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Motivated by a number of recent experimental studies we have revisited the problem of the microscopic
calculation of the quasiparticle self-energy and many-body effective mass enhancement in an unpolarized
two-dimensional electron liquid. Our systematic study is based on the many-body local field theory and takes
advantage of the results of the most recent diffusion Monte Carlo calculations of the static charge and spin
response of the electron liquid. We report extensive calculations of both the real and imaginary parts of the
quasiparticle self-energy. We also present results for the many-body effective mass enhancement and the
renormalization constant over a broad range of electron densities. In this respect we critically examine the
relative merits of the on-shell approximation, commonly used in weak coupling situations versus the actual
self-consistent solution of the Dyson equation. We show that alreads;$e8 and higher, a solution of the
Dyson equation proves necessary in order to obtain a well-behaved effective mass. Finally we find confirma-
tion that the inclusion of both charge- and spin-density fluctuations beyond the random phase approximation is
indeed crucial to get reasonable agreement with recent measurements.
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[. INTRODUCTION and postulated a one-to-one correspondence between them
) ) ) ) and the excited states of a noninteracting Fermi gas. He
~ An interacting electron ga=G) on a uniform neutraliz-  \yrote the excitation energy of the Fermi-liquid in terms of
ing background is used as the reference system in most reahe energies of the QPs and of their effective interaction. The
istic calculations of electronic structure in condensed-matteQP-QP interaction function can, in turn, be used to obtain
physics! At zero temperature there are only two relevantyarious physical properties of the system and can be param-
parameters for a disorder-free, homogeneous EG in the algtrized in terms of experimentally measurable data.
sence of quantizing magnetic fields and spin-orbital cou- Quinn and Ferretf provided a framework for the micro-
pling: (i) the usual Wigner-Seitz density parametef scopic evaluation of the QP-QP interactions in the EG by
=(mypag) Y2 ag=fik/ (me?), being the Bohr radius in the means of the random phase approximati@®PA). Next,
medium of interest withc and m appropriate dielectric con- Rice?! incorporated the vertex corrections in the RPA form of
stant and bare band mass, respectively; @ndhe degree of the electron self-energy by including the Hubarchany-
spin polarizationy=|n; —n,|/n,p. Heren,, is the average den- body local field, while Overhausadiscussed, albeit within a
sity of particles with spinc=1,|, andnyp=n,+n, is the  simplified framework, numerous quasiparticle properties us-
total average density. ing a similar approximation. Some of the problems in Rice’s
Understanding the many-body aspects of this model hagheory were subsequently resolved by Ting, Lee, and @ginn
attracted continued interest for many decati€sThe EG, in their theory of the quasi-two-diemensional EG. All these
unlike systems of classical particles, behaves like an idealpproaches considered only one many-body local field, a
paramagnetic gas at high density<1) and like a solid at procedure that does not allow for a correct handling of the
low density (r¢>1). In the intermediate density regime, effect of spin-density fluctuations. Ultimately this approxi-
which is relevant in three dimensions to conduction electronsnation leads to a number of serious problems that only the
in simple metals and in two dimensions, to electrons in arphysically sound inclusion of the latter can resoite.
inversion layer of a Si metal-oxide-semiconductor field- A more detailed analysis, which accounts for the vertex
effect transistofMOSFET) or in an AlIGaAs/GaAs quantum corrections associated with both types of fluctuations, was
well, perturbative techniques are not effective owing to thecarried out for an unpolarized EG in Refs. 25-28, where
lack of a small expansion parameter. Therefore, one has tdukkonen-Overhauser-lik@ effective interactions were ob-
take recourse to approximate semianalytical methods, a nuntained by different approaches. In particular, Yarlagadda and
ber of which have been reviewed in Refs. 3 and 4, or toGiuliani’?® adopted a physically transparent approach
quantum Monte Carl¢QMC) simulation method&:8 termed the renormalized Hamiltonian approa@RHA),
Among the methods designed to deal with the intermediwhich consisted of a generalization of the RPA-based elegant
ate density regime, of particular interest for its physical appioneering theory of Hamann and Overhau8ex.few elec-
peal and elegance is Landau’s phenomenological tAorytrons from the EG are selected and called “test electrons,”
dealing with low-lying excitations in a Fermi liquid. Landau while the remaining EG is treated as a dielectric screening
called such single-particle excitations quasipartiql@f9 medium. As the test electrons move through this medium,
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they produce fluctuations in the density of spin-up and spindependence of the effective mass was obtained by Smith
down electrons, which, in turn, provide virtual clothing and and Stile€® from a study of SdH oscillations in Si inversion
also screen their mutual interaction. Thus, the dielectridayers. To obtain the same information Abstreiter al*0
mimics the true physical processes in an average way. Qfsed instead cyclotron resonance measurements. Fang and
course, the test electrons and the electrons of the medium aBiles’ and Neugebaueet al*? performed a series of SdH
physically indistinguishable, and this must be taken into acexperiments on Si inversion layers and obtained the depen-
count when exchange effects are considered. At this poingence of the modified Landé factgt on carrier density. The
after averaging over the coordinates of the screening mesroduct ofg* and m*, which is proportional to the spin sus-
dium, an effective renormalized Hamiltonian containing only ceptibility x5, can be determined from the SdH oscillations in
the degrees of freedom of the clothed test electfon®QP3  a tilted magnetic field, as suggested in Ref. 41.
can be derived, under the assumption that the coupling with The issue of the apparent metal-insulator transifion
the medium occurs onlyia its charge- and spin-density fluc- (MIT) in low-density 2D electron systems has prompted in-
tuations. Calculations based on these theories have been céense experimental studies on quasiparticle propéttig/s>®
ried out for both three-dimensional3D)2%3! and two- in the intermediate-to-strong coupling regimgsz 2, for ex-
dimensional(2D)?*32-33systems. ample. Many authofé have shown that the resistance of a
In a parallel theoretical development Ng and Sinétvi, Si-MOSFET is increased dramatically by increasing the
starting from a Ward identity and performing a local approxi-value of an in-plane magnetic field and saturates at a char-
mation on the irreducible particle-hole interaction, obtainedacteristic value of several Teslas. Performing low-field SdH
an expression for the self-energy in terms of the many-bodyneasurements on Si-MOSFET’s, Okamagd al*® have
local-field factors associated with charge- and spin-densitghown that the saturation value is the magnetic field neces-
fluctuations. Equivalent results were later obtained by Yarlasary to fully polarize the electron spins. An interpretatfst{
gadda and Giuliadf-?8 by means of the RHA. These authors of the in-plane magnetoresistance in Si inversion layers sug-
also took into account an infinitesimal degree of spin polargested a ferromagnetic instability at or very close to the criti-
ization, which allowed them to properly carry out Rice’s pro- cal density for the 2D MIT driven by a divergence in the
gram of calculating the Landau Fermi-liquid parameters. effective mass. Direct measurementsngfin high-mobility
Although its theoretical basis is sound, previous quantitaSi-MOSFET's over a wide range of carrier density, using a
tive theoretical work based on this general method suffersechnique based on the beating pattern of SdH oscillations in
from two major shortcomingsi) All available earlier calcu- crossed magnetic fields, have been reported by Pudaiov
lations have adopted a static and oversimplified Hubbard-lik@l.*® These authors measured and xs in the vicinity of the
model for the local-field factors, which do not have the ap-2D MIT, but found no evidence for a divergent behavior.
propriate behavior at both intermediate and large wave num©nly a moderate enhancementrof by a factor of~2-2.5
ber g; and (i) most theoriegincluding the RHA introduced over the band mass was observed near the critical density for
above and briefly reviewed in Sec. 1) @re based on the the 2D MIT. Two groups have also reported anomalous den-
“on-shell” approximation, which, as we will show in this sity dependences of the Landé factor rirdoped® (2=<r,
work, predicts a spurious divergence of the effective masss7) and p-doped® (rs=17) GaAs/AlGaAs heterojunctions
with decreasing electron density. While still neglecting thethat are in disagreement with results in Si-MOSFETs. The
frequency dependence of the local fields, we have correctedependence of the spin susceptibility on the degree of spin
for several of these discrepancies. In particular we haveolarization of the sample can account for this anomalous
implemented the following improvements) we have made behavior as pointed out by Ztai al.>* who studied a 2D EG
use of recent parametrizaticGRgor the static local fields of a of exceedingly high quality.
2D EG, and, in the spirit of the work of Santoro and To complete the cornucopia of recent experimental find-
Giuliani®? and of Ng and Singwi? (ii) we have kept the full ings on QP properties, it is worth mentioning that Valiti
frequency dependence of the self-energy and carried out @.>? have reported measurementsrof and ys in a dilute
self-consistent solution of the Dyson equation to find the2D EG confined to a narrow AlAs quantum wédinly 45 A
proper QP excitation energy and QP properties. Moreoveryide). The electron system investigated in Ref. 52 is quite
comparing to Ref. 32, we have released the simplifyinginteresting because the electrons occupy an out-of-plane
plasmon-plus-paramagnon-pole approximation to the chargeonduction-band valley, rendering the system similar to 2D
charge and spin-spin response functions. A calculation baseglectrons in Si-MOSFETs but with only one valley occupied.
on the same theory for the case of a 3D EG is reported iQuite surprisingly, the results of Vakiéit al>? for ys are in
Ref. 36. good agreement with the QMC results of Attaccatiteal '8
From the experimental point of view, as already re-even though this simulation has been carried out for a strictly
marked, electrons in a semiconductor inversion layer or in alisorder-free EG. This might indicate thet is not strongly
quantum well can be modeled by a quasi-2D £®uantum  dependent on disorder. On the other hand, there is a signifi-
Shubnikov—de HaaqSdH) oscillations of the magneto- cant spread in the experimental results of Ref. 52 nftsy
resistanc® provide a powerful tool for measuring Fermi- which turns out to be both sample and cool-down dependent.
liquid parameters of a quasi-2D EG. Measurements perDifficulties associated with the SdH data analysis have been
formed over the past yedfs*? have shown sizeable renor- pointed out in Ref. 52 as one of the possible causes for this
malizations of the QP effective-mass and effective-Lagdé spread.
factor. These experiments have been performed in a rela- At this point it is probably worth commenting that, in-
tively high-density regime, i.e., fory=<2 say. The density deed, there could be, in principle, subtle issues associated
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with the analysis of the SdH traces in 2D systems. In fact the Sreil K, @) = Sgx(K, 0) + Sep(k, ), (1)
amplitude of the SdH oscillations is usually fitted to the

the single-particle spectrum. The fit is based on an impuritythe second term is called “Coulomb-holéCH). The fre-
scattering Dingle temperatuflg, and an “effective” mass. In  quencyw is measured fronag/%.

recent years a number of caveats concerning the applicability The SX contribution is given by
of such a procedure to strongly interacting 2D systems have

appeared? In particular, Martinet al>® have shown that the

interplay between electron-electron interactions and electron- S (k, ) = - 5
impurity scattering leads in 2D to an effective temperature- (2m)° &0, @ = &ug/Tt)
dependent Dingle temperature with a leading low-

temperature behavior of the tyfig(T) =T In T. The need for Here O(x) is the step function and,=s,—&r, where g

the introduction of a temperature-dependent Dingle param=%k®/(2m) is the single-particle energy witheg
eter in strongly coupled Si-MOSFETs has been emphasized#2kZ/(2m) andkg=(27n,p)Y2=12/(rag), respectively, be-

in Ref. 48, where a lineaf(T) was used to fit the longitu- ing the Fermi energy and wave number. The CH contribution
dinal magnetoresistance data. Quantitative differences on tHe the retarded self-energy is, in turn, given by

resultant effective mass are found using such a procedure:

d’q Vg

O fglh). (2)

roughly speaking, the tendency is to get substantially lower dq do  Imleq,Q)]
values form* than those obtained using the same Dingle 2cn(K,®)=- —2qu — 0
(2m) 0 T w—&uh—Q+i6
parameter for all temperatures. q
For a quantitative comparison between suitable theories 3

that take into account quasi-2D effe¢tich as finite width

of the electron wave functions in the confinement directionyheresis a positive infinitesimal. In Eq$2) and(3) &(q, »)
and valley degeneracieand the experimental resuitsfor  is a screening dielectric function originating from the effec-
Si-MOSFETs in the weak-coupling reginfg<2, we refer  tjye Kukkonen-Overhauser interactidh??

the reader to the work of Yarlagadda and Giulf4mind ref-
erences therein. In this work we will try and carry out a
comparison between the theory and the experimental data of
Tanet al>® for strongly interacting electron® <r,<6), oc- &(d, w)
cupying a single valley in an exceptionally clean + 3qu§(q,w)x5(q,w), (4)
GaAs/AlGaAs quantum well.

The contents of the paper are described briefly as foIIongherev —2m€?/q is the 2D Fourier transform of the bare
In Sec. Il we present in some detail, the theoretical back; i

. . ) Coulomb interactiore?/r. In this expressionyc(q,») and
round. We proceed in Sec. lll to discuss the input we have N
8sed for ouf numerical calculations, while in Spec. IV we Xsd. ) represent the charge-charge and spin-spin response

present our main results for the real and imaginary part of théur]ctlons, Wh'.Ch’ mdturnl, deflne and are (ljetelrrpwllgdf by the
quasiparticle self-energy, the many-body enhancement of th?m—symmetnc an spln—hantls?/mmetrlc ocal-field factors
effective mass, and the renormalization constant. Finally, in +(q,0) andG.(q, ») via the relations

Sec. V we compare our theory with the experimental results

of Tanet al%® and report some conclusions. In order to make (Q,0) = Xo(q, w) 5)

the paper fully self-contained we have also included two ap- X 1 =0 (1 - Gu(a,0) xo(0, )

pendixes, which contain a number of helpful details on how

=1 +v4[1-G(q,0)Pxc(d, w)

we have in practice calculated the QP self-energy. and
Il. THEORY OF THE QUASIPARTICLE SELF-ENERGY Xo(q, w)
xs(@w) = 2 , (6)
The aim of this section is to provide the theoretical justi- v4G-(q, ®)xo(0, @)

fication for the formulas we have made use of in our evalu-
ation of the retarded QP self-enerBy,(k ,») of a 2D para- Wherexo(q, ) is the Lindhard response function of a non-
magnetic EG. The main formulas are given in E@.and  interacting 2D EG’ In the paramagnetic electron liquid
(3). Their justification rests on both a diagrammatic pertur-G:(d, ®)=[G(d,w)+G; (q,w)]/2, where G,,.(q,w) are
bative analysis as well as on an effective quasiparticléhe spin-resolved local fields. Note thagy(k,») acquires
Hamiltonian derived via a procedure based on the idea othe form of an ordinary exchange-like self-energy built from
renormalization. the Kukkonen-Overhauser effective interaction instead of the
bare Coulomb interaction, which would lead to the familiar
frequency-independent Hartree-Fock self-energy first calcu-

A. General formulas lated for the 2D EG by Chapli
We will employ in our theory the following decomposi-  The real and imaginary part of the retarded self-energy are
tion for the retarded QP self-ener@y.(k , w): readily obtained from Egg2) and(3) with the result
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d? 0G4(p'
RS o(k,w) = - f L 0g R0~ Gl g
(2m)
d%q
XO(- §k+q/ﬁ) —J 2n s0qP
dQ Im[e™(q,Q)] Ls, po(0)
XJ e /-0’ @ 6Z4(p) =
o T o~ &uglh- po po
and FIG. 1. Diagrammatic representation of the identityt). Here
d2q and in the following we use the four-momentum variaplas a
Im 2 o(K, ) :J qu Imle X (q,w - Eaglt)] shorthand for(k , w).
a

X[O(w = &iglh) = O(= &ig/M)]. (8)  Ipokrwror(0) that does not depend @ The “local approxi-
Ig,nation” introduced by Vignale and Singwi in their study of
the effective electron-electron interactféiis useful for this
purpose because it yields by physical arguments an expres-
sion of the form

lwrkraro(0) = Vog, (k=K' 0= ), (12)

oo

Quite generally, once the QP self-energy is known, the Q
excitation energypEqp(k), which is the QP energy measured
from the chemical potentigk of the interacting EG, can be
calculated by solving self-consistently the Dyson equation

OEqp(K) = & + Rezsat(kvacuzast(k)/hx 9
wherevif;, is just a function of the momentum and energy

where RER (K, ) =ReS (K, w) —3 ke, 0). For later pur- : .
poses wf?ﬁ(trog)u)ce at trﬁ[fs ;;Uo)int trﬁt(e Fso-)called on-s%ell aplransfers in the electron-hole channel. Thus the main charac-

- : L teristic of the Ng-Singwi approach is that tkey approxima-
proximation(OSA). This amounts to approximating the QP = > ) . .
excitation energy by calculating Fﬁfet(k,w) in Eq. (9) at tion in Eq. (12) is made on the irreducible electron-hole

the frequencyw=£&/% corresponding to the single-particle interaction rather than on the self-energy itseWith this
energy‘?that i)gu— K P 9 gie-p approximation we can integrate Ed1) and obtain, up to an

integration constant, the result

55Qp(k) =§ + ReErFét(k,w)|w:§k/ﬁ. (10) - dzk’dw' “
_ _ Sokw) =i f—sve (k-k',0-0")G, (k' 0').
We will provide next the necessary background for a for- o (2m)= 77
mal justification of Eqgs.(2) and (3). The validity of the (13)
theory rests on the results of two completely different meth-
ods: diagrammatic perturbation theof$ec. I1B) and a  With the replacemente—k’=q and w—w’ =(), this expres-
renormalized Hamiltonian approa¢8ec. Il Q. sion has the form of the so-called GW approximaifoex-
cept for two crucial differencegi) the effective interaction
for,(q,(l) includes vertex corrections and is therefore more
general than the screened interactidfq,()) between test
) . ] . ~ charges that appears in the GW approximation; @ndhe

In this section we ma!<e use a dlagrammatp approach f'rﬁf‘jxpression(ls) involves an undetermined integration con-
developed by Ng and Singwt,and built on earlier ideas by gtant that must be fixed by independent means. For example,

Vignale and Singwf® The starting point is the exact gne can requir&(ke,0) to reproduce the correct value of the

B. Theoretical foundations I:
Diagrammatic perturbation theory

identity*°? chemical potential as determined from QMC data. An ana-
2k’ do’ lytic continuation procedure allows one to recast the time-
8K, w) =i, f—3Ikw‘k,w,g,(O)(SG,,,(k’,w’), ordered self-energy in Eq13) into a retarded self-energy
o (2m) given by the sum of SX and CH contributions as in Ef.
(11) In their derivation of the local approximation in E{.2),

Ng and Singwi* as well as Singwi and Vignalesorted the
where 82,(k, w) and 5G,(k , w) are infinitesimal changes in diagrams that contribute to the irreducible electron-hole in-
the self-energy and the Green’s function, &gl «./»+(0) is  teraction into a number of classes identified by characteristic
the irreducible electron-hole interaction at zero momentungraphical criteria of irreducibility. The theory becomes in
and energy transfer. This identity is graphically representedhis case “local” when the various irreducible blocks are as-
in Fig. 1. The defining feature of the irreducible electron-sumed to depend only on the net wave vector of the electron-
hole scattering block is that it includes only diagrams that hole propagators that connect them. The irreducible blocks
cannot be divided into two parts by cutting a single electron-are then expressed in terms of the appropriate many-body
hole pair propagator carrying zero energy and momentum. local fields. At this point, an important physical and consis-

The differential relation(11) cannot be integrated as it tency requirement of the diagrammatic analysis is that the
stands becauseis a complicated functional d&. The idea very same assumptioffis particular, that on the wave-vector
of Ng and Singwi was to use an approximate form ofdependendewhen applied to the corresponding calculations
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W@ pend on relative variations of the self-energy, i.e., &
rather than on the absolute valueXf
A
po Go(p+e) po C. Theoretical foundations II:

. . . The renormalized Hamiltonian approach
FIG. 2. Diagrammatic representation of E@l15). Here

W(g,)=vq/€(q,Q) is the usual test-charge—test-charge screened |n this section we review the derivation of E¢8) and(3)
Interaction. from the point of view of an effective renormalized Hamil-
tonian (the RHA referred to aboyefor the low-energy de-
of the charge- and spin-response functions lead to Exjs. grees of freedom of the electron liquid, a quantity that pro-
and (6). These approximations allow one to derive the fol-vides a vivid theoretical realization of the Landau

lowing analytic expression for the effective interaction: quasiparticleg®?"?2 Details of this derivation can be found
. : ) in the original papers or in Ref. 3.
V(0. Q) = vg +{vg[1 = Gu(@) *xc(@. ) One starts by dividing the Hilbert space of the original
+[UqG_(q)]2XS(q,Q), and well-known EG HamiltoniarHgg into a “slow” sector
(S)) and a “fast” sectof.F,), assuming the existence of the
V?T(q’Q) - 2[qu_(q)]2xg(q,Q). (14) Fermi surface ak=kg. S,, contains only plane-wave states

with wave vectoik close to the Fermi surface, i.e., such that

Inserting this into Eq(13) and repeating standard analytical |k—kg| <A, whereA is an arbitrarily small cutoffF, con-
transformation§® one easily recovers the expressioi® tains all the other states. We correspondingly introduce slow
and(3) for the screened-exchange and Coulomb-hole contriand fast creation and annihilation operators, which operate in
butions to the self-energy given above. these two sectors,

Let us emphasize again that the result just obtained by the
diagrammatic method rests on E@.3) for the self-energy
(modulo an additive constgrind on the use of the effective R S0 keSy
interaction of Eq(14). It can be readily seen from the analy- Cko= : KeF (17)
ses of Refs. 25 and 34 that no diagrams K@, . (0) ko A
have been double counted. Rather, many diagrams have been

dropped, the result for the self-energy eventually being adoyr goal is to derive an effective Hamiltonian for the slow

justeda posterioriby fixing an additive constant imposing sector that contains only tt& , operators by integrating out
the correct value of the chemical potential. This must ben a reasoned manner tig,, degrees of freedom.

contrasted with the results of a similar local analysis carried T ] A R A
out, however, directly for the diagrammatic structure of the T{ec IS first rewritten using thg , andfy , operators,
self-energy itself(as opposed to its variatipnin this case
one starts from the exact expression

Hee=Hs+ He + Hst (18)
d’k’de’ Uk—k’
zg(k.w>:i2f R "
o (2m)° ek -k' 0~ o) For instance, the first term reads
X Akork’oGor (K’ @), (15)
1
~ — af a -
where A is the proper vertex function anelis the regular Hs= kE &Sk,0K,0 + ngovqkz kE
dielectric function(see Fig. 2. Within this local approxima- ’”T . d Lo E272
tion one findg!:31.61 X 1.0, 5, K, Ky (19
~ 1
Akw,k’w’ = ’ , N (16) .
1+v Gk =k xok = k' o - ") where all wave vectors belong 8. H; has a similar struc-

) ) ture and tends to the full EG Hamiltonian in the limit
so that this route to the self-energy includes only the contri-_, 0, a property that will turn useful in what follows.
bution of charge fluctuations but, unphysically, misses com- The third termH describes the interaction between the
pletely that of spin fluctuations. The root of the difficulty gjow and fast particles; although this term is the sum of 14
obviously lies in the fact that the local approximation for the jyifferent terms, we assume that the relevant operators are

vertex function is not good enough to capture the contribuyygse that separately conserve the number of particles in the
tion of spin-density fluctuations. On the other hand, the de- At 2

. A-I- A
pendence of on spin fluctuations is manifest in the terms tW_O, sectgrs[Le.,. terms of the type:\kﬁqvtfﬂz—qﬁzskz»”szrf_’l
proportional toG2 in Eq. (14). This is the main physical (trilinear in the fLeId qperators of either slow or fast parti¢les
reason why it is better to apply the local approximation to theor Szfrq,gﬁz_q,ngkz,ngkl,gl will be dropped. Four terms are
differential relation(11) than to the integral relatiofil5). In left within this assumption. Accordingly, by simple algebraic
fact, all quasiparticle properties of our present interest demanipulationsH can be written as
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1 ot - ~ respectively, the density and spin-density operators for the
Hsf=52 > 2 VoS +a.0, T kyma.0, Tk, 0 fast sector. The effective interaction potentials(q) and
470 ky.o1 kaoz vs(q) must include both the exchange and the correlation
1 effects. This requirement can be fulfilled in an approximate

SE > > vkz—kl—qsli1+q,Ulflz—q,aszz,alsﬂ,az1 way by means of local field factor&,(q) and G_(q) by
470 kyoy ko takingvc(d) =vg[1-G4(q)] andvs(q)=-v,G-(q). Note that,
(200 as in Eqg.(14), we are again using frequency-independent
local field factors for the reasons indicated in Sec. IIl.
wherek; andk;+q belong toS,, andk, andk,-q belong We now carry out a unitary transformation that eliminates
o Fy. the interactionHg between slow and fast particles to first

The first(direc) term inH describes the Coulomb inter- order in its strengt® We search for a Hermitian operator

action between slow and fast particles and can then be e@ which maps the original Hamiltonian into a new Hamil-
pressed in terms of density fluctuations in the two sets of *’

particles. The secon@xchanggterm describes an exchange tonian’’ =expli® ) Hec exp(-i®,) having the sameAelgen—
process in which a slow particle replaces a fast particle andalues but transformed eigenfunctions. The gener@tpiis
vice versa. Note that the two particles can have opposit@t least of first order in the strength of the interaction be-
spins (i.e., o;=-0>), and when this is the case a net spin-tween the two sectors. Accordingly just expanding in powers
angular momentum is exchanged between slow and fast pagf ®, the expression fof{’, one sees that the interaction
ticles. In practice this means that any attempt to WHigIN  orm 7¢_ is eliminated to first order by choosing, as the
terms of collective variables must also .|nvolve an n_"nteractlonsomﬂon of the operatorial equation
between slow and fast particles mediated by spin fluctua- )
tions. i[O@7, Hs+ H] = - Hgt (22

All these arguments bring us to a second crucial approxi- ) i i o
mation: we treatH; in an average sense by writing these We finally obtain the effective Hamlltomar! fo_r the low-
microscopic processes in terms of interactions between de§N€rgy degrees of freedom of the electron liquid by averag-
sity and spin-density fluctuations in the two sets of slow and"d 0ver the ground state) of the Hamiltoniarf;. We have
fast particles, i -
Hop=(0/H'|0) = Eg+ Hs+ §<O|[®A!Hsf]|0>- (23

1 A A .
7_{sf: 52 Uc(Q)E n—qSII—q,o-lsk,u'l

470 Koy Obviously the constanE, does not play any physical role
1 and will be dropped from now on.
*s > vs(@ > Sy (gl—q,ol["']olvﬁ,vz)’ The operatorial gquat.ioﬁZZ) can be sglved fo@_A once
q+#0 kg0 the commutator of®, with the interaction term irH; is

(21 dropped, the justification being that this commutator van-
~ . . R . ishes upon averaging on the ground state of the fast sector. A
WhereﬁqZEK,UfE_q’Ufk,(r andSq:Ek,w,fl_q'a[a-]w,fk’a, are, lengthy but straightforward calculation yields

1w (7 do’ va(@)Im xc(q,0') + 3vaQ)Im xs(q,0) |+ .
HQP: E |:8k - 52 J - = € A _ S/ = SkT,(r O
Ko qgJo T kg~ @

2 [Uq + U(Z_‘,(q)XC(qrAk,q)] 2 2 ASkT1+q,alASkT2—q,ngS|(2,UZASI<l,Ul

1
+ —
qusﬁo k1,071 Kp,0

1 . A .
2 Ué(q)xs(quk,q) 2 E 2 [0']010'2 ) [0-]TlTZSle+q,ngIIZ—q,rlskz,rzskl,(fzi (24)

+ —
qusﬁo k1,01 Ko,00 71,79

where A =(ex—e—q)/fi. Note that the sums over the eigenstateg<pfappearing in the derivation have been carried out
using the identity

R J Im xe(0,0) 5

= do’ .
Shoek—ekq— (En—Eo) 7y (e = ex-g)lh — o'

A similar identity forASLq has also been employed. Heye(q, w) andys(q, w) are the response functions of the “mediutiie
fast degrees of freedgmwhich asymptotically tend to those of the full EG far— 0.
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The QP Hamiltoniart op as written in Eq(24) has a very ) q
clear physical meaning. It is the Hamiltonian for a gas of “mo G.(a) :A*k_ (29
weakly interacting slow-moving particles with a single- qu F _
particle dispersion relation shifted by a self-interaction termwith A,=(1-«q/k)/(rs\2) andA_=(1-xp/ xg)/(rsV2). Here
(the so-called Coulomb-hole shiftThe reason for the gas «, is the compressibility of the noninteracting gasand ys
being weakly interacting is that the quartic ternfigptends  are the compressibility and the spin susceptibility of the in-
to zero faster than the kinetic-energy term in the limit teracting system, angp is the Pauli spin susceptibility. By
—0. We can thus calculate the quasiparticle energy withirmaking use of the thermodynamic definitionsko@ind ys we
first-order perturbation theory, with the result can write

—

Eqplk) = e+ Esx(k) + Eci(k). (26) Ko_q V2, | i‘{ Poclls0) 1oty 0)] (30
K T 8 ar r« drg '

Note that€syx(k) is here a self-energy calculated with a dy- )

namically screened effective interactifime quartic part of and

Eq. (24), which is equivalent to the Kukkonen-Overhauser V2 2 Pers )

QP-QP interactioh — > : (31)

Xs w 2 74 =0

_ d’q 2 where g(rg,{) is the correlation energy per particle as a
Esx(k) = _f (277)2[0‘1 *ue(@xc(@Awg) function ofrg and of the degreé of spin polarizatiort3-18
’ At large g, on the other hand, the local fields of Ref. 35
+305(A)xs(0, 8k ) 1O(= &i—g/f).  (27)  satisfy the asymptotic behavigis

The last term in Eq(26) is the Coulomb shift, which can be q
seen as being generated by normal ordering with respect to G:(q) — Ck_p +B,. (32
the vacuum,
Here C is determined by the difference in kinetic energy
d?q (** de’ between the interacting and the ideal Fermi gas,
Eerlk) =~ (277)2J 3 re o
° C=-—=—[redrs 0], (33)
2 / 2 / 2\20rg
, ve(@Im xc(@, ") + 3v5(@)Im xs(q, ")
Ayg—o ' while B,=1-g(0) andB_=g(0), with g(0) being the value of
(28)  the pair-distribution function at the orighi.
The sum of€sy(k) and Eq(k) coincides with Eq(7), cal- IV. NUMERICAL RESULTS

culated at the single-particle frequeney&,/#. , i ,
We turn to a presentation of our main numerical results. In

Sec. IV A we present some illustrative results for the QP
[ll. LOCAL-FIELD FACTORS excitation energy and lifetime, and in Section IV B we give
our results for the QP effective mass and renormalization
As is clear from Eqgs(1)~8), the local-field factors are constant. In all figures the labels “RPA,"G:” and
fundamental quantities for an evaluation of quasiparticle‘G+& G_” refer to three possible choices for the local-field
properties. In this section we introduce the static values ofactors. “RPA” refers to the case in which local-field factors
these functions that we have chosen to calculate the real ar&]‘le not inc|uded,G+" to the case in which the antisymmet-
imaginary parts of the QP self-energy from EG8.and(8).  ric spin-spin local field is set to zer@e., spin-density fluc-
Although the local-field factors are frequency dependentyations are not allowegand, finally, ‘G, & G_” refers to the

quantities in what follows, we shall make the common, andy|| theory including both charge- and spin-density fluctua-
to a certain extent uncontrolled, approximation of neglectingjons.

their frequency dependence. Recent stifdibave explored
such a dependence in the long-wavelength lignit- 0, but
clearly the knowledge of the full dependence on wave num-
ber is necessary for correctly carrying out the type of calcu- We have computed the real and imaginary parts of the QP
lations in which we are interested. self-energy using Eq$7) and(8). In Figs. 3 and 4 we show
Analytical expressions for the relevant static local-fieldthe real part of the SX and CH contributions as from Egg.
factors G,(q) and G_(q), are availabl€® which reproduce and (3), evaluated at the single-particle frequensy &./%
the most recent diffusion Monte Carlo d#t& and, as we and measured from their valuelkatke. Note the presence of
are going to summarize below, embody the exact asymptotia strong dip in the CH term at a value kofk,, for example
behaviors at both small and large wave numherSpecifi-  which depends ormrg and on the functional form of the
cally, in the long wavelength limit our choice satisfies thecharge-charge local-field factor. This is the plasmon dip,
compressibility and spin-susceptibility sum rules, which is also present in three dimensions and originates from

A. Quasiparticle self-energy
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FIG. 3. The real part of the SX contribution to the retarded FIG. 4. The real part of the CH contribution to the retarded
self-energy(in units of Ry evaluated aw=¢§/A as a function of  self-energy(in units of Ry) evaluated aw=¢, /% as a function of
k/kg for rg=1 (top panel and 5(bottom panel k/kg for rg=1 (top panel and 5(bottom panel

the fact that at each there is a sufficiently high value & 1 1 déEqp(k)

for decay of an electron-hole pair into a plasmon with con- m* = 72 dk :
servation of momentum and energy. Mathematically this dip F k=ke
arises for the reasons explained in Appendix A.

In Fig. 5 we show R&R (k , ) as from Eq(7), evaluated
at w=§&/h. There is substantial cancellation between the S
and CH contributions fok<kg, so that in this range the QP
self-energy is essentially very weakly momentum
dependent.Such a function has a Fourier transform, which
is to a good extent local in real space, and this result can b
viewed as a microscopic justification of the local-density ap-
proximation to the exchange-correlation potential of density- 0 —
functional theory.

In Fig. 6 we show the absolute value of Bp.(k,w) as
from Eq. (8), evaluated atw=¢/%. This function takes a
finite jump at the wave number of the plasmon dip. The
discontinuity is peculiar to two dimensiofi&it is absent in
three dimensions and arises from the fact that the oscillator
strength of the plasmon pole is nonzerdkgisee Appendix
A). The qualitative difference in the shape of the imaginary
part of the self-energy below and abagreflects the open-
ing of a new decay channel for an electron-hole pair.

(34)

>ﬁn Sec. Il we remarked that the QP excitation energy may be
calculated either by solving self-consistently the Dyson
equation(9) or by using the OSA in Eq(10). In what fol-
Ié)ws the identity

-
o

e Z ek o)l omtn + Hame
fo
£d,] N

)
w

&
o

B. Many-body effective mass enhancement
FIG. 5. The real part of the retarded self-enetgyunits of Ry)
Once the QP excitation energy is known, the effectiveevaluated at»=¢,/# as a function ok/k for rs=1 and 5.uquc is
massm* can be calculated by means of the relationship  the chemical potential from the QMC ground-state energy.
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dReX} [k wk)] 1

= 9, ReSR (K, 0)| =0 Z= . 37
dk ReZrlolumuty 1174, ReXE(K o)k wmo 7
+ 5, ReSR (K )| da (k) The normal Fermi-liquid assumption, <0Z<1, implies
“ et ®lozal) g d, ReEfet(k,w)|k:kF,w:0s 0. Thus we see that the effective
(35) massm*D can diverge at a finite value af by one of two

mechanismsi) the partial derivative oE73, with respect to

w, d, ReEf‘et(k,w)|k:kF,w=0 going to minus infinity at some
finite value of rg% (i) the partial derivative of2R, with
respect tok, 4, ReEfet(k,w)|k=kF,w=0 going to #%ke/m at
some finite value of . Neither possibility is realized in our
calculation: the first is barred priori by the fact that the
analytic expression for the frequency derivative X, is
mB _ z1 (36 always finite at finiter; the second is fou%% posteriorinot
" 2 R . to occur since the momentum derivativeXj}, is positive u
m  1+(m#A%ke) dy ReEret(k,w)|k:kF,w:° to the largest consideredsee below. e P P

On the other hand, using Eq&34) and (35 and with
The renormalization constaftthat measures the discontinu- w(k)=&/% we find that the effective massgg, within the
ity of the momentum distribution &=k is given by OSA is given by

will be used,w(k) being an arbitrary function df.

Using Egs.(34) and (35) with w(k)=dEqp(k)/% we find
that the effective massn, calculated within the Dyson
scheme is given by

*

Mosa _ 1 (39)
m 1+ (MA%e) 6 ReZR(K 0) kw0 * i d REZR(K, ©) ek w0

Of course, Eq(38) is a valid approximation to the effective ground-state property and thus its evaluation by the QMC

mass in the weak coupling limit, as can be seen by expandechnique is quite delicate, as it involves the construction of

ing Eq.(36) for small values o, however, its application excited states. There clearly is quantitative disagreement be-
becomes problematic at large valuesrofin particular, we  yyeen our “best” theoretical resulfthe G, & G_/D predic-

see that because@—,ReEfet(kF,O) increases monotonically tions and the QMC data.

with increasingrs, there must necessarily be a critical value |, Fig. 8 we show the behavior of the two terms in the

of rg for which the denominator of E(38) vanishes and : . e

Mo diverges. A recent paper by Zhang and Das S&fma dﬁnomlrr:ator of Eq(._38) aj_functlons of .. Th!s f|*gurfafcle§1rly

infers from this fact a true divergence of the effective mass> OW> °V.Vh‘?‘ s;?]urlous IVergence can ariseng, for in-

within the RPA. In our view, however, this must be consid- Stance, within the RPA the denominator in H§8) has a
zero atr¢=15.5 (see the inset in Fig.)8 Our numerical

ered an artifact of Eq(38). Its unphysical character is re- ! e ) ' -
vealed by the fact that the divergence is driven by a negativgvidence, within tFt‘e three theories we have studied, is that,
but finite value ofd, ReSR (ks,0), whereas we know, from indeed,(i) 4, ReX(ke,0) is negative as it should be for a
the general analysis, that a genuine divergence would have frmal Fermi liquid and monotonically increasing in abso-
be driven either by an infinite, ReS% (ks,0) or by a nega- lute value as a function of and(ii) d Re2 ke, 0) is posi-
tive g, ReSR (ke,0) becoming equal to #%k./m. We con-  tive and monotonically increasing too. Within the theory out-
clude that there is no evidence, within the present theory, folined in this work, which uses as a key ingredient the
a divergence of the effective mass. Kukkonen-Overhauser effective screening function in Eg.
In Fig. 7 we show our numerical results fiof, andmgg,.  (4), the effect of a charge-only local field is to shift this
The effective mass enhancement is substantially smaller idivergence to higher values of, while the opposite occurs
the Dyson-equation calculation than in the OSA, the reasowhen including both charge and spin fluctuations. For in-
being that a large cancellation occurs between the numeratstance, within theG, & G_/OSA theory the divergence oc-
and denominator in Eq36). In both calculations the com- curs neamrs=5. Within the local approximation of Eq16)
bined effect of charge and spin fluctuations is to enhance ththe situation is differef® and the effect of a charge-only
effective mass over the RPA result, whereas the oppositcal field is to shift the divergence to lower valuesrgf
effect is found if only charge fluctuations are included—a In Fig. 9 we show our numerical results for the renormal-
manifestly incorrect result that neglects the spinorial naturézation constanZ in comparison to the QMC data of Ref. 70.
of the electron. For completeness we have also included iffhe theory underestimates the value Dfover the whole
Fig. 7 the variational QMC results of Kwoat all* The range of densities explored. Note that short-range charge-
reader should bear in mind that the effective mass is not density fluctuations tend to stabilize the normal Fermi liquid,
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% 25
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} /"/‘—' -
& 15} g o .
1 - / 4
’/" / 1
10 14 18
05 1 75 By Ko X ket om0 RPA —- |
. . . G.8G! —
0 2 4 6 8 10
Ts
7T N ] . 8. lllustrating the divergence of the effective mass within
° ™ FIG. 8. lllustrating the di f the effecti ithi
% 06 \ ] the OSA. The three curves starting from unityrgt 0 refer to the
3 O05f . quantity 1-+m/#A%ke)dy ReZ,Ret(kF,O), and the other three curves to
x _ R . . . .
% oal \\\ 7Y, ReX3 (K, 0)]. The intersection of two lines with the same
“Er line style in the two sets of curves corresponds to a zero in the
@ 03r 1 denominator of Eq(38) and thus to a divergence imgg,. The inset
02| shows this divergence occurring within the RPArg= 15.5.
0.1k
R V. COMPARISON TO EXPERIMENTAL RESULTS
0 ! AND CONCLUSIONS

FIG. 6. The absolute value of the imaginary part of the retarded Afu!l anc’_:lIySI_s of the pUb“%‘ec{ data for_the effective mass
self-energy(in units of Ry evaluated atw=¢,/% as a function of of carriers '”_S"MOSFET'Q' would require a more com-
k/ke for r=1 (top panel and 5(bottom panel plete theoretical study, mainly to account for the two-valley

nature of the material. We will focus here instead on the
experimental results of Ref. 56 as kindly provided to us by

while the simultaneous inclusion of charge- and spin-density"- Zhu prior to publication. At present the data refer to the
fluctuations works in the opposite way. range 2<ry=<6, so that we cannot judge the performance of

For the sake of completeness we have collected in Table '€ theory in the weak-coupling regime. A quantitative com-
a summary of our numerical results for and Z at a few parison between theory and experiment would also require a
values ofr.. In Sec. V we will discuss our results for the QP rgfmed treatment Qf a series of effects, sugh as those d_ue to
effective mass in the light of recent experimental results an isorder and tq f|n|te tempera’Fure. We restnpt our analy5|s to
draw our main conclusions. he effect of finite sampl_e th|ckn_e_>ss, by _dlscussmg_ how a
softened Coulomb potential modifies* against the strictly
2D results discussed in Sec. IV B and shown in Fig. 7. The
expectation is that the QP effective mass will be noticeably
smaller when a softened Coulomb interaction is at work.

£

*

3

N
Ts
FIG. 7. Effective mass enhancement as a functiomsdbr 0O 5 > 7 p o 1

<rs=<10. The inset shows an enlargement of the results ferl. ,s
The lines show the results from E@6), while the symbolgexcept
for the dot$ are from Eq.(38). The QMC datgdoty are from Ref. FIG. 9. Renormalization constait as a function ofrg for 0
11. <r¢s=<10. The QMC data have been taken from Ref. 70.
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TABLE |. QP effective mass and renormalization constant of a 18 T
paramagnetic 2D EG. The arrows refer to the divergence in the F‘E’fB o
OSA as explained in the main text. Rl v A
G,/OSA
_ _ - - 14| G&GUOSA
rs Various calculations ~ mp/m Mpsa/ M z
1 RPA 1.022 1.033 0.670 L
G, 0.972 0.961 0.710 1 i e
G,&G_ 1.026 1.040 0.658
2 RPA 1.082 1.168 0.526 08 D
G, 1.004 1.007 0.585
G,&G_ 1.144 1.349 0.486 el 2 . 6 s 10
3 RPA 1.121 1.322 0.444 fs
G 1.030 1.061 0.510 FIG. 10. Effective mass enhancement for a quasi-2D EG con-
G.&G_ 1.247 2.026 0.391  fined in a GaAs/AlGaAs triangular quantum well of the type used
5 RPA 1.167 1.696 0.349 in Refs. 51 and 56. The notation is as in Fig. 7.
G, 1.066 1.172 0.419
G,&G_ 1.410 Va 0.289 very reasonable manner with the data. The Dyson-equation
10 RPA 1.215 3.650 0.244  results, show instead a relatively small and slowly increasing
G, 1.100 1.415 0311  Mass enhancement over the whole range of densities, as dis-
G.&G. 1834 y. 0166 cussed for the strictly 2D case in Sec. IV B.

In summary, we have revisited the problem of the micro-
scopic calculation of the quasiparticle self-energy and many-
body effective mass enhancement in a 2D EG. We have per-
formed a systematic study based on the many-body local-
fields theory, taking advantage of the results of the most
ecent diffusion Monte Carlo calculations of the static charge
nd spin response of the EG expressed through static local-
leld factors. We have carried out extensive calculations of
both the real and imaginary parts of the quasiparticle self-

8 + Ox + 3x? Kins 1 energy. We have also presented results for the effective mass
WJf - m! enhancement and for the renormalization constant over a
wide range of coupling strength. In this respect we have
(39 critically examined the merits of the on-shell approximation
with d=[%2k./ (48mméen*)]*3 representing an effective Versus the Dyson-equation ca[culation. I.Depen.ding on the
width of the 2D EG¥ Here xj,.=10.9 andks.=12.9 are the Iocal-fleld_factors, the OSA predlcts_ a spurious dlve_rgence of
dielectric constants of the insulator and of the space charg® €ffective mass at strong coupling, and a solution of the
layer, x is their averagem is the bare band mass in the Dyson equation is therefore necessary |n.0r.der to opt.aln.the
confinement direction, and* = Nger+ 11n,5/32, the deple- correct value of the effective mass within Fermi-liquid
tion layer charge densityie, being zero in the experiments theory. The comparison to the experiment data of Ref. 56
of Ref. 56. The results that we obtain with the softened poShOWS :2%’8 as already evident even in the higher density
tential are shown in Fig. 10. A caveat to keep in mind is tha €9ime&*?728%%f a MOSFET, the simultaneous inclusion of

we have used the same local-field factors as a zero-thickneS§arge- and spin-density fluctuations beyond the random
2D EG in the lack of a better choice. Thus the results labele®"@S€ approximation is crucial in accounting for exchange
by G, and G,& G_ in Fig. 10 contain the effect of finite and short-range correlations and can lead to substantial cor-

thickness only through the renormalization of the C0u|0mbrecti0n§ at low car.rier densities. A possible role of dynamic
potential. We believe that the explicit dependence of the lo€Orrelations, entering through the frequency dependence of

cal fields on the finite width of the 2D EG should not changetn€ local-field factors, remains to be examined.

the results of Fig. 10 in a substantial manner.

Comparing the resylts of Fig. ;0 Wlth those in Ref. 56 we ACKNOWLEDGMENTS
can draw the following conclusiongi) the G, results, at
both the OSA and the Dyson-equation level, do not have the We would like to gratefully acknowledge the early contri-
proper functional shape to account for the experiment datayutions to this project by Ermanno Strepparola. We are in-
(ii) the RPA andG, & G_ results are rather similar; ar(di) debted to George Simion for pointing out to us the existence
the G, & G_ results, which treat charge and spin fluctuationsof the ultraviolet divergence in the calculation of the self-
on the same footing, show the best performance against trenergy within the static many-body local-fields theory. We
experiment data. In fact, without the use of any fitting pa-would also like to thank J. Zhu, M. Shayegan, Y.-W. Tan, and
rameters, th&s, & G_ results within the OSA compare in a K. Vakili for sharing with us their considerable physical in-

We have thus recalculaten after renormalizing the bare
Coulomb potential by means of a form factor to take into
account the finite width of the EG in the GaAs/AlGaAs
hetero-junction-insulated gate field-effect transistor used i
Refs. 51 and 56. The appropriate renormalized potential i
given byV,=v4F(qd)/x, where

F(x) = (1+Ki—nS

Ksc Ksc
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d’q f*” dQ
ReScu(K,®)lwegn == | —5vP| —
eXcu(k,o)| &/h (277)2Uq o

Im[e™*(q,Q)]

bl —gegi-0 A

The angular integration can be performed analytically, with

the result
2m do _ 277[9 - Qmin(k)]
o &= &gt —Q  \[Q+AgH(2m)]? - B m?
/Ky (A2)

FIG. 11. lllustrating the integration range relevant to Eag4),

with  in units of eg/%. The shaded area represents the electron- .0 .
hole continuum.Q,i,(q) is shown for three values df (dashed whereQp,y(K)=-7q*/ (2m) +Aikg/m. In carrying out the fre-

curves: from top to bottom,k=3.0ke, ko, and 0.8 with k, ~ duency integration care must be taken to include the contri-
~2.3%. The plasmon dispersion relatidl,(q) (dotted curvgis ~ bution from the plasmon pol,,. Using the expression for

also shown. the imaginary part of the charge-charge susceptibility near

Oy,

sight and their experimental results. Saverio Moroni pro- P
vided useful clarifications concerning the QMC results. This
work was partially supported by MIUR through the - -1
PRIN2001 and PRIN2003 programs. G.V. acknowledges IM xc(q,€2) = e (a) ReXO(q’Q)|“:QpI
support from NSF Grant No. DMR 0313681. x[ JRexo(q,Q)

-1
Q= Qy),
APPENDIX A: DETAILS ON THE EXPLICIT ) =0y,
CALCULATION OF THE REAL PART (A3)
OF THE CH CONTRIBUTION

Using Eq.(3) we find that the real part of the CH term
evaluated atw=§/% is given by we find that the real part of the CH term is given by

ReX (K, )] y=g /n = = chq—dq vela) ReXO(q’Q)|Q:9pl J Re xo(q,€2)
1 Olw=¢ 11 0 27 \[Qpl + ﬁq2/(2m)]2 _ h2k2q2/m2 20

_ J qdg,, fﬂ dQ v2(Q)Im xc(9,2) + 3v&(Q)Im xs(q,2)
max{0 Qi) Low] T V[Q + g (2m) ]2 = 72K m?

-1
:| ®[Qpl - Qmin(k)]

0=0,,

A4
- (A4)

Here g, marks the onset of Landau damping afigyjow) =k, there can be either or(@;) or two intersectionga, »),
=hqg?/ (2m)hgk=/m are the upper and lower edges of the so that the range of integration[i8,q;] or [0,9;]U [0, 0c],

electron-hole continuum. respectively. It is the crossover from conditiGinto (ii) that
The range of the momentum integration deserves specidads to the plasmon dip irReECH(k,w)|w=,§k/ﬁ.
attention. In the first term in EqA4), due to the step func- In the second term in EqA4) the range ofj integration

tion the range ofj-integration is determined by the intersec- runs up tog=+ and this gives rise to the logarithmic di-
tions betweer),i,(k) and{(), (see Fig. 11 In Sec. IV Awe  vergence discussed in Ref. 36 and briefly mentioned in Ref.
have introduced the,-dependent wave numbky; this is the  64. As already shown in Sec. Il, what matters are self-energy
wave numbek at whichQ,,(k) is tangent td),. There are  differences, which are free of singularities. Numerically, we
two casesl(i) for k<k, there are no intersections and, thus,deal only with the finite quantity ReXcy(K,w)l,=gn

the range ofg integration goes from 0O tg; and (ii) for k  =3cu(kg,0).
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FIG. 12. The exchange plus regularized “line” contribution to
the retarded self-enerdin units of Ryd evaluated atv=§&,/#, as a
function of k/kg for r¢=1 and 5.

APPENDIX B: LINE+RESIDUE DECOMPOSITION % 0.
In this appendix we discuss a mathematically equivalent 8 \/
decomposition of'the QP self-energy, introduced by Quinn r 15 g
and Ferrel?® which has been often employed in the Y
literature® This amounts to writing .5 . . . .
"o 1 2 3 4 5

ek, @) = 2y (K) + Zjine(K, w) + ZedK, o). (B1) . _—
FIG. 13. The real part of the “residue” contribution to the re-
tarded self-energyin units of Ry evaluated atv=¢§ /% as a func-
Here the first term is the Hartree-Fock self-enéfgy tion of k/kg for rs=1 (top panel and 5(bottom panel

— 2% E(K2)/ (k=1)
Sx(k) = — — — — : (B2)
- 26?keK[E(1/K?) = (1 - 1KAK (1K) 7 (k> 1)

Where?:k/kF and K(x), E(x) are complete elliptical inte- S (K.w) = d’q 1 1
grals of the first and second kind, respectively. The second redk, @) = (27-,)2”‘1 e(0, @ = &glh)
term in Eqg.(B1), which is purely real, is given by
X[O(0 = &caglh) = O(= Eergfh)].  (BY)

) . Within this decomposition it is the “line” contribution that
s (k w):_J dq v f @[ 1 } needs to be regularized for an ultraviolet divergence.
mevs 2m?79)_, 2w &(q,iQ) As a check of our numerical results obtained by means of
the SX-CH decompositions, we have recalculated the QP
% 1 (B3) self-energy, effective mass, and renormalization constant by
w+i - §k+q/ﬁ' this alternative route. This turned out to require a substan-
tially harder numerical effort. For completeness we summa-
rize in Figs. 12 and 13 our results for the line and residue
Finally, the third term is the so-called residue contribution, terms.
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