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I. INTRODUCTION

Excitonsselectron-hole bound statesd within quantum dots
sQD’sd have already attracted much interest in the field of
quantum computation and have formed the basis of several
proposals for quantum logic gates.1 The energy shift due to
the exciton-exciton dipole interaction between two QD’s
gives rise to diagonal terms in the interaction Hamiltonian,
and hence it has been proposed that quantum logic may be
performed via ultrafast laser pulses.2 However, excitons
within adjacent QD’s are also able to interact through their
resonantsFörsterd energy transfer,3 some evidence for which
has been obtained experimentally in a range of systems.4–7

As is shown below, this resonant transfer of energy gives rise
to off-diagonal Hamiltonian matrix elements and therefore to
a naturally entangling quantum evolution. It is proposed here
that this interaction may be observed in a straightforward
way through the observation of anticrossings induced in the
coupled dot energy spectra by the application of an external
static electric field. We also show that the off-diagonal matrix
elements can be made sufficiently large to be of interest for
excitonic quantum computation.8,9

The first studies of Förster resonant energy transfer were
performed in the context of the sensitized luminescence of
solids.3,10 Here, an excited sensitizer atom can transfer its
excitation to a neighboring acceptor atom, via an intermedi-
ate virtual photon. This same mechanism has also been
shown to be responsible for exciton transfer between QD’s,5

and within molecular systems6 and biosystems7 sthough in-
coherently, as a mechanism for photosynthesisd, all of which
may be treated in a similar formulation. Thus, the results
reported here can be expected to apply not only to QD sys-
tems, but also to a wide range of nanostructures where
Förster processes are of primary significance.

In this paper, we consider two coupled generic QD’s, each
modeled by a simple potential which is given by infinite
parabolic wells in all threesx,y,zd dimensions. This poten-
tial profile allows an analytical expression for the interdot
Förster coupling in the dipole-dipole approximation to be
derived and, although we expect it only to allow for qualita-
tive predictions about real observations, similar models have

been successfully used in the literature.11–13 Excitations of
each dot are assumed to be produced optically, and we ne-
glect tunneling effects between the two coupled dotsssee the
Appendix for more detailsd. We shall restrict ourselves to
small, strongly confined dots, with electron and hole confine-
ment energies,100 meV and low temperaturessT,5 K;
see Sec. IVd. We shall therefore consider only the ground
statesno excitond and first excited statesone excitond within
our model, as they will be energetically well separated from
higher excitations. These two states define our qubit basis as
u0l and u1l, respectively.

Various techniques exist for growing QD’s in the labora-
tory, of which the Stranski-Krastanow method14,15is possibly
the most promising for the realization of a controllably
coupled many-dot system. In this growth mode a semicon-
ductor is grown on a substrate which is made of a different
semiconductor, leading to a lattice mismatch between the
layers. Under certain growth conditions, dots form spontane-
ously due to the competing energy considerations of dot sur-
face area, strain, and volume. If a spacer layer of material is
then grown above the first dot layer and then a second dot
layer deposited, a vertically correlated arrangement of dots
can be made.16 Two such stacked dots could then form our
interacting two-qubit system with materials, growth condi-
tions, and spacer layer size tailored to give suitable electronic
properties and interdot Coulomb interactions.

II. QUANTUM DOT MODEL

A. Single-particle states

Many varying approaches to the calculation of electron
and hole states in QD’s have been put forward in Refs. 2,
11–13, and 17–21, the choice of which depends on the final
aim of the work. The aim here is to provide a clear and
simple illustration of how to experimentally observe resonant
energy transfer between a pair of QD’s, and how to exploit
this interdot interaction to perform quantum logic. Therefore,
we shall consider one of the most basic models, similar to
those in Refs. 11–13, which treats the conduction- and
valence-band ground states as those of a three-dimensional
infinite parabolic well. This simple model can provide us
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with analytical expressions for the energies and wave func-
tions of the single-particle states and for the dipole-dipole
interaction between two dots. We do not expect that this
model will predict the precise values of experimental mea-
surements; however, it is expected to indicate qualitative
trends in real observations.

In the effective mass and envelope function
approximations22,23 the Schrödinger equation for single par-
ticles may be written as

Hisr dfisr d = F−
"2

2
¹ S 1

mi
* D ¹ + Visr dGfisr d = Eifisr d,

s1d

where i =e,h for electron or hole,Visr d is the dot confine-
ment potential which accounts for the difference in band
gaps across the heterostructure, andmi

* is the effective mass
of particle i. Here,fisr d is the envelope function part of the
total wave function:

cisr d = fisr dUisr d. s2d

The envelope function describes the slowly varying contri-
bution to the change in wave function amplitude over the dot
region, and the physical properties of the single-particle
states can be derived purely from this contribution.Uisr d is
called the Bloch function and has the periodicity of the
atomic lattice. Its consideration is vital when describing the
interactions between two or more particles.

In the approximate analytical model, a separable potential
comprising infinite parabolic wells in all three dimensions
represents the QDsRef. 24d:

Vsx,y,zd =
1

2
ci,xx

2 +
1

2
ci,yy

2 +
1

2
ci,zz

2, s3d

where the frequencyvi,j =Îci,j /m
* for j =x,y,z ssee Fig. 1d.

Hence, the Schrödinger equationfEq. s1dg is also separable
and provides simple product solutions for the electron and
hole states. The envelope functions are therefore given by

fisr d = ji,xsxdji,ysydji,zszd, s4d

for the parabolic confinementfr =sx,y,zdg. We now drop the
subscripti but remember that due to their differing effective
masses electrons and holes may take different values for the
parameters defined throughout this paper.

The solutions to the one-dimensional Schrödinger equa-
tion for the potential form of Eq.s3d are given by

jnsxd = S 1

n!2ndx
Îp

D1/2

HnS x

dx
DexpS−

x2

2dx
2D , s5d

in thex direction with analogous expressions fory andz. The
integern=s0,1,2,3, . . .d labels the quantum state, with en-
ergy En=sn+1/2d"vx, the Hn’s are Hermite polynomials,
anddx=s" /Îm*cxd1/2=f" / sm*vxdg1/2. We are interested only
in the ground-state solutions of each well, so our envelope
function is given by

fsx,y,zd = S 1

dxdydzp
3/2D1/2

expS−
x2

2dx
2D

3expS−
y2

2dy
2DexpS−

z2

2dz
2D , s6d

with energyE0= 1
2"svx+vy+vzd. The choice of constantscj

and hencedj will be different for changing confinement po-
tentials and particle masses, and so will depend upon the
energies of the system under consideration and whether the
particle is an electron or holessee Fig 1d.

B. Excitons and Coulomb integrals

The excitation of an electron from a valence-band state to
a conduction-band state leaves a hole in the valence band.
The electron and hole are oppositely charged and may form a
bound state, the exciton, with the absence or presence of a
ground-state exciton within a dot forming our qubit basissu0l
and u1l, respectivelyd. For excitons, we must consider an
electron-hole pair Hamiltonian

H = He + Hh −
e2

4pesr e − r hdur e − r hu
+ Egap, s7d

whereHe and Hh are given by Eq.s1d with the appropriate
effective masses and potentials,Egap is the semiconductor
band-gap energy, andesr e−r hd is the background dielectric
constant of the semiconductor. We shall consider the simplest
case ofesr e−r hd=e0er; i.e., the relative permittivityer is in-
dependent ofsr e−r hd. The intradot energy shift due to the
Coulomb termHeh=e2/4pe0erur e−r hu is a small contribution
to the total energy, and we treat it as a first-order perturba-
tion. This strong-confinement regime treats the electron and
hole as independent particles with energy states primarily
determined by their respective confinement potentials.25 It is
valid for small dots with sizes less than the corresponding
bulk exciton radiusa0 s,35 nm for InAs, ,13 nm for
GaAsd. For more sophisticated treatments of the calculation
of excitonic states, see, for example, Refs. 2sdirect-
diagonalizationd, 21 spsuedopotential calculationsd, and 26
svariational methodsd. In Ref. 21 it was found that a simple

FIG. 1. The parameterscj are chosen from electron and hole
confinement potentialsVe and Vh by taking s1/2dcjr

2=Vi, for j
=x,y,z and i =e,h. This matches a well of depthVi with the para-
bolic potentials1/2dcj j

2 at a width r from the dot center. All pa-
rameters are chosen to be consistent with GaAs spacer layers—i.e.,
Ve+Vh+Egap=1.425 eV, the GaAs band gap.
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perturbation method was in good agreement with a self-
consistent-field approach.

We construct an antisymmetric wave function represent-
ing a single-exciton state given by

CI = Afcn8sr 1,s1d,cmsr 2,s2dg, s8d

wherer ands are positionsfrom the center of the dotd and
spin variables, respectively,n and m label the quantum
states, andA denotes overall antisymmetry. Here, one elec-
tron cn8sr 1,s1d has been promoted from the valence band
into a conduction-band state whilecmsr 2,s2d represents a
state in the valence band. Taking the Coulomb matrix ele-
ment kCFuHehuCIl between the initial stateCI above and an
identical stateCF sin effect coupling an electron and hole via
the Coulomb operatord leads to two terms:27,28the direct term

MIF
Direct =

e2

4pe0er
E E cn8

*sr 1dcn8sr 1d
1

ur 1 − r 2u

3 cm
* sr 2dcmsr 2ddr 1dr 2 s9d

and the exchange term

MIF
Exch= ±

e2

4pe0er
E E cn8

*sr 1dcmsr 1d
1

ur 1 − r 2u

3 cn8sr 2dcm
* sr 2ddr 1dr 2. s10d

The sign of the exchange term is determined by the sym-
metry of the spin state of the two particles; with the pertur-
bation Heh being positive, triplet-spin states give negative
exchange elements whereas singlet-spin states give positive
values. We shall now show how to calculate the direct
electron-hole Coulomb matrix element on a single dot where
n and m are both taken as ground states. The exchange in-
teraction is much smaller21,27 and we shall not consider it
here.

If we consider identical potentials in all three directions,
then we can use the spherical symmetry to derive an analyti-
cal expression for the direct Coulomb matrix element, which
we call Meh. For dx=dy=dz=d, Eq. s6d may be written in
spherical polar coordinates as

fsr d = S 1

dÎp
D3/2

expS−
r2

2d2D . s11d

Substituting into Eq.s9d leads to

Meh=
e2

4pe0er
S 1

de
Îp

D3S 1

dh
Îp

D3E E expS−
r1

2

de
2D

3expS−
r2

2

dh
2D 1

ur 1 − r 2u
dr 1dr 2, s12d

where the contribution of the Bloch functionsUsr d has been
neglected.27 We now express 1/ur 1−r 2u in terms of Legendre
polynomials as29

1

ur 1 − r 2u
=5

1

r1
o
l=0

` S r2

r1
Dl

Plscosud, for r1 . r2,

1

r2
o
l=0

` S r1

r2
Dl

Plscosud, for r1 , r2.6 s13d

Substituting this into Eq.s12d and integrating over polar
angles leads to

Meh=
4pe2

e0er
S 1

de
Îp

D3S 1

dh
Îp

D3E
0

`

expS−
r1

2

de
2Dr1

2dr1

3HE
0

r1 1

r1
expS−

r2
2

dh
2Dr2

2dr2

+E
r1

` 1

r2
expS−

r2
2

dh
2Dr2

2dr2J , s14d

where use has been made of the orthogonality relations of
Legendre polynomials. The integrations now give us the fol-
lowing expression forMeh:

Meh=
1

2

e2

p3/2e0er

1

Îde
2 + dh

2
. s15d

In a similar manner, we may also approximate the behav-
ior of Meh in the presence of an external electric field. For a
constant field applied to the dot, the potential in the field
direction sfor simplicity, sayz, although the spherical sym-
metry we assume means all three directions are equivalentd
becomes

Vszd ° Vszd + qFz, s16d

whereq=−e for conduction-band electrons,q= +e for holes,
andF is the electric field strength. Substituting this into the
Schrödinger equation for thez component leads us to a new
Schrödinger equation that has the same parabolic potential
form:

F−
"2

2m*

]2

]z82 +
1

2
czz8

2Gfsz8d = E8fsz8d, s17d

with

ze8 = z− eF/ce,z for electrons,

zh8 = z+ eF/ch,z for holes, s18d

Ei8 = E + seFd2/2ci,z, i = e,h.

Therefore, electrons and holes are displaced in opposite di-
rections and their envelope functions are the same as Eq.s6d
with z replaced byz8. The simplicity of the change in enve-
lope function with applied electric field is a great advantage
of the parabolic well model, although it should be pointed
out that this same simplicity implies that the charges can
continue separating indefinitely with applied field strength
and is therefore unrealistic at very high fields.

Again, in spherical polar coordinates, the envelope func-
tions in the presence of a field may be written as
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fesr d = S 1

de
Îp

D3/2

expS−
sr − k̂eF/ced2

2de
2 D s19d

for electrons and

fhsr d = S 1

dh
Îp

D3/2

expS−
sr + k̂eF/chd2

2dh
2 D s20d

for holes, wherek̂ is the unit vector in thez direction. This
time, substituting into Eq.s9d leads to

Meh= CE E expS−
r1

2

de
2DexpS−

r2
2

dh
2D

3 expsr1a cosud
1

ur 1 − r 2u
dr 1dr 2, s21d

where

C =
e2

4pe0er
S 1

de
Îp

D3S 1

dh
Îp

D3

expF−
seFd2

de
2 S 1

ce
+

1

ch
D2G

s22d

and

a =
2eF

de
2 S 1

ce
+

1

ch
D . s23d

We proceed as before, again making use of Legendre poly-
nomials and their orthogonality relations, and integrate over
r 2 to get

Meh=
2p5/2Cdh

3

a
E expS−

r1
2

de
2DerfS r1

dh
D

3fexpsr1ad − exps− r1adgdr1. s24d

For a!1/de svalid up to fields of order 107 V/m for the
small dots considered hered, we expand the exponentials ina
up to the term ina3 and integrate overr1. Keeping only the
terms up tosdead2 order in the resultant expressions gives us
an estimate for the suppression of the electron-hole binding
energy as an external field is applied:

Meh=
e2

2p3/2e0er
Îde

2 + dh
2F1 −

e2F2

3sde
2 + dh

2d
S 1

ce
+

1

ch
D2G ,

s25d

which reduces to Eq.s15d at F=0.
Equationss18d ands25d imply a quadratic dependence of

the Stark shiftschange in exciton energyd on the applied
electric field. This has been observed experimentally in a
range of QD systems including InGaAs/GaAs,30

GaAs/GaAlAs,31 and CdSe/ZnSe.32 Furthermore, a theoret-
ical study of an eight-band strain-dependentk ·p Hamil-
tonian has shown that the quadratic dependence of the
ground-state energy on applied field is a good approximation
for largely truncated self-assembled quantum dots, although
the approximation becomes worse as the dot size increases in
the growth direction.33

III. A SIGNATURE OF FÖRSTER COUPLED QUANTUM
DOTS

A. Hamiltonian

We have now characterized the single-particle electron
and hole states within a simple QD model, as well as ac-
counting for the binding energy due to electron-hole cou-
pling within a dot when estimating the ground-state exciton
energy. In this section we shall consider excitons in two
coupled QD’s and the Coulomb interactions between them.
More specifically, we shall derive an analytical expression
for the strength of the interdot Förster coupling. We shall
show that this coupling is, under certain conditions, of
dipole-dipole type3,10 and that it is responsible for resonant
exciton exchange between adjacent QD’s. This is a transfer
of energy only, not a tunneling effect. We are concerned in
this paper with bringing excitons within adjacent QD’s into
resonance. As the Appendix shows, single-particle tunneling
is only significant when the energies of the states before and
after the tunneling event are separated by less than the tun-
neling energy. This is a different resonant condition to the
one considered here and is not fulfilled by the dots over the
parameter ranges explored.

Following Ref. 8 we write the Hamiltonian of two inter-
acting QD’s in the computational basishu00l, u01l, u10l, u11lj
as s"=1d

Ĥ =1
v0 0 0 0

0 v0 + v2 VF 0

0 VF v0 + v1 0

0 0 0 v0 + v1 + v2 + VXX

2 ,

s26d

where the off-diagonal Förster interaction is given byVF and
the direct Coulomb binding energy between the two exci-
tons, one on each dot, is on the diagonal and given byVXX
sRef. 2d. The ground-state energy is denoted byv0, and
Dv;v1−v2 is the difference between the excitation energy
for dot I and that for dot II. These excitation energies and
interdot interactions are all functions of the applied fieldF.
The energies and eigenstates of this four-level system are
given by

E00 = v0, uC00l = u00l,

E− = v0 + v1 −
Dv

2
s1 + Ad, uC−l = a1u10l − a2u01l,

E+ = v0 + v1 −
Dv

2
s1 − Ad, uC+l = a1u01l + a2u10l,

E11 = v0 + v1 + v2 + VXX, uC11l = u11l, s27d

where A=Î1+4sVF/Dvd2, a1=ÎsA−1d /2A, and a2

=sgnsVFDvdÎsA+1d /2A for uDvu.0. We can see thatVF

may cause a mixing of the statesu01l andu10l with the result
that uC−l and uC+l can now be entangled states. It is also
straightforward to see that an off-diagonal Förster coupling
does indeed correspond to a resonant transfer of energy; if
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we begin in the stateu10l sexciton on dot I, no exciton on dot
II d, this will naturally evolve to a stateu01l sno exciton on
dot I, exciton on dot IId, in a time given byp / s2VFd, through
the maximally entangled state 2−1/2su10l+ i u01ld. An analo-
gous behavior is expected for the initial stateu01l.

B. Analytical model of the Förster interaction

We shall now calculate the magnitude of the off-diagonal
matrix elements in Eq.s26d for the parabolic potential model.
We shall see that the behavior of the Förster interaction due
to changes in dot size, composition, separation, and applied
electric fields may be predicted by such an analytical model.
We begin by calculating the form of the matrix element in
the dipole-dipole approximation.

The matrix element we require is that of the Coulomb
operator between two single-exciton wave functions, one lo-
cated on each of the two dots. We take our initial state as
representing a conduction-band state in dot I and a valence-
band state in dot II:

CI = Afcn8sr 1,s1d,cmsr 2,s2dg. s28d

For our final state, we must have a valence-band state in dot
I and a conduction-band state in dot II, given by

CF = Afcnsr 1,s1d,cm8 sr 2,s2dg. s29d

The positionsr 1 and r 2 are now defined from the centers of
dot I and dot II, respectivelyssee Fig. 2d, and not from the
same point as in Eq.s8d, where only a single dot was con-
sidered. Note that the time ordering ofCI and CF is irrel-
evant since, as described in Sec. III, the resonant energy
transfer process is reversible.

Therefore, the direct Coulomb matrix element between
these two states gives us

VF = −
e2

4pe0er
E E cn8

*sr 1dcnsr 1d
1

uR + r 1 − r 2u

3 cm
* sr 2dcm8 sr 2ddr 1dr 2, s30d

where we have explicitly included the interdot separationR.
For uRu@ ur 1−r 2u, which is valid as long as the characteristic
sizes of the wave functions,dj, are small in comparison to
uRu, we can follow the procedure of Dexter10 and expand the
Coulomb operator in powers ofsr 1/2/Rd up to second order.
Taking the matrix element betweenCI andCF leads to

VF = −
e2

4pe0erR
3Fkr Il · kr IIl −

3

R2skr Il ·Rdskr IIl ·RdG .

s31d

We assume the dots are sufficiently separated for there to be
no overlap of envelope functions between dot I and dot II.
Therefore, we do not consider the exchange term of this
Coulomb interaction. The integrals

kr Il =E cn8
*sr 1dr 1cnsr 1ddr 1,

kr IIl =E cm
* sr 2dr 2cm8 sr 2ddr 2 s32d

are taken between an electron and hole ground state centered
on dot I and dot II, respectively. Remembering that our wave
functions are a product of an envelope functionfsr d and a
Bloch functionUsr d we can make use of their different pe-
riodicities to write27

VF = −
1

4pe0erR
3OIOIIFdcvsId ·dcvsII d −

3

R2sdcvsId ·Rd

3sdcvsII d ·RdG . s33d

The overlap integrals are defined as

O =E
space

fesr dfhsr ddr , s34d

with OI/II referring to the overlap of the envelope functions
for dot I or dot II, respectivelyseach having a maximum
value of unityd, and the interband dipole matrix elements are
defined as

dcv = eE
cell

Uesr drUhsr ddr , s35d

with dcvsI/II d referring to dot I or dot II, respectively.
We shall not calculate the values ofdcv here as they are

commonly measured experimental quantitiesssee also Ref.
27 for a simple modeld and, once the dot materials have been
chosen, are constant contributions to the Förster interaction
strength. However, the calculation ofOI/II is vital in deter-
mining the effects of dot size, shape, and applied electric
fields on the strength of the interdot interaction.

We take the parabolic solutions in Cartesian coordinates
from Eq. s6d and also include the effect of a lateral electric
field, which is important in determining how to suppress the
interaction when required or bring two nonidentical dots into
resonance. As before, we shall assume that the electric field
affects only the envelope function part of the wave function;
this is valid in the regime where the electric field never be-
comes so large that the envelope function varies on the unit
cell scale. This is equivalent to saying that the envelope
functions can be decomposed into a superposition of crystal
momentumskd eigenstates near the band edges, where the
Bloch functions are approximately independent ofk.

FIG. 2. Schematic diagram of the interacting two-dot system.
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For a constant field in the lateral directionssay, xd the
overlap integralsOI/II are straight-forward to calculate.
Again, for clarity, we take wells identical in all three direc-
tions for both electrons and holessdx=dy=dz=dd, leading to

fesr d = S 1

de
Îp

D3/2

expS−
sx − eF/ced2

2de
2 DexpS−

sy2 + z2d
2de

2 D
s36d

for electrons and

fhsr d = S 1

dh
Îp

D3/2

expS−
sx + eF/chd2

2dh
2 DexpS−

sy2 + z2d
2dh

2 D
s37d

for holes. Substituting into Eq.s34d and integrating results in

O = S 2dedh

de
2 + dh

2D3/2

expH−
e2F2sce + chd2

2ce
2ch

2sde
2 + dh

2dJ . s38d

Therefore, in zero applied field the overlap depends only on
the ratiof2dedh/ sde

2+dh
2dg3/2. It is worth noting that if we had

chosen an infinite square-well potential in the growthszd
direction and parabolic wells in thex andy directionssas is
common in the literature11d, then the zero-field value would
be f2dedh/ sde

2+dh
2dg with the field dependence being exactly

the same as in Eq.s38d.
Figure 3 shows the suppression of the overlap integrals by

an in-plane electric fieldsx directiond and therefore the sup-
pression of the Förster interaction itself. However, as we
shall see in the next section, this does not rule out its obser-
vation in coupled dot systems that are tuned to resonance
with an external applied field. Indeed, if the interdot interac-
tion matrix element is relatively large in zero applied field,
then interesting anticrossing behavior should be observed in
the energy spectrum as the system is tuned through reso-

nance. We also note that a suppressed Förster coupling can
be of benefit to the exciton-exciton dipole interaction quan-
tum computation schemes2 as it ensures an almost purely
diagonal interaction between adjacent QD’s.

Taking measured values for the transition dipole moment
ekr l allows us to estimate the magnitude ofVF between two
stacked dots. In CdSe QD’s a value forekr l of up to 5.2eÅ
has been reported5 while for both InGaAs/GaAs and
InAs/ InGaAs QD’s values of approximately 5–7eÅ have
been measured.34,35 Considering Eq.s31d with a value of
6 eÅ for ekr l, er =12 sfor InGaAs/GaAsd, and interdot spac-
ing R=5 nm, we obtain an estimate of 0.69 meV for the
Förster coupling energyVF, certainly large enough to be ob-
served experimentally. This corresponds to a resonant energy
transfer time of picosecond order and is therefore interesting
as a coupling mechanism for performing quantum logic
gates, as it is well within the nanosecond dephasing
times36–38 expected for excitons within QD’sssee Sec. V
for further discussiond. In Fig. 4 the 1/R3 dependence of the
Förster interaction strength is shown for various values
of ekr l.

In the next section we shall discuss a signature of the
Förster interaction that would be observable through photo-
luminescence measurements.

C. Anticrossings: A signature of Förster coupling

If we consider again Eq.s27d, we can see thatuC−l and
uC+l have a range of forms depending upon the values ofa1
anda2. For example, ifDv@VF, thenA.1 which leads to
ua1u.0 and ua2u.1. Therefore the statesuC−l and uC+l are
given byu01l andu10l, respectively, and there is no mixing of
the computational basis states. The only way to couple two
dots in this case is via the diagonal interactionVXX. How-
ever, for two dots coupled byVF at resonancesDv=0d we
can see from Eq.s27d, and by usingA=ÎsDv2+4VF

2d /Dv2,
that ua1u= ua2u=1/Î2, Elower=v0+v1− uVFu, and Ehigher=v0

FIG. 3. Dependence of the overlap integral of a single parabolic
QD as a function of the in-planesx directiond electric field strength.
Suppression of the Förster interaction results from the reduction in
electron-hole overlap for increasing fields. A 162.5 meV potential at
x=3 nm from the dot center for both electrons and holes is used,
giving c=0.005 79 J/m2 ssee Fig. 1d.

FIG. 4. Förster interaction strength as a function of dot separa-
tion for two identical dots, wither =12. Three different values of
ekr l are shown: 7eÅ ssolid lined, 6 eÅ sdashed lined, and 5eÅ
sdotted lined.
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+v1+ uVFu. Furthermore, the two eigenstates 2−1/2su01l
+ u10ld and 2−1/2su10l− u01ld are both maximally entangled
and separated in energy by 2VF.

Interestingly, we should be able to move between these
two cases by bringing two initially nonresonant coupled dots
into resonance—for example, by the application of a static
external electric field. By taking the dots through the reso-
nance, an anticrossing of the energy levels should be observ-
able through photoluminescence measurements. However,
the transition from the antisymmetric state to the ground
state is not dipole allowed on resonance and should also
display a characteristic loss of intensity close to the resonant
condition ssee Sec. IVd.

From Eq.s18d we see that an external field reduces the
energyE for both electrons and holes, with the shift being
greater for bigger dots. We therefore consider two coupled
dots of different material concentrations, with one of slightly
greater dimensions and having a larger band gap, and in Fig.
5sad show that the single-dot energy levels crosssfor our
choice of parametersd as an electric field is applied. Such a
situation is plausible for systems such as InGaAs where dot
layers of varying indium content, and hence varying band

gap, may be grown39 and it applies directly to the parameters
chosen heressee also Sec. V belowd. Diagonalizing the
HamiltonianfEq. s26dg as the field strengthF varies gives us
a model prediction for the behavior of the energy levelsE−
and E+ as shown in Fig. 5sbd, where an anticrossing is ob-
served at a field of approximately 7.53106 V/m. Sincev1,
v2, andVF are all functions ofF fas is also shown in Eqs.
s18d, s25d, and s38dg there is large scope for finding param-
eter regimes with interesting behavior.

An analytical expression for the field strength at reso-
nance can be calculated from the conditionDv=0. The total
energy of each dot is given by

E = Egap+
3"

2
SÎ c

me
* +Î c

mh
* D −

seFd2

c
− Meh, s39d

for identical potential wells in all directions for both elec-
trons and holesscx=cy=cz=cd. When dot I and dot II are
resonant,

EI − EII = 0 = sEI
gap− EII

gapd +
3"

2 FÎcIS 1

Îme
*

+
1

Îmh
* D

− ÎcIIS 1

Îme
*

+
1

Îmh
* DG − seFd2S 1

cI
−

1

cII
D − MehI

+ MehII
, s40d

and therefore,

F2 =
1

be2HsEI
gap− EII

gapd +
3"

2 FsÎcI − ÎcIIdS 1

Îme
*

+
1

Îmh
* DG

−
e2

2p3/2e0er
F 1

sdeI

2 + dhI

2 d1/2 −
1

sdeII

2 + dhII

2 d1/2GJ , s41d

where

b =
1

cI
F1 −

2e2

3p3/2e0er

1

sdeI

2 + dhI

2 d3/2

1

cI
G

−
1

cII
F1 −

2e2

3p3/2e0er

1

sdeII

2 + dhII

2 d3/2

1

cII
G , s42d

and the statesuC−l and uC+l should be maximally entangled
at this value ofF s=7.5473106 V/m with the same param-
eters as for Fig. 5d, with an energy separation equal to 2VF
sat this fieldd as stated earlier. Clearly, the experimental ob-
servation of an anticrossing as shown in Fig. 5sbd would be
an extremely strong indication of Förster coupling between
two dots and also a first indication that entangled states are
being produced.

IV. DECAY RATES AND ABSORPTION

We have seen in the previous section that an anticrossing
in the energy level structure of two coupled QD’s provides a
signature of the Förster interaction, which should be observ-
able through photoluminescence measurements. However,
the scenario considered thus far is idealized in that there is
no coupling of the two-dot system to the external environ-

FIG. 5. sad Single-dot energies as a function of applied electric
field. Parameters:me

* =0.04m0, mh
* =0.45m0, er =12, and cI

=0.005 79 J/m2 scorresponding to a potential of 162.5 meV at a
distance of 3 nm from the dot centerd for dot I, for both electrons
and holes, andcII =0.034 14 J/m2 scorresponding to a potential of
515.7 meV at a distance of 2.2 nm from the dot centerd for dot II,
for both electrons and holesssee Fig. 1d. Egap is taken as 1.1 eV for
dot I and 0.394 eV for dot II.sbd EnergiesE− andE+ of the coupled
dot system demonstrating anticrossing at a field of approximately
7.53106 V/m. Here,VF has a magnitude of 0.20 meV at zero field,
with dcv=7 eÅ and R=7 nm.
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ment. Any emissionsor absorptiond lines associated with
coupled-dot transitions will also be broadened due to
emission40 and scattering and pure dephasing processes due
to exciton-phonon interactions.11 Experimentally, Bayer and
Forchel37 have shown that decay processes are dominant at
very low temperaturess,2 Kd, while other studies have
demonstrated good Lorentzian fits to the photoluminescence
line shapes at 5 K.38,41 Hence, we shall limit the discussion
here to spontaneous emissionsdecayd processes.

The spontaneous emission rate for a two-level system
ssingle dotd interacting with a single radiation mode is usu-
ally calculated by considering a quantum mechanical de-
scription of the radiation fieldssee, for example, Ref. 42d,
although approaches which consider a classical light field
also exist.43 For a dot surrounded by material of approxi-
mately the same relative permittivityer the decay rate
becomes44

Gsp= Îer

v10
3 uOdcvu2

3pc3"e0
, s43d

where"v10 is the energy difference of the two levels under
consideration. For a typical InGaAs dot we take the param-
eters v10=1.3 eV, Odcv=6 eÅ, and er =12 to give Gsp

=1.043109 s−1 or a decay time oftdecay=1/Gsp=964 ps,
comparable with experimentally measured exciton lifetimes
in this system.36–38

Here, we are primarily interested in the properties of two
interacting dots which form the four-level system considered
in Sec. III A. The various decay rates between each level
may be calculated in the same manner as for the two-level
system previously considered, providing that the changes in
transition dipole moments due to the interaction are properly
accounted for. We will then be able to predict the typical
linewidths that would be observed in experimental measure-
ments of these transitions. We characterize the dipole opera-
tor in the computational basis according to which dot the
transition occurs within:

k00u k01u k10u k11u

0 OIIdcvsII d OIdcvsId 0 u00l

OIIdcvsII d 0 0 OIdcvsId u01l

OIdcvsId 0 0 OIIdcvsII d u10l

0 OIdcvsId OIIdcvsII d 0 u11l

s44d

Transitions such asu11l→ u00l have zero dipole moment
since the corresponding integral is zero due to the orthogo-
nality of valence- and conduction-band wave functions on
each dot:

kr l =E cn
*sr 1dcm

* sr 2dsr 1 + r 2dcn8sr 1dcm8 sr 2ddr 1dr 2

=E cn
*sr 1dr 1cn8sr 1ddr 1E cm

* sr 2dcm8 sr 2ddr 2

+E cn
*sr 1dcn8sr 1ddr 1E cm

* sr 2dr 2cm8 sr 2ddr 2 = 0.

s45d

As a result of Eq.s44d, we may express the dipole moments
for general transitions such asau01l±bu10l→ u00l by

kr la,b = ak00ur u01l ± bk00ur u10l = aOIIdcvsII d ± bOIdcvsId,

s46d

which may then be inserted directly into Eq.s43d, along with
the correct frequencies, to give the corresponding decay
rates. In Fig. 6 we plotGsp for the two energy curves of Fig.
5sbd from Eqs.s27d, s43d, ands46d and with the same param-
eters as Fig. 5. A special case occurs for identical dots at the
anticrossing. Here, the symmetric eigenstate 2−1/2su01l
+ u10ld has a transition dipole moment to the ground state of
Î2Odcv sOI =OII =O, dcvsId=dcvsII d=dcvd and hence a decay
rate of twice that expected for a single dot. However, the
antisymmetric eigenstate 2−1/2su01l− u10ld has no transition
dipole moment and consequently no spontaneous emission
rate in the dipole approximation. This is otherwise known as
a “dark” state, and any spectral line corresponding to this
transition will display a characteristic narrowing and loss of
intensity as the anticrossing is approached.

This effect may be studied in more detail by considering
the absorption line shape of each transitionswithin the
rotating-wave approximationd sRefs. 40 and 45d:

asvd =
ve2ukr lu2

ch"e0

sGsp/2d
sv10 − vd2 + sGsp/2d2 , s47d

whereh is the refractive index. Here, the only line broaden-
ing which is accounted for is due to spontaneous emission.
This leads to absorption lines with a Lorentzian dependence
on frequency and a full width at half maximum given byGsp.
Although other mechanisms may also broaden the lines—for
example, “pure” dephasing due to exciton-phonon interac-
tions as mentioned earlier—these processes can usually be
reduced, in our case by cooling the system.41 However, it is
difficult to reduce the spontaneous emission rate of a given
transition. Therefore, the linewidthGsp is the minimum

FIG. 6. Spontaneous emission rates of the coupled-dot energy
levels of Fig. 5. The dashed curve corresponds to the upper curve in
Fig. 5sbd; the solid curve corresponds to the lower curve in Fig.
5sbd.
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achievable from any standard dot sample and hence it is
vitally important to ensure that any effects we wish to ob-
serve will not be masked by its presence.

Plotted in Fig. 7 are the absorption spectra of the two
energy levels in Fig. 5sbd sE+ and E−d at fields of 0,5,7,10,
15 MV/m, respectively, calculated from Eq.s47d with the
same parameters as for Fig. 5 andh=3.46. The spontaneous
emission rates are calculated from Eq.s43d, and the peaks
have been artificially broadened by a factor of 10 to exag-
gerate their characteristic features in the changing applied
field. As the field is increased the two peaks shift to lower

energies with the initially higher-energy linescorresponding
to E+d shifting by a greater amount so that their separation
reduces. The width of the lower-energy linesE−d increases as
the anticrossing pointsF=7.5 MV/md is approached, signi-
fying its increasing decay ratefsee Eq.s46dg. On the other
hand, the width of theE+ line decreases as it approaches a
dark state and the area underneath the curve is reduced. This
would correspond to a lowering of intensity of this line in a
photoluminescence experiment. We can see that the separa-
tion of the lines due to the Förster interactions2VF

,0.4 meVd is well resolved in the presence of radiative
broadening at low temperatures and should be so even if the
lines have extra broadening due to exciton-phonon interac-
tions. In fact, sharp emission lines of approximately 0.1 meV
width have been obtained from single InGaAs QD’s at a
temperature of 100 K,37 indicating that up to this tempera-
ture at least, the anticrossing effect should still be observ-
able. At very high fieldssF=10–15 MV/md beyond the an-
ticrossing point the two lines once again become well
separated and eventually have similar widths, indicating that
the statesu01l and u10l are now only weakly coupled.

V. CONNECTION TO QUANTUM INFORMATION
PROCESSING

The experimental observation through photoluminescence
of an anticrossing of the type above would be a significant
step towards proof-of-principle experiments; although it
could be a difficult experiment to perform, this method may
well yield results more quickly than an attempt at coherent
control on dot systems coupled in this way.

The main question here is the feasibility of bringing two
dots into resonance using a static external electric field. As
has been mentioned above and can be seen in Fig. 5sad, a
larger dot experiences a larger shift in its energy levels due to
the applied field than a smaller one. However, all other pa-
rameters being equal, a larger dot also has slightly lower
energy at zero fieldswhich is not the case in Fig. 5d. There-
fore, a way is needed of increasing the initial energy of the
larger dot relative to the smaller one. This could be realized
by using layers of different materialssor material concentra-
tionsd to alter the band gap within each dot; other methods
such as exploiting different dot geometries or applying a lo-
cal strain or electric field gradient should also be explored. In
Ref. 30 field gradients close to 20sMV/md /mm were gen-
erated, with Stark shifts of approximately 2 meV obtained in
a field of 0.2 MV/m. Hence, similar dots of 1–2 meV initial
energy separation, and placed 7 nm apart, could be brought
into resonance by this method. Nitride QD’s could also offer
a promising approach since their strong piezoelectric fields
allow the possibility of an external field shifting their energy
levels towards each other.

We have also shown that it should be possible to engineer
nanostructures such that the off-diagonal Förster interaction
between a pair of QD’s is of the required strength to make it
interesting for quantum computation. Once a measurement
of this coupling strength is made, the next logical step is to
attempt to controllably entangle the excitonic states of two
interacting dots, leading on to a demonstration of a simple

FIG. 7. Series of simulated absorption spectra of the energy
levels in Fig. 5sbd at fields ofF=0,5,7,10,15 MV/m.These lines
have been artificially broadened by a factor of 10.
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quantum logic gate such as the controlled-NOT sCNOTd. Al-
though, on resonance, the statesu01l and u10l naturally
evolve into maximally entangled states after a timep / s4VFd,
their initialization requires the interdot interaction to be sup-
pressed. Furthermore, the generation of a logic gate such as
the CNOT requires single qubit operations on both dots, as
well as periods of interaction.

By switching to a pseudospin description of our excitonic
qubit we can immediately consider a previously known op-
eration sequence for the realization of aCNOT gate. Defining
u↑zl;u0l and u↓zl;u1l, we can see from Eq.s26d that the
off-diagonal terms can be expressed as

HF =
VF

2
ssx1

sx2
+ sy1

sy2
d, s48d

with

sx = S0 1

1 0
D and sy = S0 − i

i 0
D s49d

being two of the Pauli spin matrices. ThisXY-type Hamil-
tonian has been studied in the literature for various
systems,46,47 and if the two interacting qubits are left for a
time t=p / s2VFd solely under its influence, then aniSWAP

gate will be executed:48

iSWAP=1
1 0 0 0

0 0 i 0

0 i 0 0

0 0 0 1
2 , s50d

in the basishu00l, u01l, u10l, u11lj. Two iSWAP operations may
be concatenated with single-qubit operations to form the
more familiarCNOT gate:

CNOT= Sp

2
D

x2

Sp

2
D

z2

S−
p

2
D

z1

siSWAPdSp

2
D

x1

3siSWAPdSp

2
D

z2

, s51d

where s±p /2dlm are single pseudospin rotations of ±p /2
about thel axis of spinm, for l =x,z andm=1,2.Schuch and
Siewert48 have also shown that theCNOT and SWAP opera-
tions may be combined when using anXY interaction to
produce more efficient quantum circuits. Furthermore, the
iSWAP operation is an entangling gate and is therefore suffi-
cient for universal quantum computation provided that fast
local unitary operations are available. In fact, for systems
exhibiting anXY interaction, theiSWAP operation constitutes
the natural gate choice when implementing efficient quantum
circuits.

To perform a gate such as theCNOT outlined above we
must be able to control the interaction between our two qu-
bits so that we can effectively switch it off for the duration of
the single-qubit manipulations. For the case of excitonic qu-
bits, coupled via the Förster mechanism, the most sensible
way to proceed is to consider two initially nonresonant QD’s
with negligible energy transfer. Single-qubit operations can
then be achieved with external laser pulses by inducing Rabi

oscillations within each dot.49 As each dot will have a differ-
ent excitation energy, we may address them individually by
choosing the appropriate frequency. Two periods of free evo-
lution under the interaction HamiltonianfEq. s48dg are also
required; applying a suitably selected detuned pulse to both
nonresonant dots will bring them into resonance via the op-
tical Stark effect.50,51We then allow resonant energy transfer
to occur for a timet=p / s2VFd, producing aniSWAP opera-
tion. The detuned pulse is then stopped and single qubit ma-
nipulations may be induced as before.

Figure 5sbd provides a nice visualization of the whole
process. We must nonadiabatically switch between the two
regimes of zero field, where the dots are effectively un-
coupled, and the resonant point where the dots interact. It is
our hope that this is achievable through the optical Stark
effect, and we speculate that this all optical approach may
have the potential to allow gates to be performed well within
the limits set by the nanosecond dephasing times experimen-
tally observed.

To summarize, we have analytically calculated the mag-
nitude of the Förster energy transfer between a pair of ge-
neric QD’s and investigated its effect on their energy level
structure. We have proposed a simple experiment which pro-
vides a signature of the interaction and an estimate of its
strength and have also discussed its possible application to
quantum information processing.
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APPENDIX: TUNNELING

To outline the effect of electron and hole tunneling on the
exciton states used in this paper, we consider here the Hamil-
tonian for an electron-hole pair in a double dot. The basis we
use is constructed of products of the electron and hole single-
particle stateshueIhIl, ueIhIIl, ueIIhIl, ueIIhIIlj, which gives

H =1
EeIhI

th te VF

th EeIhII
0 te

te 0 EeIIhI
th

VF te th EeIIhII

2 , sA1d

whereEenhm
=Een

+Ehm
−Menhm

, with n,m=I , II for dot I and
dot II, respectively.Menhm

is the direct Coulomb binding en-
ergy between the electron and hole on dotn andm, respec-
tively, and the band-gap energy has been absorbed into the
electron energyEen

by setting the energy zero to be at the top
of the valence band.VF is the Förster interaction strength,
and teshd is the electronsholed tunneling matrix element.
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We consider first the simple case of two identical dots
coupled to one another; this means settingEeI

=EeII
;Ee,

EhI
=EhII

;Eh, MeIhI
=MeIIhII

;Meh, and MeIhII
=MeIIhI

;Meh8 .
SubtractingEe+Eh−Meh from the diagonal of Eq.sA1d gives

H =1
0 th te VF

th Meh− Meh8 0 te
te 0 Meh− Meh8 th
VF te th 0

2 . sA2d

We would like to isolate thehueIhIl, ueIIhIIlj subspace, as it is
composed of single-exciton states on each of the two dots.
These states are exactly the ones that are relevant for the
computational basis introduced in Sec. I. Any leakage from
this subspace, potentially due to tunnel couplings to the
statesueIhIIl and ueIIhIl, could be a source of error for the
signature and schemes presented here and in Refs. 8 and 27
and must be minimized. However, under the condition

uMeh− Meh8 u @ uteu,uthu, sA3d

we may use degenerate perturbation theory on Eq.sA2d to
give

Heff =1 −
te
2 + th

2

Meh− Meh8
VF −

2teth
Meh− Meh8

VF −
2teth

Meh− Meh8
−

te
2 + th

2

Meh− Meh8
2 , sA4d

in the hueIhIl, ueIIhIIlj subspace. Hence, the statesueIhIl and
ueIIhIIl are still resonantly coupled in the presence of tunnel-
ing as long as Eq.sA3d is satisfied. These conditions are
better satisfied as the interdot separation increasesstunneling
elements consequently reduce, as doesMeh8 , so that uMeh
−Meh8 u becomes largerd and as dot confinement increases
stunneling elements reduce,Meh increases, so thatuMeh

−Meh8 u again becomes largerd. Furthermore, corrections to the
eigenstatesux±l;2−1/2sueIhIl± ueIIhIIld due to mixing with
states outside the subspace will be small since they are
weighted by factors ofteshd / sMeh8 −Mehd, to first order, from
the perturbation theory.

The regime in which Eq.sA2d is valid is not necessarily
the ideal one for minimizing the effect of tunneling, while
exploiting resonant exciton interactions, as two nonidentical
dots may also be brought into resonancessee Sec. III Cd. In
this case, EeI

+EhI
−MeIhI

=EeII
+EhII

−MeIIhII
;E on reso-

nance. SubtractingE from the diagonal of Eq.sA1d gives

H =1
0 th te VF

th DEh + DMh 0 te
te 0 DEe + DMe th
VF te th 0

2 , sA5d

where DEi =Ei II
−Ei I

, for i =e,h, DMh=MeIhI
−MeIhII

, and
DMe=MeIhI

−MeIIhI
. The dots must now satisfy the modified

condition

minsuDEh + DMhu,uDEe + DMeud @ uteu,uthu, sA6d

in order for tunneling to be neglected, with the unwanted
statesueIhIIl and ueIIhIl weighted by a factors of magnitude

teshd

uDEh + DMhu
sA7d

and

teshd

uDEe + DMeu
, sA8d

to first order in a perturbation expansion. Again, tunneling
will be suppressed as dot separation and confinement in-
creases.
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