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We describe the Riemann-HilbertsRHd approach to computing the long-time response of a Fermi gas to a
time-dependent perturbation. The approach maps the problem onto a noncommuting RH problem. The method
is nonperturbative, quite general, and can be used to compute the Fermi gas response in drivensout of
equilibriumd as well as equilibrium systems. It has the appealing feature of working directly with scattering
amplitudes defined at the Fermi surface rather than with the bare Hamiltonian. We illustrate the power of the
method by rederiving standard results for the core-hole and open-line Green’s functions for the equilibrium
Fermi edge singularitysFESd problem. We then show that the case of the nonseparable potential can be solved
nonperturbatively with no more effort than for the separable case. We compute the corresponding results for a
biasedsnonequilibriumd model tunneling device, similar to those used in single-photon detectors, in which a
photon absorption process can significantly change the conductance of the barrier. For times much larger than
the inverse bias across the device, the response of the Fermi gases in the two electrodes shows that the
equilibrium Fermi edge singularity is smoothed, shifted in frequency, and becomes polarity dependent. These
results have a simple interpretation in terms of known results for the equilibrium case but withsin general
complex-valuedd combinations of elements of the scattering matrix replacing the equilibrium phase shifts. We
also consider the shot noise spectrum of a tunnel junction subject to a time-dependent bias and demonstrate that
the calculation is essentially the same as that for the FES problem. For the case of a periodically driven device
we show that the noise spectrum for coherent states of alternating current can be easily obtained using this
approach.
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I. INTRODUCTION

An approach to the study of the quantum statistics of an
arbitrary single-particle observable in a Fermi gas has been
recently described in Ref. 1. We refer to it as the RH ap-
proach, as it reduces the calculation of a determinant describ-
ing the quantum statistics of an observable to the solution of
an sin generald non-Abelian Riemann-HilbertsRHd problem.
The relation between such determinants and RH problems
has been known for a long time, and has been used exten-
sively in studies of quantum inverse scattering problems.2 As
a result, a lot is known about the non-Abelian RH problem,3

and much of this can be taken over directly to the study of
the quantum statistics of Fermi gases.

The RH approach gives an expression for the distribution
function of an observable in a Fermi gas perturbed by a
time-dependent potential. To illustrate the method, one of us
used it to prove a long-standing conjecture, first stated in
Ref. 4, that the two sources of shot noise in a biased point
contact, namely fluctuations in the number of attempts to
tunnel through the barrier and fluctuations in the number of
reflections, are statistically independent.1 We have also used
the method to study how nonequilibrium effects alter the
fermi edge singularity in a tunnel junction.5

The response of a Fermi gas to a time-dependent perturb-
ing potential is a central problem in condensed matter phys-
ics. It has been tackled in many different contexts often with
different approaches. For systems out of equilibrium, such as
quantum pumps, perturbative approaches, based on the
Keldysh formalism, have been used, while for systems in
equilibrium it has been possible to find exact solutions in

some limiting cases by solving the equations of motion
directly.6–9 One of the advantages of the RH method is that it
applies equally to all such problems and therefore offers the
prospect of a unified approach to computing the time-
dependent response of all observables in Fermi gases.

Setting up the description of a problem in the RH frame-
work is quite straightforward. Given the solution of the
single-particle scattering problem, the response of the Fermi
gas reduces to the computation of a determinant of an opera-
tor taken over single-particle states occupied in the initial
configuration.sThe generalization of the method to the more
general case in which the initial state is given in terms of a
density matrix rather than a single quantum state should be
possible but has not yet been formulated.d The evaluation of
this determinant then reduces to the solution of a Riemann-
Hilbert problem. The solution is in general a matrix-valued
function analytic everywhere except across a cut, along
which the function is discontinuous. The discontinuity is
fixed by the driving force or perturbation acting upon the
system.1 From the point of view of the Keldysh formalism
the method performs a nontrivial resummation of all relevant
diagrams with the help of the solution of the corresponding
RH problem. In the Abelian case, when the discontinuity
function commutes with itself at all points along the cut, the
solution is given in terms of an integral. The classic solution
of the FES problem7,8 is the simplest example of this solu-
tion. In the non-Abelian case, the solution to the RH problem
is not known in general, although asymptotic solutions exist.
These are valid for response frequencies small compared to
those present in the discontinuity function.
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Here we explain the RH approach in some detail. To il-
lustrate the power of the method we start by showing how
the solution of the equilibrium FES problem7,8,10 is derived.
We then show the generalization of this problem to include
the case where the “impurity” potential mixes scattering
states of the unperturbed problem—the case of a nonsepa-
rable potential—and deal explicitly with the case when the
impurity potential gives rise to a bound state. This problem
was treated initially in Refs. 9 and 11, in a calculation that
solved directly the Dyson-like equation for the appropriate
Green’s functions. In the RH formulation of this problem the
discontinuity function, although matrix-valued, is constant
and commutes with itself. As a consequence, the solution to
the RH problem is trivial to derive and yields the standard
results of Refs. 9 and 11 with no more work than for the case
separable potential case. We show how these results are
changed in a nonequilibrium situation. In both the equilib-
rium and nonequilibrium cases, we compute both the core-
hole Green’s function reported in Ref. 5 and the open line
contribution. Finally we show how the states that minimize
the shot noise in a periodically driven quantum pump—the
so-called coherent states of alternating current12 sCSAC’sd—
can be described using the RH method.

II. PERTURBING THE FERMI GAS

We consider a system in which particles impinge upon a
localized potential. The potential takes the same time-
independent form at timest with t,0 and t. tf. For 0, t
, tf the potential varies as a function of time. We take our
basis to be the eigenstates of the system whent,0. The
states are labeled by their single-particle energye s"=1d and
a channel indexi =1,… ,N. We will consider the correspond-
ing annihilation operator,aie, as theith component of the
vector âe. The Hamiltonian of the system is then

Ĥstd = Ĥ0 + o
e,e8

âe
†Mst,e,e8dâe8,

Ĥ0 = o
e

eâe
†âe. s1d

Here Mst ,e ,e8d is anN3N matrix with M =0 for t,0 and

t. tf. sIn the following, for any operatorÔ, we will denote

by O the matrix ofÔ taken between the single-particle basis
states.d

We will be interested in the total effect of the perturba-
tion, i.e., what is the final state of the system fort. tf given
the initial state att=0. This requires a knowledge of the
effect on the initial many-body state of the time-evolution

operatorÛstfd, where

i
dÛ

dt
= ĤstdÛstd, Ûs0d = 1. s2d

Because the HamiltonianĤstd in s1d is quadratic, the effect

of Ûstfd is fully characterized by its effect on the set of
single-particlescattering states,aie8

† ul:

Ûstfdâe8
† ul = o

e

e−ietfsse,e8dâe
†ul, s3d

wheresse ,e8d is some unitaryN3N matrix andul is the true
vacuum with no particles in the system.13

When computing the response of the Fermi gas to the
time-dependent potential, we will need to compute expecta-
tion values of the type

xR = k0uR̂u0l. s4d

Here u0l is the state of the Fermi gas before the perturbation

is applied andR̂ is an operatorsor operator productd related

to an obvervable of interest. In general, theR̂ in Eq. s4d will

involve the time-evolution operatorÛstfd. For example, in
the case of the shot noise spectrum of a tunneling barrier,1

the interest is in the statistics of the charged transferred from

one electrode to the other. IfQ̂1 is the charge in the first

electrode, then the expectation value ofR̂

=Û†stfde−ilQ̂1ÛstfdeilQ̂1 yields the generating function for
moments of the distribution of charge transferred out of
channel 1sinto channel 2d during the period betweent=0
and t= tf. In the case of the FES problem,5 the core-hole
Green’s function ssee belowd is related to the overlap

k0u Û0
†stfdÛstfd u0l, whereÛ0stfd is the time-evolution opera-

tor for Ĥ0 in Eq. s1d. This overlap is an expectation value of

the types4d with R̂=Û0
†stfdÛstfd.

The effect ofÛstfd acting on the single-particle states of
the basis is given by the unitary matrixsse ,e8d defined in
Eq. s3d. The matrixsse ,e8d can be related to the scattering
matrix, Sst ,Ed, for a particle with energyE evaluated on the
instantaneousvalue of the potentialMstd in Eq. s1d. This
reflects the fact thatSst ,Ed encodes all the information in the
potential variationsMstd. This relation will be complicated in
general. However, if

se − e8d
] S

] E
! 1

and s5d

q
] S−1

] t

] S

] E
! 1,

the relation betweens andS becomes simple:

slel8e8 = Slel8e8

Slel8e8 =
1

2pÎnlnl8
E dtSll8st,Edeise−e8dt, s6d

whereE=se+e8d /2 andni is the density of states in channel
i. The results6d shows that the total scattering amplitude
from statee in channell to e8 in channell8 is just the Fourier
transform of the scattering matrixSstd evaluated on the in-
stantaneous value of the potential. This result was used im-
plicitly to solve the FES problem in the presence of a sepa-
rable potential.10
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A brief derivation of the conditions5d is given in Ref. 1.
The condition can be understood heuristically as followsssee
also Ref. 12d. We consider the incoming wave packet to be a
sum over partial waves in channell8 of the basis, in whichS
is diagonal before the perturbation is switched on. After im-
pinging on the potential, the partial waves scattered from
channell8 into channell will take a time of the order of the
corresponding Wigner delay time to pass out of the region
where the potential acts. The conditions5d is equivalent to
the requirement that the scattering matrix does not change
significantly during this delay time. If this condition is satis-
fied, relations6d also has a simple interpretation: the effect of
the slowly varying scattering potential on an incident partial
wave is just multiplication by the scattering matrix computed
on the instantaneous value of the potentialMstd. This can be
seen by considering a wave packet, with average energye8
and corresponding wave numberk8 in channell8, incident at
time t on the potentialswhich is assumed to be localized
around the origind. This will have amplitude at the origin
proportional toe−ie8t. Scattered wave packets will emanate
from the source at the origin with amplitudesSll8stde

−ie8t in
channels labeled byl. If dispersion effects are small, this will
lead to wave forms a distancex from the origin of the form
Sll8st−sx/vldde−ik8vlft−sx/vldg, wherevl =]e /]k is the velocity of
states in channell. Decomposing this into waves of the form
eiksx−vltd as t→ t` gives the results6d. The normalization fac-
tor 1/Înlnl8 is included so that in the case where the incom-
ing flux s,vucnu2d is totally scattered into channeln8 the
scattering amplitude is 1.

A. Fermi sea atT=0

The calculation of the response of the Fermi gas to the
time-dependent perturbation reduces to the computation of

the expectation valuexR=k0u R̂u0l in Eq. s4d. In the following
we will assume thatu0l is a single Slater determinant. In this
case the computation ofxR requires the evaluation of a single
determinant:

k0uR̂u0l = det8uRu, s7d

where the elements ofR are given by

Rii8se,e8d = kuâieR̂âi8e8
† ul. s8d

and where the prime on det indicates that the determinant is
taken only over states occupied inu0l.

When the initial Slater determinantu0l corresponds to a
filled Fermi sea, it is useful to introduce the Fermi distribu-
tion as an operator with elements:

fel,e8l8 =
dse − e8d
Înlnl8

dii8u(− se − md). s9d

Herem is the chemical potential, which we take to be zero.
For the nonequilibrium problems discussed later the chemi-
cal potential can vary according to the channel indexfsee the
discussion around Eq.s57dg. In a block notation that sepa-
rates the states with positive and negative energiesf and R
become

f = S1 0

0 0
D, R= SR11 R12

R21 R22
D s10d

and

1 − f + fR= SR11 R12

0 1
D . s11d

It then follows that

xR = det8uR11u = detu1 − f + fRu, s12d

where det is now a determinant taken over all states in the
basis.

ExpressingxR as the determinant of 1−f + fR taken over
all states in the basis, allows us to write

ln xR = Trsf ln Rd + Trflns1 − f + fRd − f ln Rg. s13d

In Eq. s13d, we have added and subtracted the term lnxR
s1d

;Trsf ln Rd. This term consists of the diagonal elements of
ln R summed over all occupied states inu0l and gives the
contributions linear intf. It often has a simple physical inter-
pretation. In the FES problem it yields the threshold shiftsor
change in the ground state energy of the Fermi gas after the
core hole is createdd, while in the shot noise spectrum of the
tunneling barrier it can be shown to be related to the average
transfer of charge across the barriersthe Brouwer
formula1,14d.

The second term in Eq.s13d,

ln xR
s2d ; Trflns1 − f + fRd − f ln Rg, s14d

accounts for all the nontrivial effects associated with excita-
tions close to the Fermi surface induced by the perturbation.
sStates far from the Fermi energy, whenf =1 or f =0, make
no contribution to this term. As a result there are no prob-
lems associated with effects of the band edge or short time
cutoff when computing this term.d In the case of the FES
problem it describes the line shape, while in the shot noise
spectrum it gives all the higher moments of the charge trans-
fer distribution. When computing this term, we will later
switch to the time representation in which

Rlel8e8 =
1

2pÎnlnl8
E dtRll8st,Edeise−e8dt, s15d

with fas in Eqs.s6dg E=se+e8d /2. R will normally involve s
or some simple combination ofs with itself and its inverse.
Provided the conditions5d is satisfied, we will be able to
evaluates by ignoring the dependence ofSst ,Ed on E. sThis
E dependence is not important as states far from the Fermi
energy do not contribute to lnxR

s2dd. As a result the term
ln xR

s2d will depend only on the time dependence of the scat-
tering matrix evaluated at the Fermi energy, which we will
denote bySstd.

The Riemann-Hilbert problem

Computing the second term in Eq.s13d, ln xR
s2d, is the

central task in the evaluation of the response of the Fermi
gas. The nontrivial part of this is finding the inverse ofs1
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− f + fRd, which can then be used in an integral representation
for its logarithm. This inverse can be written in terms of the
solution of anN3N matrix Riemann-Hilbert problem, where
N is the length of the vectorâe, i.e., the number of channels
in the problemfsee Eq.s1dg.

A standard procedure for representing the logarithm of an
infinite matrix, such as the one on the right hand side of Eq.
s14d, introduces al dependence forR via15

Rsld = expsl ln Rd s16d

and then uses an integral overl to represent the logarithm:

ln xR
s2d =E

0

1

dl TrFfs1 − f + fRd−1f − fR−1g
dR

dl
G . s17d

fThel dependence ofR introduced in Eq.s16d is assumed in
Eq. s17d although not written explicitly.g

To compute the trace in Eq.s17d, we switch to a time
representation in which a quantityA becomes

All8st,t8d =
1

2pÎnlnl8
E

−`

`

nldeE
−`

`

nl8de8All8se,e8deie8t8−iet.

s18d

Now, the Fermi distribution Eq.s9d is no longer diagonal:

f ll8st,t8d =
i

2p

dll8

t − t8 + i0
. s19d

However, as we can neglect theE dependence ofRsl ,t ,Ed
andSst ,Ed fsee discussion after Eq.s15dg, R andS are now
diagonal in t and equal toRsl ,t ,0ddst− t8d and Sst ,0ddst
− t8d respectively. In the time representation, the product of
two quantities requires matrix multiplication in the space of
scattering channels together with an integral over the inter-
mediate time coordinate. Where one of the quantities in the
product is diagonal int sfor exampleSd, the integral over the
intermediate time coordinate is of course trivial and the prod-
uct reduces to the simple matrix multiplication in the channel
space. Tr now becomes a trace over the scattering channels,
which we denote by tr, and an integral over the time coordi-
nate, so that

ln xR
s2d =E

0

1

dlE dt trFfs1 − f + fRd−1f − fR−1g
dR

dl
G .

s20d

Here, when computing the diagonalsequal timed elements of
O, one should take limt→t8Ost ,t8d. If A andB are diagonal in
the time representation, it follows that

E dt trfA, fgB =E dt lim
t8→t

tr
i

2p
FAstd − Ast8d

t − t8 + i0
GBst8d

=
i

2p
E dt tr

dAstd
dt

Bstd, s21d

which is a result we use later.
The quantitys1− f + fRd−1 can be written in terms of the

function Yszd, which is a matrix in the channel space and

which solves an auxiliary Riemann-Hilbert problem.Yszd
should be analytic everywhere in the complexz plane except
on the intervalf0,tfg on the real axis along which it satisfies

Y−stdY+
−1std = Rstd where Y± = Yst ± i0d. s22d

In additionY should satisfy

Y → 1 when uzu → `. s23d

These analytic properties together with Eq.s19d yield the
useful identities

fY−f = fY−,
s24d

fY+f = Y+f .

Using these relationssand assuming thatY−1 is also analytic
everywhere except along the cutd, it is then easy to verify
that

s1 − f + fRd−1 = Y+fs1 − fdY+
−1 + fY−

−1g. s25d

As an aside, we note thats1− f + fRd−1 is the solution to a
singular integral equation, withf playing the role of the sin-
gular kernel of the Cauchy type. It is well known that such
integral equations can be solved using Carleman’s method,
which writes the solution in terms of an analytic function
satisfying a Riemann-Hilbert problem.16 In the one-channel
case the corresponding singular integral equation for the case
whenRstd is constant betweent=0 andt= tf is the problem
solved in Refs. 7 and 8 when describing the equilibrium
FES.

Inserting Eq.s25d into Eq. s20d and using Eq.s21d we
obtain

lnxR
s2d =

i

2p
E

0

1

dlE dt trHdY+

dt
Y+

−1R−1dR

dl
J . s26d

The integral overt is over all times. However, asdR/dl
normally vanishes fort. tf andt,0, one often only needs to
integrate from 0 totf.

Equationss26d and s13d map the characterization of the
responsexR in Eq. s4d onto an integral involving the solu-
tion, Ystd, of a RH problemfEqs.s22d ands23dg. An appeal-
ing feature of this formulation is that these formulas apply
for any choice of variablexR provided that the Fermi gassor
gasesd is initially in its ground state and apply for many
nonequilibrium cases as well. IfRstd commutes with itself at
different values oft, the solution of the RH problem can be
written in closed form. Although there is no solution for the
general case, a lot is known about such noncommuting prob-
lems including some asymptotic solutions valid whentf

−1 is
much smaller than any characteristic frequency inRstd3.

III. FERMI EDGE SINGULARITY

In this section we show how all the known results for the
equilibrium FES follow directly from the formulas26d.
Within our formalism the case of nonseparable channels con-
sidered in Ref. 9 and again in Ref. 11 is no more complicated
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than the separable case. We will then discuss how these re-
sults are changed in the nonequilibrium case.

A. Equilibrium

The FES problem was first considered in the context of
the x-ray absorption spectrum of a metal.6 When a photon
creates a core hole in a metal, the Fermi gas is affected by
the potential of the core hole, leading to the excitation of
particle-hole pairs. The absorption line expected in the ab-
sence of the Fermi gas becomes a threshold with a singular-
ity in the absorption spectrum as a function ofv−v0.0:

Isvd , uv − v0u−a, s27d

wherev0 is the threshold frequency for absorption. It turns
out that similar singularities are seen in the distribution of
energy absorbed by the Fermi gas in response to any rapid
change in potential and not just in x-ray absorption experi-
ments. For example, the consequences of the FES are also
seen in a tunnel junction. As the energy absorbed by the
Fermi gas when switching is an important characteristic of
the device, establishing how the FES changes in such tunnel-
ing devices is important for understanding fluctuations in
energy transfer across such devices.

The Hamiltonian for the photon absorption experiment is7

Ĥ = e0b̂
†b̂ + o

e

eâe
†âe + o

e8e

âe
†Vse,e8dâe8b̂b̂† + ĤX, s28d

with the operatorsâ as in Eq.s1d and Vse ,e8d is an N3N

matrix. The operatorb̂† is the creation operator correspond-
ing to the core state and the coupling to the x-ray field is
described semiclassically by

ĤX = oe
We · âe

†b̂eivt + H.c.; X̂eivt s29d

The absorption spectrum is proportional to the real part of
the Fourier transform of the response function

Sstfd = k0uThX̂stfdX̂s0dju0l, s30d

with T the time-ordering operator.Sstfd can be computed
from the core-hole Green’s function7

Gstfd = k0uThb̂†stfdb̂s0dju0l s31d

and the function

Fstfd = o
e,e8

k0uThb̂†stfdfWe8
* ·âe8stfdgjfWe·âe

†s0dgb̂s0du0l

s32d

Conventionally a minus sign is included in the definition of
F andG. However, as we will only deal with the absorption
case here and taketf .0, it is easier to work from these
definitions. We have also left out the conventional factor ofi
in the definitions of these Green’s functions as in Ref. 7.

The calculation ofF andG reduces to a one-body scatter-
ing problem.7,17As far as the Fermi gas is concerned the role
of the core hole is to switch on the scattering potential
Vse ,e8d at time 0 and switch it off again attf. As such, the

problem is clearly in the form of Eq.s1d with Mst ,e ,e8d=0
for t. tf andt,0 andMst ,e ,e8d=Vse ,e8d for 0, t, tf. The
corresponding scattering matrixSst ,Ed switches between the
identity when the core hole is absent and some constant
value SesEd when it is present. The asymptotic behavior of
the response at largetf swhenv−v0!j0

−1d is determined by
states with energies close to the Fermi surface. For these
states we assume that the variation ofSesEd with E can be
neglected so that the conditions5d is satisfied.sThe limit
j0tf @1 is the one considered in Ref. 7.d

The calculation ofG is one of the simplest calculations
within the RH approach.G is the expectation value of the

operatorR̂ in Eq. s4d with

R̂= Û0
†stfdÛstfd. s33d

As the matrix elements ofÛstfd are juste−ietfsee8, it follows
from Eq. s7d that10

Gstfd = eie0tf det8usu, s34d

while from Eqs.s3d, s15d, ands16d

Rstd = Sstd and Rsl,td = expl ln Sstd = fSstdgl.

s35d

The RH problem,s22d and s23d, reduces to

Y−stdY+
−1std = fSstdgl, Y → 1 whenuzu → `. s36d

When the matrixS is constant between 0 andtf, we will
denote its value bySe. In the single-channel case,Se=e2id

and the RH problem is solved by16

Yszd = expF 1

2pi
lnS z

z− tf
Dl ln SeG . s37d

sThis solution was used implicitly in the original solution to
the single-channel problem of Ref. 7.d In fact the results37d
solves the RH problem even where the problem is not sepa-
rable provided that the matricesSstd evaluated at different
times t with 0, t, tf commute.fThis can be checked by
direct substitution into Eq.s36d.g We insertYszd andRsl ,td
into Eq.s26d. The integral overt runs between 0 andtf where
ln Rsld is nonzero. Inserting into Eq.s13d and including the
factor of eie0tf yield

ln xR = ie08tf − ln ij0tfS d

p
D2

, s38d

where e08=e0+oe,0dsed /pnsed, with nsed the density of
states, is the shifted energy of the core-hole in the presence
of the Fermi gas.sThe form for the difference betweene0
ande08 is usually attributed to Fumi.18,19d Close to the branch
points of Y at 0 andtf, we cut the integrals off atij0

−1 and
tf + ij0

−1 wherej0 is an energy of order the bandwidth. Equa-
tion s38d gives the well-known result for the long-time
asymptotic behavior ofG:6

Gstfd , sij0tfd−aeie08tf, a = sd/pd2. s39d

To compute the functionFstfd in Eq. s32d is slightly more
involved, although the underlying RH problem is the same.
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As already mentioned, the role of the core hole is to switch
on the potential att=0 and switch it off again attf, so that
Fstfd can be written swriting out the channel indices
explicitlyd

Fstfd = o
ie,i8e8

Wie
* k0ur̂sie,i8e8du0lWi8e8, s40d

r̂sie,i8e8d = Û0
†stfdâieÛstfdâi8e8

† . s41d

In the basis of the scattering statesâj8a8
† u l the matrix ele-

ments of this operator are easily shown to be given in terms
of s in Eq. s3d by

rsie,i8e8d ja j8a8 = eise0−edtfss ja j8a8siei8e8 − s jai8e8sie j8a8d.

s42d

Using Eqs.s7d and s40d we find

Fstfd = eie0tfdet8z Cs − uhlkgu z. s43d

HereC=Cstfd is the number:

C = o
ie,i8e8

e−ietfWie
* siei8e8Wi8e8, s44d

while

uhl = o ja soi8e8
s jai8e8Wi8e8daja

† ul,

s45d
kgu = o j8a8 soie

e−ietfWie
* sie j8a8dkuaj8a8.

Expressions43d is now in the forms7d. We could attempt
to solve the corresponding RH problems22d and s23d as
before, although the relation between the corresponding op-

eratorR̂std andS is no longer simple. However, it is easier to
simplify Eq. s46d by factoring outGstfd=eie0tf det8 us u :

Fstfd = CGstfddetz 1 − C−1Ouhlkgu z s46d

with

O = s1 − f + fsd−1f . s47d

We have used Eq.s12d to put Eq. s46d in the form of the
determinant over all states in the basis. Using the identity
detz1−C−1Ouhlkgu z=1−C−1kguOuhl, we obtain

Fstfd = GstfdsC − kguOuhld. s48d

As C→0 for largetf swith a functional form which depends
on assumptions about the density of states at the band edged,
the response is determined by the second term.

The functionYszd computed withl=1 in Eqs.s36d and
s25d can be used to findFstfd. In the time representation

s1 − f + fsd−1f = Y+fY−
−1. s49d

Writing Fstfd=LstfdGstfd sL is usually referred to as the
open-line contributiond, we find

L = −
1

2p
o
ll8
E de de8E dt1dt2Wle

* eiest1−tfd

3 Îv1fSY+fY−
−1Sglt1,l8t2

Îvl8e
−ie8t2Wl8e8. s50d

Taking Wi to be independent ofe swe are assuming that the
long tf behavior is determined by states with energies within
,1/tf of the Fermi surfaced, this simplifies to give

L . o
ii8

Wi
ÎniFY−stf

−d
1

it f
Y+

−1s0−dG
ii8

Îni8Wi8. s51d

The functionsY− andY+ are evaluated att=0− andt= tf
−. This

prescription is equivalent to the imaginary time cutoff used
to derive Eq.s38d and used in Refs. 7 and 11. Strictly, the
discontinuities inS at t=0 andt= tf should be thought of as
the limit of a fast switching process, in whichS starts to
change att=0 and reaches its new valueSe after a short time.
Similarly at t= tf, S starts to change back fromSe to its un-
perturbed value.sThe corrections associated with a more re-
alistic model of a noninstantaneous switching process were
considered for a related problem in Ref. 20.d In the single-
channel case we can insert the explicit form forY given by
Eq. s37d, and recover the standard results

L ,
1

it f

1

sij0tfd−2d/p , F ,
1

it f

1

sij0tfdsd/pd2−2d/p
. s52d

When the potentialVse ,e8d in Eq. s28d is strong enough
for a bound state of the Fermi gas electrons to form below
the bottom of the band, the results forGstfd andFstfd are no
longer correct. The effect of the bound state can be taken into
account explicitly as explained in the Appendix. The results
for Gstfd given by Eq. sA2d, and for Fstfd given by Eq.
sA12d, have two main contributions. After taking the Fourier
transform to obtain the absorption spectrum, the first corre-
sponds to having the bound state occupied and leads to the
absolute threshold for absorption. The second term relates to
scattering processes in which the bound state is always
empty and leads to a subsidiary threshold atEb above the
first in the absorption spectrum.

The resultss39d, s52d, andsA13d are of course very well
known.7,8 However, none of the key formulass37d, s51d, and
sA12d require that the scattering matrixS should be diagonal
in the channel indices. Provided thatSstd commutes with
itself at different times, the results are valid for arbitrary
channel number. We can therefore use the functionYszd
given by Eq.s37d to compute the corresponding results for
the case of a nonseparable potential just as easily as in the
separable case. In the absence of bound states, one obtains
with e08=e0+oe,0ozdzsed /pnzsed:

Gstfd = expsie08tfdsij0tfd−b,

s53d

Lstfd = o
z

utzu2
1

it f
expS 2

p
dzlnij0tfD ,
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b = o
z
Sdz

p
D2

,

which are the results obtained perturbatively in Ref. 11. Here
the eigenvalues of the matrixSe fsee after Eq.s36dg are writ-
ten ase2idz. Se has eigenvectorsfszdi andtz=oi

ÎniWi
* fszdi.

The perturbing potential, characterized by scattering ma-
trix Se, can be strong enough to lead to a bound state with
wave function given by Eq.sA4d. In the presence of a bound

statessd we take the eigenvalues ofSe to be ei2d̃z with d̃z

defined as the phase shift modulop in channelz on the
interval f−p /2, p /2g fsee discussion after Eq.sA7dg. We
then obtain the generalizations to the nonseparable case of
the results of Ref. 10 forGstfd andFstfd. We find

Gstfd = G̃stfds1 + ABd, s54d

whereG̃stfd is the contribution of the scattering states given
by the expression forG in Eq. s53d with phase shifts given

by d̃z, while

AB , e−iEBtfo
z

uhzu2e−2i d̃zexpS−
2

p
d̃zlnij0tfD . s55d

Here hz=oi
Îniui

* fszdi and theui are the bound state wave-
function coefficients given in Eq.sA4d. In the presence of the
bound state, the functionFstfd,F0stfd+Fbstfd with

F0stfd , G̃stfdL̃stfd,

Fbstfd , e−iEBtfG̃stfduu ·W u2, s56d

whereL̃stfd is the scattering state contribution toLstfd given

by the expression in Eq.s53d, using the phase shiftsd̃z.
Formulass56d and s53d are the natural generalizations of

the single-channel result and have exactly the same interpre-
tation as was given originally in Refs. 8 and 21. We repeat
this briefly here as the results for the nonequilibrium case
sgiven in the next sectiond can also be understood heuristi-
cally on a similar basis but with the phase shifts becoming
complex. The exponentssdz /pd2 andsdz /p±1d2 are, accord-
ing to the Friedel sum rule, the square of the net charge that
needs to move in to or away from the origin in order to
screen the core hole potential. ForGstfd this is dz /p, while
for Fstfd it is sdz−pd /p if the photoelectron inserted at the
origin is in thez channel anddz /p otherwise. If there is an
occupied bound state after absorption of the photon, the re-

spective values becomesd̃z+pd /p and d̃z /p, as now the
Fermi gas has to provide the additional electron, which ends
up in the bound state. The formt−n2

is just the decay with
time of the overlap of the wave function of the Fermi gas at
t= tf and the one describing the system created att=0 in
which swith respect to the ground state in the presence of the
core holed there is an excess chargen=−d /p at the origin.
That it vanishes ast→` is the orthogonality catastrophe
described by Anderson.22

B. Nonequilibrium effects

The experimental and technological interest in the out-of-
equilibrium response of coupled Fermi systems has grown as
electronic devices have shrunk. Examples include structured
quantum dots, like the single-electron transistor or the single-
photon detector,23 and quantum point contacts. The nonequi-
librium Fermi edge singularitysNFESd will characterize the
energy absorbed by the coupled Fermi gases in a rapid
switching process in such devices. The NFES should help
explain, for example, measurements of random telegraph sig-
nals sRTSd. In these experiments, a two-level systemsTLSd
couples to the source-drain current flowing in the channel of
a metal oxide semiconductor field effect transistorsMOS-
FETd sthe TLS resides in the insulating oxide layer24d. The
RTS relates to the “random” switching of the TLS between
its ground and excited states. The ratio between the times the
TLS spends in the excited and ground states is measured
experimentally. In equilibrium this ratio is fixed by detailed
balance, and the deviations from this have been attributed to
nonequilibrium effects.25

As one of the simplest nontrivial many-body effects, the
FES is also a natural point to start, when looking for a de-
scription of nonequilibrium effects in many-electron sys-
tems. Perhaps surprisingly, given its conceptual simplicity,
the NFES has not attracted as much attention as more diffi-
cult nonequilibrium problems like the Kondo effect, to which
it is known to be related.sThe Kondo effect can be thought
of as a sequence of FES’s associated with each flipping of
the localized moment.d26

In Ref. 5 we reported results forGstfd for a two-channel
problem, which modeled a system with two electrodes sepa-
rated by a barrier. The transmission of the barrier depends on
the state of a two-level system inside the barrier, see Fig. 1,
with the transition between the two levels assumed to be
dipolar. The real part of the Fourier transform of the function

FIG. 1. Energy levels in an idealized device to demonstrate the
out-of-equilibrium FES. The scattering potential for electrons is
characterized via the 232 matrix,Ssed, connecting scattering states
in the two wires for particles with energye. S=Sg or Se depending
on whether the defect is in its groundsgd or excitedsed stateswith
excitation energyE0d. Sg is the identity matrix andSe is an arbitrary
unitary matrix.s11

e and S12
e correspond to the reflection and trans-

mission amplitudes, respectively. We will refer to the device oper-
ating as illustrated here, with a negative potential −VsV.0d applied
to the left electrode, as the forward-biased case.
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Gstfd gives the absorption spectrum for the device. The non-
equilibrium effects predicted in Ref. 5 should be visible in
the voltage dependence of the absorption line shape of de-
vices like the single-photon detector of Refs. 23 and 27. In
Ref. 23 a quantum dot in the quantum Hall regime is coupled
via tunneling barriers to two electrodes on either side of the
dot. For magnetic fields in the range 3.4–4.2 T, the conduc-
tance through the dot can change from zero to around
0.3e2/h when a photon is absorbed via cyclotron resonance
in the dot. From the perspective of the two electrodes, the dot
behaves as a tunneling barrier, which allows tunneling only
in its excited state. The absorption of the photon and the
subsequent separation of the holeswhich moves into then
=1 ring on the outer part of the dotd and the particleswhich
“falls” into the center of the dot atn=2d is rapid, while the
response of the conduction electrons in the two electrodes is
slow and will show effects characteristic of the FES. In the
device of Ref. 27, an electron trapped in a dot underneath an
electron channel gives rise to a potential that closes off a
conducting channel. When a photon is absorbed, the photo-
exicted hole can recombine with the electron in the trap, the
potential of the electron disappears and the channel opens.
Again the conduction electrons on the two sides of the chan-
nel, ‘see’ the sudden reduction of a tunneling barrier on ab-
sorption of a photon.

The main result reported in Ref. 5 was that the formula of
Nozières and de Dominicis7 sNDd describing the form of the
FES and threshold shiftsFumi’s theorem18,19d generalized in
a simple way to the nonequilibrium case. For time scalestf
!1/V, the phase shifts that appear inGstfd are real and are
given by the logarithm of the eigenvalues of the scattering
matrix Se.9,11 This simply reflects the fact that, on these short
time scales, the response of the Fermi gas involves excita-
tions with energiese@V that do not sense the nonequilib-
rium distribution function. On time scalestf @1/V, the equi-
librium phase shifts in the two channels are replaced by
“complex” phase shifts given by lnS11

e and lns1/S22
e d* . The

real part of these phase shifts describes the scattering within
each electrode, while the imaginary part describes the effect
of scattering processes in which particles cross the barrier.
One effect of the nonequilibrium operation of the device is to
make the scattering between the different electrodes effec-
tively incoherent. Here, we find that this interpretation ex-
tends also for the functionFstfd.

We show the key steps in the derivation ofGstfd, empha-
sizing the relationship with the equilibrium results, and re-
port the results forFstfd including the role of possible bound
states. Since the initial state involves a filled Fermi sea in
both channelssleft and right electrodesd, the RH formulation
of this nonequilibrium problem is the same as that for the
equilibrium case. The bias across the tunnel junction means
only that the chemical potentials are different in the two
electrodes. One way of handling this difference is to intro-
duce a gauge transformation acting only on the basis states in
the left electrode:

ased → ase,td = expS+ iPlE
0

t

VstddtDased, s57d

Sstd → Sstd = expS+ iPlE
0

t

VstddtDSstd

3expS− iPlE
0

t

VstddtD , s58d

wherePl is the diagonal matrix projecting onto states in the
first sleftd electrode, i.e.,sPld11=1 andsPld22=0. The effect
of this transformation on states in the left electrode is to set
e→e−Vstd, so that the chemical potential in the left elec-
trode becomes equal to that in the right electrodestaken to be
zero as befored. For the constant bias case, the transformation
gives âstd→ âstd=e+iPlVtâ.

The functions lnxR
s2d andLstfd for the NFES case are still

given by Eqs.s26d and s50d. However, the RH problem sat-
isfied by the functionYszd is different: In Eqs.s36d Slstd
picks up an additional time dependence from the gauge
transformations58d, which leads to two important differ-
ences to the equilibrium case. First, the functioneiVt intro-
duces a new characteristic energy scale,V. If the function
Sstd has Fourier components with freqenciesv@V, the re-
sponse will be dominated by states with energiesue u @V and
will be insensitive to the nonequilibrium nature of the distri-
bution, which only becomes apparent on the energy scaleV.
If Sstd only varies at frequenciesv!V the response will
come from states with energiese!V and will normally be
significantly different from what happens in equilibrium.

The second main difference following from the additional
time dependence ofSstd relates to the case when betweent
=0 andt= tf the scattering matrixsbefore the gauge transfor-
mationd is constant and equal toSe. In this case it is now no
longer possible to solve the RH problem with a function of
the forms37d. Although this form satisfies formally the jump
condition, YI stdY+

−1std=Slstd, the corresponding function
Yszd is not well-defined for largez if Se is not diagonal. The
off-diagonal elements ofSe contain factorse±iVt so that in the
analytic continuation to complexz there is an essential sin-
gularity at z→` in Yszd defined by Eq.s37d, and Yszd no
longer satisfies the conditionY→1. This problem is clearly
apparent in the RH formulation we have presented. It was
much less clear in previous attempts to extend the ND
method to the nonequilibrium case and may explain why
these failed.28 It is also interesting to note that fortf !1/V,
we can expand the functioneiVt up to linear order inVt. Then
Se=SesV=0d+CVt, there is no singularity at infinity forY,
and the forms37d still works.

In general there is no exact solution to the noncommuting
RH problem.3 However, in the case relevant to the device
shown in Fig 1,Sstd=eiPlVtSee−iPlVt for 0, t, tf, with Se con-
stant, we can find an asymptotically correct solution for the
limit tf @1/V relevant to the NFES.1,5 We will only consider
the case where there is one channel in each electrode. As in
the equilibrium casefcf. Eq. s35dg

R= expfl lnSstdg. s59d

In this case the solution forYszd, valid for uzu @V−1, is given
for Refzg,0 or Refzg. tf by
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Ysz,ld = csz,ld, s60d

while immediately above and below the cut,f0,tfg,

Y+st,ld = S1 − gst,ld
0 1

Dc+st,ld,

s61d

Y−st,ld = S 1 0

+ hst,ld 1
Dc−st,ld.

Here gst ,ld=R12/R11 and hst ,ld=R21/R11. The functions
c±st ,ld=cst± i0,ld, wherecsz,ld is given by

c = expFsx1t0 + x2t3dln
z

z− tf
G , s62d

with

x1sld =
lnR11/R22

*

4pi
, x2sld =

lnsR11R22
* d

4pi
. s63d

Here t3 is the third Pauli spin matrix andt0 is the identity
matrix. The derivation of Eqs.s61d follows that given in Ref.
1. The idea, which was explained in detail in the context of
inverse scattering problems in Ref. 3, is to solve for a func-
tion Wszd, which satisfies the same jump condition asYszd
but in a complex plane with additional cuts. For this prob-
lem, the additional cuts are parallel to the imaginary axis and
run from the branch points atz=0 andz= tf to infinity. The
discontinuities inWszd across the vertical cuts scale ase−uVzu.
If Y is approximated byW, the errors in lnxR defined in
ss13dd are onlyOs1/Vtfd, and can, in principle, be computed
order by order in powers ofsVtfd−1.

The form for logxR for tf @V−1 is found by inserting Eqs.
s61d into s26d and s13d and computing the integrals overt
andl as in the equilibrium case:5

lnxstf,Vd = − ifE0 − DsVdgtf − b8 lnsiVtfd + D, s64d

whereDsVd is given by the nonequilibrium generalization of
Fumi’s theorem18,19

DsVd =E
−`

0 tr ln fSesEdg
2pi

dE+E
0

V lnfS11
e sEdg

2pi
dE. s65d

The constantb8 is given byfcf. Eq. s53dg:

b8 = S lnsS11
e d

2pi
D2

+ S lns1/S22
e d*

2pi
D2

. s66d

The constant termD can be estimated by requiring that the
form for lnx, Eq. s65d, matches the equilibrium one attf
=V−1, Eq. s38d, valid for tf !V−1. This constant gives the
contribution from excitations with frequencies betweenV
andj0. This gives

D = b lnj0/V. s67d

The result forGstfd can be seen as an adaptation of the equi-
librium result. The real phase shiftssgiven by −i times the
logarithms of the eigenvalues of the scattering matrixSed,
which appear in the formulass53d, are replaced by complex
phase shifts. In the forward bias case described by Eq.s53d,

these are −i lnS11
e and −i ln s1/S22

e d* . The effect of the com-
plex phase shifts is to smooth the singularity seen in equilib-
rium sthis could be expected on quite general groundsd and
to introduce a polarity dependence. This polarity dependence
affects both the shape and the position of the spectrum and is
evident in Fig. 2 where we showxGsvd for a particular
choice ofSe. The dependence of the spectrum,xGsvd, on the
polarity of the device, when operating out of equilibrium, is
governed by the differencea12;a1−a2 swith a1,2 as defined
in the figure captiond. The difference in the overall position
of the spectrum on changing the polarity is given by the
difference in the second term on the right hand side of Eq.
s65d and is proportional toa12. This origin of this shift of the
spectrum is the change in the nature of the scattering across
the barrier from fully coherent in the equilibrium case to
incoherent for timestf @V−1 in the nonequilibrium case. The
shape of the spectrum reflects the decay of charge from its
initial distribution sthe equilibrium distribution forS=1d to
the steady-state distribution forS=Se.8,21 In the nonequilib-
rium case, this decay can occur differently depending on the
polarity. If more charge is needed in the left-hand electrode
to screen the potential characterized bySe than in the right-
hand onesa12.0d, this charge can come from states within
V of the Fermi energy of the right-hand electrode when the
device is reverse-biased but not when it is forward-biased.

For the model device shown in Fig. 1 the absorption spec-
trum is given by the Fourier transformssee Appendix Bd of
Gstfd rather thanFstfd, as the transition in the barrier is pre-
sumed to be dipolar. However, the corresponding function
Fstfd is also important. In Refs. 30 and 31 Yuval and Ander-
son showed that the Kondo problem could be treated as an
infinite sequence of spin flips or switching events, with the

FIG. 2. Spectral function RexGsvd computed from Eq.s10d with
v in units of the bias voltageV. The spectra depend onS11

e

=ÎRei2a1 and S22
e =ÎRei2a2, where R is the reflection probability.

The curve marked1 s2d refers to the case in which electrode 1s2d
is at the higher chemical potential. Also shown is the corresponding
equilibrium result calculated from Eq.s53d usingj0=V sRef. 29d. In
addition to the overall smoothing of the singularities, expected in a
nonequilibrium system, there are two significant nonequilibrium
features. First, the maximum in the spectral weight is shifted away
from its equilibrium value by an amount proportional to the applied
voltage. The shift, RefDsVd−Ds0dg, which is given in the forward-
biased case in Eq.sB4d, depends on the polarity of the voltage.
Second the form of the function changes on reversing the polarity
of the device.
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response of the conduction electrons to each switching event
characterized byFstfd. Given the long-standing interest in
nonequilibrium effects in the Kondo effect,32,33 the correct
nonequilibrium form forFstfd would be the starting point for
the study of the nonequilibrium Kondo effect using a gener-
alization of the Yuval-Anderson mapping.

We must first write the functionF and the open line func-
tion L in terms of the gauge-transformed basis:

Lstfd . Wi
*Înie

−iPlVtfFY−stfd
1

it f
Y+

−1s0dG
ii8

Wi8
Îni8. s68d

We can now insert the solution forY+ swith l=1d from Eq.
s61d into Eq. s51d. The result can be written

Lstfd .
1

it f
W*S zfsiVtfd2x+ 0

azfsiVtfd2x+ siVtfd2x−
DW , s69d

where x±=x1s1d±x2s1d with xisld defined in Eq.s63d, a
=S21

e /S11
e andzf =e−iVtf.34 The absence of a contribution pro-

portional toW1
*W2zf is to be expected. This would involve a

contribution to the open-line function from an electron ini-
tially placed in the right-hand electrode exciting the Fermi
gas in the left electrode. Since we are assuming that the
tunneling through the barrier by the electron is a slow pro-
cess on the scale of 1/V, this does not lead to a singular
contribution toF. fThere is still a contribution toF propor-
tional to W1

*W2zf from the direct scattering termCGstfd in
Eq. s48d.g

The effect of the open line contribution onFstfd
=GstfdLstfd is the natural generalization of the equilibrium
result that one might expect given the results forGstfd. The
corresponding spectral functions is shown in Fig. 3 for a
particular choice ofSe. For simplicity we only look at the
case where the electron is added and removed from the same
si =2d electrode, i.e.,W ,s0,1d. The dependence of the spec-
trum on the polarity of the device is present even in the case
whereSe is symmetric. When a particle is added to an elec-

trode, the response of the system will depend on whether the
electrode is at the higher or lower chemical potential. The
form of the spectrum can also differ substantially from what
happens in equilibrium. For the casea1=a2=0.4 and R
=0.7 shown in Fig. 3, there is no real peak left over from the
equilibrium result. This is because the phase shiftsdz, corre-
sponding to the eigenmodes ofSe, are small, and hence the
exponents in Eq.s53d for the equilibrium functionxFsvd
,v−sd§ −pd2/p2

are also small. The corresponding singularity
is weak and easily smoothed out by the finite lifetimes of
states close to the Fermi energy in the nonequilibrium case.
This smoothing is enhanced because one of the phase shifts,
dz, is always larger thana1 and a2. This larger exponent
gives the dominant singularity in equilibrium, but is then
effectively replaced bya1 out of equilibrium.

IV. CHARGE TRANSFER: CSAC

The existence of CSAC was predicted in Ref. 12. These
consist of a sequence of pulses that propagate through a con-
tact. When the bias across the contact is described a class of
periodic swith period Vd rational functions of the variable
z=eiVt, then the shot noise is minimized and the noise distri-
bution does not depend on the separation of the pulses. This
result is still not well understood, nor is it possible, using the
original derivation, to establish how robust these states are
against deviations from zero temperature or from the ideal
pulse shape.

Recent rapid experimental progress in the application of
microwave radiation at low temperatures suggests that the
experimental test of the existence of the CSAC is just about
possible. Several experimental groups are pushing the tech-
nology in this direction,35–37and it should only be a matter of
time before experimental data become available. However,
interpretation of these future experiments will not be easy
using the analytical method used in Ref. 12 as this depends
crucially on the particular shape of the pulses. There are no
predictions about what happens when the shape of the pulses
deviates slightly from the required onessomething unavoid-
able in any real experimentd, nor is the effect of nonzero
temperature known.

Here we show that the results of Ref. 12 for the CSAC are
easy to derive using the RH approach. When the pulses are
periodic as in the case of the CSAC, the RH problem sim-
plifies. It requires solving for functions that are analytic in
two disconnectedregionssinside and outside the unit circled
with the jump function specifying the discontinuity across
the boundary between them. We show that the particular case
of the CSAC corresponds to a RH problem that can be
solved exactly using combinations of meromorphic functions
in the plane—one of which is analytic inside and one outside
the unit circle.

The model device considered in Refs. 1 and 12 consists of
a tunnel junction driven by a bias voltageVstd, which is
periodic in time with periodT=2p /V. It is equivalent to the
device shown in Fig 1. We are interested in the change in
physical quantities over one cycle of the pump in the limit
tf @T. In this limit, effects induced by the switching on and
off of the periodic potential att=0 and t= tf are irrelevant.

FIG. 3. Spectral function RexFsvd computed from Eq.sB10d
with v in units of the bias voltageV for the casesW1,W2d
,s0,1d in Eq. s51d. The curve marked1 s2d refers to the case in
which electrode 1s2d is at the higher chemical potential. Also
shown is the corresponding equilibrium resultsRef. 29d. For these
relatively small phase shifts the singularity seen in equilibrium dis-
appears completely, although there is still a polarity dependence of
the spectrum even though the scattering matrix is symmetric.
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The scattering matrixS is at some constant valueSe between
0 andtf. Applying the time-dependent gauge transformation
s58d leads toS becoming a periodic function of time, so that
it no longer commutes with itself at different times.

The distribution function for any single-particle observ-
able measured in this periodically pumped Fermi system will
involve the solution of a noncommuting RH problem. In par-
ticular, the characteristic function or generating function for
moments of the distribution of the net transfer of charge from
electrode 1sleft electroded to the electrode 2sright elec-
troded, xsld, is given by Eq.s4d with the operatorR given by

R̂sld = Û†stfde−ilQ̂1ÛstfdeilQ̂1. s70d

Here

Q̂1 = o
«

â«
†Plâ«. s71d

For states close to the Fermi surfacesE=«+«8.0d, the ma-
trix R in the time representation can be written

Rst,ld = S−1stde−ilPlSstdeilPl , s72d

so that the characteristic function will be given by Eqs.s12d,
s13d, ands25d:

lnxsld = Trflns1 − f + fRdg. s73d

If the inverse of the solutionY+std to the RH problems22d
and s23d with R given by Eq.s72d, is analytic in the upper
half-plane, we can write the characteristic function as

lnxsld =E
0

l

dl8E dt trHY+fY+
−1R−1 dR

dl8
J . s74d

Using Eqs.s72d and s21d, and computing explicitly the de-
rivative with respect tol, we obtain1,38

lnxsld =E
0

l dl8

2p
E dt trHdsSeil8PlY+d

dt
sSeil8PlY+d−1PlJ .

s75d

fIf the eigenvalues ofY+ have zeros in the upper half-plane,
there are additional contributions to the right-hand side of the
corresponding relations to Eq.s24d for Y+

−1 from its poles. In
this case,s1− f + fRd−1 is no longer given by Eq.s25d but can
be found using methods described in Chap. 6 of Ref. 16.g

In the case of the periodically driven pump, the scattering
matrix safter applying the gauge transformationd is periodic,
Sstd=Sst+Td. If we change variables toz=e2pit/T, we need to
find a functionY+szd, which is analytic foruzu ,1, andY−,
which is analytic foruzu .1 and Y−→const whenuzu →`.
On the unit circleuzu =1,

Y−Y+
−1 = S−1szde−ilPlSszdeilPl . s76d

The characteristic function for charge transmitted during one
cycle of the periodic pump in the limittf /T@1 is given by

lnx =E
0

l dl

2p
R

uzu=1
dztrHdsSeilPlY+d

dz
sSeilPlY+d−1PlJ .

s77d

CSAC’s were reported in Ref. 12 for the case when the
phase factor in Eq.s58d can be written as a rational function,
lszd, of the variablez=e2pit/T:

expS+ iPlE
0

t

VstddtD = Slszd 0

0 1
D

lszd = P
i=1

N z− ai

1 − ai
pz

, s78d

where either alluai u .1 or all uai u ,1. We can chooseuai u
.1 without loss of generality asz°1/z simply reverses the
polarity of the device. In this case, we decomposeRsz,ld
ssee Ref. 1d as follows:

R= S 1 0

a/lszd 1
DSa 0

0 1/a
DS1 blszd

0 1
D , s79d

where

a = uS12u2eil + uS11u2,

a = −
S21

e sS22
e d*s1 − eild

a
,

b = −
S12

e sS11
e d*s1 − e−ild

a
. s80d

The solution to the RH problem

Y−Y+
−1 = S 1 0

a/lszd 1
DSa 0

0 1/a
DS1 blszd

0 1
D s81d

is clearly

Y− = S 1 0

a/lszd 1
D ,

Y+ = S1 − blszd
0 1

DS1/a 0

0 a
D .

Inserting this into Eq.s77d gives the result reported in Ref.
12:

lnxsld = N
tfV

2p
lna s82d

with a given by Eq.s80d.
The surprising feature of the results82d is that it implies

that the second moment of the shot noisekn2l achieves the
absolute minimum for given charge transferknl,12 which is
the value obtained in the constant bias caseai →` for all i.
The feature of the phase factorlszd, which leads to the RH
problem being so easy to solve, is that all its polesszerosd are
either inside or outside the unit circleuzu =1, which means
that the decomposition ofR in Eq. s79d automatically solves
the RH problem. In the case of an arbitrary rational function
for lszd this is not the case as there can be points at which
detuY+szdu vanishes inside the unit circle. The corresponding
formulas to Eq.s24d Y+

−1 pick up additional terms on the
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right-hand side ands1− f + fRd−1 is not given by Eq.s25d,
although, in principle, it can still be found given the solution
to the RH problemYszd.

V. CONCLUSIONS AND OUTLOOK

The RH approach is a general method for computing the
response of a Fermi gas to a localized time-dependent per-
turbation. There are two key steps to the method. First, pro-
vided the conditions5d is met, the method works with the
scattering matrix defined on the instantaneous value of the
potential rather than with the Hamiltonian. This has the at-
tractive feature of working directly with the physical quanti-
ties determining the long time response of the system to a
perturbation, namely scattering amplitudes for particles close
to the Fermi surface. Conditions5d is essentially the require-
ment that the perturbation varies more slowly than the delay
time for a particle traversing the region in which the pertur-
bation acts. The second key step is to relate the response of
the Fermi gas to the solution of a noncommuting RH prob-
lem s22d and s23d. The RH problem corresponding to any
given experimental situation is usually easy to set up. Its
solution and the interpretation of the results are a more deli-
cate task that needs to be repeated for each new physical
situation. While there is no analytical solution of the general
non-Abelian RH problem, there is a powerful technique for
finding asymptotic solutions valid for frequencies much
smaller than those present in the jump function.3

Here we have emphasized the generality of the approach
and applied it to two existing problems—the Fermi edge
singularity and the shot noise in a periodically pumped tun-
nel junction. The calculations in the two cases are very simi-
lar. In the case of the FES we have rederived all the known
results for the equilibrium case emphasizing, in particular,
how the method is no more complicated in the case of the
nonseparable potential than in the separable case. For the
nonequilibrium device shown in Fig. 1, we have explained
how the results for the core-hole Green’s function of Ref. 5
were obtained and given the corresponding results for the
open-line function Lstfd Eq. s69d. For the case of the
CSAC’s, we have shown that the particular form of the pe-
riodically varying bias with the phase factorlse2pit/Td given
by Eq. s78d corresponds to a case in which the RH problem
can be solved exactly.

It is possible within the RH approach to handle correc-
tions to the asymptotic solution to the noncommunting RH
problem we have been using in order to allow us to compute
the response of systems in the intermediate regimeswhere
one is interested in the response at frequencies comparable to
those introduced by the perturbationd. The RH problem lends
itself naturally to a type of perturbative analysis. The correc-
tions to the approximate solution valid for long times, Eqs.
s60d and s61d, can be described by multiplying the approxi-
mate solution by a function that is analytic except across the
additional vertical cuts introduced to simplify the original
problem. This function can be specified by a Cauchy integral
around the cut. Preliminary work in this direction has been
attempted in Ref. 39.

Finally, the RH method should generalize to nonzero tem-
peratures. As was observed in Ref. 26, the singular integral

equation appearing at finite temperatures in a related prob-
lem can be solved analytically. Also, the analytic treatment
of the finite-temperature Fermi-edge singularity in Refs. 24
and 40 again suggests that the RH approach will generalize
successfully to finite temperatures.

APPENDIX A: BOUND STATES

If the perturbing potential generates a bound statessd, then
Eq. s6d is no longer correct. In the case where the potential
fand henceSstdg simply switches between its unperturbed
value and a new but time-independent value att=0 and back
again att= tf, we can corrects by including the effect of the
bound state explicitly. The treatment follows closely that of
Ref. 10, although only the case of a separable potential was
treated there. We write

s = s̃ + eiH0tuble−iEbtkbu. sA1d

Here ubl is the bound state wave function, whiles̃ describes
the scattering of the states within the continuum, and is given
by the Fourier transform of the scattering matrixSstd, Eq.

s6d, as before.sH0 is the matrix ofĤ0 taken between single-
particle basis states.d

For the case of the functionGstfd=detu1− f + fsu fsee Eq.
s31dg we have

Gstfd = G̃stfddetu1 + Aublkbuu = G̃stfds1 + ABd, sA2d

whereAB=kbuAubl with

A = s1 − f + fs̃d−1feiH0te−iEbt, sA3d

and whereG̃stfd=detu1− f + fs̃u. We write the bound state as
an expansion over the basis vectors

ubl = oe
ue · âe

†ul. sA4d

For long timestf the response is dominated by states within
1/tf of the Fermi energy and it is a reasonable approximation
to neglect the energy dependence of the coefficientsue. After
switching to the time representation, and using Eq.s49d with
s̃ in place of s, we obtainsnl is the density of states in
channelld

kbuAubl =
1

2p
e−iEbtfo

ll8
E dede8E dt1dt2ul8

* ul

3 Înlnl8e
ie8t1fY+fY−

−1glt1,l8t2
eiestf−t2d. sA5d

Integrating over energies and times gives

AB , e−iEbtful
ÎnlFY+s0d

1

− it f
Y−

−1stfdG
ll8

ul8
* Înl8. sA6d

ProvidedSstd commutes with itself at all times between 0
and tf, Y is given by Eq.s37d. For the single-channel case

with S=e2i d̃, we obtain
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kbuAubl ,
n

it f

1

sij0tfd2d̃/p
. sA7d

Here we introduce the quantityd̃, which is the phase shift
modulop and takes values on the intervalf−p /2,p /2g. Nor-
mally the phase shiftd is defined with a jump ofp at a
bound state, thereby ensuring compliance with the Friedel
sum rule.19 However, when writing the scattering matrix as
in Eq. sA1d, the contribution from the bound state to the
scattering matrix is explicitly included in the second term on
the right-hand side and is not in the scattering matrixS. At
the bottom of the band, the value of the phase shift that

enters the threshold shift is clearlyd̃ as emphasized in Ref.
10.

Although the calculation is longer, the functionFstfd can
be obtained in a similar manner by replacings in Eq. s46d by
the form sA1d. One needs only to keep track of terms up to
first order ine−iEbtf. fHigher-order terms must give zero as
they correspond to double or higher occupancy of the bound
state. They can be seen to make no contribution by subsitut-
ing the formulasA1d in Eq. s42dg.d As for the case of the
function Gstfd considered above, we neglect the energy de-
pendence ofWe andue fsee Eqs.s29d and sA4dg. We define

Cb = sW* ·udsu* ·Wde−iEbtf , sA8d

Õ = s1 − f + fs̃d−1f . sA9d

HereÕ is just the scattering state contribution toO fsee Eq.
s47dg:

O . Õ − ÕeiH0tfuble−iEbtfkbuÕ. sA10d

We obtainffrom Eq. s48dg

Fstfd = GstfdfC − kguOuhlg . G̃stfdCb − G̃stfdf1 + ABgkguOuhl.

sA11d

Retaining the dominant terms and ignoring the possibility
that there is an unexpected cancellation between terms pro-
portional toe−iEbtf,

Fstfd = G̃stfdL̃stfd + aCbG̃stfd, sA12d

wherea,1 is some constant andL̃stfd is the scattering state
contribution to the open-line function. For the single-channel

case withS=ei2d, we again assume that the exponent inG̃stfd
is d̃=d−p and obtainFstfd,Fbstfd+F0stfd with

Fbstfd , e−iEbtf
1

sij0tfdsd̃/pd2
, F0stfd ,

1

sij0tfdsd̃/p − 1d2
.

sA13d

APPENDIX B: COMPUTING SPECTRAL FUNCTIONS

Given Gstfd or Fstfd we would like to compute the corre-
sponding spectral functions given by a Fourier integral over
tf. Assume that scattering matrix,Se, has diagonal elements

ÎRei2a1,2. Using the complex cutoffzV snormally z= id, we
have from Eq.s64d

lnGstf,Vd = − ifE0 − DsVdgtf − bG lnszVtfd + D. sB1d

The exponentbG=x+
2+x−

2, where

x+ =
lnS11

e

2pi
=

a1

p
− i

lnR

4p
sB2d

and

x− =
lns1/S22

e* d
2pi

=
a2

p
+ i

lnR

4p
. sB3d

The modified threshold shift is given by Eq.s65d

DsVd = SDs0d + V
a1 − slnSed11

p
D − iVS lnR

4p
D . sB4d

The real part ofDsVd fixes the threshold. We will absorb this
into the definition of frequency when computing Fourier
transforms.

We write bG=bG1+ ibG2 with

bG1 = Sa1

p
D2

+ Sa2

p
D2

−
1

2
S lnR

2p
D2

sB5d

and

bG2 = −
sa1 − a2d

p

lnR

2p
. sB6d

For the functionFstfd, the exponent becomesbF=sx−−1d2

+x+
2 or bF=x−

2+sx+−1d2 depending on whether the electron is
added to the electrode with lower or higher chemical poten-
tial. This givesbF=bG−2x±+1 and

bF1 = bG1 −
2a1,2

p
+ 1, bF2 = bG2 ±

lnR

2p
. sB7d

Introducing

v2 = − lnR/4p, sB8d

the spectral functions ofG or F are proportional to the real
part of the Fourier integral,xF,Gsed, where:

xsed =E
0

`

dtfszVtfd−besie−v2Vdtf , sB9d

with b=bF for xF andbG for xG. Here the lower limit of the
integral is taken to be 0, which is only valid whenb1,1.
Whenb1.1, contributions from the lower limit of the inte-
gral dominate and the response is dominated by high-
frequency contributions that are not changed from the equi-
librium case. These are not described by formulas64d and
depend on details relating to the band edge. If the phase
shifts x± are small, which can be the case for the spectral

function of F for G̃AB in the presence of a bound state; see
Eqs.sA2d and sA7dg, thenb1 will be close to 1. In this case
xsed given in Eq. sB9d contains a significant contribution
from times tf ,1/V for which our asymptotic solution for

Fstfd sor G̃ABd is incorrect. We can correct for this by noting
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that when 1−b!1 the contribution from times withVtf ,1
gives just a constant offset that can be subtracted fromx. To
see this, we expand the exponential termesie−v2Vdt in the in-
tegrand and integrate term by term fromVtf =0 to Vtf =1.
The first term in the expansion is independent ofe and much
larger than subsequent terms providedse /Vd!1/u1−bu. In
practice we subtract from the real part ofx its value atv
.−V. sWhen 1−b is not small the contribution from the
timesVtf ,1 to the real part ofx is negligible anyway.d

EquationsB9d is in the form of a standard integral and
fsee Eq.s8.312.2d in Ref. 41g is given by

xsv1d = sizd−b i

V
S 1

v1 + iv2
D1−b

Gs1 − bd. sB10d

If we defineV= uv1+ iv2ueifV and write

Gs1 − bd = uGs1 − bdueifG, and iz = eifz, sB11d

then

xsv1d = e−ib1fz+b2fz
i

V

eib2lnV

V1−b1

3 eisb1−1dfV−b2fVuGs1 − bdueifG. sB12d

The real part ofxsv1d can then be written29

Rexsv1d =
uGs1 − bdu

V

1

V1−b1
e−b2sfV−fzd

3 sinfb1sfz − fVd + sfV − fGd − b2lnVg.

sB13d

For both functionsF andG, the cutoff parameterz= i, so
fz=p.
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