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Anticrossings in Forster coupled quantum dots
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We consider two coupled generic quantum dots, each modeled by a simple potential which allows the
derivation of an analytical expression for the interdot Forster coupling, in the dipole-dipole approximation. We
investigate the energy level behavior of this coupled two-dot system under the influence of an external applied
electric field and predict the presence of anticrossings in the optical spectra due to the Forster interaction.
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l. INTRODUCTION been successfully used in the literatdite® Excitations of
each dot are assumed to be produced optically, and we ne-
Excitons(electron-hole bound statewithin quantum dots  glect tunneling effects between the two coupled dsée the
(QD’s) have already attracted much interest in the field ofAppendix for more detai)s We shall restrict ourselves to
quantum computation and have formed the basis of severamall, strongly confined dots, with electron and hole confine-
proposals for quantum logic gateThe energy shift due to ment energies~100 meV and low temperaturgd <5 K;
the exciton-exciton dipole interaction between two QD’ssee Sec. IY. We shall therefore consider only the ground
gives rise to diagonal terms in the interaction Hamiltonian,state(no exciton and first excited staténe exciton within
and hence it has been proposed that quantum logic may keur model, as they will be energetically well separated from
performed via ultrafast laser pulsésHowever, excitons higher excitations. These two states define our qubit basis as
within adjacent QD’s are also able to interact through theirl0) and|1), respectively.
resonantForstej energy transfet,some evidence for which Various techniques exist for growing QD’s in the labora-
has been obtained experimentally in a range of sysfems. tory, of which the Stranski-Krastanow methiéd°is possibly
As is shown below, this resonant transfer of energy gives risthe most promising for the realization of a controllably
to off-diagonal Hamiltonian matrix elements and therefore tocoupled many-dot system. In this growth mode a semicon-
a naturally entangling quantum evolution. It is proposed hereluctor is grown on a substrate which is made of a different
that this interaction may be observed in a straightforwardsemiconductor, leading to a lattice mismatch between the
way through the observation of anticrossings induced in théayers. Under certain growth conditions, dots form spontane-
coupled dot energy spectra by the application of an externalusly due to the competing energy considerations of dot sur-
static electric field. We also show that the off-diagonal matrixface area, strain, and volume. If a spacer layer of material is
elements can be made sufficiently large to be of interest fothen grown above the first dot layer and then a second dot
excitonic quantum computatici?. layer deposited, a vertically correlated arrangement of dots
The first studies of Forster resonant energy transfer werean be madé® Two such stacked dots could then form our
performed in the context of the sensitized luminescence oihteracting two-qubit system with materials, growth condi-
solids31% Here, an excited sensitizer atom can transfer itgions, and spacer layer size tailored to give suitable electronic
excitation to a neighboring acceptor atom, via an intermediproperties and interdot Coulomb interactions.
ate virtual photon. This same mechanism has also been

shown to be responsible for exciton transfer between QD’s, Il. QUANTUM DOT MODEL
and within molecular systerfisind biosystenfs(though in- ) )
coherently, as a mechanism for photosynthesits of which A. Single-particle states

may be treated in a similar formulation. Thus, the results Many varying approaches to the calculation of electron
reported here can be expected to apply not only to QD sysand hole states in QD’s have been put forward in Refs. 2,
tems, but also to a wide range of nanostructures where¢1-13, and 17-21, the choice of which depends on the final
Forster processes are of primary significance. aim of the work. The aim here is to provide a clear and
In this paper, we consider two coupled generic QD’s, eaclsimple illustration of how to experimentally observe resonant
modeled by a simple potential which is given by infinite energy transfer between a pair of QD’s, and how to exploit
parabolic wells in all thregx,y,z) dimensions. This poten- this interdot interaction to perform quantum logic. Therefore,
tial profile allows an analytical expression for the interdotwe shall consider one of the most basic models, similar to
Forster coupling in the dipole-dipole approximation to bethose in Refs. 11-13, which treats the conduction- and
derived and, although we expect it only to allow for qualita- valence-band ground states as those of a three-dimensional
tive predictions about real observations, similar models havinfinite parabolic well. This simple model can provide us

1098-0121/2005/7#)/04533412)/$23.00 045334-1 ©2005 The American Physical Society



NAZIR et al. PHYSICAL REVIEW B 71, 045334(2005

v Gi(r) = & (0E V)& 2), (4)

A for the parabolic confinemeht =(x,y,z)]. We now drop the
\ v subscripti but remember that due to their differing effective
° masses electrons and holes may take different values for the
Ecass=1.425 eV T parameters defined throughout this paper.
« Eger The solutions to the one-dimensional Schrédinger equa-
z tion for the potential form of Eq(3) are given by

Vh 1/2 2

1 X X
v "X)={————=] H (—)exp{ ——), 5
&t (n!Z”dx\’77> "\ dy 2d; ©

Vi in thex direction with analogous expressions foandz. The
integern=(0,1,2,3,..) labels the quantum state, with en-
FIG. 1. The parameters; are chosen from electron and hole ergy E,=(n+1/2)%w,, the H,’s are Hermite polynomials,
confinement potentialy/, and Vy, by taking (1/2)cjr?=V;, for j  andd,=(A/Vm c,)Y2=[#/(m w,) Y2 We are interested only

=x,y,zandi=e,h. This matches a well of dept; with the para- i the ground-state solutions of each well, so our envelope
bolic potentlal(1/2)cjj2 at a widthr from the dot center. All pa- function is given by

rameters are chosen to be consistent with GaAs spacer layers—i.e.,

Ve+Viy+Egay=1.425 eV, the GaAs band gap. 1 2 X2
e Rl g B R
d,d, 2d;
with analytical expressions for the energies and wave func- 5 2
tions of the single-particle states and for the dipole-dipole ><exp<— y—)exp(— _) (6)
interaction between two dots. We do not expect that this 2df, 2d§ ’

model will predict the precise values of experimental mea-

. _1 .
surements; however, it is expected to indicate qualitativé’vIth energyEo=;f(w,+ wy+ w,). The choice of constanty
trends in real observations. and henced; will be different for changing confinement po-

In the effective mass and envelope function tentials and particle masses, and so will depend upon the

approximation&23the Schradinger equation for single par- energies_ of the system under con_sideration and whether the
ticles may be written as particle is an electron or holgee Fig 1.

2 . .
H() (1) = {_ % V( 1*) v +Vi(r)}¢i(r) SEb(), B. Excitons and Coulomb integrals
m The excitation of an electron from a valence-band state to
(1) a conduction-band state leaves a hole in the valence band.

. . ' The electron and hole are oppositely charged and may form a
wherei=e, h for electron or holeV(r) is the dot confine- 5 nq state, the exciton, with the absence or presence of a
ment potential which accounts for; the difference in ba”dground-state exciton within a dot forming our qubit b
gaps across the heterostructure, ands the effective mass 5,4 1), respectively. For excitons, we must consider an
of particlei. Here, ¢;(r) is the envelope function part of the gjectron-hole pair Hamiltonian
total wave function: P

(D)= HOU0). @ H=HotHy= o S B ()

The envelope function describes the slowly varying Conm'whereHe andH, are given by Eq(1) with the appropriate

bution to the change in wave function amplitude over the .d%ffective masses and potentias¥?® is the semiconductor
region, and the physical properties of the S|ngIe-pamcleoand_galo energy, andlr ) is fhe background dielectric

z:lt:j (t:r?(ra] t;ﬁoiﬁn;/f:c{i)grr]eI;/nf(;o?atsh|fhgonter:?oudt:tc):i(.r )0|fs the constant of the semiconductor. We shall consider the simplest
P y case Ofe(r.—rp) = €ge;; i.€., the relative permittivityg, is in-

atomic lattice. Its consideration is vital when describing the . .
interactions between two or more particles. dependent ofr.—ry). The intradot energy shift due to the

In the approximate analytical model, a separable potenti (Potuk:or?btt(larn1-|eh:e2/4greoer|tre—{hL IS a srfr)alz co(r;tnbun?n 0
comprising infinite parabolic wells in all three dimensions 0 the fotal energy, and we treat It as a nirst-order perturba-

; tion. This strong-confinement regime treats the electron and

represents the QERef. 24: hole as independent particles with energy states primarily
1,1 5,1 determined by their respective confinement potentfalsis

V(xy,2) = SCXT T oGy ECLZZZ' (3 valid for small dots with sizes less than the corresponding
bulk exciton radiusa; (~35 nm for InAs, ~13 nm for

where the frequency)i,j:v’ci'j/m* for j=x,y,z (see Fig. L GaAs. For more sophisticated treatments of the calculation
Hence, the Schrodinger equatifiag. (1)] is also separable of excitonic states, see, for example, Refs. (drect-
and provides simple product solutions for the electron andliagonalization, 21 (psuedopotential calculationsand 26

hole states. The envelope functions are therefore given by (variational methods In Ref. 21 it was found that a simple
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perturbation method was in good agreement with a self-
consistent-field approach. —E ( ) P,(cos#), forry>r,,

We construct an antisymmetric wave function represent- 1 _JTu=o (13)
ing a single-exciton state given by Iri—ry) -

—2 ( ) P(cos), forr,<r,.
W) = ALY 1,00, YT 2,0, (®) 210
Substituting this into Eq(12) and integrating over polar
wherer and o are position(from the center of the dpand  angles leads to
spin variables, respectively; and m label the quantum
states, anch denotes overall antisymmetry. Here, one elec- |, 47762( 1 )3( ) f exp(——) 24,
dh\7T

eh

tron ¢, (r1,01) has been promoted from the valence band T & AoV

into a conduction-band state whilg (r,,o,) represents a .
state in the valence band. Taking the Coulomb matrix ele- 11 exp(— _) Zdr
ment(We|HeW,) between the initial stat&, above and an 0 ry 2
identical statelg (in effect coupling an electron and hole via
the Coulomb operatpteads to two term3?28the direct term = exp(— _) 2dr, ¢, (14)
1 r2
MPirect = ez ff%*(rl)l/’é(rl); where use has been made of the orthogonality relations of
r— 1 Legendre polynomials. The integrations now give us the fol-
% lﬂ;](rz)lﬂm(rz)drldrz (9) lowing expression foMg,:
d the exch M=t &L (15)
and the exchange term e 2 e \m
MExeh= (F () —— In a similar manner, we may also approximate the behav-
47T€ofr U (1)1 Iry 2| ior of Mgy, in the presence of an external electric field. For a
constant field applied to the dot, the potential in the field
X Y1 2) (1 )dr 1 . (10)  direction (for simplicity, sayz, although the spherical sym-

The sign of the exchange term is determined by the symmetry we assume means all three directions are equiyalent

metry of the spin state of the two particles; with the pertur-2€comes

bation H,, being positive, triplgt-spin states give _negatiyg V(2) — V(2) + gFz, (16)
exchange elements whereas singlet-spin states give positive

values. We shall now show how to calculate the directwhereq=—e for conduction-band electrongs= +e for holes,
electron-hole Coulomb matrix element on a single dot wher@ndF is the electric field strength. Substituting this into the

n and m are both taken as ground states. The exchange ifSchrodinger equation for thecomponent leads us to a new
teraction is much smallgr?” and we shall not consider it Schrodinger equation that has the same parabolic potential

here. form:
If we consider identical potentials in all three directions, 2
! . . w? P 1
then we can use the spherical symmetry to derive an analyti- -t =c, 2% |p(Z)=E' p(Z), (17)
cal expression for the direct Coulomb matrix element, which 2m gz'c 2

we call Mg, For dy,=d,=d,=d, Eq. (6) may be written in ;.
spherical polar coordinates as
z,=z- eFlc,, for electrons,

1 3/2 r2
(1) = (d\;) exp(— z_dz) : (11) z,=z+eFlc,, for holes, (18)
Substituting into Eq(9) leads to E/ =E+(eP%2c, i=eh.
&2 1 \3 1 \2 2 Therefore, electrons and holes are displaced in opposite di-
M= ( _) ( _) f f exp(— %) rections and their envelope functions are the same a$GEq.
Amege \ dgvmr/ \ dyy with z replaced byz'. The simplicity of the change in enve-
lope function with applied electric field is a great advantage
Xexp( 2) ————dr,dr,, (12) of the parabolic well model, although it should be pointed
di/lry—rol out that this same simplicity implies that the charges can

continue separating indefinitely with applied field strength
where the contribution of the Bloch functiokKr) has been and is therefore unrealistic at very high fields.
neglected’ We now express 1v;-r,| in terms of Legendre Again, in spherical polar coordinates, the envelope func-
polynomials a& tions in the presence of a field may be written as
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32 - 2 l1l. A SIGNATURE OF FORSTER COUPLED QUANTUM
r —keF/c
de(r) = (——) p(— (r —keFiceS ) (19 DOTS

deVr 2d§

A. Hamiltonian

for electrons and We have now characterized the single-particle electron

1 \32 (r + keF/c )2 and hole states within a simple QD model, as well as ac-
&n(r) :( r) expl - —2h (20) counting for the binding energy due to electron-hole cou-
Ay 2d; pling within a dot when estimating the ground-state exciton

A . . . . . energy. In this section we shall consider excitons in two
for holes, wherek is the unit vector in the direction. This coupled QD's and the Coulomb interactions between them.

time, substituting into Eq(9) leads to More specifically, we shall derive an analytical expression
r2 r2 for the strength of the interdot Forster coupling. We shall
Mehchfexp(——gexp(— —i) show that this coupling is, under certain conditions, of
de d; dipole-dipole typé'© and that it is responsible for resonant
1 exciton exchange between adjacent QD’s. This is a transfer
X explria COSﬁ)fdrldrz, (21 of energy only, not a tunneling effect. We are concerned in
Ira=ral this paper with bringing excitons within adjacent QD’s into
where resonance. As the Appendix shows, single-particle tunneling
is only significant when the energies of the states before and
c= e? ( 1 >3< 1 )39 _ (eF)2<i + i)z after the tunneling event are separated by less than the tun-
Amepe; dew"; dh\s’; dé Ce Ch neling energy. This is a different resonant condition to the
one considered here and is not fulfilled by the dots over the
(22) parameter ranges explored.
and Following Ref. 8 we write the Hamiltonian of two inter-
acting QD’s in the computational bagif0), 01), |10), |11)}
2eF< 1 1) as(f=1)
a=—|—+—]. (23
de \Ce Cn w, O 0 0
We proceed as before, again making use of Legendre poly- ~ [ 0 wptw, Vg 0
nomials and their orthogonality relations, and integrate over H= 0 Ve wpt 0 :
r2 o get O 0 O (,U0+ w1+w2+VXX
5/2 2
M, = 27 f exp(_%)erf<u) (26)
@ de dy where the off-diagonal Forster interaction is given\gyand
X [exp(ria) — exp(— ria)]dr;. (24) the direct Coulomb binding energy between the two exci-

tons, one on each dot, is on the diagonal and givevgy
For a<1/d, (valid up to fields of order 10V/m for the (Ref. 2. The ground-state energy is denoted by, and
small dots considered herave expand the exponentialsin A= w, - w, is the difference between the excitation energy
up to the term ine® and integrate over,. Keeping only the  for dot | and that for dot II. These excitation energies and
terms up to(de)? order in the resultant expressions gives Usinterdot interactions are all functions of the applied fiEld
an estimate for the suppression of the electron-hole bindinghe energies and eigenstates of this four-level system are

energy as an external field is applied: given by
M= e {1_ eF? <l+i)2} Eoo=wo, [¥oo =|00),
N on¥eqe N+ d2l T Bd+dd)\ce o/ |

Aw
(25) E.=wyt+w — 7(1 +A), |P_)=a]10)-a,01),

which reduces to Eq15) at F=0.

Equations(18) and(25) imply a quadratic dependence of
the Stark shift(change in exciton energyon the applied
electric field. This has been observed experimentag_qin a
range of QD systems including InGaAs/Ga#s, - -

GaAs/GaAlAs3! and CdSe/ZnS# Furthermore, a theoret- Bu oot ortwpt Vo [W1) =110, 27

ical study of an eight-band strain-dependénp Hamil-  where A=\1+4\Vi/Aw)?, a;=\(A-1)/2A, and a,
tonian has shown that the quadratic dependence of thesgr(VeAw)\(A+1)/2A for [Aw|>0. We can see tha¥
ground-state energy on applied field is a good approximatiomay cause a mixing of the stat@4) and|10) with the result

for largely truncated self-assembled quantum dots, althougthat |¥"_) and |¥,) can now be entangled states. It is also
the approximation becomes worse as the dot size increasesstraightforward to see that an off-diagonal Forster coupling
the growth directior?® does indeed correspond to a resonant transfer of energy; if

Aw
E+:w0+w1—7(1—A), |¥,) =2a|01) + a,|10),
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FIG. 2. Schematic diagram of the interacting two-dot system.

we begin in the statd0) (exciton on dot I, no exciton on dot
I1), this will naturally evolve to a stat®1) (no exciton on
dot I, exciton on dot ), in a time given byr/(2V), through
the maximally entangled state’#%|10)+i|01)). An analo-
gous behavior is expected for the initial stéd&).

B. Analytical model of the Forster interaction

PHYSICAL REVIEW B, 045334(20095

V=

3
(rp-Ary) - Q((ﬁ) ‘R)({ry) -R) |.

(31

We assume the dots are sufficiently separated for there to be
no overlap of envelope functions between dot | and dot II.
Therefore, we do not consider the exchange term of this
Coulomb interaction. The integrals

- 4Amene, R [

(ry= f P (r)r (rydry,

<r||>:J Y DT 2 () (32

are taken between an electron and hole ground state centered
on dot | and dot I, respectively. Remembering that our wave
functions are a product of an envelope functié(r) and a

We shall now calculate the magnitude of the off-diagonalBloch functionU(r) we can make use of their different pe-

matrix elements in Eq26) for the parabolic potential model.

riodicities to writé’

We shall see that the behavior of the Fdrster interaction due
to changes in dot size, composition, separation, and applied __ 1 00| derr vd — i(d R)
electric fields may be predicted by such an analytical model. P ]

We begin by calculating the form of the matrix element in

the dipole-dipole approximation.

The matrix element we require is that of the Coulomb
operator between two single-exciton wave functions, one I0=|.
cated on each of the two dots. We take our initial state as

X (devany - R)]- (33

he overlap integrals are defined as

representing a conduction-band state in dot | and a valence-

band state in dot II:

Wy = ALgn(r 1, 00), Ul 2,07) ] (28)

0= Pe(r) n(r)dr, (34)

space

with Oy, referring to the overlap of the envelope functions
for dot | or dot Il, respectively(each having a maximum

For our final state, we must have a valence-band state in d¥@lue of unity, and the interband dipole matrix elements are

| and a conduction-band state in dot Il, given by

We=Algn(r1,00), Pin(r2.0)]. (29

defined as

dc\,=ef Ue(r)rUp(r)dr, (35)
cell

The positions; andr, are now defined from the centers of with d.,, referring to dot I or dot Il, respectively.

dot | and dot Il, respectivelysee Fig. 2, and not from the

We shall not calculate the values df, here as they are

same point as in Eq8), where only a single dot was con- commonly measured experimental quantitisse also Ref.

sidered. Note that the time ordering ¥, and W is irrel-

27 for a simple modgland, once the dot materials have been

evant since, as described in Sec. Ill, the resonant energyhosen, are constant contributions to the Férster interaction

transfer process is reversible.

strength. However, the calculation &, is vital in deter-

Therefore, the direct Coulomb matrix element betweermining the effects of dot size, shape, and applied electric

these two states gives us

e . 1
Ve=- ff’//r'q r)n(r)=—"——

A1ege, IR+r1-1y

X e(F ) (¥ )dr 1dr 5, (30)

where we have explicitly included the interdot separafon

fields on the strength of the interdot interaction.

We take the parabolic solutions in Cartesian coordinates
from Eq. (6) and also include the effect of a lateral electric
field, which is important in determining how to suppress the
interaction when required or bring two nonidentical dots into
resonance. As before, we shall assume that the electric field
affects only the envelope function part of the wave function;
this is valid in the regime where the electric field never be-

For |R|>|r,—r,|, which is valid as long as the characteristic comes so large that the envelope function varies on the unit

sizes of the wave functionsl;, are small in comparison to
|R|, we can follow the procedure of Dextémand expand the
Coulomb operator in powers ¢f,,/R) up to second order.
Taking the matrix element betweél, and V¢ leads to

cell scale. This is equivalent to saying that the envelope
functions can be decomposed into a superposition of crystal
momentum(k) eigenstates near the band edges, where the
Bloch functions are approximately independenkof
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0.775 T T 10°

0.770F

0.765f

0.760f
o}

VF (meV)

0.755f

0.750F

0.745F

0.740 . . 107 ,
0 ) 10
Field (MV/m) R (nm)

FIG. 3. Dependence_of the ove_rlap_integral O_f a_single parabolic FIG. 4. Forster interaction strength as a function of dot separa-
QD as a function of the in-plang direction electric field strength. tion for two identical dots, withe, =12. Three different values of

Suppression of the Forster interaction results from the reduction i r) are shown: A (solid line), 6 eA (dashed ling and 5e A
electron-hole overlap for increasing fields. A 162.5 meV potential at(dotted ling ' '

x=3 nm from the dot center for both electrons and holes is used,

giving ¢=0.005 79 J/rA (see Fig. 1 . )
nance. We also note that a suppressed Forster coupling can

be of benefit to the exciton-exciton dipole interaction quan-
tum computation scheméss it ensures an almost purely
diagonal interaction between adjacent QD’s.

For a constant field in the lateral directigsay, x) the
overlap integralsOy, are straight-forward to calculate.

Again, for clarity, we take wells identical in all thre_e direc- Taking measured values for the transition dipole moment
tions for both electrons and holés,=dy=d,=d), leading to e(r) allows us to estimate the magnitude\¢f between two
1 \%2 (x - eFlcy)? (Y>+ 29 stacked dots. In CdSe QD’s a value fr) of up to 5.2e A
be(r) = <_) - 242 T o2 has been reportédwhile for both InGaAs/GaAs and
€ € InAs/InGaAs QD's values of approximately 5-€7A have
(36)  peen measured:3 Considering Eq.(31) with a value of
for electrons and 6 eA for e(r), =12 (for InGaAs/GaA$, and interdot spac-
3 5 2472 ing R=5 nm, we obtain an estimate of 0.69 meV for the
én(r) = (;) exp(— (x+eF/cy) )ex _ )> Forster coupling energyg, certainly large enough to be ob-
” Zdﬁ Zdﬁ served experimentally. This corresponds to a resonant energy
37) transfer time of picosecond order and is therefore interesting
as a coupling mechanism for performing quantum logic
for holes. Substituting into Eq34) and integrating results in gates, as it is well within the nanosecond dephasing

od.d. \32 PF(et 62 times*®-38 expected for excitons within QD’¢see Sec. V
:< T hz) p{— %} (38)  for further discussion In Fig. 4 the 1R dependence of the
ds +dj, 2cccf(ds + df)

Forster interaction strength is shown for various values
Therefore, in zero applied field the overlap depends only or?f &r).

the ratio[2ddy/ (¢Z+cf) I It is worth noting that if we had ~_ I the next section we shal discuss a signature of the
chosen an infinite square-well potential in the grovih orster interaction that wou'ld be observable through photo-

direction and parabolic wells in theandy directions(as is luminescence measurements.
common in the literatufé), then the zero-field value would
be [2dd,/ (d2+d?)] with the field dependence being exactly
the same as in Eq38). If we consider again Eq27), we can see thdt_) and
Figure 3 shows the suppression of the overlap integrals bj)V+) have a range of forms depending upon the values of
an in-plane electric fieldx direction and therefore the sup- anda,. For example, ifAw> Vg, thenA=1 which leads to
pression of the Forster interaction itself. However, as wdai=0 and|ag|=1. Therefore the stated®_) and |¥,) are
shall see in the next section, this does not rule out its obse@iven by|01) and|10), respectively, and there is no mixing of
vation in coupled dot systems that are tuned to resonandg€ computational basis states. The only way to couple two
with an external applied field. Indeed, if the interdot interac-dots in this case is via the diagonal interactidgy. How-
tion matrix element is relatively large in zero applied field, €ver, for two dots coupled by at resonancéAw=0) we
then interesting anticrossing behavior should be observed ipan see from Eq(27), and by usingA= VAP +4V2) [ Aw?,
the energy spectrum as the system is tuned through resthat |a;|=(ay|=1/v2, Ejpyer=wo+w1—|Ve|, and Epgne= o

!/_

deVr

WV

C. Anticrossings: A signature of Forster coupling
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1.567 gap, may be growd{ and it applies directly to the parameters
[ chosen here(see also Sec. V belgw Diagonalizing the
Hamiltonian[Eq. (26)] as the field strengtk varies gives us
a model prediction for the behavior of the energy levels
andE, as shown in Fig. &), where an anticrossing is ob-
served at a field of approximately 2&L0P V/m. Sincew;,
w,, and Vg are all functions ofF [as is also shown in Egs.
(18), (25), and(38)] there is large scope for finding param-
eter regimes with interesting behavior.
I An analytical expression for the field strength at reso-
1.561 1 L nance can be calculated from the conditib@=0. The total
® Field (MV/m) 10 energy of each dot is given by

2
E:Egap+%< c, c*> _(eR)

2 Me my, c

for identical potential wells in all directions for both elec-
trons and holegc,=c,=c,=c). When dot | and dot Il are
resonant,

1.566

Energy (eV)
a @ @
@ &

g
N

-M ehs (39)

Energy (eV)
&
b3

i
a

3| —f 1 1
E -Ey=0=(E"-E")+ ?l\cl<ﬁ + =)

- J “!m*
1.562 VM N,

i 1 1 1 1
) S | _\F“(FJr ,—*)}‘(e':)z(g‘c_>"\"eh
Field (MV/m) VM N, Lo
+Mep,» (40)

FIG. 5. (a) Single-dot energies as a function of applied electric
field. Parameters:m,=0.04ny, m,=0.45m, =12, and ¢,  and therefore,

=0.005 79 J/rA (corresponding to a potential of 162.5 meV at a
distance of 3 nm from the dot centdor dot I, for both electrons 2- _—_ ] (poar_ goa % [P 1 1

_ - - = (B 1P + Na—vo)| —=+—+—=
and holes, and;, =0.034 14 J/rf (corresponding to a potential of ,8e2 2 Vmg vmy,
515.7 meV at a distance of 2.2 nm from the dot center dot I,
for both electrons and holdésee Fig. 1. E9Pis taken as 1.1 eV for _ e 1 _ 1 (41)
dot I and 0.394 eV for dot li(b) EnergiesE_ andE, of the coupled 27m%€0€, (@2 +d2)Y? (a2 +d2)¥2 ||’

1 1 1 1l

dot system demonstrating anticrossing at a field of approximately
7.5x 10° V/m. Here,Vg has a magnitude of 0.20 meV at zero field, where
with d,=7 e A andR=7 nm.

1 2¢? 1 1
+w,+|Ve. Furthermore, the two eigenstates2|01) ,3:—[1‘3 3 2. 2 3/2_]
+|10)) and 2%2(|10)-|01)) are both maximally entangled “ ™60y (dy + dp )
and separated in energy by/2 1 2¢? 1 1 42)
Interestingly, we should be able to move between these c 37 2e4e, (dg” +dﬁ”)3’20” ,

two cases by bringing two initially nonresonant coupled dots

into resonance—for example, by the application of a statiGnd the statel_) and|¥.) should be maximally entangled
external electric field. By taking the dots through the reso-at this value ofF (=7.547x 10° V/m with the same param-
nance, an anticrossing of the energy levels should be obsergters as for Fig. § with an energy separation equal t¥/:2
able through photoluminescence measurements. Howevegt this field as stated earlier. Clearly, the experimental ob-
the transition from the antisymmetric state to the groundservation of an anticrossing as shown in Figo)Svould be
state is not dipole allowed on resonance and should alsgn extremely strong indication of Forster coupling between
display a characteristic loss of intensity close to the resonanyo dots and also a first indication that entangled states are

condition (see Sec. IV. being produced.
From Eq.(18) we see that an external field reduces the
energyE for both electrons and holes, with the shift being IV. DECAY RATES AND ABSORPTION

greater for bigger dots. We therefore consider two coupled

dots of different material concentrations, with one of slightly ~We have seen in the previous section that an anticrossing
greater dimensions and having a larger band gap, and in Fign the energy level structure of two coupled QD’s provides a

5(a) show that the single-dot energy levels crqfsr our  signature of the Forster interaction, which should be observ-
choice of parametersas an electric field is applied. Such a able through photoluminescence measurements. However,
situation is plausible for systems such as InGaAs where ddhe scenario considered thus far is idealized in that there is
layers of varying indium content, and hence varying bandio coupling of the two-dot system to the external environ-
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ment. Any emission(or absorption lines associated with 3.0
coupled-dot transitions will also be broadened due to
emissiort® and scattering and pure dephasing processes due 25t
to exciton-phonon interactiort$.Experimentally, Bayer and
Forchef” have shown that decay processes are dominant at
very low temperatureg~2 K), while other studies have <~
demonstrated good Lorentzian fits to the photoluminescence cnz
line shapes at 5 R84 Hence, we shall limit the discussion =
here to spontaneous emissi@ecay processes. %[_ L
The spontaneous emission rate for a two-level system R P
(single doj interacting with a single radiation mode is usu- T~ /s
ally calculated by considering a quantum mechanical de- 0.5f N /
scription of the radiation fieldsee, for example, Ref. 42 N ’
although approaches which consider a classical light field o . NS
also exist®® For a dot surrounded by material of approxi-
mately the same relative permittivitg, the decay rate
become¥

2.0

(=]
=1
o
[52]

Field (MV/m)

FIG. 6. Spontaneous emission rates of the coupled-dot energy
3 10d..J2 levels of Fig. 5. The dashed curve corresponds to the upper curve in
’F“’10| cv|

(43 Fig. 5b); the solid curve corresponds to the lower curve in Fig.

rP=vVe———,
3mcihe, 5(b).

wherefiwqg is the energy difference of the two levels under

consideration. For a typical InGaAs dot we take the paramAs a result of Eq(44), we may express the dipole moments

eters wlo(:)gl.S eV, Od,,=6eA, and ¢=12 to give '’  for general transitions such af01)+b|10)— |00) by

=1.04x10° s or a decay time Ofryc,=1/IP=964 ps,

comparable with experimentally measured exciton lifetimes  {Mab=a(00r(01) £ b(00r[10) = a0y deya) % bOdeyy),

in this systen?6-38 (46)
Here, we are primarily interested in the properties of two ) ) ] )

interacting dots which form the four-level system consideredVhich may then be inserted directly into H¢3), along with

in Sec. Il A. The various decay rates between each levein® correct frequencies, to give the corresponding decay

may be calculated in the same manner as for the two-levéft€s. In Fig. 6 we plob*for the two energy curves of Fig.

system previously considered, providing that the changes iR(P) from Egs.(27), (43), and(46) and with the same param-

transition dipole moments due to the interaction are properl#t€rs as Fig. 5. A special case occurs for |dent|caI/<Zjots at the

accounted for. We will then be able to predict the typical@nticrossing. Here, the symmetric eigenstate'’g01)

linewidths that would be observed in experimental measuret |10) has a transition dipole moment to the ground state of

ments of these transitions. We characterize the dipole opera20de, (0;=0;;=0, dg,)=dcyiy=de,) and hence a decay

tor in the computational basis according to which dot therate of twice that expected for a single dot. However, the

transition occurs within: antisymmetric eigenstate”#%(|01)—|10)) has no transition
dipole moment and consequently no spontaneous emission
(09 (o (10 (19 rate in the dipole approximation. This is otherwise known as
0 Ondevary  Oideyq) 0 00) a “dark” state, and any spectral line corresponding to this
Oy 0 0 Odem |01 (44) transition will dlsplgy a charaptenstm narrowing and loss of
intensity as the anticrossing is approached.
Ordev 0 0 Oydevay |10 This effect may be studied in more detail by considering
0 Odevyy  Oydevan) 0 |11) the absorption line shape of each transitiomithin the

rotating-wave approximationRefs. 40 and 45
Transitions such a$l1l)—|00) have zero dipole moment
B we?[(r)? (IT'sP12)

since the corresponding integral is zero due to the orthogo- (
naIi'%/dof valence- and conduction-band wave functions on a(w) coliey (wi9— w)?+ (IS72)2’
each dot:

(47)

where 7 is the refractive index. Here, the only line broaden-
- * * / / ing which is accounted for is due to spontaneous emission.
© _J In(T )Y (1 +12)Un(r ) () clr This leads to absorption lines with a Lorentzian dependence
on frequency and a full width at half maximum given BSF.

:j l/f;(rl)fl%(rl)drlj YT )W (r )dr Although other mechanisms may also broaden the lines—for
example, “pure” dephasing due to exciton-phonon interac-
tions as mentioned earlier—these processes can usually be

+f zp;(rl)w;(rl)drlf YT )T 2 (r2)dr , = 0. reduced, in our case by cooling the systérilowever, it is
difficult to reduce the spontaneous emission rate of a given
(45) transition. Therefore, the linewidth™P is the minimum
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energies with the initially higher-energy lifeorresponding
F =15 MV/m to E,) shifting by a greater amount so that their separation
reduces. The width of the lower-energy li(fe.) increases as
the anticrossing pointF=7.5 MV/m) is approached, signi-
fying its increasing decay rafesee Eq.(46)]. On the other
hand, the width of théz, line decreases as it approaches a
dark state and the area underneath the curve is reduced. This
T would correspond to a lowering of intensity of this line in a
photoluminescence experiment. We can see that the separa-
tion of the lines due to the Forster interactid2Ve
~0.4 meVj is well resolved in the presence of radiative
broadening at low temperatures and should be so even if the
lines have extra broadening due to exciton-phonon interac-
tions. In fact, sharp emission lines of approximately 0.1 meV
width have been obtained from single InGaAs QD’s at a
temperature of 100 R’ indicating that up to this tempera-
R ture at least, the anticrossing effect should still be observ-
able. At very high fieldfF=10-15 MV/m) beyond the an-
ticrossing point the two lines once again become well
separated and eventually have similar widths, indicating that
the stateg01) and|10) are now only weakly coupled.

F =10 MV/m

F=7M/m

V. CONNECTION TO QUANTUM INFORMATION
JL PROCESSING

absorption (arb. units)

The experimental observation through photoluminescence
F=35MV/m of an anticrossing of the type above would be a significant
step towards proof-of-principle experiments; although it
could be a difficult experiment to perform, this method may
well yield results more quickly than an attempt at coherent
control on dot systems coupled in this way.
L The main question here is the feasibility of bringing two
0o dots into resonance using a static external electric field. As
has been mentioned above and can be seen in Fij. &
F=0 larger dot experiences a larger shift in its energy levels due to
the applied field than a smaller one. However, all other pa-
rameters being equal, a larger dot also has slightly lower
energy at zero fieldwhich is not the case in Fig.)5There-
fore, a way is needed of increasing the initial energy of the
larger dot relative to the smaller one. This could be realized
T py using layers of different maﬁeria{sr material concentra-
1561 1562 1563 1564 1565 1566 1567 tions) to alter '_[he ba_nd gap within each_ dot; other methods
Energy (eV) such as exploiting different dot geometries or applying a lo-
cal strain or electric field gradient should also be explored. In
FIG. 7. Series of simulated absorption spectra of the energyRef. 30 field gradients close to ZMV/m)/um were gen-
levels in Fig. §b) at fields ofF=0,5,7,10,15 MV/mThese lines  erated, with Stark shifts of approximately 2 meV obtained in
have been artificially broadened by a factor of 10. a field of 0.2 MV/m. Hence, similar dots of 1—-2 meV initial
energy separation, and placed 7 nm apart, could be brought
achievable from any standard dot sample and hence it igto resonance by this method. Nitride QD’s could also offer
vitally important to ensure that any effects we wish to ob-a promising approach since their strong piezoelectric fields

serve will not be masked by its presence. allow the possibility of an external field shifting their energy
Plotted in Fig. 7 are the absorption spectra of the twdevels towards each other.
energy levels in Fig. ®) (E, andE_) at fields of 0,5,7,10, We have also shown that it should be possible to engineer

15 MV/m, respectively, calculated from E¢47) with the  nanostructures such that the off-diagonal Forster interaction
same parameters as for Fig. 5 and3.46. The spontaneous between a pair of QD’s is of the required strength to make it
emission rates are calculated from E43), and the peaks interesting for quantum computation. Once a measurement
have been artificially broadened by a factor of 10 to exagof this coupling strength is made, the next logical step is to
gerate their characteristic features in the changing appliedttempt to controllably entangle the excitonic states of two
field. As the field is increased the two peaks shift to lowerinteracting dots, leading on to a demonstration of a simple
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guantum logic gate such as the controliedl (CNOT). Al- oscillations within each dd® As each dot will have a differ-
though, on resonance, the stat®) and |10) naturally ent excitation energy, we may address them individually by
evolve into maximally entangled states after a timé4Vy), choosing the appropriate frequency. Two periods of free evo-
their initialization requires the interdot interaction to be sup-lution under the interaction Hamiltonidiq. (48)] are also
pressed. Furthermore, the generation of a logic gate such &gquired; applying a suitably selected detuned pulse to both
the cNOT requires single qubit operations on both dots, ashonresonant dots will bring them into resonance via the op-
well as periods of interaction. tical Stark effecf®5'We then allow resonant energy transfer

By switching to a pseudospin description of our excitonicto occur for a timet=/(2Vg), producing answAp opera-
qubit we can immediately consider a previously known op-tion. The detuned pulse is then stopped and single qubit ma-
eration sequence for the realization ofeOT gate. Defining  nipulations may be induced as before.

[t)=]0) and||,)=]|1), we can see from Eq26) that the Figure %b) provides a nice visualization of the whole
off-diagonal terms can be expressed as process. We must nonadiabatically switch between the two
v regimes of zero field, where the dots are effectively un-
He= —F(UX oy, t oy 0y), (48) coupled, and the resonant point where the dots interact. It is
2 vz our hope that this is achievable through the optical Stark
with effect, and we speculate that this all optical approach may
have the potential to allow gates to be performed well within
(01 _(0 ~i the limits set by the nanosecond dephasing times experimen-
Ix= (1 o) and oy = <i 0 ) 49 {ally observed.

. A i , ) To summarize, we have analytically calculated the mag-
being two of the Pauli spin matrices. ThiSY-type Hamil-  pjtyde of the Forster energy transfer between a pair of ge-
tonian has been studied in the literature for variousheric QD's and investigated its effect on their energy level
systems,>*" and if the two interacting qubits are left for a grycture. We have proposed a simple experiment which pro-
time t=m/(2Vg) solely under its influence, then @8WAP  \iges a signature of the interaction and an estimate of its

gate will be executet® strength and have also discussed its possible application to
1000 quantum information processing.
. 00i O
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X(iSWAP)(7—7> , (51)
2 2 APPENDIX: TUNNELING

where (+7/2),, are single pseudospin rotations ofr#2 To outline the effect of electron and hole tunneling on the
about the axis of spinm, for |=x,zandm=1,2.Schuch and €xciton states used in this paper, we consider here the Hamil-

Siewerf® have also shown that thenoT and swap opera-  tonian for an electron-hole pair in a double dot. The basis we
tions may be combined when using XY interaction to  US€ is constructed of products of the electron and hole single-

produce more efficient quantum circuits. Furthermore, thgarticle stateglehy), lehy), eyhy), e hy)}, which gives

iSWAP operation is an entangling gate and is therefore suffi- E i ¢ Vv

cient for universal quantum computation provided that fast ah € F

local unitary operations are available. In fact, for systems th Een, O te

exhibiting anXY interaction, thaé SwAP operation constitutes H= t 0 E ¢ ; (AL)
the natural gate choice when implementing efficient quantum € ey h

circuits. Vet tn  Een,

To perform a gate such as tlmoT outlined above we )
must be able to control the interaction between our two qu¥¥NereEen, =Ee +En ~Mep , with n,m=1, 1l for dot I and
bits so that we can effectively switch it off for the duration of dot Il, respectivelyMe 1, is the direct Coulomb binding en-
the single-qubit manipulations. For the case of excitonic querdy between the electron and hole on datndm, respec-
bits, coupled via the Forster mechanism, the most sensiblévely, and the band-gap energy has been absorbed into the
way to proceed is to consider two initially nonresonant QD’s€lectron energf, by setting the energy zero to be at the top
with negligible energy transfer. Single-qubit operations carof the valence bandVg is the Forster interaction strength,
then be achieved with external laser pulses by inducing Raindty, is the electror(hole) tunneling matrix element.
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We consider first the simple case of two identical dots-M/,] again becomes largefurthermore, corrections to the

coupled to one another; this means settlag=E, =E,
En =En, =En Men=Me,n, =Men and Mepn, =Me,n = Mep
Subtractinge.+E— M., from the diagonal of Eq.AL) gives

0 th te Ve
tn Mep— M. 0 t
H= h eh eh , e . (A2)
te 0 Men—Mep  th
Ve te th 0

eigenstategy.)=2"4|eh))+|e,h,)) due to mixing with
states outside the subspace will be small since they are
weighted by factors ofn)/(Mg,—Mey), to first order, from

the perturbation theory.

The regime in which Eq(A2) is valid is not necessarily
the ideal one for minimizing the effect of tunneling, while
exploiting resonant exciton interactions, as two nonidentical
dots may also be brought into resonarisee Sec. Il ¢ In

this case, Ee +Eh—Men =Ee, +En ~Men, =E on reso-

We would like to isolate thé¢|eh), |e;h,)} subspace, as itis nance. Subtracting from the diagonal of Eq(Al) gives

composed of single-exciton states on each of the two dots.

These states are exactly the ones that are relevant for the 0 th te Ve
computational basis introduced in Sec. I. Any leakage from b= th AER+AMy, 0 te (A5)
this subspace, potentially due to tunnel couplings to the B te 0 AE.+AM, t, |
states|gh,) and |g,h;), could be a source of error for the Ve t t, 0

e

signature and schemes presented here and in Refs. 8 and 27

and must be minimized. However, under the condition
(A3)

we may use degenerate perturbation theory on(Eg) to
give

[Men=Metl > [t [tal,

where AEi:Ei”—Eil, for i=e,h, AMh:Melhl—Melh”, and
AMe:MeIhI_Me”hl- The dots must now satisfy the modified
condition

min(|AEh+ AMh|,|AEe+ AMeD > |te|!|th s (AG)

in order for tunneling to be neglected, with the unwanted

o+t 2t . ,
F FT Mo~ ML statesg h,) and|g,h;) weighted by a factors of magnitude
Her= " " 2eh 2 " , (A4) te(h)
Ve 2teth te+th m (A?)
F ' i
Mep— Meh Men— eh n h
in the {leh), |e,hy)} subspace. Hence, the stateg,) and and
leyhyy are still resonantly coupled in the presence of tunnel- terh)
ing as long as Eq(A3) is satisfied. These conditions are —|AE +AM’ (A8)
€ €

better satisfied as the interdot separation incre@seseling
elements consequently reduce, as ds, so that|Mgp

to first order in a perturbation expansion. Again, tunneling

-M{,| becomes largerand as dot confinement increaseswill be suppressed as dot separation and confinement in-

(tunneling elements reduceylg, increases, so thaMey,

creases.
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