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Fermi gas response to time-dependent perturbations
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We describe the Riemann-HilbgRH) approach to computing the long-time response of a Fermi gas to a
time-dependent perturbation. The approach maps the problem onto a noncommuting RH problem. The method
is nonperturbative, quite general, and can be used to compute the Fermi gas response itfodti\en
equilibrium) as well as equilibrium systems. It has the appealing feature of working directly with scattering
amplitudes defined at the Fermi surface rather than with the bare Hamiltonian. We illustrate the power of the
method by rederiving standard results for the core-hole and open-line Green’s functions for the equilibrium
Fermi edge singularity=ES problem. We then show that the case of the nonseparable potential can be solved
nonperturbatively with no more effort than for the separable case. We compute the corresponding results for a
biased(nonequilibrium) model tunneling device, similar to those used in single-photon detectors, in which a
photon absorption process can significantly change the conductance of the barrier. For times much larger than
the inverse bias across the device, the response of the Fermi gases in the two electrodes shows that the
equilibrium Fermi edge singularity is smoothed, shifted in frequency, and becomes polarity dependent. These
results have a simple interpretation in terms of known results for the equilibrium case buirwghneral
complex-valuetlcombinations of elements of the scattering matrix replacing the equilibrium phase shifts. We
also consider the shot noise spectrum of a tunnel junction subject to a time-dependent bias and demonstrate that
the calculation is essentially the same as that for the FES problem. For the case of a periodically driven device
we show that the noise spectrum for coherent states of alternating current can be easily obtained using this
approach.
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I. INTRODUCTION some limiting cases by solving the equations of motion

An approach to the study of the quantum statistics of arflirectly®°One of the advantages of the RH method is that it
arbitrary single-particle observable in a Fermi gas has beer@pplies equally to all such problems and therefore offers the
recently described in Ref. 1. We refer to it as the RH ap-prospect of a unified approach to computing the time-
proach, as it reduces the calculation of a determinant descrilslependent response of all observables in Fermi gases.
ing the quantum statistics of an observable to the solution of Setting up the description of a problem in the RH frame-
an (in general non-Abelian Riemann-HilbeitRH) problem.  work is quite straightforward. Given the solution of the
The relation between such determinants and RH problemsingle-particle scattering problem, the response of the Fermi
has been known for a long time, and has been used extegas reduces to the computation of a determinant of an opera-
sively in studies of quantum inverse scattering probléms. tor taken over single-particle states occupied in the initial
a result, a lot is known about the non-Abelian RH probfem, configuration(The generalization of the method to the more
and much of this can be taken over directly to the study ofgeneral case in which the initial state is given in terms of a
the quantum statistics of Fermi gases. density matrix rather than a single quantum state should be

The RH approach gives an expression for the distributiorpossible but has not yet been formulajethe evaluation of
function of an observable in a Fermi gas perturbed by ahis determinant then reduces to the solution of a Riemann-
time-dependent potential. To illustrate the method, one of uslilbert problem. The solution is in general a matrix-valued
used it to prove a long-standing conjecture, first stated irfunction analytic everywhere except across a cut, along
Ref. 4, that the two sources of shot noise in a biased poinivhich the function is discontinuous. The discontinuity is
contact, namely fluctuations in the number of attempts tdixed by the driving force or perturbation acting upon the
tunnel through the barrier and fluctuations in the number ofystem! From the point of view of the Keldysh formalism
reflections, are statistically independém/e have also used the method performs a nontrivial resummation of all relevant
the method to study how nonequilibrium effects alter thediagrams with the help of the solution of the corresponding
fermi edge singularity in a tunnel junctién. RH problem. In the Abelian case, when the discontinuity

The response of a Fermi gas to a time-dependent perturlianction commutes with itself at all points along the cut, the
ing potential is a central problem in condensed matter physsolution is given in terms of an integral. The classic solution
ics. It has been tackled in many different contexts often withof the FES probler® is the simplest example of this solu-
different approaches. For systems out of equilibrium, such agon. In the non-Abelian case, the solution to the RH problem
quantum pumps, perturbative approaches, based on th&not known in general, although asymptotic solutions exist.
Keldysh formalism, have been used, while for systems inThese are valid for response frequencies small compared to
equilibrium it has been possible to find exact solutions inthose present in the discontinuity function.
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Here we explain the RH approach in some detail. To il- “iiinat = et nat
lustrate the p05ver of the metﬁc))d we start by showing how Uitaa) _Ee el e)ad), ®

the solution of the equilibrium FES probléf'Cis derived.

We then show the generalization of this problem to includevhereo(e, €') is some unitaryN X N matrix and|) is the true

the case where the “impurity” potential mixes scatteringvacuum with no particles in the systéh.

states of the unperturbed problem—the case of a nonsepa- When computing the response of the Fermi gas to the
rable potential—and deal explicitly with the case when thetime-dependent potential, we will need to compute expecta-
impurity potential gives rise to a bound state. This problemtion values of the type

was treated initially in Refs. 9 and 11, in a calculation that .

solved directly the Dyson-like equation for the appropriate xr=(0|R|0). (4)
Green’s functions. In the RH formulation of this problem the _ . :
discontinuity function, although matrix-valued, is constanttere|0) is the state of the Fermi gas before the perturbation
and commutes with itself. As a consequence, the solution tés applied andR is an operatofor operator produgtrelated

the RH problem is trivial to derive and yields the standardto an obvervable of interest. In general, Rén Eq. (4) will
results of Refs. 9 and 11 with no more work than for the casg,,glve the time-evolution operatdﬁ(tf). For example, in

separable potential case. We show how these results affs case of the shot noise spectrum of a tunneling barier,

changed in a nonequilibrium situation. In both the equilib-yhe inerest is in the statistics of the charged transferred from
rium and nonequilibrium cases, we compute both the core- o . )
hole Green’s function reported in Ref. 5 and the open line®"€ electrode to the other. @, is the charge in the f'ArSt
contribution. Finally we show how the states that minimize€lectrode, ~ then the  expectation value ofR
the shot noise in a periodically driven quantum pump—the=U"(t;)e ™ U(t;)€*? vyields the generating function for
so-called coherent states of alternating cuffef@SAC'S—  moments of the distribution of charge transferred out of
can be described using the RH method. channel 1(into channel 2 during the period betweet=0
and t=t;. In the case of the FES problehthe core-hole

Green’s function (see below is related to the overlap
(0|U{(t)U(t;)|0), whereU,(t;) is the time-evolution opera-
We consider a system in which particles impinge upon g, for {y in Eq. (1). This overlap is an expectation value of
localized potential. The potential takes the same time- A AL A
independent form at timeswith t<0 andt>t,. For 0<t e type(d) with R=Uq(t)U(ty).
<t; the potential varies as a function of time. We take our The effect ofU(t;) acting on the single-particle states of
basis to be the eigenstates of the system whe@. The the basis is given by the unitary matrixe,e’) defined in
states are labeled by their single-particle enargig=1) and  Eq. (3). The matrixo(e,€’) can be related to the scattering
a channel index=1,...,N. We will consider the correspond- matrix, S(t,E), for a particle with energ¥ evaluated on the
ing annihilation operatora,., as theith component of the instantaneousvalue of the potentiaM(t) in Eq. (1). This

Il. PERTURBING THE FERMI GAS

vectora,. The Hamiltonian of the system is then reflects the fact tha®(t, E) encodes all the information in the
- - potential variation®/(t). This relation will be complicated in
H(t) =Ho+ 2 alM(t.e,€)a,, general. However, if
N 0S 3
fo=> eala,. (1) (eme)gg =<t
‘ and 1 ®)
Here M(t, e,€’) is anN X N matrix with M=0 for t<0 and hﬁa_s <1,
Jt JE

t>t;. (In the following, for any operatot:), we will denote

by O the matrix ofO taken between the single-particle basisthe relation between and S becomes simple:
states).
We will be interested in the total effect of the perturba- Oldrer = e
tion, i.e., what is the final state of the system fort; given
the initial state att=0. This requires a knowledge of the 1 o
effect on the initial many-body state of the time-evolution Sare =—/— f dtS,(t,E)ee ), (6)
operatorU(t;), where 2m\

~ whereE=(e+¢’)/2 andy; is the density of states in channel
id—U:ﬁ(t)U(t), U0)=1. (2) 1. The result(6) shows that the total scattering amplitude
dt from statee in channel to €’ in channel’ is just the Fourier
LA . . transform of the scattering matriXt) evaluated on the in-
Beciause the HamiltoniaH(t) in (1) is quadratic, the effect stantaneous value of the potential. This result was used im-
of U(ty) is fully characterized by its effect on the set of plicitly to solve the FES problem in the presence of a sepa-
single-particlescattering states, |): rable potential®

i€’
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A brief derivation of the conditior{5) is given in Ref. 1. (1 0) (Rﬂ Rlz)

= (10
00 Ro1 Ry

The condition can be understood heuristically as foll¢see f=
also Ref. 12. We consider the incoming wave packet to be a

sum over partial waves in chanrélof the basis, in whicts  and

is diagonal before the perturbation is switched on. After im-

pinging on the potential,_ the parti_al waves scattered from 1-f+fR= (Rll RlZ)_ (11)
channell” into channel will take a time of the order of the 1

corresponding Wigner delay time to pass out of the regio

where the potential acts. The conditi¢®) is equivalent to It then follows that

the requirement that the scattering matrix does not change xr=det|Ry,| =defl-f+fR)|, (12
significantly during this delay time. If this condition is satis- _ _ )

fied, relation(6) also has a simple interpretation: the effect of Where det is now a determinant taken over all states in the
the slowly varying scattering potential on an incident partialP@Sis- _ ,

wave is just multiplication by the scattering matrix computed  EXPressindyg as the determinant of 1f+fR taken over

on the instantaneous value of the potentiilit). This can be &l states in the basis, allows us to write

seen by considering a wave packet, with average energy Inxg=Tr(FINR) + TrIn(L-f+fR) - fInR]. (13

and corresponding wave numidérin channell’, incident at

time t on the potentialwhich is assumed to be localized In Eq. (13), we have added and subtracted the ternydh
around the origin This will have amplitude at the origin =Tr(f In R). This term consists of the diagonal elements of

proportional toe €'t. Scattered wave packets will emanate In R silJJmmedlover all occzpie(:] states |m| an?_\ givels the

e i ; et tributions linear irt;. It often has a simple physical inter-
from the source at the origin with amplitud&g (t)e”<'tin ~ CONUI f ha .
channels labeled bly If dispersion effects are small, this will preta“oﬂ- In the FES problem it yields the thres_hold stuft
lead to wave forms a distancefrom the origin of the form change |n.the ground state energy of the Fermi gas after the
S, (t— (x/vp)eK ol-000] whereu, = del ok is the velocity of core hole is creatgdwhile in the shot noise spectrum of the

’ i o5 tunneling barrier it can be shown to be related to the average
states in channel Decomposing this into waves of the form .on<fer of charge across the barridthe Brouwer

ekixvil) a5t —t, gives the result6). The normalization fac- formulat-14
tor 1/\uy{ is included so that in the case where the incom- The second term in Ed13),

ing flux (~v|yy|? is totally scattered into channel the

scattering amplitude is 1. In x&' =TrIn(1 -f+fR) - fInR], (14)

accounts for all the nontrivial effects associated with excita-
tions close to the Fermi surface induced by the perturbation.
The calculation of the response of the Fermi gas to thgStates far from the Fermi energy, whénl or f=0, make
time-dependent perturbation reduces to the computation afo contribution to this term. As a result there are no prob-
the expectation valugz=(0|R|0) in Eq. (4). In the following  lems associated with effects of the band edge or short time

we will assume thal0) is a single Slater determinant. In this cutoff when computing this termin the case of the FES
case the Computation % requires the evaluation of a sing|e problem it describes the line Shape, while in the shot noise

A. Fermi sea atT=0

determinant: spectrum it gives all the higher moments of the charge trans-
A fer distribution. When computing this term, we will later
(O|R|0) = det|R], (7)  switch to the time representation in which

where the elements @& are given by 1 f o
e = —— | dtR/(t,E)e ), (15)
Rl l 27T\r mp Rl

Rir(e,€) = (|a.Ra ). (8)
and where the prime on det i_ndicates that the determinant i\grltzo[rar‘lzIgiriglséeczt])nlibi(ne;[ig%/; vl?/irr\:lliltgglrfmailtljyiltgviﬁl\\//;ge.
taken only over _states occup|ed|m. Provided the condition5) is satisfied, we will be able to
When the initial Slater determinaf@) corresponds to a evaluates by ignoring the dependence ft, E) on E. (This

f!lled Fermi sea, it is gseful to introduce the Fermi distribu—E dependence is not important as states’far from the Eermi
tion as an operator with elements: energy do not contribute to tqf)). As a result the term

_dle-€) In quz) will depend only on the time dependence of the scat-

faenr = \ﬁ S 0(= (e = ). © tering matrix evaluated at the Fermi energy, which we will
'l denote byS(t).

Here w is the chemical potential, which we take to be zero.
For the nonequilibrium problems discussed later the chemi-
cal potential can vary according to the channel ingme the
discussion around Ed57)]. In a block notation that sepa- Computing the second term in EL3), In X(RZ), is the
rates the states with positive and negative enerfjiasdR  central task in the evaluation of the response of the Fermi
become gas. The nontrivial part of this is finding the inverse (&f

The Riemann-Hilbert problem
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-f+fR), which can then be used in an integral representationvhich solves an auxiliary Riemann-Hilbert problervi(z)
for its logarithm. This inverse can be written in terms of the should be analytic everywhere in the compieglane except
solution of anN X N matrix Riemann-Hilbert problem, where on the interval0,t;] on the real axis along which it satisfies
N is the length of the vecta,, i.e., the number of channels
in the problemsee Eq.(1)]. Y-OY;Ht) =R(t) where Y.=Y(txi0). (22

A standard procedure for representing the logarithm of a - .
infinite matrix, such as the one on the right hand side of Eqr?n addition’y should satisfy
(14), introduces a dependence foR vial® Y—1 when |7 — . (23)

R(N) = exp\ InR) (16)  These analytic properties together with E49) yield the

and then uses an integral overto represent the logarithm: USeful identities

1 drR fy_f=fvy_,
In Xgef d\ Tr[[(l—f +fR)‘1f—fR‘1]a}. (17) (24)
0 Y. f=Y,f.
[The\ dependence dR introduced in Eq(16) is assumed in
Eq. (17) although not written explicithy.
To compute the trace in Eq17), we switch to a time

Using these relation@and assuming that™! is also analytic
everywhere except along the guit is then easy to verify

representation in which a quantity becomes that
1 (" = o 1-f+fR™=VY,[1-)Y; + Y. (25)
A||/(t,t,) = —f V|d€J V|rd6,A||r(6, 6’)8‘6 t —Iet. . i .
2m\ynwp J — As an aside, we note thal —f+fR)™! is the solution to a

(18) singular integral equation, withplaying the role of the sin-
gular kernel of the Cauchy type. It is well known that such

Now, the Fermi distribution Eq9) is no longer diagonal: integral equations can be solved using Carleman’s method,
) s which writes the solution in terms of an analytic function
fi(tt) = '_# (199  satisfying a Riemann-Hilbert probletf.In the one-channel
2wt—-t' +i0 case the corresponding singular integral equation for the case

whenR(t) is constant betweet=0 andt=t; is the problem
solved in Refs. 7 and 8 when describing the equilibrium
FES.

Inserting Eq.(25) into Eq. (20) and using Eq(21) we
tain

However, as we can neglect tliedependence oR(A,t,E)
and S(t,E) [see discussion after E¢L5)], R and S are now
diagonal int and equal toR(\,t,0)8(t—t") and S(t,0)48(t
-1’) respectively. In the time representation, the product ofob
two quantities requires matrix multiplication in the space of
scattering channels together with an integral over the inter- @ | 1 dY, ., ,dR
mediate time coordinate. Where one of the quantities in the Inxg’ = er dNJdttf at YR NG (26)
product is diagonal i (for exampleS), the integral over the 0

intermediate time coordinate is of course trivial and the prod-p,¢ integral overt is over all times. However, adR/d\
uct reduces to the simple matrix multiplication in the channelnorma"y vanishes for>t; andt<0, one often only needs to
space. Tr now becomes a trace over the scattering Chan”e'ﬁtegrate from O td;.

which we denote by tr, and an integral over the time coordi- Equations(26) and (13) map the characterization of the

nate, so that responseyg in Eq. (4) onto an integral involving the solu-
1 dRrR tion, Y(t), of a RH problen{Egs.(22) and(23)]. An appeal-
In Xg):J d)\fdttr [(1-f+fR)™ - fR_l]a : ing feature of this formulation is that these formulas apply
0

for any choice of variablgg provided that the Fermi gasr
(200  gases is initially in its ground state and apply for many
nonequilibrium cases as well. R(t) commutes with itself at
. , ; — different values ot, the solution of the RH problem can be
O, one should take I',m“Q(t't ). If AandB are diagonal in written in closed form. Although there is no solution for the
the time representation, it follows that general case, a lot is known about such noncommuting prob-
. [A(t) —A(t’)} ©) lems including some asymptotic solutions valid whghis

_ i
j dttr[A,f]B= f dtlim tr— — much smaller than any characteristic frequencyrit®.
t' ot 2’77' t—-t' + |0

Here, when computing the diagoralqual time elements of

= [ gy 3R B(Y), 21) Il. FERMI EDGE SINGULARITY
2m dt In this section we show how all the known results for the
which is a result we use later. equilibrium FES follow directly from the formula26).
The quantity(1-f+fR)™* can be written in terms of the Within our formalism the case of nonseparable channels con-

function Y(z), which is a matrix in the channel space andsidered in Ref. 9 and again in Ref. 11 is no more complicated
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than the separable case. We will then discuss how these rproblem is clearly in the form of Eq1) with M(t,e,€’)=0

sults are changed in the nonequilibrium case. for t>t; andt<0 andM(t,e,€')=V(e, ') for 0<t<t;. The
corresponding scattering mati&t, E) switches between the
A. Equilibrium identity when the core hole is absent and some constant

value S5(E) when it is present. The asymptotic behavior of

. fthe response at large (when w-wo< &%) is determined by
the x-ray absorptlon'spectrum of a méfta{\/hen a photon states with energies close to the Fermi surface. For these
creates a core hole in a metal, the Fermi gas is affected bgtates we assume that the variationSHE) with E can be
the potential of the core hole, leading to the excitation of .o toq 5o that the conditio) is satisfied.(The limit
particle-hole pairs. The absorption line expected in the abs

. . . ?t >1 is the one considered in Ref)7.
F h O
sence of the Fermi gas becomes a threshold with a smgula Tl lculati iG i f 1 I lest lculati

ity in the absorption spectrum as a function@ wo>0: within the RH approachG is the expectation value of the
(@) ~ |@ = wo| ™, (270 operatorR in Eq. (4) with

The FES problem was first considered in the context o

where w, is the threshold frequency for absorption. It turns R= Ug(tf)fJ(tf). (33)
out that similar singularities are seen in the distribution of A

energy absorbed by the Fermi gas in response to any rapjels the matrix elements dfi(t;) are juste”'io__., it follows
change in potential and not just in x-ray absorption experifrom Eq.(7) thaf.°

ments. For example, the consequences of the FES are also .

seen in a tunnel junction. As the energy absorbed by the G(ty) = e<idet|o
Fermi gas when switching is an important characteristic ofypije from Egs.(3), (15), and(16)
the device, establishing how the FES changes in such tunnel-

ing devices is important for understanding fluctuations in R()=St) and R(\,t)=expXInS(t) =[St
energy transfer across such devices. (35)

The Hamiltonian for the photon absorption experimeht is
The RH problem(22) and(23), reduces to

Y_O)YXt) =[SH)]*, Y—1when|Z —». (36)

When the matrixS is constant between 0 artgd we will

. o _ denote its value by In the single-channel cas&=¢e??
matrix. The operatob' is the creation operator correspond- and the RH problem is solved By

: (34)

H=eb'b+ >, eala + > alV(e,e)a bb' + Hy, (28)

€e

with the operatorsd as in Eq.(1) andV(e,€') is anNXN

ing to the core state and the coupling to the x-ray field is
described semiclassically by Yo = exp{ % In(z zt ))\ . se}. =7
~ ~ ~ Q —
Hy=>, W,.-albé“ +H.c.= X (29 , . o - :
€ (This solution was used implicitly in the original solution to
The absorption spectrum is proportional to the real part ofhe single-channel problem of Ref) Tn fact the resul(37)
the Fourier transform of the response function solves the RH problem even where the problem is not sepa-
o rable provided that the matriceXt) evaluated at different
S(ty) = (0| T{X(t;)X(0)}|0), (300 timest with 0<t<t; commute.[This can be checked by

direct substitution into Eq(36).] We insertY(z) and R(\,t)
into Eq.(26). The integral ovet runs between 0 antd where
In R(\) is nonzero. Inserting into Eq13) and including the
factor of €<t yield

with T the time-ordering operatoS(t;) can be computed
from the core-hole Green’s functibn

G(ty) = (0| T{b(t)b(0)}0) (31) )
and the function In xg=ieits=In igotf<é) , (38)
aa
F(t) = 2 (OT{b(t)[W -8 (t) W 8(0)16(0)]0) where €)= eg+S,-od(e)/ mn(e), with w(e) the density of

!
€,€

states, is the shifted energy of the core-hole in the presence
(32)  of the Fermi gas(The form for the difference betwees

I i 1
Conventionally a minus sign is included in the definition of ande is usually attributed to Funtf:™9 Close to the branch

F andG. However, as we will only deal with the absorption p0|r1tslon at0 .andtf, we cut the integrals off a%l and
case here and takg>0, it is easier to work from these t,f+'§5 Wherego is an energy of order the bandwidth. Equa-
definitions. We have also left out the conventional factor of N (38) gives the welé—known result for the long-time
in the definitions of these Green's functions as in Ref, 7. asymptotic behavior o6:

The calculation of andG reduces to a one-body scatter- ; ~agiet - 2
ing problem’-1” As far as the Fermi gas is concerngd the role Glty) ~ (it 0", a=(d/m)* (39)
of the core hole is to switch on the scattering potential To compute the functiofr(t;) in Eq. (32) is slightly more
V(e,€') at time 0 and switch it off again dt. As such, the involved, although the underlying RH problem is the same.
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As already mentioned, the role of the core hole is to switch 1

on the potential at=0 and switch it off again at;, so that

F(t;) can be written (writing out the channel indices

explicitly)
Fit= 2 W Of(iei’€)0)W ., (40)
Pliei’e) = Ul(t)aU(t)a), . (41)

In the basis of the scattering statéJEa,|> the matrix ele-

ments of this operator are easily shown to be given in terms i’

of o in Eq. (3) by

P — alleg—et
r(lé,llfl)jajrar—e(eo )f(o-jaj’a'o-iei’e’_O-jai’e’o-iej’a’)'

(42)
Using Eqgs.(7) and (40) we find
F(t;) = é<'idet| Co - |h)(g] |. (43)
Here C=C(t;) is the number:
C= E e_idfMeUiei’e’W’e’1 (44)
iei’e
while
|h> = Eja (Ei'e' O-jai’e’vvi'e')ajjrabl
(45)

9l= 2, ( iee_iéfMeUiej’a’)<|aj’a’-

Expression43) is now in the form(7). We could attempt
to solve the corresponding RH problet@2) and (23) as

before, although the relation between the corresponding o
eratorR(t) andSis no longer simple. However, it is easier to

simplify Eq. (46) by factoring outG(t;) =€ < det | o|:
F(ty) = CG(t))de{ 1 -C™Olh)(gl | (46)

with
O=(1-f+fo)'f. (47)

We have used Eq.12) to put Eq.(46) in the form of the

PHYSICAL REVIEW B 71, 045326(2009

L=-—-2

™y

de de’ f dt,dt,W] e <t

X ug[ SYAYS] VoW (50)
Taking W, to be independent of (we are assuming that the
long t; behavior is determined by states with energies within
~1/t; of the Fermi surfacg this simplifies to give

VW, (51)

L=3 V\/i\f'Ti[Yxt;)éY:l(ov]_
i’
The functionsy_ andY, are evaluated @0~ andt=t;. This
prescription is equivalent to the imaginary time cutoff used
to derive Eq.(38) and used in Refs. 7 and 11. Strictly, the
discontinuities inS att=0 andt=t; should be thought of as
the limit of a fast switching process, in which starts to
change at=0 and reaches its new val@®after a short time.
Similarly att=t;, S starts to change back froff to its un-
perturbed value(The corrections associated with a more re-
alistic model of a noninstantaneous switching process were
considered for a related problem in Ref. 2 the single-
channel case we can insert the explicit form Yogiven by
Eq. (37), and recover the standard results

1111
itf (ifotf)_zg/wl itf (ifotf)(5/”)2_25/” '

(52)

When the potentiaV/(e, €’) in Eq. (28) is strong enough
for a bound state of the Fermi gas electrons to form below
the bottom of the band, the results 18(t;) andF(t;) are no
longer correct. The effect of the bound state can be taken into
account explicitly as explained in the Appendix. The results
for G(t;) given by Eq.(A2), and for F(t;) given by Eg.
(A12), have two main contributions. After taking the Fourier
transform to obtain the absorption spectrum, the first corre-
sponds to having the bound state occupied and leads to the
absolute threshold for absorption. The second term relates to
scattering processes in which the bound state is always
empty and leads to a subsidiary thresholdEgtabove the
first in the absorption spectrum.

The resultg39), (52), and(A13) are of course very well
known!® However, none of the key formul&87), (51), and

determinant over all states in the basis. Using the identitya12) require that the scattering mati®should be diagonal

de{1-C™10|h)(g||=1-C Xg|O| hy, we obtain

F(ty) = G(t)(C - (g|O[h}). (48)

in the channel indices. Provided th&tt) commutes with
itself at different times, the results are valid for arbitrary
channel number. We can therefore use the funct®n

As C—0 for larget; (with a functional form which depends 9iven by Eq.(37) to compute the corresponding results for

on assumptions about the density of states at the band,edgi€ case of a nonseparable potential just as easily as in the
the response is determined by the second term. separable case. In the absence of bound states, one obtains

The functionY(z) computed with\=1 in Eqgs.(36) and  With €=€o+Z 2 5/(€)/ v (e):
(25) can be used to fin&(t;). In the time representation
G(ty) = expliegty) (i&oty) 7,

1-f+fo) =Y, fY L (49)

(53

Writing F(t;)=L(t;)G(t;) (L is usually referred to as the
open-line contributiop we find

1 2
Lty => |T§|2,—exp<—5§|nigotf) ,
¢ |tf r
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pox(8]

which are the results obtained perturbatively in Ref. 11. Here
the eigenvalues of the matrE [see after Eq(36)] are writ-
ten ase?%. S° has eigenvector§((); and 7=\ W, f({);.

The perturbing potential, characterized by scattering ma-
trix $, can be strong enough to lead to a bound state with
wave function given by Eq(A4). In the presence of a bound

statds) we take the eigenvalues & to be €2% with &,
defined as the phase shift moduoin channel{ on the
interval [-7/2, w/2] [see discussion after E4A7)]. We
then obtain the generalizations to the nonseparable case of

the results of Ref. 10 fo6(t;) andF(t). We find FIG. 1. Energy levels in an idealized device to demonstrate the
out-of-equilibrium FES. The scattering potential for electrons is

characterized via the’2 2 matrix, S(e), connecting scattering states
in the two wires for particles with energy S= or S depending

h é is th ibut fth . . on whether the defect is in its grouiid) or excited(e) state(with
whereG(ty) is the contribution of the scattering states 9IVeN oy citation energy¥,). S is the identity matrix and® is an arbitrary

by the expression foG in Eq. (53) with phase shifts given nitary matrix.<¢, and <, correspond to the reflection and trans-
by &;, while mission amplitudes, respectively. We will refer to the device oper-
ating as illustrated here, with a negative potentid(\*> 0) applied

to the left electrode, as the forward-biased case.

G(ty) = G(t)(1 +Ag), (54)

) -~ 2~
Ag ~ e Belr > |77{|2e‘2'5£exp<— —5§Ini§0tf) . (55
a
¢ B. Nonequilibrium effects

Here nngi\s’Euff(g)i and theu, are the bound state wave-  The experimental and technological interest in the out-of-
function coefficients given in E§A4). In the presence of the equilibrium response of coupled Fermi systems has grown as

bound state, the functioR(t;) ~ Fq(t;) + Fy(t;) with electronic devices have shrunk. Examples include structured
quantum dots, like the single-electron transistor or the single-
Fo(ty) ~ G(toL(ty) photon detectof® and quantum point contacts. The nonequi-

librium Fermi edge singularityNFES will characterize the
~ energy absorbed by the coupled Fermi gases in a rapid
Fi(t;) ~ e E84%G(t;)|u - W2, (56)  switching process in such devices. The NFES should help
5 explain, for example, measurements of random telegraph sig-
whereL(ty) is the scattering state contribution ltét;) given  nals(RTS). In these experiments, a two-level syst€fiL.S)
by the expression in Eq53), using the phase shif,. couples to the source-drain current flowing in the channel of

Formulas(56) and (53) are the natural generalizations of a metal oxide semiconductor field effect transistMOS-

the single-channel result and have exactly the same interprg—ET) (the TLS resides in the insulating oxide la§fr The

tation as was given originally in Refs. 8 and 21. We repea TS relaées tg the_ rgndom S_I_V\r’]'tCh'ng gf the TL?} be;tweenh
this briefly here as the results for the nonequilibrium cas tigroun ;n. exr?lte st_atzs. de ratio detweent_ etimest 3
(given in the next sectioncan also be understood heuristi- spends in the excited and ground states is measure

cally on a similar basis but with the phase shifts becomin xperimentally. In equilibrium this ratio is fixed by detailed
complex. The exponents,/ )2 and(8,/ m+1)? are, accord- alance, and the deviations from this have been attributed to

A 5
ing to the Friedel sum rule, the square of the net charge thﬁogesqg:frg]fThgﬁ;r%tg'lest nontrivial manv-bodv effects. the
needs to move in to or away from the origin in order to P y y ’

screen the core hole potential. Ftt,) this is 6,/ while FES is also a natural point to start, when looking for a de-

for F(ty) it is (6,—m)/ m if the photoelectron inserted at the f:rr#;UOFE\er%fang nsi?uw;uu?w e?{/(zcr:sit;nC?na::ney-teulgftg?nq IS;ZIS'I
origin is in the{ channel ands;/ 7 otherwise. If there is an | P P gy, g P PUCLEY,

. . the NFES has not attracted as much attention as more diffi-
occupled bound state afler absorptlon~0f the photon, the Mult nonequilibrium problems like the Kondo effect, to which
spective values becom@,+m)/m and 6/, as now the it js known to be relatedThe Kondo effect can be thought
Fermi gas has to provide the addiztional electron, which endsf as a sequence of FES’s associated with each flipping of
up in the bound state. The fort" is just the decay with the localized momeng®

time of the overlap of the wave function of the Fermi gas at In Ref. 5 we reported results f@(t;) for a two-channel
t=t; and the one describing the system created=di in  problem, which modeled a system with two electrodes sepa-
which (with respect to the ground state in the presence of theated by a barrier. The transmission of the barrier depends on
core hole there is an excess charge—5/ 7 at the origin.  the state of a two-level system inside the barrier, see Fig. 1,
That it vanishes as—c is the orthogonality catastrophe with the transition between the two levels assumed to be
described by Andersoft. dipolar. The real part of the Fourier transform of the function
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G(t;) gives the absorption spectrum for the device. The non- [t

equilibrium effects predicted in Ref. 5 should be visible in Sit) — S(t):exp<+|P|f V(T)d7>5(t)

the voltage dependence of the absorption line shape of de- 0

vices like the single-photon detector of Refs. 23 and 27. In ] t

Ref. 23 a quantum dot in the quantum Hall regime is coupled XeXP(‘ IPJO V(T)d7'> : (58

via tunneling barriers to two electrodes on either side of the

dot. For magnetic fields in the range 3.4—-4.2 T, the conduc-

tance through the dot can change from zero to arounévherep' is the diagonal matrix projecting onto states in the

0.3¢?/h when a photon is absorbed via cyclotron resonance';S’tthglseg;séiggggtei(’)r'"%‘r(]PS'i“t:1.arlﬂ(Pl')"];tZ:?' ;rhz effe::t (
in the dot. From the perspective of the two electrodes, the dot ates in tne et electrode IS 10 se
— €—V(t), so that the chemical potential in the left elec-

behaves as a tunneling barrier, which allows tunneling only€ : .
in its excited state. The absorption of the photon and thérOde becomes equal to that in the right electreleen to be

subsequent separation of the h@khich moves into the Zero as befope Forjpsg:onstant bias case, the transformation
=1 ring on the outer part of the doand the particléwhich glvesa(t)—>§1(t):e (2') a .
“falls” into the center of the dot at=2) is rapid, while the ~ The functions Iiyz” andL(t;) for the NFES case are stl
response of the conduction electrons in the two electrodes @ven by Eqs(26) and(50). However, the RH problem sat-
slow and will show effects characteristic of the FES. In theisfied by the functionY(2) is different: In Eqgs.(36) S\(t)
device of Ref. 27, an electron trapped in a dot underneath apicks up an additional time dependence from the gauge
electron channel gives rise to a potential that closes off &ransformation(58), which leads to two important differ-
conducting channel. When a photon is absorbed, the phot&nces to the equilibrium case. First, the funct@fi intro-
exicted hole can recombine with the electron in the trap, théluces a new characteristic energy scale]f the function
potential of the electron disappears and the channel open§(t) has Fourier components with freqgencies-V, the re-
Again the conduction electrons on the two sides of the chansponse will be dominated by states with energégs-V and

nel, ‘see’ the sudden reduction of a tunneling barrier on abwill be insensitive to the nonequilibrium nature of the distri-
sorption of a photon. bution, which only becomes apparent on the energy S¢ale

The main result reported in Ref. 5 was that the formula oflff S(t) only varies at frequencies <V the response will
Noziéres and de DominicigND) describing the form of the come from states with energies<V and will normally be
FES and threshold shifFumi’s theoren®19 generalized in  significantly different from what happens in equilibrium.

a simple way to the nonequilibrium case. For time sciéles  The second main difference following from the additional
<1/V, the phase shifts that appear(@tt;) are real and are time dependence di(t) relates to the case when between
given by the logarithm of the eigenvalues of the scattering=0 andt=t; the scattering matrixbefore the gauge transfor-
matrix S°.%11 This simply reflects the fact that, on these shortmation is constant and equal . In this case it is now no
time scales, the response of the Fermi gas involves excitdenger possible to solve the RH problem with a function of
tions with energiess>V that do not sense the nonequilib- the form(37). Although this form satisfies formally the jump
rium distribution function. On time scalég>1/V, the equi-  condition, Y_()Y;Xt)=S\(t), the corresponding function
librium phase shifts in the two channels are replaced byY(z) is not well-defined for large if S is not diagonal. The
“complex” phase shifts given by I8, and I(1/S;))". The  off-diagonal elements & contain factore*V! so that in the
real part of these phase shifts describes the scattering withinalytic continuation to complex there is an essential sin-
each electrode, while the imaginary part describes the effegularity atz— in Y(z) defined by Eq.(37), and Y(2) no

of scattering processes in which particles cross the barrielonger satisfies the conditiovi— 1. This problem is clearly
One effect of the nonequilibrium operation of the device is toapparent in the RH formulation we have presented. It was
make the scattering between the different electrodes effeenuch less clear in previous attempts to extend the ND
tively incoherent. Here, we find that this interpretation ex-method to the nonequilibrium case and may explain why
tends also for the functioR(t;). these failed® It is also interesting to note that for<1/V,

We show the key steps in the derivation®ft;), empha- we can expand the functia'! up to linear order in/t. Then
sizing the relationship with the equilibrium results, and re-S°=S*(V=0)+CVt, there is no singularity at infinity foly,
port the results foF(t;) including the role of possible bound and the form(37) still works.
states. Since the initial state involves a filled Fermi sea in In general there is no exact solution to the noncommuting
both channelgleft and right electrodgsthe RH formulation ~RH problem? However, in the case relevant to the device
of this nonequilibrium problem is the same as that for theshown in Fig 1.5(t)=€PViS'e PVt for 0<t<t;, with S con-
equilibrium case. The bias across the tunnel junction meanstant, we can find an asymptotically correct solution for the
only that the chemical potentials are different in the twolimit t;>1/V relevant to the NFES> We will only consider
electrodes. One way of handling this difference is to intro-the case where there is one channel in each electrode. As in
duce a gauge transformation acting only on the basis states the equilibrium casé¢cf. Eq. (35)]
the left electrode:

R=exgd\InS1)]. (59)

t
ale) — a(e,t) = exp<+ iPlJ V(T)dT)&(E), (57)  In this case the solution fof(2), valid for |z| >V, is given
0 for R4z]<0 or Réz]>t; by
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Y(z,\) = ¢ (Z,\), (60) Xg

while immediately above and below the c[,t],

1 -yt
Y+(t,)\):(0 7(1t )>1//+(t,>\),
(61)

1 0) N
#ita) 1) O

Here y(t,A\)=R;»/Ry; and #(t,\)=R,;/Ry;. The functions
P (t,N) =y(t£i0,N), wherey(z,\) is given by

Y_(t,\) = (

0.5 w

b= EXP[(XlTo + Xsz)Init] (62) FIG. 2. Spectral function Rg(w) computed from Eq(10) with
f o in units of the bias voltage/. The spectra depend o8},
with =JRé?n and S5,=VRe?*2, whereR is the reflection probability.
. . The curve marked- (—) refers to the case in which electrodé2)
_InRy4/Ry, _In(Ry1Ry) is at the higher chemical potential. Also shown is the corresponding
Xi(A) = Am 2(\) = A (63) equilibrium result calculated from E¢3) using&,=V (Ref. 29. In
addition to the overall smoothing of the singularities, expected in a
Here 73 is the third Pauli spin matrix and, is the identity  nonequilibrium system, there are two significant nonequilibrium
matrix. The derivation of Eqg61) follows that given in Ref.  features. First, the maximum in the spectral weight is shifted away
1. The idea, which was explained in detail in the context offrom its equilibrium value by an amount proportional to the applied
inverse scattering problems in Ref. 3, is to solve for a funcwoltage. The shift, Re\(V)-A(0)], which is given in the forward-
tion W(z), which satisfies the same jump condition 4g) biased case in EqB4), depends on the polarity of the voltage.
but in a complex plane with additional cuts. For this prob-Second the form of the function changes on reversing the polarity
lem, the additional cuts are parallel to the imaginary axis an@f the device.

run from the branch points a=0 andz=t; to infinity. The . . x
discontinuities ifW(z) across the vertical cuts scale s, these are Hn_ﬁl and - In(1/S5,)" The effect of the com-
If Y is approximated byw, the errors in Iyg defined in p_Iex phgse shifts is to smooth the 5|.ngular|ty seen in equilib-
PP ' _ G rium (this could be expected on quite general grovratsd
((13)) are onlyO(1/Vty), and car_li in principle, be computed (5 jniroduce a polarity dependence. This polarity dependence
order by order in powers dfvty) affects both the shape and the position of the spectrum and is
The form for logyg for t;>V~"is found by inserting Egs. evident in Fig. 2 where we showg(w) for a particular
(61) into (26) and (13) and computing the integrals over  choice of<. The dependence of the spectrugg(w), on the
and\ as in the equilibrium case: polarity of the device, when operating out of equilibrium, is
Inx(t;,V) = —i[Ey— AW)Jt; - B In(iVt) +D,  (64) _govern_ed by the (_jifferenoel_zE a-ap (with @, , as defin_e_d
in the figure caption The difference in the overall position
whereA(V) is given by the nonequilibrium generalization of of the spectrum on changing the polarity is given by the
Fumi’s theorert19 difference in the second term on the right hand side of Eq.
0 v (65) and is proportional tar;,. This origin of this shift of the
A(V) :j m(ﬂyf In[sil(E)]dE 69 spectrum is the change in the nature of the scattering across
» 2w 0 the barrier from fully cor11erent in the equilibrium case to
L ] incoherent for times;> V™" in the nonequilibrium case. The
The constanp’ is given by[cf. Eq. (53] shape of the spectrum reflects the decay of charge from its
In(S,) 2 In(1/S5,)" 2 initial distribution (the equilibrium distribution forS=1) to
B' = + : (66)  the steady-state distribution f@=S282L In the nonequilib-
rium case, this decay can occur differently depending on the
The constant ternd can be estimated by requiring that the polarity. If more charge is needed in the left-hand electrode
form for Iny, Eq. (65), matches the equilibrium one &  to screen the potential characterized $ythan in the right-
=V, Eq. (39), valid for t;<VL. This constant gives the hand onea;,>0), this charge can come from states within
contribution from excitations with frequencies betwe¥n V of the Fermi energy of the right-hand electrode when the
and &,. This gives device is reverse-biased but not when it is forward-biased.
_ For the model device shown in Fig. 1 the absorption spec-
D=BIné&lV. (67) trum is given by the Fourier transfor(see Appendix B of
The result forG(t;) can be seen as an adaptation of the equiG(t;) rather tharF(t), as the transition in the barrier is pre-
librium result. The real phase shiftgiven by - times the sumed to be dipolar. However, the corresponding function
logarithms of the eigenvalues of the scattering magix F(t;) is also important. In Refs. 30 and 31 Yuval and Ander-
which appear in the formula®3), are replaced by complex son showed that the Kondo problem could be treated as an
phase shifts. In the forward bias case described by(E2),  infinite sequence of spin flips or switching events, with the

21 2
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Xf trode, the response of the system will depend on whether the
electrode is at the higher or lower chemical potential. The
form of the spectrum can also differ substantially from what
happens in equilibrium. For the casg=w,=0.4 andR
=0.7 shown in Fig. 3, there is no real peak left over from the
equilibrium result. This is because the phase sliffsorre-
sponding to the eigenmodes &F, are small, and hence the
exponents in Eq(53) for the equilibrium functionyg(w)

~ w™@~m%7 gre also small. The corresponding singularity

is weak and easily smoothed out by the finite lifetimes of

states close to the Fermi energy in the nonequilibrium case.
0.5 w This smoothing is enhanced because one of the phase shifts,
. o, Is always larger thamy; and a,. This larger exponent
FIG. 3. Spectral function Rg(w) computed from Eq(B10)  gjves the dominant singularity in equilibrium, but is then

with o in units of the bias voltage/ for the case(W;, W) effectively replaced byy; out of equilibrium.
~(0,1) in Eq. (51). The curve marked- (—) refers to the case in

which electrode 1(2) is at the higher chemical potential. Also
shown is the corresponding equilibrium res{iRef. 29. For these IV. CHARGE TRANSFER: CSAC

relatively small phase shifts the sing_ulari_ty seen ir_1 equilibrium dis- The existence of CSAC was predicted in Ref. 12. These
appears completely, although there |s'st|II a pqla_rlty depend_ence Oéonsist of a sequence of pulses that propagate through a con-
the spectrum even though the scattering matrix is symmetric. tact. When the bias across the contact is described a class of
periodic (with period ) rational functions of the variable
response of the conduction electrons to each switching evept gt then the shot noise is minimized and the noise distri-
characterized byF(t;). Given the long-standing interest in pytion does not depend on the separation of the pulses. This
nonequilibrium effects in the Kondo effett?® the correct result is still not well understood, nor is it possible, using the
nonequilibrium form forF=(t;) would be the starting point for  original derivation, to establish how robust these states are
the study of the nonequilibrium Kondo effect using a gener-against deviations from zero temperature or from the ideal

alization of the Yuval-Anderson mapping. pulse shape.
~ We must first write the functiof and the open line func- ~ Recent rapid experimental progress in the application of
tion L in terms of the gauge-transformed basis: microwave radiation at low temperatures suggests that the

o 1 experimental test of the existence of the CSAC is just about
L(ty) = M\’vie"PIV‘f{Y_(tf)_—Yzl(O)} V\/i,\/;. (68) possible. Several experimental groups are pushing the tech-
Ity i’ nology in this directior?>~37and it should only be a matter of
We can now insert the solution fof, (with \=1) from Eq. time before experimental data become available. However,
(61) into Eq. (51). The result can be written mtgrpretatlon of_ these future exp(_arlments will nolt be easy
using the analytical method used in Ref. 12 as this depends
zi(iVte) > 0 crucially on the particular shape of the pulses. There are no
az;(iVt)®+  (iVt)>- W, (69) predictions about what happens when the shape of the pulses
) ] ) deviates slightly from the required ortgomething unavoid-
where X, =x;(1)£x5(1) with x(\) defined in EqQ.(63), @  aple in any real experimentnor is the effect of nonzero
=$,/S;; andz=e"V'.3* The absence of a contribution pro- temperature known.
portional toW, W,z is to be expected. This would involve a  Here we show that the results of Ref. 12 for the CSAC are
contribution to the open-line function from an electron ini- easy to derive using the RH approach. When the pulses are
tially placed in the right-hand electrode exciting the Fermiperiodic as in the case of the CSAC, the RH problem sim-
gas in the left electrode. Since we are assuming that thglifies. It requires solving for functions that are analytic in
tunneling through the barrier by the electron is a slow protwo disconnectedegions(inside and outside the unit cirgle
cess on the scale of ¥/ this does not lead to a singular with the jump function specifying the discontinuity across
contribution toF. [There is still a contribution t& propor-  the boundary between them. We show that the particular case
tional to W;W,z; from the direct scattering ter@G(t;) in  of the CSAC corresponds to a RH problem that can be
Eq. (48).] solved exactly using combinations of meromorphic functions
The effect of the open line contribution off(t)  inthe plane—one of which is analytic inside and one outside
=G(t;)L(t;) is the natural generalization of the equilibrium the unit circle.
result that one might expect given the results &it;). The The model device considered in Refs. 1 and 12 consists of
corresponding spectral functions is shown in Fig. 3 for aa tunnel junction driven by a bias voltaggt), which is
particular choice ofS°. For simplicity we only look at the periodic in time with periodl=2#/(). It is equivalent to the
case where the electron is added and removed from the sardevice shown in Fig 1. We are interested in the change in
(i=2) electrode, i.e W ~(0,1). The dependence of the spec- physical quantities over one cycle of the pump in the limit
trum on the polarity of the device is present even in the cas&>T. In this limit, effects induced by the switching on and
whereS® is symmetric. When a particle is added to an elec-off of the periodic potential at=0 andt=t; are irrelevant.

1 *
|tf
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The scattering matri$ is at some constant val\& between CSAC'’s were reported in Ref. 12 for the case when the
0 andt;. Applying the time-dependent gauge transformationphase factor in Eq(58) can be written as a rational function,
(58) leads toS becoming a periodic function of time, so that 1(z), of the variablez=e?™T:
it no longer commutes with itself at different times. .

The distribution function for any single-particle observ- ; _(1@ 0

L . ; . exp| +iP,| V(ndr|=

able measured in this periodically pumped Fermi system will 0 0 1
involve the solution of a noncommuting RH problem. In par-

ticular, the characteristic function or generating function for N 5_ o
moments of the distribution of the net transfer of charge from (2 =11 -, (78)
electrode 1(left electrode to the electrode Zright elec- =11l -z

trode), x(A), is given by Eq(4) with the operatoR given by \yhere either alley| > 1 or all |o;| <1. We can chooséwy|
> 1 without loss of generality as— 1/z simply reverses the

A0V = OF (1)) (1.)6MQ
RO\ = Ul (te™ U (t e (70 polarity of the device. In this case, we decomp®¥e,\)
Here (see Ref. 1as follows:
0,=3 alPa.. (7 Rz( L °)('°‘ 0 )(1 B'(Z)), (79
& all(z 1/\0 1/a/\0 1

For states close to the Fermi surfd&=c+¢’ =0), the ma-  \here

trix R in the time representation can be written 5 i )
a=[S%e" + Sy,

R(t,\) = St e *Pigt) e, (72)
so that the characteristic function will be given by E(), __Si(SH -eh
(13), and(25): “- a '
Iny(\) =Tr[In(1 - f + fR)]. (73 X A
. . _ SS)a-e™
If the inverse of the solutiolY,(t) to the RH problen(22) B=- . (80)
and (23) with R given by Eq.(72), is analytic in the upper a
half-plane, we can write the characteristic function as The solution to the RH problem
» drR 1 0\(a 0\/1 B2
Inx(\) = f d)\’f dttr{ Y YR = . (74 Y.yl= ( )( )( ) 81
0 dx Y \allm 1/\0 1/2/\0 1 (1)
Using Egs.(72) and (21), and computing explicitly the de- is clearly
rivative with respect to., we obtairt-38 10
oy dsérPy,) o :( )
Inx(\) = f = f artr 98 YD) ey -ip ¢ al@) 1
o 2 dt
(75) Y+:<1 —ﬁl(z))(l/a o).
0 1 0 a

[If the eigenvalues oY, have zeros in the upper half-plane,

there are additional contributions to the right-hand side of thénserting this into Eq(77) gives the result reported in Ref.

corresponding relations to E(R4) for Y;* from its poles. In ~ 12:

this case(1-f+fR)™* is no longer given by Eq25) but can £V

be found using methods described in Chap. 6 of Ref] 16. Inx(\) = N-~Ina (82
In the case of the periodically driven pump, the scattering 2m

matrix (after applying the gauge transformatias periodic,  with a given by Eq.(80).

S(t)=S(t+T). If we change variables w=e*"""", we need to The surprising feature of the res8?) is that it implies

find a functionY,(z), which is analytic forlz| <1, andY_,  that the second moment of the shot nofsd achieves the

which is analytic for|z| >1 and Y_— const whenz| —=.  apsolute minimum for given charge transfeb,'? which is

On the unit circlefz| =1, the value obtained in the constant bias case: o for all i.
Y_Y:1=SY2ePig(z)éMP, (76) The feature of the phase facthiz), which leads to the RH

o ) ) ) problem being so easy to solve, is that all its pglesos are
The characteristic function for charge transmitted during ongither inside or outside the unit circle| =1, which means

cycle of the periodic pump in the limit/T>1 is given by that the decomposition d® in Eq. (79) automatically solves

N dh d(séPy,) the RH problem. In the case of an arbitrary rational function
Inxzf z—jg dztr{ ———=(Sé\Piv,) 1P, 1. for 1(2) this is not the case as there can be points at which
0 £TJ|Z=1 z det]Y,(2)| vanishes inside the unit circle. The corresponding

(77 formulas to Eq.(24) Y;! pick up additional terms on the
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right-hand side and1-f+fR)™ is not given by Eq.25), equation appearing at finite temperatures in a related prob-
although, in principle, it can still be found given the solution lem can be solved analytically. Also, the analytic treatment

to the RH problen(z). of the finite-temperature Fermi-edge singularity in Refs. 24
and 40 again suggests that the RH approach will generalize
V. CONCLUSIONS AND OUTLOOK successfully to finite temperatures.
The RH approach is a general method for computing the
response of a Fermi gas to a localized time-dependent per- APPENDIX A: BOUND STATES

turbation. There are two key steps to the method. First, pro-
vided the condition(5) is met, the method works with the  If the perturbing potential generates a bound $satéhen
scattering matrix defined on the instantaneous value of thEd. (6) is no longer correct. In the case where the potential
potential rather than with the Hamiltonian. This has the at{and henceS(t)] simply switches between its unperturbed
tractive feature of working directly with the physical quanti- value and a new but time-independent value=d and back
ties determining the long time response of the system to again att=t;, we can correctr by including the effect of the
perturbation, namely scattering amplitudes for particles closgound state explicitly. The treatment follows closely that of
to the Fermi surface. Conditio®) is essentially the require- Ref. 10, although only the case of a separable potential was
ment that the perturbation varies more slowly than the delayreated there. We write
time for a particle traversing the region in which the pertur- o _
bation acts. The second key step is to relate the response of o =0+ e"ob)e"b|. (A1)
the Fermi gas to the solution of a noncommuting RH prob-
lem (22) and (23). The RH problem corresponding to any h v . o
given experimental situation is usually easy to set up. It he scattering of the states within the continuum, and is given
solution and the interpretation of the results are a more deliY the Fourier transform of the scattering matgit), Eq.
cate task that needs to be repeated for each new physicd), as before(H, is the matrix ofH, taken between single-
situation. While there is no analytical solution of the generalparticle basis states.
non-Abelian RH problem, there is a powerful technique for For the case of the functioB(t)=det 1-f+fo| [see Eq.
finding asymptotic solutions valid for frequencies much(31)] we have
smaller than those present in the jump function. ~ ~

Here we have emphasized the generality of the approach G(t;) = G(t;)detl + Alb)(b|| = G(t;) (1 +Ag), (A2)
and applied it to two existing problems—the Fermi edge
singularity and the shot noise in a periodically pumped tunwhereAg=(b|A|b) with
nel junction. The calculations in the two cases are very simi- o
lar. In the case of the FES we have rederived all the known A=(1-f+fo) tfeHole Bl (A3)
results for the equilibrium case emphasizing, in particular, _
how the method is no more complicated in the case of thand whereG(t;)=det| 1-f+fa|. We write the bound state as
nonseparable potential than in the separable case. For th@ expansion over the basis vectors
nonequilibrium device shown in Fig. 1, we have explained
how the results for the core-hole Green’s function of Ref. 5 lby=>, u.-al]. (A4)
were obtained and given the corresponding results for the ¢

open-line function L(t) Eq. (69). For the case of the pqr|ong timeg the response is dominated by states within
CSAC's, we have shown that the particular foirtr/TT1 of the pe-1 /t, of the Fermi energy and it is a reasonable approximation
riodically varying bias with the phase factte®™'") given {4 neglect the energy dependence of the coefficientafter
by Eq.(78) corresponds to a case in which the RH problemgyitching to the time representation, and using @@) with

can be solved exactly. o in place of o, we obtain(y is the density of states in
It is possible within the RH approach to handle correc-channell)

tions to the asymptotic solution to the noncommunting RH

problem we have been using in order to allow us to compute 1 .

the response of systems in the intermediate regiwieere (b|A[b) = > i) | dede’ f dt;dtyu;, uy

one is interested in the response at frequencies comparable to . n

those introduced by the perturbatjoithe RH problem lends

itself naturally to a type of perturbative analysis. The correc-

tions to the approximate solution valid for long times, Egs.

(60) and (61), can be described by multiplying the approxi-

mate solution by a function that is analytic except across the _ 1

additional vertical cuts introduced to simplify the original AB~e‘iEbtfu|\r’y,{Y+(O)—_T_1(tf)] u,*,\/v_p. (AB)

problem. This function can be specified by a Cauchy integral — Ity 1Y

around the cut. Preliminary work in this direction has been , _ .

attempted in Ref. 39. Prowded_S(t) _commutes with itself at a_II times between 0
Finally, the RH method should generalize to nonzero tem@ndt;, Y is given by Eq.(37). For the single-channel case

peratures. As was observed in Ref. 26, the singular integravith S=€??, we obtain

Here|b) is the bound state wave function, whiledescribes

X @YY, @ (AS)

Integrating over energies and times gives
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1 VRé212, Using the complex cutoftV (normally {=i), we
(b|Alb) ~ ———= (A7) have from Eq(64)

Itf (|§ t )25/77'
ING(t;,V) = —i[Ey— A(V) ]t; — BsIn(¢V) +D.  (B1)
Here we introduce the quantit&, which is the phase shift 5
modulo and takes values on the interfatz/2,7/2]. Nor- ~ The exponenBg=x;+xZ, where

mally the phase shifty is defined with a jump ofr at a NS, a InR
bound state, thereby ensuring compliance with the Friedel X, = ——t=—-j— (B2)
sum rule® However, when writing the scattering matrix as 2m m 4w
in Eq. (A1), the contribution from the bound state to the gng
scattering matrix is explicitly included in the second term on .
the right-hand side and is not in the scattering magixAt « = (1S _az InR 83)
the bottom of the band, the value of the phase shift that T 24w Aw
igters the threshold shift is clearbyas emphasized in Ref. The modified threshold shift is given by E(5)
Although the calculation is longer, the functi®tit;) can a;-(InS)11) .. [InR
be obtained in a similar manner by replacinén Eq. (46) by AV =| A +V - -V A ) (B4)

the form(Al). One needs only to keep track of terms up to
first order ineEstt, [Higher-order terms must give zero as The real part oA(V) fixes the threshold. We will absorb this

they correspond to double or higher occupancy of the bouninto the definition of frequency when computing Fourier
state. They can be seen to make no contribution by subsitutransforms.
ing the formula(Al) in Eq. (42)].) As for the case of the We write Bg=Bg1+iBgy With

function G(t;) considered above, we neglect the energy de- i\ (a InR
pendence ofV, andu, [see Eqs(29) and (A4)]. We define Bo1= (—l) + (—2) - —( > ) (B5)
) aw a
Cp= (W™ -u)(u” - W)e Bt (A8)
and
O=(1-f+fa)%f. (A9) __(m-a)InR B6
Boz==— . (86)

Here O is just the scattering state contribution@[see Eq.
477 For the functionF(t;), the exponent becomeg-=(x_-1)?
+x2 or Bg=x%+(x,—1)? depending on whether the electron is

~ & — AdHot| by e iEpti/h| &
O = O~ Oe"eijo)e™b|O. (A10) added to the electrode with lower or higher chemical poten-
We obtain[from Eq. (48)] tial. This gives,8F=BG—2xt+1 and
F(ty) = G(t)[C ~ (g|O]h)] = G(t)Cy — G(t)[1 + AgKglOlh. Ber= By - 2 =g, s MR gy
(A11) 2

Retaining the dominant terms and ignoring the possibilitymtrOdUCIng

that there is an unexpected cancellation between terms pro- wy == InR/4r, (B8)

ortional toe Bblr, _ .
P the spectral functions d& or F are proportional to the real

F(ty) = G(t)L(ty) + aC,G(ty), (A12)  Part of the Fourier integralyr (e), where:
wherea~ 1 is some constant arldt;) is the scattering state x(e) = f dt (o) Pelie oWty (B9)
contribution to the open-line function. For the single-channel 0

case withS=e"?’, we again assume that the exponerity) yith B= B for x¢ and Bg for xg. Here the lower limit of the
is 6=6-m and obtainF(t;) ~ Fy(t;) +Fo(t;) with integral is taken to be 0, which is only valid wheh <1.
When B> 1, contributions from the lower limit of the inte-
- - gral dominate and the response is dominated by high-
(i&ty) @™ 1?2 frequency contributions that are not changed from the equi-
(A13) librium case. These are not described by form{@d) and
depend on details relating to the band edge. If the phase
shifts x, are small, which can be the case for the spectral

APPENDIX B: COMPUTING SPECTRAL FUNCTIONS function of F [or éAB in the presence of a bound ;tate; see
: Egs.(A2) and(A7)], thenB; will be close to 1. In this case
Given G(t;) or F(t;) we would like to compute the corre- X(€) given in Eg.(B9) contains a significant contribution
sponding spectral functions given by a Fourier integral oveffom timest;<1/V for which our asymptotic solution for
t;. Assume that scattering matris;, has diagonal elements F(t;) (or GAB) is incorrect. We can correct for this by noting

Fy(t;) ~ e 'Eole

ey
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that when 1-8<1 the contribution from times witNt; <1
gives just a constant offset that can be subtracted fyoifo
see this, we expand the exponential te#fr*2"! in the in-
tegrand and integrate term by term frov;=0 to Vt;=1.
The first term in the expansion is independent @ihd much
larger than subsequent terms providedV)<1/|1-4|. In
practice we subtract from the real part pfits value atw
=-V. (When 1-8 is not small the contribution from the
timesVt; <1 to the real part oj is negligible anyway.

Equation(B9) is in the form of a standard integral and
[see Eq{(8.312.2 in Ref. 41 is given by

1 \¥F
m) ra-a. (B10)

o= 10775

If we defineQ=|w,+iw,|€% and write

PHYSICAL REVIEW B 71, 045326(2009

r1-p=[r@1-p|e, and if=€%, (Bl
then
— A +
X(wy) =€ Pr¢ 52¢g\—/ QA
x dBr-Dea~baba|(1 - p)|e?r. (B12)
The real part ofy(w,) can then be writtefd
ra-pl 1 4 o,-
Rex(wy) = Tﬁe PP~

X sin B1(¢; = bq) + (¢a — ¢r) — BoInQ2].

(B13)

For both functiond= andG, the cutoff parametef=i, so

d)g: r.
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