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Long-range radiative interaction between semiconductor quantum dots
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We develop a Maxwell-Schrédinger formalism in order to describe the radiative interaction mechanism
between semiconductor quantum dots. We solve the Maxwell equations for the electromagnetic field coupled
to the polarization field of a quantum dot ensemble through a linear nonlocal susceptibility and compute the
polariton resonances of the system. The radiative coupling, mediated by both radiative and surface photon
modes, causes the emergence of collective modes whose lifetimes are longer or shorter compared to the ones
of noninteracting dots. The magnitude of the coupling and the collective-mode energies depend on the detuning
and on the mutual quantum dot distance. The spatial range of this coupling mechanism is of the order of the
wavelength. This coupling should therefore be accounted for when considering quantum dots as building
blocks of integrated systems for quantum information processing.
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I. INTRODUCTION guish between two effects of the radiation-matter coupling.

Exciton polaritons are the basic optical excitations of any! € first is the self-energy of a single QD coupled to the

semiconductor system. The interband optical polarization of!€ctromagnetic field, resulting in a finite radiative lifetime
a semiconductor is never an isolated degree of freedonfd @n energy shift of the QD levels. This effect is well

Rather, the exciton states are always coupled to the electrﬁftab"sr‘?d and hsevergl theoretical ((ajs'_cimar\]tes of the radiative
magnetic field via the linear radiation-matter interaction/f€time of QDs have been proposed in the past yéars.

Hamiltonian. Exciton polaritons are the resulting eigenmode E_e second is thehragiagve_coudpling betwle_e? different QDS&
of the Maxwell equations coupled to the material equations 'S Process might be depicted as a multiple emission an

describing the excitons in a semiconductor structure, Th&EaPsorption of a photon by QDs in a many-QD system,
ventually giving rise to collective modes of several QDs.

Etzsalé?glcggﬁ(egié?tgr?”;oslzmgzr?sni?gt%;gja?nlgéﬁg%?e:ngﬁhiS picture implies that the exqitop state of a sipgle_ QD is
. ) no longer an eigenstate and excitation of one exciton in a QD
. . . ) i Mhould result in a transfer of excitation to other QDs, similar
as imposed by translational invariance. This one-to-one S§g, 5 system of coupled harmonic oscillators. A similar effect
lection rule results in a strong mixing and an energy disper s aiready been suggested and theoretically characterized in
sion displaying the anticrossing typical of normal-modeihe case of quantum well excitons localized by interface
coupling? In GaAs, the normal-mode splitting at resonancegisorderi8-19
is 16 meV, larger than the exciton binding energy. The excitation transfer mechanisms between polarizable
In systems with reduced dimensionality, such as quanturgystems such as molecules or semiconductor QDs are usually
wells and quantum wires, the partial breaking of the translagrouped into two categories, depending on whether they oc-
tional symmetry allows coupling of excitons to a continuumcur via overlapping wave functions of the spatially separated
of photon modes. The polariton picture is consequentlysystems or via long-range interactions. The prototype of this
modified and a polariton becomes a resonance of a discretatter case is the electrostatic dipole-dipole interaction, fre-
exciton state linearly coupled to a photon continuum, analoguently referred to agorster energy transfet® As an ex-
gously to a Fano resonangdn this case the importance of ample, the Forster rate for the excitation transfer between
the coupling, expressed by the magnitude of the polaritotwo QDs has been estimafédn the range of 10°-1072 ps't
self-energy correction to the bare exciton energy, is considfor InP QDs with interdot distance of 7 nm. This mechanism
erably smaller. In quantum welf$}~"the polariton resonance has been experimentally characterized in the case of closely
implies a finite exciton radiative lifetime which is of the spaced QD systentd.The important feature of the Forster
order of 10 ps in typical GaAs quantum wells, and a negli-mechanism, however, is the dependence of the transfer rate
gible shift of the exciton energy. A similar effect is predicted on the distance. Being a dipole-dipole-type interaction, its
in quantum wire$10 rate within Fermi golden rule is proportional to the fourth
When the dimensionality of the electromagnetic field ispower of the dipole moment matrix element and decays as
also reduced, e.g., in semiconductor planar microcavities, thihe sixth power of the distané&On a more general ground,
one-to-one coupling typical of a bulk semiconductor is re-in addition to the original Férster scheme, all excitation
covered and strongly coupled polaritons with full exciton-transfer mechanisms based on electromagnetic interaction
photon mixing characterize the optical spectrtim? are expected to be of some importance. The polariton mecha-
The question naturally arises of whether the polaritonnism that we address here involves an excitation transfer
concept is of some relevance in the case of quantum dotsediated by the transverse electromagnetic field. Within a
(QDs), where the electron-hole system is fully confined inperturbation picture, which considers only one emission-
the three spatial dimensions. In this case we might distinabsorption process, this mechanism results in the transfer of
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electron-hole excitation between distant QDs mediated bygontains the detailed derivation of the radiative coupling ten-
the emission and reabsorption of a propagating photon. Theor between two QDs.

coupling strength of this process is therefore expected to be

small, if compared to other proposed coupling mechanisms

which involve tunneling of the electron-hole wave Il. THEORY

function?*>-?°or even to the Forster mechanism at short dis- . . . o
tance. This is basically due to the small absorption cross 'N€ semiclassical model of QD interband excitation in
section of typical semiconductor QDs. However, the polar/nteraction with the electrom_agnetlc field is based on Fhe
iton coupling is also expected to have a long spatial range, otolution of the Maxwell equations coupled to a nonlocal lin-
the order of a few photon wavelengths. Its rate turns out t¢ar susceptibility which accounts for the interband optical
be proportional to the square of the dipole moment matrixransition. This is done in full analogy with the polariton
element and decays as the inverse of the distance, as th@malism in bulk semiconductors and heterostructdres.
transfer is mediated by a propagating field in two dimen-We restrict what follows to the transition between the semi-
sions. In addition, as for the Forster mechanism, it requiresonductor ground state and the ground electron-hole pair
that the two energy levels involved in the excitation transferstate(that is the first excited staten each QD. Within the
have resonant spectra. Although, as it will turn out, typicaleffective-mass approach, the linear susceptibility terfsor
transfer rates derived here are in the range 6f400 ps®,  what follows, tensors are indicated by a “Hadleriving from
because of its spatial range the mechanism we study must ge linear-response theGpyis

considered as complementary to the Fdrster coupling. In par-

ticular this long-range coupling might play an important role w2 W)W r) 100

in the increasingly sought applications of QDs in quantum )}(r,r’,w):ﬁz a & + 010
information processing®—32In presence of radiative interac- h e w,mw-i0 000

tion, in fact, even very distant QDs cannot be considered as

isolated systems. The susceptibility is nonlocal in the three spatial coordinates,

In this work, in order to describe the radiative coupling as expected from the breaking of translational invariance. In
mechanism, we develop a full Maxwell-Schrédinger formal-Eq. (1), u, is the dipole matrix element of the interband
ism for a system of many QDs coupled to the electromagoptical transitior? The quantitiesfiw, and W (re,ry,) are,
netic field. We model a QD having cylindrical shape andrespectively, the electron-hole pair energy and wave function
compute the ground electron-hole pair state within then the ath dot. We assume an electron-hole pair wave func-
effective-mass scheme. We numerically solve the Maxweltion which is factorized in its electron and hole parts, thus
equations for the electromagnetic field coupled to the polarneglecting the electron-hole Coulomb correlation. It is rea-
ization field of a QD ensemble, in order to compute the po-sonable to assurd®’ that for strongly confined systems the
lariton resonances of the system. The linear susceptibility i€oulomb correlation induces only a moderate quantitative
obtained by means of the standard linear-response theory. Véhange in the optical transition probability amplitude. Given
initially address the case of two QDs and inspect how theghe very simple description of the QD in this work, this
coupling depends on the detuning and the mutual QD disquantitative effect can be accounted for by adjusting the in-
tance. Afterwards, we consider a system of many QDs ranterband matrix element in order to reproduce, e.g., the
domly distributed on a plane and we determine the eigenersingle-QD radiative recombination rate. Note that in expres-
ergies of the coupled equations. The collective modes of theion (1) the wave functiont', is evaluated at.=r, accord-
system display modified radiative lifetimes, some of theming to the effective-mass theory of the interband optical
being stronglysubradiantor superradiantwith respect to the  transition? By introducing the susceptibility tens¢t) in this
bare QDs lifetime. This is analogous to the case of polaritongarticular matrix form, we are implicitly considering the
in multiple quantum well$334although the QDs in our case electron-heavy-hole optical transition in a semiconductor
are randomly distributed in space rather than ordered in aith cubic lattice symmetry. In this case, in analogy with a
superlattice. We apply our model to the realistic cases ofjuantum welft® only the x andy components of the inter-
Stranski-Krastanov-grown InAs QDs and CdSe QDs resultband electron-hole polarization vector are coupled to the
ing from interface fluctuations in narrow quantum wells. In electromagnetic field, resulting in the particular shape of the
the CdSe case the effect of radiative coupling is sizeable ansusceptibility tensof1). It is therefore possible to analyti-

a considerable number of collective modes have lifetimesally solve the uncoupledcomponent of the Maxwell equa-
about twice as long or short than the uncoupled case. tions and to effectively reduce to a two-dimensional prob-

The paper is organized as follows. In Sec. Il, starting fromlem. In this planar geometry there are two independent states
the Maxwell equations and a linear nonlocal susceptibility,of the interband polarization vector, that correspond to exci-
we analytically derive the eigenmode equations that hold irions with spins oriented along theandy direction, respec-
the presence of radiative coupling. Section Ill contains theaively. By using simple Lorentz resonances in Eg), we
results of the numerical diagonalization of the problem in theassume that the nonradiative line shape of each QD is a
cases of two- and many-QD systems, followed by a discusbirac delta function. Recently it was found that nonpertur-
sion of the computed data. In Sec. IV we present some corbative coupling of the exciton with acoustic phonons is re-
cluding remarks. Finally, Appendix A contains the details ofsponsible for a broad phonon-assisted contribution to the
the QD model used to derive the electron-hole pair wavenonradiative QD line shap&-2° However, at low tempera-
functions that were used in this work, while Appendix B tures the phonon-assisted part of the line tends to be small,
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FIG. 1. Schematic diagram of the cylindrical dot ensemblis.
the height of a QD in the direction,R its radius in thex,y) plane,
andR, is the distance between the centers of the two QDs.

where

k,= VK5 — K2, (5

especially for low quantum confinement. The zero-phonon -
part of the line, on the other hand, is only affected by the so ko= (wlC)V e (6)
called “pure dephasing.” It has been recently shown that pure
dephasing in QDs is almost exclusively due to the radiativeare thez component of the photon wave vector and the pho-
recombination rat® which is also an outcome of the present ton dispersion, respectively. In what follows, taedepen-
approach. We will restrict to a simple Lorentz line shape fordence of the various quantities in the equations is implicitly
the uncoupled QD and assume that our results apply to theontained in theik dependence through Eq&) and(6). In
zero-phonon part of the interband excitation. Eqg. (4) the susceptibilityxy i/ (z,2') is now a rank-2 tensor
The QD we are considering has cylindrical shape withacting on thek,,k,) plane, obtained by Fourier transforming
radiusR and heighth and is assumed to have a small aspecto k space théx,y) minor of the tensof1). Equation(4) can
ratio h/R, as occurring for most real QD systefits?®® We  be solved using the scattering approach proposed in Ref. 46.
are therefore treating a quasi-two-dimensional system witihe background Green'’s function of the system is defined as
the QD lying on thgx,y) plane, as illustrated in Fig. 1 in the the solution of the left-hand side of E@l) with an inhomo-

case of two QDs labeled and 8. In a cylindrical coordinate  geneous termd(z) on the right-hand side and with outgoing

frame centered on the QD, the electron-hole wave funCt'Orboundary conditions. This Green’s function can be derived

\Pa(ryr) = q)a,e(qsvpiz)q)a,h(d)!paz) Gk( )

i (ko K2 -
=[€Mee?f,, ((p)Ny (D] - [€Mn?f, ()N n(D)]-

245K, k3

(2 As already mentioned above, the basis of this two by two
tensor corresponds to theandy directions of the electric-
field polarization and of the interband optical polarization.

The details of the calculation of the electron and hole waveThe nondiagonal terms have their physical origin in the long-
functions are given in Appendix A. range part of the electron-hole exchange interaction, which is
The Maxwell equation for the electric fielfl, expressed contained in a full Maxwell-Schrodinger formalishizor a
in the space and frequency domain, can be written as single QD having cylindrical symmetry, the nondiagonal
terms average to zero when evaluating the optical transition
amplitude, as expected in an isotropic system. If the system
displays an anisotropy, as is the case for two or more QDs,
these nondiagonal terms are responsible foldhgitudinal-
transverseor fine-structure splitting of the resulting polariton
RN N - - modes. The Green’s functidid) allows us to express E4)
+47Tf dp'dZx(p.p’27 ) - Ep',Z ’w)> 0. in terms of a Dyson equation as follows:

@) exlifZl.  (7)

2
VOV O&pzo) - %(emé(p,z,w)

(3
Ev(2)=EX2) + 477—2 dz dZ'G,(z-2)

where we distinguish between th@nd the in-plang direc-

tions. In what follows we omit the dependence in the no- “Xkx(Z,7') - Ek,(z”), (8)
tation for the electric field, unless required. In E§) we

assumed a uniform dielectric background with dielectric conwhereEE is the solution of the free propagating field in the
stante.., which models the semiconductor matrix surround-dielectric background, namely in the absence of the resonant
ing the QD. The in-plane and components of the electric nonlocal susceptibility. As already pointed out, we consider
field are defined a€=(E,E,). SinceE, is not coupled to the cylindrical QDs whose thickness in thedirection is very
polarization field, it can be easily eliminated from E8).  small compared to their size in ti{g,y) plane. In this case
The Fourier transform to reciprocal in-plane space is definetve can approximate the dependence of the electron-hole
as E(p,2)=2,E«(2) exdik -p]. After some algebra, the re- pairs wave functionsl', with a Dirac-delta function. This
sulting equation for the in-plane componéf)f(z) reads allows us to rewrite Eq(8) in the simpler form,
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E(=EQ+4rm (9

K8 wg— W=
where all the quantities are defined at tlxey)-plane posi-
tion z=0. Here, y5 is the two-dimensional Fourier trans-
form of y(p) =€ Mee M5, (p)f51(p), that is the in-plane
projection of the electron-hole pair wave function in B
QD. If Ry is the position of the QD in the chosen coordinate
frame, then

We(p) = ‘PB(P - Rﬁ)' (10)

where ¢4(p) is the gth QD wave function centered at the
origin of the coordinate frame. The Fourier transformkin
space then reads

‘:bB,k = (’Dﬁrk eXF{ik . RB] (11)
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FIG. 2. QD transition energy distributiotfull line, arbitrary
units). The asymmetry with a more pronounced high-energy tail is
due toR™2 dependence of thath QD confinement energy on the
QD radiusR,, the radii being Gauss distributed. The x) compo-
nent of the coupling energy tensors{Reg} (dashed Re[G’;’;} (dot-

Here, because of the cylindrical symmetry of the wave functed, and IM{G,} (dot-dashej] for two QDs labeledx and g3, is

tion @4(p),

1 -
Ppk= 5 f dpes(p) explik - p) = fo dppeg(p)do(kp).

(12)

We now project Eq(9) onto the set of pair wave functions
Yak- The result is

G
E,=E0+> —%—E, (13)
g W= ®~ i0
where
Eo= > YakEx, (14)
k
2 2
~ M " ~ *
Gap= 477? =2 bas Gk (15)
o0 Kk

plotted as a function of w.

Radiative coupling is responsible for the reabsorption of the

scattered photons by other QDs, through the teﬁ:}pﬁwith
a# B. By neglecting these nondiagonal terms we obtain a
Dyson equation for a single QD,

~

G

E,=E2+ —*“—Eaq, (16
w,—w—1i0
whereéw:fGa a, being the 22 unit matriy, and
2, k(25— K?)
G =i j g =20 )
€ 0 kZ

Equation(16) can be solved straightforwardly. The quantity
-G, is the radiative self-energy of theth QD, with its real
and imaginary parts describing the radiative energy shift and
radiative linewidth(inverse lifetime, respectively. As dis-
cussed later, this diagonal approximation already implies an

Here, as above, the dependence enters these expression;nhomogeneous distribution of tt@,, due to the size distri-

through the definitions ok, k,, and ék. The QD coupling

matrix G4 is explicitly derived in Appendix B. In particular,
in Eqg. (B2) the in-plane momenturk is integrated over the
whole range, including both radiative modes wittr ky and
surface modes wittk>k,. These latter modes, which are
evanescent in the direction, span the largest part of the

exchanged photons phase space and are thus ultimately e

sponsible for the transfer mechanism we are describing. Th
set of functionsy, is in general a noncomplete set and
therefore, by making this projection, we lose information on

bution of the QDs.

In this work we are interested in the effect of radiative
coupling between distant QDs. To this purpose, we seek for
the solutions of the coupled Dyson equatid®). The polar-
iton resonances of the multiple-QD system are then the poles
of the homogeneous set of equations obtained by setting
Eg:o in Egs. (13). We compute these poles numerically
eithin the exciton-pole approximatidh which consists in
replacing thew dependence oG,; tensor by an average
electron-hole energyiwg. This approximation is generally

the value assumed by the electric fidk] in all k space. Valid when the dielectric medium does not present sharp
Formally, once the quantitieE, have been computed, the 'ésonances, as is the case in the present model where the
electric field in allk space could in principle be recon- QDs are embedded in a constant dielectric background. In
structed by solving again Maxwell equations, using the val-order to check the validity of this assumption, we evaluated
uesE, at each QD as source terms. As it will become clearthe » dependence of the coupling tengdy,; for a pair of

later, however, the projected values of the electric field ar&QDs and checked that all its components are essentially con-
sufficient for the purpose of the present analysis, which is tstant over the energy interval corresponding to a typical in-
compute the polariton resonances of the system. It clearljomogeneous QD distribution. Some of these components
emerges from the structure of EG.3) that in the absence of are plotted in Fig. 2 as a check. Complex eigenenerfies
coupling, the input field is scattered by each QD individually.=A,+iT",, are obtained, corresponding to collective radiative
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FIG. 3. Imaginary(a) and real(b) part of the energy poles as a
function of the detuning between two QDs, at fixed distaRgg FIG. 4. Imaginary(a) and real(b) part of the energy poles as a
=50 nm. The energy scale is relative to the case of InAs QDs witHfunction of the distance between two QDs, at zero detuning. The
w2 =480 meV/nm and a radius of the cylinder of about 10 nm. energy scale is the same as in Fig. 3. The oscillatory nature of the
Note that for small detuning the four poles are well separated irinteraction as a function of distance, according to the Bragg or
energy, so that iffia) two subradiant and two superradiant states areanti-Bragg condition, clearly appears.
distinguishable.

=fi(w;—w,) of the two QDs, at fixed distance. The energy

modes of the QD ensemble. The number of these poles &cale is relative to the physical parameters of Stranski-
twice the number of QDs, corresponding to the two indepenkKrastanov grown InAs QDs, that is, a dipole matrix element
dent states of the interband polarization vector. The real partq, =480 meV/nni, corresponding to a Kane energy of 22
of the nth eigenvalued, induces a radiative shift with re- €V,*® and a radius of the cylinder of about 10 nm. The nu-
spect to the energies of the noninteracting dots, while thénerical simulations show that no appreciable coupling effect
imaginary parf’,, represents the radiative recombination ratels observed for large detuning, as expected. On the other
of the nth collective mode of the System_ hand, for small detuning the energies of the four pOIeS are

well distinguished. In particular, if we look &t, in Fig. 3a),

we can see that tweubradiantand twosuperradiantstates

lIl. NUMERICAL RESULTS are present. The two states with snig|lthus decay in a time
much longer than the two others. The computed energy shift
In the first part of this section we will address a two-QD with respect to noninteracting dots is of the same ordét,of
system, in order to establish how the radiative couplingthat is, of the order of JueV. Such an energy shift is negli-
mechanism depends on tdetuningand on the mutual QD  gible if compared to the typical inhomogeneous broadening
distance. Here, thdetuningis defined as the difference be- of a QD ensemble. The main consequence of radiative cou-
tween the optical transition energies of the two QDs. In thepling is thus the effect on the lifetimes of the collective
second part, we will discuss the results obtained for an enmodes of the system. Figure 4 displays the dependence of the
semble of several dots. In order to have a quantitave estimaiteraction on the distance between the QDs. The imaginary
of the effect, we will show results relative to the realistic (g) and the realb) part of the poles oscillate as a function of
cases of an InAs QD ensemBié? and of a CdSe on¥, the distance between the two dots. The oscillations originate
which differ from each other for the values of the dipole from interference effects. At distances which are multiples of
matrix elemeniu., and for the QDs spatial density in typical the half wavelength, Bragg or anti-Bragg conditions are sat-
samples. isfied and the oscillations display a maximum or a node,
We first consider the case of two QDs. The QDs are asrespectively. Figure 4 illustrates the long-range character of

sumed of cylindrical shape. The electron and hole wavehis radiative coupling mechanism. The magnitude of the
functions are calculated within the effective-mass approXicoupling, expressed as the envelope of the curves in Figs.
mation, assuming a finite barrier at the QD boundaf@&®  4(a) and 4b), can be inferred from EqB3) and decreases as
Appendix A). The cylindrical shape enables us to analyti-(R,,)™%, whereR, is the distance between the dots. As al-
cally derive the elements of th8,, tensor in Eq.(13) and  ready pointed out, this dependence is much slower than the
simplifies our numerical task. The detuning is changed bycharacteristic (R,)® dependence of the Forster
varying the size of one of the QDs. In Fig. 3 the imaginarycoupling?>2*1t should be pointed out that our theory makes
(a) and the realb) part of the poles of Eq(13) (that is, T, use of the Coulomb gauge for the Maxwell equations and in
and A, respectively are plotted versus the detunifigdw particular for the dipole Hamiltonian from which the linear
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susceptibility is derived. In this limit, only transverse fields
are considered and the electrostatic interaction, which is re- (@)
lated to the instantaneous longitudinal part of the electro-
magnetic field, is excluded from the treatméhtn a very
recent worl®® the same process of energy transfer by emis-
sion and reabsorption of a photon has been described in the
instantaneous limit, by using second-order perturbation
theory for the derivation of the transfer rate, without intro-
ducing the Maxwell equations. In this limit, the interaction
turns out to decay exponentially with the distance, a result
v_vhic_h is well expected as the radiative nature of the interac- 2 0.34 0.36 0.38 04
tion is neglected. T (neV)
Now that the features of the radiative coupling mecha-

arb. units

o

nism have been clarified, we consider the case of a large 4
number of interacting QDs. The same emission-absorption 3.9 ©)
mechanism that couples a pair of dots can now involve sev-
eral QDs and the transfer of excitation between them results < 38
in collective modes analogous to the ones previously de- 2
. . : L =37 -
scribed, that is, subradiant or superradiant if compared to the o
excited states of the noninteracting dots. As a first example, & 36
we continue to use the parameters of InAs QDs, which are
randomly distributed in théx,y) plane, with a physical den- 35
sity of 300 QDsfzm?. In a real situation, the dots have dif- 5 ) . .
ferent shape, size, and composition causing the inhomoge- 0 0.1 0.2 0.3 0.4
neous energy broadening of the QD luminescence spectrum. -R(G,) (meV)

To simulate this broadening, we introduce a Gauss distrib-

uted dot size centered at dot radiBs 10 nm, with a stan- FIG. 5. (a) Histogram representing the energy distribution of the
dard deviation ofSR=1 nm. This variance in size induces a Single QD radiative rates, expressed as the imaginary part of the
variation of the confinement energydw which is propor-  Single QD radiative self-energy,=-Im{G,}. (b) Two-dimensional
tional to SR/ as implied by the energy quantization of a h_|stogram of the distribution of the real and imaginary parts of the

particle in a box. This energy variation is what finally pro- single-QD radiative self-energy.

duces the inhomogeneous energy distribution of the QDsheous broadening of the sample by Batial. is also larger

The choicesR=1 nm, given our simple model for the QD than the one considered here, presumably due to an even
wave functions, results in an inhomogeneous broadening aarger QD-size fluctuation. Introducing a larger size fluctua-
about 15 meV, as seen in Fig. 2. The asymmetry of thision in the present model would partly account for the ob-
distribution, with a more pronounced high-energy tail, isserved dipole-moment fluctuation. Our final result for a ra-
simply related to théx"® dependence of the confinement en- diatively coupled QD ensemble, howevésee discussion
ergy variation and to the Gauss assumption for the distribupelow and Figs. 6 and)7predicts an even broader distribu-
tion of QD sizes. The same size fluctuation is also respontion of radiative linewidths which might be at least partly
sible of a variation of the QD optical matrix elem&and  responsible for the measured dipole moment distribution.
consequently of both its radiative shift and lifetime, via Eq.  We compute the collective modes of an ensemble of 100
(16) and the single-dot self-energyl7). The numerically  QDs by finding the complex poles of E(.3). We repeat this
computed radiative energy shifts are of the order of a fewprocedure for many random realizations of the system. Pro-
ueV, thus negligible if compared to the QD inhomogeneousyided the system size is larger than the wavelength, we ex-
energy broadening. They are therefore irrelevant to theect this configuration average to give the same results as a
present discussion. The imaginary part of the single-dot selfsimulation over a larger spatial domain. This is true because
energy is, on the contrary, what gives the inhomogeneousf the falloff scale computed in Fig. 4. In particular, the
distribution of radiative linewidthsy,=—Im{G,}. Their dis-  occurrence of quasidegenerate QD pairs within a given real-
tribution is plotted in Fig. &). Finally, Fig. 5b) shows a ization has a finite though small probability. Repeating the
two-dimensional histogram of -R@,, and -ImM{G,, simulation over many randomly generated configurations fi-
showing the correlation between radiative shift and radiativenally allows us to sample over a large enough number of
broadening resulting from the present model. In a realisticuch quasidegenerate cases and produces a significant statis-
situation®? a variation of the dipole moment is not only in- tics. We plot in Fig 6 a histogram, on a logarithmic scale, of
duced by size fluctuations. Other factors such as QD shapéhe real and imaginary parts of the computed energy poles.
strain and piezoelectric fields, and indium concentratiorMost of the collective modes lie on the curve determined by
within the QD body produce a variation of dipole momentthe distribution of noninteracting QDs displayed in Figo)5
even for a fixed QD size. The 20% variance of the dipoledue to the large detunings that are induced by the inhomo-
moments derived in Ref. 32 is significantly larger than thegeneity of the QD ensemble. Nevertheless, for a small frac-
one obtained here from size fluctuatiof@pproximately 3% tion of the states a large radiative shift is achieved, as a result
for the InAs casg However, we note that the inhomoge- of the coupling. We also point out that the deviation from the
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FIG. 6. Logarithmic scale histogram expressing the number of
collective modes as a function of the real and imaginary part of the FIG. 7. The same histogram of Fig. 6, but for GaAs QDs with
complex energy poles of an InAs QDs ensemble. The physical pau§U:780 meV/nm and a physical density of 1000 QDQ&h?. In
rameters of the QDs are the same as in Fig. 3 and their density ihis case radiative shifts up to one order of magnitude larger than in
300 QDsjum?. A fraction of the QDs shows, however, a large ra- the case of InAs QDs are obtained as an effect of the coupling.
diative shift.

decay of the photoluminescence signal. Despite its small
noninteracting QDs case is more pronunced in corresporsize, the addressed mechanism acts over wavelength dis-
dence of the center of the QD inhomogeneous line. The redance, so that two QDs that are a few hundreds of nanometers
son is that, as already stated, the radii of the QDs are Gausar from each other can radiatively interact. Semiconductor
distributed around a mean value. Most of the QDs fall in thisQDs are being increasingly advertised as the ideal building
energy region and consequently small values of the detuninblocks of the future technology for quantum information pro-
are more likely to occur. cessing. These proposals are often based on pairs of identical

For different materials, one can observe larger radiativeQDs?® or on pairs of QDs in which a degeneracy occurs

coupling effects. In Fig. 7 we show the histogram obtainecbetween different excited levets,and often take advantage
for a CdSe QD sample. The physical parameters for this cassf excitation transfer processes. Moreover, it is likely that a
are a spatial density of 1000 QDsh? and a dipole matrix  solid-state implementation of a quantum information system
element value ofxZ, =780 meV/nm. Once again the histo- would be constituted of a great number(ogarly identical,
gram results from many realizations of the sample, with ranindependent quantum gates, possibly located at submicron
domly distributed QDs, having randomly Gauss-distributeddistance from each other. In all these situations where levels
size. In this case the deviation from the noninteracting case isf different QDs are nearly degenerate, our result shows that
more pronounced because of the higher QD density and adxcitation transfer by radiative coupling can occur over long
the larger dipole matrix element.,. A radiative shift of a distances. The radiative coupling mechanism that we de-
few wpeV is achieved, that is one order of magnitude largerscribe might therefore be relevant in determining the excita-
with respect to the case of InAs QDs. In this case, some dfion transfer dynamics of these systems.
the collective modes have vanishing radiative rates, showing
how the radiative coupling can profoundly change the

dephasing rates of many QD systems. ACKNOWLEDGMENTS
We are grateful to A. Quattropani, P. Schwendimann, and
IV. CONCLUSIONS R. Zimmermann for fruitful discussions. We acknowledge

We have shown that QDs in a sample cannot in principle{'r?rzzgﬁlPrsgjzgtc’rl\tlofrgzné_éggossa\’vlss National Foundation

be considered as isolated systems. The radiative coupling
between QDs causes the emergence of collective modes. By

comparing their lifetimes with the ones of the excited state of APPENDIX A: CARRIER WAVE FUNCTIONS

an isolated QD, we can classify these modes into subradiant

and superradiant. We find the effect on the radiative decay Due to the symmetry of the problem, in the following we
rate to be of the order of LeV. This effect strongly depends will consider a cylindrical coordinate syste(w,p,z). The
on the dipole matrix element of the material that constitutesn-plane radius of the cylindrical QD iR, and its height in
the QDs and on their spatial density. For a very dense QDhez direction ish. The effective-mass Hamiltonian operator
sample this effect should be observable as a nonexponentiahich describes the carriéelectron or holgin the QD is
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+V(p,2),
Mg

H=- (A1)

where m; is the effective mass of the carrier aMip,2)
describes the band profile for the QD, that is,

0, p<Rand|Z <h/2
V(p,2) = (A2)

V, elsewhere.

Three assumptions allow to simplify the proble(): we

PHYSICAL REVIEW B71, 045335(2005

N sin(k2), |zl < h/2
h(z) ={ Nsinkh2e X @2 z>h2 (A1)
- N'sin(kh/2)eK' @2 = z< —h/2.

In this case imposing the continuity at the QD boundaries

implies
kh
kcot(;) =-kK'". (A12)

assume that the problem is separable, namely the wave func-

tion can be written as

D(¢,p,2) = €M™f(p)h(2), (A3)

Equations(A10) and (A12) result in a discretization of the
wave vector, which will be labeled hiy.

The radial part of the Schrédinger equation takes the form
of a Bessel equation,

where m is a positive integer representing the azimuthal

guantum number(ii) we assume that the effective mass of

2m, m?
the carrier is the same in the QD and in the surrounding f’ (P)+—f (P)+(A—h—U(P)—?>f(P):0- (A13)

medium; (iii) we rewrite the Hamiltonian operator as

H= H0+ Hl' (A4)
292
Ho= = o+ Ulp) + W2, (AS)
H1=V(p,2) - U(p) -W(2) (AB)
with
0, p=R
U(p):{v »>R (A7)
0, |Z=h2
W2 = {v 12 > /2. (A8)

Solutions of this equation are the Bessel functions. In the QD
the wave function must be well defined R0, while out-

side of the QD we look for exponentially decaying solutions,
as required for a confined state. These requirements are sat-
isfied by first kind Bessel functions and first Hankel func-
tions with imaginary argument, respectively. We obtain

‘ ):{N'Jm(qp), p<R

, , , (A14)
N'J(ap)HA(A p)HEA'R), p>R,

whereq’ =iv2m\V/#2-g?, g?<2mV/#? andN’ is a normal-
ization factor. The conditions of continuity are achieved if
satisfies the equation

‘]m—l(qR) - ‘]m+1(qR) -
In(aR)

v 1(q'R - H:
Hy(a'R)

m1(d'R)

(A15)

H, is considered as a small perturbation, because it is non-

zero only in regions of space where tpe and z-confined
wave functions assume very small values.

resulting in the discretization af, which we label byl. The
problem has therefore three quantum numbers, namety

By neglectingH;, the problem becomes separable. In theandn.
z direction we reduce to the problem of the one-dimensional We have evaluated, at the first order of perturbation, the
square potential. Because of the symmetry of the problemerror introduced by neglectinig,. This error is less than 1%

we find both even and odd solutions.
The even solution is

N cogk2), |zl <h/2
h(z) ={ N cogkh/2)e™¥' @2 = z> h/2 (A9)
N cogkh/2)eK @2 z< —h/2,

where k'=y2m.\V/A2-k? and N is a normalization factor.
The conditions of continuity of the solution and of its deriva-

tive require thak verifies the equation

ktan(@> =k'.
2

The odd solution is

(A10)

for the confined functions, that is negligible also considering
the other approximations made.

The excitonic wave function is the product of the ground-
state wave functions of electron and hole, namely the func-
tions corresponding tb=1, m=0, andn=1. A first improve-
ment of the model, aimed at taking into account the Coulomb
interaction, would consist in a variational approach based on
a linear superposition di,m,n) states with the coefficients
chosen to minimize the Coulomb interaction.

APPENDIX B: QD COUPLING TENSOR

Using the expressiofill) for the electron-hole pair wave

function in k space, the coupling tens@}aﬁ in Eq. (15
becomes
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af 7T€OC

M * 2 .
7@2 (Pa,k()oﬁ,ka eXd— ik - Raﬁ]r
k
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(B1)

whereR,;=R,~Rg is the distance vector between QB®nd . Turning the sum into an integral, E@1) can be written as

- 2mud (7, k . [ k3 - k2 cog ¢
Gup= __CJ dk_‘Pa,k‘P,B,kf dd’(
Z

- k?sin ¢ cos¢

ﬁfoc 0 k 0

- k?sin ¢ cos¢

&~ K2 sir? ¢ (B2

)exp[— ikR,5cog¢p— 0,5)],

where ¢ and 6, are the angles that the vectdrandR 4, respectively, form with thet axis of the chosen coordinate frame.

For each QD paifa,8) we perform a rotation of the 22 matrix in Eq.(B2) by an anglef,z. The rotation matrix isﬁgaﬁ.
In the new coordinate frame the two QDs lie on thexis. In the rotated frame the expression for the new coupling tensor

G;B:R(,aﬂ

éaﬁli;iﬁ is identical to Eq.(B2), with ¢-6,, replacing¢ everywhere except in the argument of the exponential.

The angular integration can be performed analytically and results in a diagonal matrix as expected,

L 2 o
1 ga,B 0 . Iu’(m k *
Gaﬁ— ( T ) = Izw_ﬁfm . dkEZ(Pa,k@ﬁ,k

[

2mk2Io(KR,p) + ‘:—’Tr(@kal(kpzaﬁ) 0

X p

0

ar (3 : (B3)
B

whereJ, (x) is thenth-order Bessel function of the first kind aihdx) is the Euler gamma function. Labels “L” and “T” denote
the longitudinal and transverse polarizations with respect tdRtlyeaxis. The expression in EGB3) depends only on the
distance between the pair of QDs considered. The integralloigeperformed numerically. The result is then rotated back by
an angle 9,4 to obtain the complete coupling matrix in the original coordinate frame. The coupling tensor betweenaQ®s

B then reads

af ~

- (gbﬁ COS(0,p) + Uap SIMP(6,5) (G55 — L) SIN(O,5) COKO,)
(gl;ﬂ - glg) sin(6,5) COK 6,,p) gl&,e SIN(0,p) + glﬁ oS (6,,p)

). (B4)
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