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We develop a Maxwell-Schrödinger formalism in order to describe the radiative interaction mechanism
between semiconductor quantum dots. We solve the Maxwell equations for the electromagnetic field coupled
to the polarization field of a quantum dot ensemble through a linear nonlocal susceptibility and compute the
polariton resonances of the system. The radiative coupling, mediated by both radiative and surface photon
modes, causes the emergence of collective modes whose lifetimes are longer or shorter compared to the ones
of noninteracting dots. The magnitude of the coupling and the collective-mode energies depend on the detuning
and on the mutual quantum dot distance. The spatial range of this coupling mechanism is of the order of the
wavelength. This coupling should therefore be accounted for when considering quantum dots as building
blocks of integrated systems for quantum information processing.
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I. INTRODUCTION

Exciton polaritons are the basic optical excitations of any
semiconductor system. The interband optical polarization of
a semiconductor is never an isolated degree of freedom.
Rather, the exciton states are always coupled to the electro-
magnetic field via the linear radiation-matter interaction
Hamiltonian. Exciton polaritons are the resulting eigenmodes
of the Maxwell equations coupled to the material equations
describing the excitons in a semiconductor structure. The
polariton concept in bulk semiconductors was introduced by
Hopfield.1 Bulk exciton polaritons are mixed modes of one
exciton and one photon mode having the same momentum,
as imposed by translational invariance. This one-to-one se-
lection rule results in a strong mixing and an energy disper-
sion displaying the anticrossing typical of normal-mode
coupling.2 In GaAs, the normal-mode splitting at resonance
is 16 meV, larger than the exciton binding energy.

In systems with reduced dimensionality, such as quantum
wells and quantum wires, the partial breaking of the transla-
tional symmetry allows coupling of excitons to a continuum
of photon modes. The polariton picture is consequently
modified and a polariton becomes a resonance of a discrete
exciton state linearly coupled to a photon continuum, analo-
gously to a Fano resonance.3 In this case the importance of
the coupling, expressed by the magnitude of the polariton
self-energy correction to the bare exciton energy, is consid-
erably smaller. In quantum wells,2,4–7the polariton resonance
implies a finite exciton radiative lifetime which is of the
order of 10 ps in typical GaAs quantum wells, and a negli-
gible shift of the exciton energy. A similar effect is predicted
in quantum wires.8–10

When the dimensionality of the electromagnetic field is
also reduced, e.g., in semiconductor planar microcavities, the
one-to-one coupling typical of a bulk semiconductor is re-
covered and strongly coupled polaritons with full exciton-
photon mixing characterize the optical spectrum.11–14

The question naturally arises of whether the polariton
concept is of some relevance in the case of quantum dots
sQDsd, where the electron-hole system is fully confined in
the three spatial dimensions. In this case we might distin-

guish between two effects of the radiation-matter coupling.
The first is the self-energy of a single QD coupled to the
electromagnetic field, resulting in a finite radiative lifetime
and an energy shift of the QD levels. This effect is well
established and several theoretical estimates of the radiative
lifetime of QDs have been proposed in the past years.15–17

The second is the radiative coupling between different QDs.
This process might be depicted as a multiple emission and
reabsorption of a photon by QDs in a many-QD system,
eventually giving rise to collective modes of several QDs.
This picture implies that the exciton state of a single QD is
no longer an eigenstate and excitation of one exciton in a QD
would result in a transfer of excitation to other QDs, similar
to a system of coupled harmonic oscillators. A similar effect
has already been suggested and theoretically characterized in
the case of quantum well excitons localized by interface
disorder.18,19

The excitation transfer mechanisms between polarizable
systems such as molecules or semiconductor QDs are usually
grouped into two categories, depending on whether they oc-
cur via overlapping wave functions of the spatially separated
systems or via long-range interactions. The prototype of this
latter case is the electrostatic dipole-dipole interaction, fre-
quently referred to asFörster energy transfer.20 As an ex-
ample, the Förster rate for the excitation transfer between
two QDs has been estimated21 in the range of 10−2–10−3 ps−1

for InP QDs with interdot distance of 7 nm. This mechanism
has been experimentally characterized in the case of closely
spaced QD systems.22 The important feature of the Förster
mechanism, however, is the dependence of the transfer rate
on the distance. Being a dipole-dipole-type interaction, its
rate within Fermi golden rule is proportional to the fourth
power of the dipole moment matrix element and decays as
the sixth power of the distance.21 On a more general ground,
in addition to the original Förster scheme, all excitation
transfer mechanisms based on electromagnetic interaction
are expected to be of some importance. The polariton mecha-
nism that we address here involves an excitation transfer
mediated by the transverse electromagnetic field. Within a
perturbation picture, which considers only one emission-
absorption process, this mechanism results in the transfer of
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electron-hole excitation between distant QDs mediated by
the emission and reabsorption of a propagating photon. The
coupling strength of this process is therefore expected to be
small, if compared to other proposed coupling mechanisms
which involve tunneling of the electron-hole wave
function,23–25 or even to the Förster mechanism at short dis-
tance. This is basically due to the small absorption cross
section of typical semiconductor QDs. However, the polar-
iton coupling is also expected to have a long spatial range, of
the order of a few photon wavelengths. Its rate turns out to
be proportional to the square of the dipole moment matrix
element and decays as the inverse of the distance, as the
transfer is mediated by a propagating field in two dimen-
sions. In addition, as for the Förster mechanism, it requires
that the two energy levels involved in the excitation transfer
have resonant spectra. Although, as it will turn out, typical
transfer rates derived here are in the range of 10−3–10−4 ps−1,
because of its spatial range the mechanism we study must be
considered as complementary to the Förster coupling. In par-
ticular this long-range coupling might play an important role
in the increasingly sought applications of QDs in quantum
information processing.26–32 In presence of radiative interac-
tion, in fact, even very distant QDs cannot be considered as
isolated systems.

In this work, in order to describe the radiative coupling
mechanism, we develop a full Maxwell-Schrödinger formal-
ism for a system of many QDs coupled to the electromag-
netic field. We model a QD having cylindrical shape and
compute the ground electron-hole pair state within the
effective-mass scheme. We numerically solve the Maxwell
equations for the electromagnetic field coupled to the polar-
ization field of a QD ensemble, in order to compute the po-
lariton resonances of the system. The linear susceptibility is
obtained by means of the standard linear-response theory. We
initially address the case of two QDs and inspect how the
coupling depends on the detuning and the mutual QD dis-
tance. Afterwards, we consider a system of many QDs ran-
domly distributed on a plane and we determine the eigenen-
ergies of the coupled equations. The collective modes of the
system display modified radiative lifetimes, some of them
being stronglysubradiantor superradiantwith respect to the
bare QDs lifetime. This is analogous to the case of polaritons
in multiple quantum wells,33,34 although the QDs in our case
are randomly distributed in space rather than ordered in a
superlattice. We apply our model to the realistic cases of
Stranski-Krastanov-grown InAs QDs and CdSe QDs result-
ing from interface fluctuations in narrow quantum wells. In
the CdSe case the effect of radiative coupling is sizeable and
a considerable number of collective modes have lifetimes
about twice as long or short than the uncoupled case.

The paper is organized as follows. In Sec. II, starting from
the Maxwell equations and a linear nonlocal susceptibility,
we analytically derive the eigenmode equations that hold in
the presence of radiative coupling. Section III contains the
results of the numerical diagonalization of the problem in the
cases of two- and many-QD systems, followed by a discus-
sion of the computed data. In Sec. IV we present some con-
cluding remarks. Finally, Appendix A contains the details of
the QD model used to derive the electron-hole pair wave
functions that were used in this work, while Appendix B

contains the detailed derivation of the radiative coupling ten-
sor between two QDs.

II. THEORY

The semiclassical model of QD interband excitation in
interaction with the electromagnetic field is based on the
solution of the Maxwell equations coupled to a nonlocal lin-
ear susceptibility which accounts for the interband optical
transition. This is done in full analogy with the polariton
formalism in bulk semiconductors and heterostructures.2,4

We restrict what follows to the transition between the semi-
conductor ground state and the ground electron-hole pair
statesthat is the first excited stated in each QD. Within the
effective-mass approach, the linear susceptibility tensorsin
what follows, tensors are indicated by a “hat”d deriving from
the linear-response theory35 is

x̂sr ,r 8,vd =
mcv

2

"
o
a

Casr ,r dCa
* sr 8,r 8d

va − v − i0+ 11 0 0

0 1 0

0 0 0
2 . s1d

The susceptibility is nonlocal in the three spatial coordinates,
as expected from the breaking of translational invariance. In
Eq. s1d, mcv is the dipole matrix element of the interband
optical transition.2 The quantities"va and Casr e,r hd are,
respectively, the electron-hole pair energy and wave function
in the ath dot. We assume an electron-hole pair wave func-
tion which is factorized in its electron and hole parts, thus
neglecting the electron-hole Coulomb correlation. It is rea-
sonable to assume36,37 that for strongly confined systems the
Coulomb correlation induces only a moderate quantitative
change in the optical transition probability amplitude. Given
the very simple description of the QD in this work, this
quantitative effect can be accounted for by adjusting the in-
terband matrix element in order to reproduce, e.g., the
single-QD radiative recombination rate. Note that in expres-
sion s1d the wave functionCa is evaluated atr e=r h, accord-
ing to the effective-mass theory of the interband optical
transition.2 By introducing the susceptibility tensors1d in this
particular matrix form, we are implicitly considering the
electron-heavy-hole optical transition in a semiconductor
with cubic lattice symmetry. In this case, in analogy with a
quantum well,19 only the x and y components of the inter-
band electron-hole polarization vector are coupled to the
electromagnetic field, resulting in the particular shape of the
susceptibility tensors1d. It is therefore possible to analyti-
cally solve the uncoupledz component of the Maxwell equa-
tions and to effectively reduce to a two-dimensional prob-
lem. In this planar geometry there are two independent states
of the interband polarization vector, that correspond to exci-
tons with spins oriented along thex andy direction, respec-
tively. By using simple Lorentz resonances in Eq.s1d, we
assume that the nonradiative line shape of each QD is a
Dirac delta function. Recently it was found that nonpertur-
bative coupling of the exciton with acoustic phonons is re-
sponsible for a broad phonon-assisted contribution to the
nonradiative QD line shape.37–39 However, at low tempera-
tures the phonon-assisted part of the line tends to be small,
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especially for low quantum confinement. The zero-phonon
part of the line, on the other hand, is only affected by the so
called “pure dephasing.” It has been recently shown that pure
dephasing in QDs is almost exclusively due to the radiative
recombination rate40 which is also an outcome of the present
approach. We will restrict to a simple Lorentz line shape for
the uncoupled QD and assume that our results apply to the
zero-phonon part of the interband excitation.

The QD we are considering has cylindrical shape with
radiusR and heighth and is assumed to have a small aspect
ratio h/R, as occurring for most real QD systems.41–45 We
are therefore treating a quasi-two-dimensional system with
the QD lying on thesx,yd plane, as illustrated in Fig. 1 in the
case of two QDs labeleda andb. In a cylindrical coordinate
frame centered on the QD, the electron-hole wave function
for the ath QD can be written as

Casr ,r d = Fa,esf,r,zdFa,hsf,r,zd

= feima,effa,esrdha,eszdg · feima,hffa,hsrdha,hszdg.

s2d

The details of the calculation of the electron and hole wave
functions are given in Appendix A.

The Maxwell equation for the electric fieldE, expressed
in the space and frequency domain, can be written as

= ∧ = ∧ Esr,z,vd −
v2

c2 Se`Esr,z,vd

+ 4pE dr8dz8x̂sr,r8,z,z8,vd ·Esr8,z8,vdD = 0,

s3d

where we distinguish between thez and the in-planer direc-
tions. In what follows we omit thev dependence in the no-
tation for the electric field, unless required. In Eq.s3d we
assumed a uniform dielectric background with dielectric con-
stante`, which models the semiconductor matrix surround-
ing the QD. The in-plane andz components of the electric
field are defined asE=sE ,Ezd. SinceEz is not coupled to the
polarization field, it can be easily eliminated from Eq.s3d.
The Fourier transform to reciprocal in-plane space is defined
as Esr ,zd=okEkszd expfik ·rg. After some algebra, the re-
sulting equation for the in-plane componentEkszd reads

− S1 +
1

kz
2

]2

]z2DSk0
2 − ky

2 kxky

kxky k0
2 − kx

2DEkszd

= 4p
k0

2

e`
o
k8
E dz8x̂k,k8sz,z8d ·Ek8sz8d, s4d

where

kz = Îk0
2 − k2, s5d

k0 = sv/cdÎe` s6d

are thez component of the photon wave vector and the pho-
ton dispersion, respectively. In what follows, thev depen-
dence of the various quantities in the equations is implicitly
contained in theirk dependence through Eqs.s5d ands6d. In
Eq. s4d the susceptibilityx̂k,k8sz,z8d is now a rank-2 tensor
acting on theskx,kyd plane, obtained by Fourier transforming
to k space thesx,yd minor of the tensors1d. Equations4d can
be solved using the scattering approach proposed in Ref. 46.
The background Green’s function of the system is defined as
the solution of the left-hand side of Eq.s4d with an inhomo-

geneous termÎdszd on the right-hand side and with outgoing
boundary conditions. This Green’s function can be derived
analytically and reads

Ĝkszd =
i

2k0
2kz
Sk0

2 − kx
2 − kxky

− kxky k0
2 − ky

2D expfikzuzug. s7d

As already mentioned above, the basis of this two by two
tensor corresponds to thex and y directions of the electric-
field polarization and of the interband optical polarization.
The nondiagonal terms have their physical origin in the long-
range part of the electron-hole exchange interaction, which is
contained in a full Maxwell-Schrödinger formalism.2 For a
single QD having cylindrical symmetry, the nondiagonal
terms average to zero when evaluating the optical transition
amplitude, as expected in an isotropic system. If the system
displays an anisotropy, as is the case for two or more QDs,
these nondiagonal terms are responsible for thelongitudinal-
transverseor fine-structure splitting of the resulting polariton
modes. The Green’s functions7d allows us to express Eq.s4d
in terms of a Dyson equation as follows:

Ekszd = Ek
0szd + 4p

k0
2

e`
o
k8
E dz8dz9Ĝksz− z8d

· x̂k,k8sz8,z9d ·Ek8sz9d, s8d

whereEk
0 is the solution of the free propagating field in the

dielectric background, namely in the absence of the resonant
nonlocal susceptibility. As already pointed out, we consider
cylindrical QDs whose thickness in thez direction is very
small compared to their size in thesx,yd plane. In this case
we can approximate thez dependence of the electron-hole
pairs wave functionsCa with a Dirac-delta function. This
allows us to rewrite Eq.s8d in the simpler form,

FIG. 1. Schematic diagram of the cylindrical dot ensemble.h is
the height of a QD in thez direction,R its radius in thesx,yd plane,
andRab is the distance between the centers of the two QDs.
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Ek = Ek
0 + 4p

k0
2

e`

mcv
2

"
o
k8,b

cb,kcb,k8
*

vb − v − i0+Ĝk ·Ek8, s9d

where all the quantities are defined at thesx,yd-plane posi-
tion z=0. Here,cb,k is the two-dimensional Fourier trans-
form of cbsrd=eismb,e+mb,hdffb,esrdfb,hsrd, that is the in-plane
projection of the electron-hole pair wave function in thebth
QD. If Rb is the position of the QD in the chosen coordinate
frame, then

cbsrd = wbsr − Rbd, s10d

where wbsrd is the bth QD wave function centered at the
origin of the coordinate frame. The Fourier transform ink
space then reads

cb,k = wb,k expfik ·Rbg. s11d

Here, because of the cylindrical symmetry of the wave func-
tion wbsrd,

wb,k =
1

2p
E drwbsrd expsik · rd =E

0

`

drrwbsrdJ0skrd.

s12d

We now project Eq.s9d onto the set of pair wave functions
ca,k. The result is

Ea = Ea
0 + o

b

Ĝab

vb − v − i0+Eb, s13d

where

Ea = o
k

ca,kEk , s14d

Ĝab = 4p
k0

2

e`

mcv
2

"
o
k

ca,kĜkcb,k
* . s15d

Here, as above, thev dependence enters these expressions

through the definitions ofk0, kz, and Ĝk. The QD coupling

matrix Ĝab is explicitly derived in Appendix B. In particular,
in Eq. sB2d the in-plane momentumk is integrated over the
whole range, including both radiative modes withk,k0 and
surface modes withk.k0. These latter modes, which are
evanescent in thez direction, span the largest part of the
exchanged photons phase space and are thus ultimately re-
sponsible for the transfer mechanism we are describing. The
set of functionsca,k is in general a noncomplete set and
therefore, by making this projection, we lose information on
the value assumed by the electric fieldEk in all k space.
Formally, once the quantitiesEa have been computed, the
electric field in all k space could in principle be recon-
structed by solving again Maxwell equations, using the val-
uesEa at each QD as source terms. As it will become clear
later, however, the projected values of the electric field are
sufficient for the purpose of the present analysis, which is to
compute the polariton resonances of the system. It clearly
emerges from the structure of Eq.s13d that in the absence of
coupling, the input field is scattered by each QD individually.

Radiative coupling is responsible for the reabsorption of the

scattered photons by other QDs, through the termsĜab with
aÞb. By neglecting these nondiagonal terms we obtain a
Dyson equation for a single QD,

Ea = Ea
0 +

Ĝaa

va − v − i0+Ea, s16d

whereĜaa= ÎGa sÎ , being the 232 unit matrixd, and

Ga = i
2p2mcv

2

"e`
E

0

`

dkufa,ku2
ks2k0

2 − k2d
kz

. s17d

Equations16d can be solved straightforwardly. The quantity
−Ga is the radiative self-energy of theath QD, with its real
and imaginary parts describing the radiative energy shift and
radiative linewidthsinverse lifetimed, respectively. As dis-
cussed later, this diagonal approximation already implies an
inhomogeneous distribution of theGa, due to the size distri-
bution of the QDs.

In this work we are interested in the effect of radiative
coupling between distant QDs. To this purpose, we seek for
the solutions of the coupled Dyson equations13d. The polar-
iton resonances of the multiple-QD system are then the poles
of the homogeneous set of equations obtained by setting
Ea

0 =0 in Eqs. s13d. We compute these poles numerically
within the exciton-pole approximation,4–7 which consists in

replacing thev dependence ofĜab tensor by an average
electron-hole energy"v0. This approximation is generally
valid when the dielectric medium does not present sharp
resonances, as is the case in the present model where the
QDs are embedded in a constant dielectric background. In
order to check the validity of this assumption, we evaluated

the v dependence of the coupling tensorĜab for a pair of
QDs and checked that all its components are essentially con-
stant over the energy interval corresponding to a typical in-
homogeneous QD distribution. Some of these components
are plotted in Fig. 2 as a check. Complex eigenenergiesVn
=Dn+ iGn are obtained, corresponding to collective radiative

FIG. 2. QD transition energy distributionsfull line, arbitrary
unitsd. The asymmetry with a more pronounced high-energy tail is
due toR−2 dependence of theath QD confinement energy on the
QD radiusRa, the radii being Gauss distributed. Thesx,xd compo-
nent of the coupling energy tensors RehGaj sdashedd, RehGab

xx j sdot-
tedd, and ImhGaj sdot-dashedd, for two QDs labeleda and b, is
plotted as a function of"v.
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modes of the QD ensemble. The number of these poles is
twice the number of QDs, corresponding to the two indepen-
dent states of the interband polarization vector. The real part
of the nth eigenvalueDn induces a radiative shift with re-
spect to the energies of the noninteracting dots, while the
imaginary partGn represents the radiative recombination rate
of the nth collective mode of the system.

III. NUMERICAL RESULTS

In the first part of this section we will address a two-QD
system, in order to establish how the radiative coupling
mechanism depends on thedetuningand on the mutual QD
distance. Here, thedetuningis defined as the difference be-
tween the optical transition energies of the two QDs. In the
second part, we will discuss the results obtained for an en-
semble of several dots. In order to have a quantitave estimate
of the effect, we will show results relative to the realistic
cases of an InAs QD ensemble36,43 and of a CdSe one,47

which differ from each other for the values of the dipole
matrix elementmcv and for the QDs spatial density in typical
samples.

We first consider the case of two QDs. The QDs are as-
sumed of cylindrical shape. The electron and hole wave
functions are calculated within the effective-mass approxi-
mation, assuming a finite barrier at the QD boundariesssee
Appendix Ad. The cylindrical shape enables us to analyti-

cally derive the elements of theĜab tensor in Eq.s13d and
simplifies our numerical task. The detuning is changed by
varying the size of one of the QDs. In Fig. 3 the imaginary
sad and the realsbd part of the poles of Eq.s13d sthat is,Gn
and Dn, respectivelyd are plotted versus the detuning"dv

="sv1−v2d of the two QDs, at fixed distance. The energy
scale is relative to the physical parameters of Stranski-
Krastanov grown InAs QDs, that is, a dipole matrix element
mcv

2 =480 meV/nm3, corresponding to a Kane energy of 22
eV,48 and a radius of the cylinder of about 10 nm. The nu-
merical simulations show that no appreciable coupling effect
is observed for large detuning, as expected. On the other
hand, for small detuning the energies of the four poles are
well distinguished. In particular, if we look atGn in Fig. 3sad,
we can see that twosubradiantand twosuperradiantstates
are present. The two states with smallGn thus decay in a time
much longer than the two others. The computed energy shift
with respect to noninteracting dots is of the same order ofGn,
that is, of the order of 1meV. Such an energy shift is negli-
gible if compared to the typical inhomogeneous broadening
of a QD ensemble. The main consequence of radiative cou-
pling is thus the effect on the lifetimes of the collective
modes of the system. Figure 4 displays the dependence of the
interaction on the distance between the QDs. The imaginary
sad and the realsbd part of the poles oscillate as a function of
the distance between the two dots. The oscillations originate
from interference effects. At distances which are multiples of
the half wavelength, Bragg or anti-Bragg conditions are sat-
isfied and the oscillations display a maximum or a node,
respectively. Figure 4 illustrates the long-range character of
this radiative coupling mechanism. The magnitude of the
coupling, expressed as the envelope of the curves in Figs.
4sad and 4sbd, can be inferred from Eq.sB3d and decreases as
sRabd−1, whereRab is the distance between the dots. As al-
ready pointed out, this dependence is much slower than the
characteristic sRabd−6 dependence of the Förster
coupling.20,21 It should be pointed out that our theory makes
use of the Coulomb gauge for the Maxwell equations and in
particular for the dipole Hamiltonian from which the linear

FIG. 3. Imaginarysad and realsbd part of the energy poles as a
function of the detuning between two QDs, at fixed distanceRab

=50 nm. The energy scale is relative to the case of InAs QDs with
mcv

2 =480 meV/nm3 and a radius of the cylinder of about 10 nm.
Note that for small detuning the four poles are well separated in
energy, so that insad two subradiant and two superradiant states are
distinguishable.

FIG. 4. Imaginarysad and realsbd part of the energy poles as a
function of the distance between two QDs, at zero detuning. The
energy scale is the same as in Fig. 3. The oscillatory nature of the
interaction as a function of distance, according to the Bragg or
anti-Bragg condition, clearly appears.
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susceptibility is derived. In this limit, only transverse fields
are considered and the electrostatic interaction, which is re-
lated to the instantaneous longitudinal part of the electro-
magnetic field, is excluded from the treatment.49 In a very
recent work,50 the same process of energy transfer by emis-
sion and reabsorption of a photon has been described in the
instantaneous limit, by using second-order perturbation
theory for the derivation of the transfer rate, without intro-
ducing the Maxwell equations. In this limit, the interaction
turns out to decay exponentially with the distance, a result
which is well expected as the radiative nature of the interac-
tion is neglected.

Now that the features of the radiative coupling mecha-
nism have been clarified, we consider the case of a large
number of interacting QDs. The same emission-absorption
mechanism that couples a pair of dots can now involve sev-
eral QDs and the transfer of excitation between them results
in collective modes analogous to the ones previously de-
scribed, that is, subradiant or superradiant if compared to the
excited states of the noninteracting dots. As a first example,
we continue to use the parameters of InAs QDs, which are
randomly distributed in thesx,yd plane, with a physical den-
sity of 300 QDs/mm2. In a real situation, the dots have dif-
ferent shape, size, and composition causing the inhomoge-
neous energy broadening of the QD luminescence spectrum.
To simulate this broadening, we introduce a Gauss distrib-
uted dot size centered at dot radiusR=10 nm, with a stan-
dard deviation ofdR=1 nm. This variance in size induces a
variation of the confinement energy"dv which is propor-
tional to dR/R3 as implied by the energy quantization of a
particle in a box. This energy variation is what finally pro-
duces the inhomogeneous energy distribution of the QDs.
The choicedR=1 nm, given our simple model for the QD
wave functions, results in an inhomogeneous broadening of
about 15 meV, as seen in Fig. 2. The asymmetry of this
distribution, with a more pronounced high-energy tail, is
simply related to theR−3 dependence of the confinement en-
ergy variation and to the Gauss assumption for the distribu-
tion of QD sizes. The same size fluctuation is also respon-
sible of a variation of the QD optical matrix element32 and
consequently of both its radiative shift and lifetime, via Eq.
s16d and the single-dot self-energys17d. The numerically
computed radiative energy shifts are of the order of a few
meV, thus negligible if compared to the QD inhomogeneous
energy broadening. They are therefore irrelevant to the
present discussion. The imaginary part of the single-dot self-
energy is, on the contrary, what gives the inhomogeneous
distribution of radiative linewidthsga=−ImhGaj. Their dis-
tribution is plotted in Fig. 5sad. Finally, Fig. 5sbd shows a
two-dimensional histogram of −RehGaj, and −ImhGaj,
showing the correlation between radiative shift and radiative
broadening resulting from the present model. In a realistic
situation,32 a variation of the dipole moment is not only in-
duced by size fluctuations. Other factors such as QD shape,
strain and piezoelectric fields, and indium concentration
within the QD body produce a variation of dipole moment
even for a fixed QD size. The 20% variance of the dipole
moments derived in Ref. 32 is significantly larger than the
one obtained here from size fluctuationssapproximately 3%
for the InAs cased. However, we note that the inhomoge-

neous broadening of the sample by Borriet al. is also larger
than the one considered here, presumably due to an even
larger QD-size fluctuation. Introducing a larger size fluctua-
tion in the present model would partly account for the ob-
served dipole-moment fluctuation. Our final result for a ra-
diatively coupled QD ensemble, howeverssee discussion
below and Figs. 6 and 7d, predicts an even broader distribu-
tion of radiative linewidths which might be at least partly
responsible for the measured dipole moment distribution.

We compute the collective modes of an ensemble of 100
QDs by finding the complex poles of Eq.s13d. We repeat this
procedure for many random realizations of the system. Pro-
vided the system size is larger than the wavelength, we ex-
pect this configuration average to give the same results as a
simulation over a larger spatial domain. This is true because
of the falloff scale computed in Fig. 4. In particular, the
occurrence of quasidegenerate QD pairs within a given real-
ization has a finite though small probability. Repeating the
simulation over many randomly generated configurations fi-
nally allows us to sample over a large enough number of
such quasidegenerate cases and produces a significant statis-
tics. We plot in Fig. 6 a histogram, on a logarithmic scale, of
the real and imaginary parts of the computed energy poles.
Most of the collective modes lie on the curve determined by
the distribution of noninteracting QDs displayed in Fig. 5sbd,
due to the large detunings that are induced by the inhomo-
geneity of the QD ensemble. Nevertheless, for a small frac-
tion of the states a large radiative shift is achieved, as a result
of the coupling. We also point out that the deviation from the

FIG. 5. sad Histogram representing the energy distribution of the
single QD radiative rates, expressed as the imaginary part of the
single QD radiative self-energyga=−ImhGaj. sbd Two-dimensional
histogram of the distribution of the real and imaginary parts of the
single-QD radiative self-energy.
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noninteracting QDs case is more pronunced in correspon-
dence of the center of the QD inhomogeneous line. The rea-
son is that, as already stated, the radii of the QDs are Gauss
distributed around a mean value. Most of the QDs fall in this
energy region and consequently small values of the detuning
are more likely to occur.

For different materials, one can observe larger radiative
coupling effects. In Fig. 7 we show the histogram obtained
for a CdSe QD sample. The physical parameters for this case
are a spatial density of 1000 QDs/mm2 and a dipole matrix
element value ofmcv

2 =780 meV/nm3. Once again the histo-
gram results from many realizations of the sample, with ran-
domly distributed QDs, having randomly Gauss-distributed
size. In this case the deviation from the noninteracting case is
more pronounced because of the higher QD density and of
the larger dipole matrix elementmcv. A radiative shift of a
few meV is achieved, that is one order of magnitude larger
with respect to the case of InAs QDs. In this case, some of
the collective modes have vanishing radiative rates, showing
how the radiative coupling can profoundly change the
dephasing rates of many QD systems.

IV. CONCLUSIONS

We have shown that QDs in a sample cannot in principle
be considered as isolated systems. The radiative coupling
between QDs causes the emergence of collective modes. By
comparing their lifetimes with the ones of the excited state of
an isolated QD, we can classify these modes into subradiant
and superradiant. We find the effect on the radiative decay
rate to be of the order of 1meV. This effect strongly depends
on the dipole matrix element of the material that constitutes
the QDs and on their spatial density. For a very dense QD
sample this effect should be observable as a nonexponential

decay of the photoluminescence signal. Despite its small
size, the addressed mechanism acts over wavelength dis-
tance, so that two QDs that are a few hundreds of nanometers
far from each other can radiatively interact. Semiconductor
QDs are being increasingly advertised as the ideal building
blocks of the future technology for quantum information pro-
cessing. These proposals are often based on pairs of identical
QDs,28 or on pairs of QDs in which a degeneracy occurs
between different excited levels,21 and often take advantage
of excitation transfer processes. Moreover, it is likely that a
solid-state implementation of a quantum information system
would be constituted of a great number ofsnearlyd identical,
independent quantum gates, possibly located at submicron
distance from each other. In all these situations where levels
of different QDs are nearly degenerate, our result shows that
excitation transfer by radiative coupling can occur over long
distances. The radiative coupling mechanism that we de-
scribe might therefore be relevant in determining the excita-
tion transfer dynamics of these systems.
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APPENDIX A: CARRIER WAVE FUNCTIONS

Due to the symmetry of the problem, in the following we
will consider a cylindrical coordinate systemsf ,r ,zd. The
in-plane radius of the cylindrical QD isR, and its height in
thez direction ish. The effective-mass Hamiltonian operator
which describes the carrierselectron or holed in the QD is

FIG. 7. The same histogram of Fig. 6, but for GaAs QDs with
mcv

2 =780 meV/nm3 and a physical density of 1000 QDs/mm2. In
this case radiative shifts up to one order of magnitude larger than in
the case of InAs QDs are obtained as an effect of the coupling.

FIG. 6. Logarithmic scale histogram expressing the number of
collective modes as a function of the real and imaginary part of the
complex energy poles of an InAs QDs ensemble. The physical pa-
rameters of the QDs are the same as in Fig. 3 and their density is
300 QDs/mm2. A fraction of the QDs shows, however, a large ra-
diative shift.
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H = −
"2=2

2mc
+ Vsr,zd, sA1d

where mc is the effective mass of the carrier andVsr ,zd
describes the band profile for the QD, that is,

Vsr,zd = H0, r , R and uzu , h/2

V, elsewhere.
sA2d

Three assumptions allow to simplify the problem:sid we
assume that the problem is separable, namely the wave func-
tion can be written as

Fsw,r,zd = eimwfsrdhszd, sA3d

where m is a positive integer representing the azimuthal
quantum number;sii d we assume that the effective mass of
the carrier is the same in the QD and in the surrounding
medium;siii d we rewrite the Hamiltonian operator as

H = H0 + H1, sA4d

H0 = −
"2=2

2mc
+ Usrd + Wszd, sA5d

H1 = Vsr,zd − Usrd − Wszd sA6d

with

Usrd = H0, r ø R

V, r . R,
sA7d

Wszd = H0, uzu ø h/2

V, uzu . h/2.
sA8d

H1 is considered as a small perturbation, because it is non-
zero only in regions of space where ther- and z-confined
wave functions assume very small values.

By neglectingH1, the problem becomes separable. In the
z direction we reduce to the problem of the one-dimensional
square potential. Because of the symmetry of the problem,
we find both even and odd solutions.

The even solution is

hszd = 5N cosskzd, uzu , h/2

N cosskh/2de−k8sz−h/2d, z. h/2

N cosskh/2dek8sz+h/2d, z, − h/2,

sA9d

where k8=Î2mcV/"2−k2 and N is a normalization factor.
The conditions of continuity of the solution and of its deriva-
tive require thatk verifies the equation

k tanSkh

2
D = k8. sA10d

The odd solution is

hszd = 5N sinskzd, uzu , h/2

N sinskh/2de−k8sz−h/2d, z. h/2

− N sinskh/2dek8sz+h/2d, z, − h/2.

sA11d

In this case imposing the continuity at the QD boundaries
implies

k cotSkh

2
D = − k8. sA12d

EquationssA10d and sA12d result in a discretization of the
wave vector, which will be labeled byn.

The radial part of the Schrödinger equation takes the form
of a Bessel equation,

f9srd +
1

r
f8srd + SA −

2mc

"2 Usrd −
m2

r2 D fsrd = 0. sA13d

Solutions of this equation are the Bessel functions. In the QD
the wave function must be well defined atR=0, while out-
side of the QD we look for exponentially decaying solutions,
as required for a confined state. These requirements are sat-
isfied by first kind Bessel functions and first Hankel func-
tions with imaginary argument, respectively. We obtain

fsrd = HN8Jmsqrd, r , R

N8JmsqrdHm
1 sq8rd/Hm

1 sq8Rd, r . R,
sA14d

whereq8= iÎ2mcV/"2−q2, q2,2mcV/"2 andN8 is a normal-
ization factor. The conditions of continuity are achieved ifq
satisfies the equation

q
Jm−1sqRd − Jm+1sqRd

JmsqRd
= q8

Hm−1
1 sq8Rd − Hm+1

1 sq8Rd
Hm

1 sq8Rd
,

sA15d

resulting in the discretization ofq, which we label byl. The
problem has therefore three quantum numbers, namelyl, m,
andn.

We have evaluated, at the first order of perturbation, the
error introduced by neglectingH1. This error is less than 1%
for the confined functions, that is negligible also considering
the other approximations made.

The excitonic wave function is the product of the ground-
state wave functions of electron and hole, namely the func-
tions corresponding tol =1, m=0, andn=1. A first improve-
ment of the model, aimed at taking into account the Coulomb
interaction, would consist in a variational approach based on
a linear superposition ofsl ,m,nd states with the coefficients
chosen to minimize the Coulomb interaction.

APPENDIX B: QD COUPLING TENSOR

Using the expressions11d for the electron-hole pair wave

function in k space, the coupling tensorĜab in Eq. s15d
becomes
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Ĝab = 4p
k0

2

e`

mcv
2

"
o
k

wa,kwb,k
* Ĝk expf− ik ·Rabg, sB1d

whereRab=Ra−Rb is the distance vector between QDsa andb. Turning the sum into an integral, Eq.sB1d can be written as

Ĝab = i
2p

"

mcv
2

e`
E

0

`

dk
k

kz
wa,kwb,k

* E
0

2p

dfS k0
2 − k2 cos2 f − k2 sinf cosf

− k2 sinf cosf k0
2 − k2 sin2 f

Dexpf− ikRab cossf − uabdg, sB2d

wheref anduab are the angles that the vectorsk andRab, respectively, form with thex axis of the chosen coordinate frame.

For each QD pairsa ,bd we perform a rotation of the 232 matrix in Eq.sB2d by an angleuab. The rotation matrix isR̂uab
.

In the new coordinate frame the two QDs lie on thex axis. In the rotated frame the expression for the new coupling tensor

Ĝab8 =R̂uab
ĜabR̂uab

−1 is identical to Eq.sB2d, with f−uab replacingf everywhere except in the argument of the exponential.
The angular integration can be performed analytically and results in a diagonal matrix as expected,

Ĝab8 = Sgab
L 0

0 gab
T D = i2p

mcv
2

"e`
E

0

`

dk
k

kz
wa,kwb,k

*

312pkz
2J0skRabd +

4Îp

Rab

GS3

2
DkJ1skRabd 0

0 2pk0
2J0skRabd −

4Îp

Rab

GS3

2
DkJ1skRabd 2 , sB3d

whereJnsxd is thenth-order Bessel function of the first kind andGsxd is the Euler gamma function. Labels “L” and “T” denote
the longitudinal and transverse polarizations with respect to theRab axis. The expression in Eq.sB3d depends only on the
distance between the pair of QDs considered. The integral overk is performed numerically. The result is then rotated back by
an angle −uab to obtain the complete coupling matrix in the original coordinate frame. The coupling tensor between QDsa and
b then reads

Ĝab = Sgab
L cos2suabd + gab

T sin2suabd sgab
L − gab

T d sinsuabd cossuabd
sgab

L − gab
T d sinsuabd cossuabd gab

L sin2suabd + gab
T cos2suabd

D . sB4d
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