1
q+ks g (1-D?* g (1-D)*

(B10)

with q=2kg sin#/2|. We can further expand this result in
D<10 tsze%/q:VC; however, this merely reflects the
fact that the Born approximation with unscreened potential is
accurate in the limit;— 0 becauseﬁ is also proportional to
r. We also note that with this result the scattering amplitude
has a phase 2 arct®{=2 arctari¢/8m). However, it is in-
dependent from the angle and, therefore, does not yield
quantum oscillations in the singlet and triplet scattering
lengths as discussed in Sec. IV F.

In the case of forward scatteritigwith 6=0, the counting
of equivalent arrangements of the intermediate states gives a
factor of 2" instead ofn. The result has a more familiar form,

_2778(2) 1
ke 1-2D°

As expected, the forward-scattering amplity8al) is larger
than(B10) by a factor of~q/ks~ 1/rs.

(B11)

4. Comparison

We now compare thath-order obtained heref,“) defined
S
in Eq. (B8) with the calculation of Sec. lll, i.e., theth
Fourier coeﬁicientg):vm(vvm)“‘l. Their ratio is

g (vv_m)”‘lwg{lo (gﬂ“{glogc}“‘l
tﬁ’s‘)_nZWeS D nl N/ | ke c ’
(B12)

where have considered the smallapproximation(47) vy,
z(ZWeS/kF)Iog(kS/k,:). Therefore, the calculation of Sec. IlI

So far we have only considered the case where all interls valid provided that

mediate angles arg;=0,i=1,...n, and only the final angle
is the scattering anglé. There aren equivalent cases giving
the same contribution, where the fijsengles are zero and
the remaining ones are¢;=60,j <i=<n. Thus the expansion
series of the Bethe-Salpeter Equation=d/+= - ,nt™. Per-
forming the summation, we get the scatteringratrix for
Coulomb scattering in the limit of very small<1

m
\2[logc|
Taking c=6/ke=0.01, we find that we need>0.01, which

is always the case for typical semiconductor material. In con-

clusion, the large value af; does not allow one to see the
contribution of forward scattering intirtual or rea) states.

rdlogry > (B13)
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