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Motivated by a number of recent experimental studies we have revisited the problem of the microscopic
calculation of the quasiparticle self-energy and many-body effective mass enhancement in an unpolarized
two-dimensional electron liquid. Our systematic study is based on the many-body local field theory and takes
advantage of the results of the most recent diffusion Monte Carlo calculations of the static charge and spin
response of the electron liquid. We report extensive calculations of both the real and imaginary parts of the
quasiparticle self-energy. We also present results for the many-body effective mass enhancement and the
renormalization constant over a broad range of electron densities. In this respect we critically examine the
relative merits of the on-shell approximation, commonly used in weak coupling situations versus the actual
self-consistent solution of the Dyson equation. We show that already forrs.3 and higher, a solution of the
Dyson equation proves necessary in order to obtain a well-behaved effective mass. Finally we find confirma-
tion that the inclusion of both charge- and spin-density fluctuations beyond the random phase approximation is
indeed crucial to get reasonable agreement with recent measurements.
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I. INTRODUCTION

An interacting electron gassEGd on a uniform neutraliz-
ing background is used as the reference system in most real-
istic calculations of electronic structure in condensed-matter
physics.1–3 At zero temperature there are only two relevant
parameters for a disorder-free, homogeneous EG in the ab-
sence of quantizing magnetic fields and spin-orbital cou-
pling: sid the usual Wigner-Seitz density parameterrs
=spn2DaB

2d−1/2, aB="2k̄ / sme2d, being the Bohr radius in the
medium of interest withk̄ andm appropriate dielectric con-
stant and bare band mass, respectively; andsii d the degree of
spin polarizationz= un↑−n↓u /n2D. Herens is the average den-
sity of particles with spins= ↑ ,↓, and n2D=n↑+n↓ is the
total average density.

Understanding the many-body aspects of this model has
attracted continued interest for many decades.2–6 The EG,
unlike systems of classical particles, behaves like an ideal
paramagnetic gas at high densitysrs!1d and like a solid at
low density7 srs@1d. In the intermediate density regime,
which is relevant in three dimensions to conduction electrons
in simple metals and in two dimensions, to electrons in an
inversion layer of a Si metal-oxide-semiconductor field-
effect transistorsMOSFETd or in an AlGaAs/GaAs quantum
well, perturbative techniques are not effective owing to the
lack of a small expansion parameter. Therefore, one has to
take recourse to approximate semianalytical methods, a num-
ber of which have been reviewed in Refs. 3 and 4, or to
quantum Monte CarlosQMCd simulation methods.8–18

Among the methods designed to deal with the intermedi-
ate density regime, of particular interest for its physical ap-
peal and elegance is Landau’s phenomenological theory19

dealing with low-lying excitations in a Fermi liquid. Landau
called such single-particle excitations quasiparticlessQPsd

and postulated a one-to-one correspondence between them
and the excited states of a noninteracting Fermi gas. He
wrote the excitation energy of the Fermi-liquid in terms of
the energies of the QPs and of their effective interaction. The
QP-QP interaction function can, in turn, be used to obtain
various physical properties of the system and can be param-
etrized in terms of experimentally measurable data.

Quinn and Ferrell20 provided a framework for the micro-
scopic evaluation of the QP-QP interactions in the EG by
means of the random phase approximationsRPAd. Next,
Rice21 incorporated the vertex corrections in the RPA form of
the electron self-energy by including the Hubbard22 many-
body local field, while Overhauser5 discussed, albeit within a
simplified framework, numerous quasiparticle properties us-
ing a similar approximation. Some of the problems in Rice’s
theory were subsequently resolved by Ting, Lee, and Quinn23

in their theory of the quasi-two-diemensional EG. All these
approaches considered only one many-body local field, a
procedure that does not allow for a correct handling of the
effect of spin-density fluctuations. Ultimately this approxi-
mation leads to a number of serious problems that only the
physically sound inclusion of the latter can resolve.24

A more detailed analysis, which accounts for the vertex
corrections associated with both types of fluctuations, was
carried out for an unpolarized EG in Refs. 25–28, where
Kukkonen-Overhauser-like29 effective interactions were ob-
tained by different approaches. In particular, Yarlagadda and
Giuliani27,28 adopted a physically transparent approach
termed the renormalized Hamiltonian approachsRHAd,
which consisted of a generalization of the RPA-based elegant
pioneering theory of Hamann and Overhauser.30 A few elec-
trons from the EG are selected and called “test electrons,”
while the remaining EG is treated as a dielectric screening
medium. As the test electrons move through this medium,
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they produce fluctuations in the density of spin-up and spin-
down electrons, which, in turn, provide virtual clothing and
also screen their mutual interaction. Thus, the dielectric
mimics the true physical processes in an average way. Of
course, the test electrons and the electrons of the medium are
physically indistinguishable, and this must be taken into ac-
count when exchange effects are considered. At this point,
after averaging over the coordinates of the screening me-
dium, an effective renormalized Hamiltonian containing only
the degrees of freedom of the clothed test electronssor QPsd
can be derived, under the assumption that the coupling with
the medium occurs onlyvia its charge- and spin-density fluc-
tuations. Calculations based on these theories have been car-
ried out for both three-dimensionals3Dd26,31 and two-
dimensionals2Dd24,32,33systems.

In a parallel theoretical development Ng and Singwi,34

starting from a Ward identity and performing a local approxi-
mation on the irreducible particle-hole interaction, obtained
an expression for the self-energy in terms of the many-body
local-field factors associated with charge- and spin-density
fluctuations. Equivalent results were later obtained by Yarla-
gadda and Giuliani24,28by means of the RHA. These authors
also took into account an infinitesimal degree of spin polar-
ization, which allowed them to properly carry out Rice’s pro-
gram of calculating the Landau Fermi-liquid parameters.

Although its theoretical basis is sound, previous quantita-
tive theoretical work based on this general method suffers
from two major shortcomings:sid All available earlier calcu-
lations have adopted a static and oversimplified Hubbard-like
model for the local-field factors, which do not have the ap-
propriate behavior at both intermediate and large wave num-
ber q; and sii d most theoriessincluding the RHA introduced
above and briefly reviewed in Sec. II Cd are based on the
“on-shell” approximation, which, as we will show in this
work, predicts a spurious divergence of the effective mass
with decreasing electron density. While still neglecting the
frequency dependence of the local fields, we have corrected
for several of these discrepancies. In particular we have
implemented the following improvements:sid we have made
use of recent parametrizations35 for the static local fields of a
2D EG, and, in the spirit of the work of Santoro and
Giuliani32 and of Ng and Singwi,34 sii d we have kept the full
frequency dependence of the self-energy and carried out a
self-consistent solution of the Dyson equation to find the
proper QP excitation energy and QP properties. Moreover,
comparing to Ref. 32, we have released the simplifying
plasmon-plus-paramagnon-pole approximation to the charge-
charge and spin-spin response functions. A calculation based
on the same theory for the case of a 3D EG is reported in
Ref. 36.

From the experimental point of view, as already re-
marked, electrons in a semiconductor inversion layer or in a
quantum well can be modeled by a quasi-2D EG.37 Quantum
Shubnikov–de HaassSdHd oscillations of the magneto-
resistance38 provide a powerful tool for measuring Fermi-
liquid parameters of a quasi-2D EG. Measurements per-
formed over the past years39–42 have shown sizeable renor-
malizations of the QP effective-mass and effective-Landég
factor. These experiments have been performed in a rela-
tively high-density regime, i.e., forrs&2 say. The density

dependence of the effective massm* was obtained by Smith
and Stiles39 from a study of SdH oscillations in Si inversion
layers. To obtain the same information Abstreiteret al.40

used instead cyclotron resonance measurements. Fang and
Stiles41 and Neugebaueret al.42 performed a series of SdH
experiments on Si inversion layers and obtained the depen-
dence of the modified Landé factorg* on carrier density. The
product ofg* and m*, which is proportional to the spin sus-
ceptibility xS, can be determined from the SdH oscillations in
a tilted magnetic field, as suggested in Ref. 41.

The issue of the apparent metal-insulator transition43

sMIT d in low-density 2D electron systems has prompted in-
tense experimental studies on quasiparticle properties44–52,56

in the intermediate-to-strong coupling regime,rs*2, for ex-
ample. Many authors44 have shown that the resistance of a
Si-MOSFET is increased dramatically by increasing the
value of an in-plane magnetic field and saturates at a char-
acteristic value of several Teslas. Performing low-field SdH
measurements on Si-MOSFET’s, Okamotoet al.45 have
shown that the saturation value is the magnetic field neces-
sary to fully polarize the electron spins. An interpretation46,47

of the in-plane magnetoresistance in Si inversion layers sug-
gested a ferromagnetic instability at or very close to the criti-
cal density for the 2D MIT driven by a divergence in the
effective mass. Direct measurements ofm* in high-mobility
Si-MOSFET’s over a wide range of carrier density, using a
technique based on the beating pattern of SdH oscillations in
crossed magnetic fields, have been reported by Pudalovet
al.48 These authors measuredm* and xS in the vicinity of the
2D MIT, but found no evidence for a divergent behavior.
Only a moderate enhancement ofm* by a factor of<2–2.5
over the band mass was observed near the critical density for
the 2D MIT. Two groups have also reported anomalous den-
sity dependences of the Landé factor inn-doped49 s2& rs

&7d andp-doped50 srs*17d GaAs/AlGaAs heterojunctions
that are in disagreement with results in Si-MOSFETs. The
dependence of the spin susceptibility on the degree of spin
polarization of the sample can account for this anomalous
behavior as pointed out by Zhuet al.,51 who studied a 2D EG
of exceedingly high quality.

To complete the cornucopia of recent experimental find-
ings on QP properties, it is worth mentioning that Vakiliet
al.52 have reported measurements ofm* and xS in a dilute
2D EG confined to a narrow AlAs quantum wellsonly 45 Å
wided. The electron system investigated in Ref. 52 is quite
interesting because the electrons occupy an out-of-plane
conduction-band valley, rendering the system similar to 2D
electrons in Si-MOSFETs but with only one valley occupied.
Quite surprisingly, the results of Vakiliet al.52 for xS are in
good agreement with the QMC results of Attaccaliteet al.18

even though this simulation has been carried out for a strictly
disorder-free EG. This might indicate thatxS is not strongly
dependent on disorder. On the other hand, there is a signifi-
cant spread in the experimental results of Ref. 52 form*,
which turns out to be both sample and cool-down dependent.
Difficulties associated with the SdH data analysis have been
pointed out in Ref. 52 as one of the possible causes for this
spread.

At this point it is probably worth commenting that, in-
deed, there could be, in principle, subtle issues associated
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with the analysis of the SdH traces in 2D systems. In fact the
amplitude of the SdH oscillations is usually fitted to the
Lifshitz-Kosevich sLK d formula53 upon a trivial change in
the single-particle spectrum. The fit is based on an impurity-
scattering Dingle temperatureTD and an “effective” mass. In
recent years a number of caveats concerning the applicability
of such a procedure to strongly interacting 2D systems have
appeared.54 In particular, Martinet al.55 have shown that the
interplay between electron-electron interactions and electron-
impurity scattering leads in 2D to an effective temperature-
dependent Dingle temperature with a leading low-
temperature behavior of the typeTDsTd~T ln T. The need for
the introduction of a temperature-dependent Dingle param-
eter in strongly coupled Si-MOSFETs has been emphasized
in Ref. 48, where a linearTDsTd was used to fit the longitu-
dinal magnetoresistance data. Quantitative differences on the
resultant effective mass are found using such a procedure:
roughly speaking, the tendency is to get substantially lower
values form* than those obtained using the same Dingle
parameter for all temperatures.

For a quantitative comparison between suitable theories
that take into account quasi-2D effectsssuch as finite width
of the electron wave functions in the confinement direction
and valley degeneraciesd and the experimental results39,41 for
Si-MOSFETs in the weak-coupling regimers&2, we refer
the reader to the work of Yarlagadda and Giuliani24 and ref-
erences therein. In this work we will try and carry out a
comparison between the theory and the experimental data of
Tanet al.56 for strongly interacting electronss2& rs&6d, oc-
cupying a single valley in an exceptionally clean
GaAs/AlGaAs quantum well.

The contents of the paper are described briefly as follows.
In Sec. II we present in some detail, the theoretical back-
ground. We proceed in Sec. III to discuss the input we have
used for our numerical calculations, while in Sec. IV we
present our main results for the real and imaginary part of the
quasiparticle self-energy, the many-body enhancement of the
effective mass, and the renormalization constant. Finally, in
Sec. V we compare our theory with the experimental results
of Tanet al.56 and report some conclusions. In order to make
the paper fully self-contained we have also included two ap-
pendixes, which contain a number of helpful details on how
we have in practice calculated the QP self-energy.

II. THEORY OF THE QUASIPARTICLE SELF-ENERGY

The aim of this section is to provide the theoretical justi-
fication for the formulas we have made use of in our evalu-
ation of the retarded QP self-energySretsk ,vd of a 2D para-
magnetic EG. The main formulas are given in Eqs.s2d and
s3d. Their justification rests on both a diagrammatic pertur-
bative analysis as well as on an effective quasiparticle
Hamiltonian derived via a procedure based on the idea of
renormalization.

A. General formulas

We will employ in our theory the following decomposi-
tion for the retarded QP self-energySretsk ,vd:

Sretsk,vd = SSXsk,vd + SCHsk,vd, s1d

where the first term is called “screened-exchange”sSXd and
the second term is called “Coulomb-hole”sCHd. The fre-
quencyv is measured from«F /".

The SX contribution is given by

SSXsk,vd = −E d2q

s2pd2

vq

«sq,v − jk+q/"d
Qs− jk+q/"d. s2d

Here Qsxd is the step function andjk =«k −«F, where «k
="2k2/ s2md is the single-particle energy with«F

="2kF
2 / s2md andkF=s2pn2Dd1/2=Î2/srsaBd, respectively, be-

ing the Fermi energy and wave number. The CH contribution
to the retarded self-energy is, in turn, given by

SCHsk,vd = −E d2q

s2pd2vqE
0

+` dV

p

Imf«−1sq,Vdg
v − jk+q/" − V + id

,

s3d

whered is a positive infinitesimal. In Eqs.s2d ands3d «sq ,vd
is a screening dielectric function originating from the effec-
tive Kukkonen-Overhauser interaction,28,29

1

«sq,vd
= 1 +vqf1 − G+sq,vdg2xCsq,vd

+ 3vqG−
2sq,vdxSsq,vd, s4d

wherevq=2pe2/q is the 2D Fourier transform of the bare
Coulomb interactione2/ r. In this expressionxCsq ,vd and
xSsq ,vd represent the charge-charge and spin-spin response
functions, which, in turn, define and are determined by the
spin-symmetric and spin-antisymmetric local-field factors
G+sq ,vd andG−sq ,vd via the relations

xCsq,vd =
x0sq,vd

1 − vqf1 − G+sq,vdgx0sq,vd
s5d

and

xSsq,vd =
x0sq,vd

1 + vqG−sq,vdx0sq,vd
, s6d

wherex0sq ,vd is the Lindhard response function of a non-
interacting 2D EG.57 In the paramagnetic electron liquid
G±sq ,vd=fG↑↑sq ,vd±G↑↓sq ,vdg /2, where Gss8sq ,vd are
the spin-resolved local fields. Note thatSSXsk ,vd acquires
the form of an ordinary exchange-like self-energy built from
the Kukkonen-Overhauser effective interaction instead of the
bare Coulomb interaction, which would lead to the familiar
frequency-independent Hartree-Fock self-energy first calcu-
lated for the 2D EG by Chaplik.58

The real and imaginary part of the retarded self-energy are
readily obtained from Eqs.s2d and s3d with the result
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ReSretsk,vd = −E d2q

s2pd2vq Ref«−1sq,v − jk+q/"dg

3Qs− jk+q/"d −E d2q

s2pd2vqP

3E
0

+` dV

p

Imf«−1sq,Vdg
v − jk+q/" − V

, s7d

and

Im Sretsk,vd =E d2q

s2pd2vq Imf«−1sq,v − jk+q/"dg

3fQsv − jk+q/"d − Qs− jk+q/"dg. s8d

Quite generally, once the QP self-energy is known, the QP
excitation energydEQPskd, which is the QP energy measured
from the chemical potentialm of the interacting EG, can be
calculated by solving self-consistently the Dyson equation

dEQPskd = jk + uReSret
R sk,vduv=dEQPskd/", s9d

where ReSret
R sk ,vd=ReSretsk ,vd−SretskF ,0d. For later pur-

poses we introduce at this point the so-called on-shell ap-
proximationsOSAd. This amounts to approximating the QP
excitation energy by calculating ReSret

R sk ,vd in Eq. s9d at
the frequencyv=jk /" corresponding to the single-particle
energy; that is,

dEQPskd . jk + uReSret
R sk,vduv=jk/". s10d

We will provide next the necessary background for a for-
mal justification of Eqs.s2d and s3d. The validity of the
theory rests on the results of two completely different meth-
ods: diagrammatic perturbation theorysSec. II Bd and a
renormalized Hamiltonian approachsSec. II Cd.

B. Theoretical foundations I:
Diagrammatic perturbation theory

In this section we make use a diagrammatic approach first
developed by Ng and Singwi,34 and built on earlier ideas by
Vignale and Singwi.25 The starting point is the exact
identity3,59

dSssk,vd = io
s8
E d2k8dv8

s2pd3 Ikvs,k8v8s8s0ddGs8sk8,v8d,

s11d

wheredSssk ,vd anddGssk ,vd are infinitesimal changes in
the self-energy and the Green’s function, andIkvs,k8v8s8s0d is
the irreducible electron-hole interaction at zero momentum
and energy transfer. This identity is graphically represented
in Fig. 1. The defining feature of the irreducible electron-
hole scattering blockI is that it includes only diagrams that
cannot be divided into two parts by cutting a single electron-
hole pair propagator carrying zero energy and momentum.

The differential relations11d cannot be integrated as it
stands becauseI is a complicated functional ofG. The idea
of Ng and Singwi was to use an approximate form of

Ikvs,k8v8s8s0d that does not depend onG. The “local approxi-
mation” introduced by Vignale and Singwi in their study of
the effective electron-electron interaction25 is useful for this
purpose because it yields by physical arguments an expres-
sion of the form

Ikvs,k8v8s8s0d . Vss8
eff sk − k8,v − v8d, s12d

whereVss8
eff is just a function of the momentum and energy

transfers in the electron-hole channel. Thus the main charac-
teristic of the Ng-Singwi approach is that thekey approxima-
tion in Eq. (12) is made on the irreducible electron-hole
interaction rather than on the self-energy itself. With this
approximation we can integrate Eq.s11d and obtain, up to an
integration constant, the result

Sssk,vd = io
s8
E d2k8dv8

s2pd3 Vss8
eff sk − k8,v − v8dGs8sk8,v8d.

s13d

With the replacementsk −k8=q andv−v8=V, this expres-
sion has the form of the so-called GW approximation60 ex-
cept for two crucial differences:sid the effective interaction
Vss8

eff sq ,Vd includes vertex corrections and is therefore more
general than the screened interactionWsq ,Vd between test
charges that appears in the GW approximation; andsii d the
expressions13d involves an undetermined integration con-
stant that must be fixed by independent means. For example,
one can requireSskF ,0d to reproduce the correct value of the
chemical potential as determined from QMC data. An ana-
lytic continuation procedure allows one to recast the time-
ordered self-energy in Eq.s13d into a retarded self-energy
given by the sum of SX and CH contributions as in Eq.s1d.

In their derivation of the local approximation in Eq.s12d,
Ng and Singwi34 as well as Singwi and Vignale25 sorted the
diagrams that contribute to the irreducible electron-hole in-
teraction into a number of classes identified by characteristic
graphical criteria of irreducibility. The theory becomes in
this case “local” when the various irreducible blocks are as-
sumed to depend only on the net wave vector of the electron-
hole propagators that connect them. The irreducible blocks
are then expressed in terms of the appropriate many-body
local fields. At this point, an important physical and consis-
tency requirement of the diagrammatic analysis is that the
very same assumptionssin particular, that on the wave-vector
dependenced, when applied to the corresponding calculations

FIG. 1. Diagrammatic representation of the identitys11d. Here
and in the following we use the four-momentum variablep as a
shorthand forsk ,vd.
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of the charge- and spin-response functions lead to Eqs.s5d
and s6d. These approximations allow one to derive the fol-
lowing analytic expression for the effective interaction:

V↑↑
effsq,Vd = vq + hvqf1 − G+sqdgj2xCsq,Vd

+ fvqG−sqdg2xSsq,Vd,

V↑↓
effsq,Vd = 2fvqG−sqdg2xSsq,Vd. s14d

Inserting this into Eq.s13d and repeating standard analytical
transformations,60 one easily recovers the expressionss2d
ands3d for the screened-exchange and Coulomb-hole contri-
butions to the self-energy given above.

Let us emphasize again that the result just obtained by the
diagrammatic method rests on Eq.s13d for the self-energy
smodulo an additive constantd and on the use of the effective
interaction of Eq.s14d. It can be readily seen from the analy-
ses of Refs. 25 and 34 that no diagrams forIkvs,k8v8s8s0d
have been double counted. Rather, many diagrams have been
dropped, the result for the self-energy eventually being ad-
justeda posteriori by fixing an additive constant imposing
the correct value of the chemical potential. This must be
contrasted with the results of a similar local analysis carried
out, however, directly for the diagrammatic structure of the
self-energy itselfsas opposed to its variationd. In this case
one starts from the exact expression

Sssk,vd = io
s8
E d2k8dv8

s2pd3

vk−k8

esk − k8,v − v8d

3L̃kv,k8v8Gs8sk8,v8d, s15d

where L̃ is the proper vertex function ande is the regular
dielectric functionssee Fig. 2d. Within this local approxima-
tion one finds21,31,61

L̃kv,k8v8 =
1

1 + vk−k8G+sk − k8dx0sk − k8,v − v8d
, s16d

so that this route to the self-energy includes only the contri-
bution of charge fluctuations but, unphysically, misses com-
pletely that of spin fluctuations. The root of the difficulty
obviously lies in the fact that the local approximation for the
vertex function is not good enough to capture the contribu-
tion of spin-density fluctuations. On the other hand, the de-
pendence ofI on spin fluctuations is manifest in the terms
proportional toG−

2 in Eq. s14d. This is the main physical
reason why it is better to apply the local approximation to the
differential relations11d than to the integral relations15d. In
fact, all quasiparticle properties of our present interest de-

pend on relative variations of the self-energy, i.e., ondS
rather than on the absolute value ofS.

C. Theoretical foundations II:
The renormalized Hamiltonian approach

In this section we review the derivation of Eqs.s2d ands3d
from the point of view of an effective renormalized Hamil-
tonian sthe RHA referred to aboved for the low-energy de-
grees of freedom of the electron liquid, a quantity that pro-
vides a vivid theoretical realization of the Landau
quasiparticles.24,27,28Details of this derivation can be found
in the original papers or in Ref. 3.

One starts by dividing the Hilbert space of the original
and well-known EG HamiltonianHEG into a “slow” sector
sSLd and a “fast” sectorsFLd, assuming the existence of the
Fermi surface atk=kF. SL, contains only plane-wave states
with wave vectork close to the Fermi surface, i.e., such that
uk−kFu,L, whereL is an arbitrarily small cutoff.FL con-
tains all the other states. We correspondingly introduce slow
and fast creation and annihilation operators, which operate in
these two sectors,

ĉk,s =Hŝk,s, k P SL

f̂k,s, k P FL.J s17d

Our goal is to derive an effective Hamiltonian for the slow
sector that contains only theŝk,s operators by integrating out

in a reasoned manner thef̂k,s degrees of freedom.

HEG is first rewritten using theŝk,s and f̂k,s operators,

HEG = Hs + Hf + Hsf. s18d

For instance, the first term reads

Hs = o
k,s

«kŝk,s
† ŝk,s +

1

2S
o
qÞ0

vq o
k1,s1

o
k2,s2

3ŝk1+q,s1

† ŝk2−q,s2

† ŝk2,s2
ŝk1,s1

, s19d

where all wave vectors belong toSL. Hf has a similar struc-
ture and tends to the full EG Hamiltonian in the limitL
→0, a property that will turn useful in what follows.

The third termHsf describes the interaction between the
slow and fast particles; although this term is the sum of 14
different terms, we assume that the relevant operators are
those that separately conserve the number of particles in the

two sectorsfi.e., terms of the typeŝk1+q,s1

† ŝk2−q,s2

† ŝk2,s2
f̂k1,s1

strilinear in the field operators of either slow or fast particlesd
or ŝk1+q,s1

† ŝk2−q,s2

† f̂k2,s2
f̂k1,s1

will be droppedg. Four terms are
left within this assumption. Accordingly, by simple algebraic
manipulationsHsf can be written as

FIG. 2. Diagrammatic representation of Eq.s15d. Here
Wsq ,Vd=vq /esq ,Vd is the usual test-charge–test-charge screened
interaction.
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Hsf =
1

S
o
qÞ0

o
k1,s1

o
k2,s2

vqŝk1+q,s1

† f̂k2−q,s2

† f̂k2,s2
ŝk1,s1

−
1

S
o
qÞ0

o
k1,s1

o
k2,s2

vk2−k1−qŝk1+q,s1

† f̂k2−q,s2

† f̂k2,s1
ŝk1,s2

,

s20d

wherek1 andk1+q belong toSL, andk2 andk2−q belong
to FL.

The firstsdirectd term inHsf describes the Coulomb inter-
action between slow and fast particles and can then be ex-
pressed in terms of density fluctuations in the two sets of
particles. The secondsexchanged term describes an exchange
process in which a slow particle replaces a fast particle and
vice versa. Note that the two particles can have opposite
spins si.e., s1=−s2d, and when this is the case a net spin-
angular momentum is exchanged between slow and fast par-
ticles. In practice this means that any attempt to writeHsf in
terms of collective variables must also involve an interaction
between slow and fast particles mediated by spin fluctua-
tions.

All these arguments bring us to a second crucial approxi-
mation: we treatHsf in an average sense by writing these
microscopic processes in terms of interactions between den-
sity and spin-density fluctuations in the two sets of slow and
fast particles,

Hsf .
1

S
o
qÞ0

vCsqd o
k,s1

n̂−qŝk−q,s1

† ŝk,s1

+
1

S
o
qÞ0

vSsqd o
k,s1,s2

Ŝ−q · sŝk−q,s1

† fsgs1s2
ŝk,s2

d,

s21d

wheren̂q=ok,s f̂k−q,s
† f̂k,s andŜq=ok,s,s8 f̂k−q,s

† fsgss8 f̂k,s8 are,

respectively, the density and spin-density operators for the
fast sector. The effective interaction potentialsvCsqd and
vSsqd must include both the exchange and the correlation
effects. This requirement can be fulfilled in an approximate
way by means of local field factorsG+sqd and G−sqd by
takingvCsqd=vqf1−G+sqdg andvSsqd=−vqG−sqd. Note that,
as in Eq. s14d, we are again using frequency-independent
local field factors for the reasons indicated in Sec. III.

We now carry out a unitary transformation that eliminates
the interactionHsf between slow and fast particles to first
order in its strength.30 We search for a Hermitian operator
Q̂L, which maps the original Hamiltonian into a new Hamil-
tonianH8=expsiQ̂LdHEG exps−iQ̂Ld having the same eigen-

values but transformed eigenfunctions. The generatorQ̂L is
at least of first order in the strength of the interaction be-
tween the two sectors. Accordingly just expanding in powers

of Q̂L the expression forH8, one sees that the interaction

term Hsf is eliminated to first order by choosingQ̂L as the
solution of the operatorial equation

ifQ̂L,Hs + Hfg = − Hsf. s22d

We finally obtain the effective Hamiltonian for the low-
energy degrees of freedom of the electron liquid by averag-
ing over the ground stateu0l of the HamiltonianHf. We have

HQP; k0uH8u0l = E0 + Hs +
i

2
k0ufQ̂L,Hsfgu0l. s23d

Obviously the constantE0 does not play any physical role
and will be dropped from now on.

The operatorial equations22d can be solved forQ̂L once

the commutator ofQ̂L with the interaction term inHs is
dropped, the justification being that this commutator van-
ishes upon averaging on the ground state of the fast sector. A
lengthy but straightforward calculation yields

HQP= o
k,s
F«k −

1

S
o
q
E

0

+` dv8

p

vC
2sqdIm xCsq,v8d + 3vS

2sqdIm xSsq,v8d
Dk,q − v8 Gŝk,s

† ŝk,s

+
1

2S
o
qÞ0

fvq + vC
2sqdxCsq,Dk,qdg o

k1,s1

o
k2,s2

ŝk1+q,s1

† ŝk2−q,s2

† ŝk2,s2
ŝk1,s1

+
1

2S
o
qÞ0

vS
2sqdxSsq,Dk,qd o

k1,s1

o
k2,s2

o
t1,t2

fsgs1s2
· fsgt1t2

ŝk1+q,s1

† ŝk2−q,t1

† ŝk2,t2
ŝk1,s2

, s24d

whereDk,q=s«k −«k−qd /". Note that the sums over the eigenstates ofHf appearing in the derivation have been carried out
using the identity

1

S
o
n

zknun̂qu0lu2

«k − «k−q − sEn − E0d
= −

1

p
E

0

+`

dv8
Im xCsq,v8d

s«k − «k−qd/" − v8
. s25d

A similar identity forŜz,q has also been employed. HerexCsq ,vd andxSsq ,vd are the response functions of the “medium”sthe
fast degrees of freedomd, which asymptotically tend to those of the full EG forL→0.
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The QP HamiltonianHQP as written in Eq.s24d has a very
clear physical meaning. It is the Hamiltonian for a gas of
weakly interacting slow-moving particles with a single-
particle dispersion relation shifted by a self-interaction term
sthe so-called Coulomb-hole shiftd. The reason for the gas
being weakly interacting is that the quartic term inHQP tends
to zero faster than the kinetic-energy term in the limitL
→0. We can thus calculate the quasiparticle energy within
first-order perturbation theory, with the result

EQPskd = «k + ESXskd + ECHskd. s26d

Note thatESXskd is here a self-energy calculated with a dy-
namically screened effective interactionfthe quartic part of
Eq. s24d, which is equivalent to the Kukkonen-Overhauser
QP-QP interactiong,

ESXskd = −E d2q

s2pd2fvq + vC
2sqdxCsq,Dk,qd

+ 3vS
2sqdxSsq,Dk,qdgQs− jk−q/"d. s27d

The last term in Eq.s26d is the Coulomb shift, which can be
seen as being generated by normal ordering with respect to
the vacuum,

ECHskd = −E d2q

s2pd2E
0

+` dv8

p

3
vC

2sqdIm xCsq,v8d + 3vS
2sqdIm xSsq,v8d

Dk,q − v8
.

s28d

The sum ofESXskd andECHskd coincides with Eq.s7d, cal-
culated at the single-particle frequencyv=jk /".

III. LOCAL-FIELD FACTORS

As is clear from Eqs.s1d–s8d, the local-field factors are
fundamental quantities for an evaluation of quasiparticle
properties. In this section we introduce the static values of
these functions that we have chosen to calculate the real and
imaginary parts of the QP self-energy from Eqs.s7d ands8d.
Although the local-field factors are frequency dependent
quantities in what follows, we shall make the common, and
to a certain extent uncontrolled, approximation of neglecting
their frequency dependence. Recent studies62 have explored
such a dependence in the long-wavelength limitq→0, but
clearly the knowledge of the full dependence on wave num-
ber is necessary for correctly carrying out the type of calcu-
lations in which we are interested.

Analytical expressions for the relevant static local-field
factors G+sqd and G−sqd, are available,35 which reproduce
the most recent diffusion Monte Carlo data10,15 and, as we
are going to summarize below, embody the exact asymptotic
behaviors at both small and large wave numbersq. Specifi-
cally, in the long wavelength limit our choice satisfies the
compressibility and spin-susceptibility sum rules,

lim
q→0

G±sqd = A±
q

kF
s29d

with A+=s1−k0/kd / srs
Î2d andA−=s1−xP/xSd / srs

Î2d. Here
k0 is the compressibility of the noninteracting gas,k andxS
are the compressibility and the spin susceptibility of the in-
teracting system, andxP is the Pauli spin susceptibility. By
making use of the thermodynamic definitions ofk andxS we
can write

k0

k
= 1 −

Î2

p
rs +

rs
4

8 F ]2«csrs,0d
]rs

2 −
1

rs

]«csrs,0d
]rs

G , s30d

and

xP

xS
= 1 −

Î2

p
rs +

rs
2

2
U ]2«csrs,zd

]z2 U
z=0

, s31d

where «csrs,zd is the correlation energy per particle as a
function of rs and of the degreez of spin polarization.13,18

At large q, on the other hand, the local fields of Ref. 35
satisfy the asymptotic behavior63,64

G±sqd → C
q

kF
+ B±. s32d

Here C is determined by the difference in kinetic energy
between the interacting and the ideal Fermi gas,

C = −
rs

2Î2

]

]rs
frs«csrs,0dg, s33d

while B+=1−gs0d andB−=gs0d, with gs0d being the value of
the pair-distribution function at the origin.65

IV. NUMERICAL RESULTS

We turn to a presentation of our main numerical results. In
Sec. IV A we present some illustrative results for the QP
excitation energy and lifetime, and in Section IV B we give
our results for the QP effective mass and renormalization
constant. In all figures the labels “RPA,” “G+,” and
“G+& G−” refer to three possible choices for the local-field
factors. “RPA” refers to the case in which local-field factors
are not included, “G+” to the case in which the antisymmet-
ric spin-spin local field is set to zerosi.e., spin-density fluc-
tuations are not allowedd; and, finally, “G+& G−” refers to the
full theory including both charge- and spin-density fluctua-
tions.

A. Quasiparticle self-energy

We have computed the real and imaginary parts of the QP
self-energy using Eqs.s7d ands8d. In Figs. 3 and 4 we show
the real part of the SX and CH contributions as from Eqs.s2d
and s3d, evaluated at the single-particle frequencyv=jk /"
and measured from their value atk=kF. Note the presence of
a strong dip in the CH term at a value ofk skp, for exampled
which depends onrs and on the functional form of the
charge-charge local-field factor. This is the plasmon dip,
which is also present in three dimensions and originates from
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the fact that at eachrs there is a sufficiently high value ofk
for decay of an electron-hole pair into a plasmon with con-
servation of momentum and energy. Mathematically this dip
arises for the reasons explained in Appendix A.

In Fig. 5 we show ReSret
R sk ,vd as from Eq.s7d, evaluated

at v=jk /". There is substantial cancellation between the SX
and CH contributions fork,kF, so that in this range the QP
self-energy is essentially very weakly momentum
dependent.5 Such a function has a Fourier transform, which
is to a good extent local in real space, and this result can be
viewed as a microscopic justification of the local-density ap-
proximation to the exchange-correlation potential of density-
functional theory.

In Fig. 6 we show the absolute value of ImSretsk ,vd as
from Eq. s8d, evaluated atv=jk /". This function takes a
finite jump at the wave number of the plasmon dip. The
discontinuity is peculiar to two dimensions:66 it is absent in
three dimensions and arises from the fact that the oscillator
strength of the plasmon pole is nonzero atkp ssee Appendix
Ad. The qualitative difference in the shape of the imaginary
part of the self-energy below and abovekp reflects the open-
ing of a new decay channel for an electron-hole pair.

B. Many-body effective mass enhancement

Once the QP excitation energy is known, the effective
massm* can be calculated by means of the relationship

1

m*
=

1

"2kF
UddEQPskd

dk
U

k=kF

. s34d

In Sec. II we remarked that the QP excitation energy may be
calculated either by solving self-consistently the Dyson
equations9d or by using the OSA in Eq.s10d. In what fol-
lows the identity

FIG. 3. The real part of the SX contribution to the retarded
self-energysin units of Ryd evaluated atv=jk /" as a function of
k/kF for rs=1 stop paneld and 5sbottom paneld.

FIG. 4. The real part of the CH contribution to the retarded
self-energysin units of Ryd evaluated atv=jk /" as a function of
k/kF for rs=1 stop paneld and 5sbottom paneld.

FIG. 5. The real part of the retarded self-energysin units of Ryd
evaluated atv=jk /" as a function ofk/kF for rs=1 and 5.mQMC is
the chemical potential from the QMC ground-state energy.
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d ReSret
R fk,vskdg
dk

= u]k ReSret
R sk,vduv=vskd

+ u]v ReSret
R sk,vduv=vskd

dvskd
dk

s35d

will be used,vskd being an arbitrary function ofk.
Using Eqs.s34d and s35d with vskd=dEQPskd /" we find

that the effective massmD
* calculated within the Dyson

scheme is given by

mD
*

m
=

Z−1

1 + sm/"2kFdu]k ReSret
R sk,vduk=kF,v=0

. s36d

The renormalization constantZ that measures the discontinu-
ity of the momentum distribution atk=kF is given by

Z =
1

1 − "−1u]v ReSret
R sk,vduk=kF,v=0

. s37d

The normal Fermi-liquid assumption, 0,Zø1, implies
u]v ReSret

R sk,vduk=kF,v=0ø0. Thus we see that the effective
massmD

* can diverge at a finite value ofrs by one of two
mechanisms:sid the partial derivative ofSret

R with respect to
v, u]v ReSret

R sk,vduk=kF,v=0 going to minus infinity at some
finite value of rs;

67 sii d the partial derivative ofSret
R with

respect tok, u]v ReSret
R sk,vduk=kF,v=0 going to −"2kF /m at

some finite value ofrs. Neither possibility is realized in our
calculation: the first is barreda priori by the fact that the
analytic expression for the frequency derivative ofSret

R is
always finite at finiters; the second is founda posteriorinot
to occur since the momentum derivative ofSret

R is positive up
to the largestrs consideredssee belowd.

On the other hand, using Eqs.s34d and s35d and with
vskd=jk /" we find that the effective massmOSA

* within the
OSA is given by

mOSA
*

m
=

1

1 + sm/"2kFdu]k ReSret
R sk,vduk=kF,v=0 + "−1u]v ReSret

R sk,vduk=kF,v=0
. s38d

Of course, Eq.s38d is a valid approximation to the effective
mass in the weak coupling limit, as can be seen by expand-
ing Eq.s36d for small values ofSret

R , however, its application
becomes problematic at large values ofrs. In particular, we
see that because −]v ReSret

R skF ,0d increases monotonically
with increasingrs, there must necessarily be a critical value
of rs for which the denominator of Eq.s38d vanishes and
mOSA

* diverges. A recent paper by Zhang and Das Sarma68

infers from this fact a true divergence of the effective mass
within the RPA. In our view, however, this must be consid-
ered an artifact of Eq.s38d. Its unphysical character is re-
vealed by the fact that the divergence is driven by a negative
but finite value of]v ReSret

R skF ,0d, whereas we know, from
the general analysis, that a genuine divergence would have to
be driven either by an infinite]v ReSret

R skF ,0d or by a nega-
tive ]k ReSret

R skF ,0d becoming equal to −"2kF /m. We con-
clude that there is no evidence, within the present theory, for
a divergence of the effective mass.

In Fig. 7 we show our numerical results formD
* andmOSA

* .
The effective mass enhancement is substantially smaller in
the Dyson-equation calculation than in the OSA, the reason
being that a large cancellation occurs between the numerator
and denominator in Eq.s36d. In both calculations the com-
bined effect of charge and spin fluctuations is to enhance the
effective mass over the RPA result, whereas the opposite
effect is found if only charge fluctuations are included—a
manifestly incorrect result that neglects the spinorial nature
of the electron. For completeness we have also included in
Fig. 7 the variational QMC results of Kwonet al.11 The
reader should bear in mind that the effective mass is not a

ground-state property and thus its evaluation by the QMC
technique is quite delicate, as it involves the construction of
excited states. There clearly is quantitative disagreement be-
tween our “best” theoretical resultssthe G+& G−/D predic-
tionsd and the QMC data.

In Fig. 8 we show the behavior of the two terms in the
denominator of Eq.s38d as functions ofrs. This figure clearly
shows how a spurious divergence can arise inmOSA

* : for in-
stance, within the RPA the denominator in Eq.s38d has a
zero at rs.15.5 ssee the inset in Fig. 8d. Our numerical
evidence, within the three theories we have studied, is that,
indeed,sid ]v ReSret

R skF ,0d is negative as it should be for a
normal Fermi liquid and monotonically increasing in abso-
lute value as a function ofrs andsii d ]k ReSret

R skF ,0d is posi-
tive and monotonically increasing too. Within the theory out-
lined in this work, which uses as a key ingredient the
Kukkonen-Overhauser effective screening function in Eq.
s4d, the effect of a charge-only local field is to shift this
divergence to higher values ofrs, while the opposite occurs
when including both charge and spin fluctuations. For in-
stance, within theG+& G−/OSA theory the divergence oc-
curs nearrs=5. Within the local approximation of Eq.s16d
the situation is different69 and the effect of a charge-only
local field is to shift the divergence to lower values ofrs.

In Fig. 9 we show our numerical results for the renormal-
ization constantZ in comparison to the QMC data of Ref. 70.
The theory underestimates the value ofZ over the whole
range of densities explored. Note that short-range charge-
density fluctuations tend to stabilize the normal Fermi liquid,
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while the simultaneous inclusion of charge- and spin-density
fluctuations works in the opposite way.

For the sake of completeness we have collected in Table I
a summary of our numerical results form* and Z at a few
values ofrs. In Sec. V we will discuss our results for the QP
effective mass in the light of recent experimental results and
draw our main conclusions.

V. COMPARISON TO EXPERIMENTAL RESULTS
AND CONCLUSIONS

A full analysis of the published data for the effective mass
of carriers in Si-MOSFET’s47,48 would require a more com-
plete theoretical study, mainly to account for the two-valley
nature of the material. We will focus here instead on the
experimental results of Ref. 56 as kindly provided to us by
Dr. Zhu prior to publication. At present the data refer to the
range 2& rs&6, so that we cannot judge the performance of
the theory in the weak-coupling regime. A quantitative com-
parison between theory and experiment would also require a
refined treatment of a series of effects, such as those due to
disorder and to finite temperature. We restrict our analysis to
the effect of finite sample thickness, by discussing how a
softened Coulomb potential modifiesm* against the strictly
2D results discussed in Sec. IV B and shown in Fig. 7. The
expectation is that the QP effective mass will be noticeably
smaller when a softened Coulomb interaction is at work.

FIG. 6. The absolute value of the imaginary part of the retarded
self-energysin units of Ryd evaluated atv=jk /" as a function of
k/kF for rs=1 stop paneld and 5sbottom paneld.

FIG. 7. Effective mass enhancement as a function ofrs for 0
ø rsø10. The inset shows an enlargement of the results forrsø1.
The lines show the results from Eq.s36d, while the symbolssexcept
for the dotsd are from Eq.s38d. The QMC datasdotsd are from Ref.
11.

FIG. 8. Illustrating the divergence of the effective mass within
the OSA. The three curves starting from unity atrs=0 refer to the
quantity 1+sm/"2kFd]k ReSret

R skF ,0d, and the other three curves to
"−1u]v ReSret

R skF ,0du. The intersection of two lines with the same
line style in the two sets of curves corresponds to a zero in the
denominator of Eq.s38d and thus to a divergence inmOSA

* . The inset
shows this divergence occurring within the RPA atrs.15.5.

FIG. 9. Renormalization constantZ as a function ofrs for 0
ø rsø10. The QMC data have been taken from Ref. 70.
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We have thus recalculatedm* after renormalizing the bare
Coulomb potential by means of a form factor to take into
account the finite width of the EG in the GaAs/AlGaAs
hetero-junction-insulated gate field-effect transistor used in
Refs. 51 and 56. The appropriate renormalized potential is
given byVq=vqFsqdd / k̄, where

Fsxd = S1 +
kins

ksc
D8 + 9x + 3x2

16s1 + xd3 + S1 −
kins

ksc
D 1

2s1 + xd6 ,

s39d

with d=f"2ksc/ s48pme2n* dg1/3 representing an effective
width of the 2D EG.37 Herekins=10.9 andksc=12.9 are the
dielectric constants of the insulator and of the space charge
layer, k̄ is their average,m is the bare band mass in the
confinement direction, andn* = ndepl+11n2D/32, the deple-
tion layer charge densityndepl being zero in the experiments
of Ref. 56. The results that we obtain with the softened po-
tential are shown in Fig. 10. A caveat to keep in mind is that
we have used the same local-field factors as a zero-thickness
2D EG in the lack of a better choice. Thus the results labeled
by G+ and G+& G− in Fig. 10 contain the effect of finite
thickness only through the renormalization of the Coulomb
potential. We believe that the explicit dependence of the lo-
cal fields on the finite width of the 2D EG should not change
the results of Fig. 10 in a substantial manner.

Comparing the results of Fig. 10 with those in Ref. 56 we
can draw the following conclusions:sid the G+ results, at
both the OSA and the Dyson-equation level, do not have the
proper functional shape to account for the experiment data;
sii d the RPA andG+& G− results are rather similar; andsiii d
the G+& G− results, which treat charge and spin fluctuations
on the same footing, show the best performance against the
experiment data. In fact, without the use of any fitting pa-
rameters, theG+& G− results within the OSA compare in a

very reasonable manner with the data. The Dyson-equation
results, show instead a relatively small and slowly increasing
mass enhancement over the whole range of densities, as dis-
cussed for the strictly 2D case in Sec. IV B.

In summary, we have revisited the problem of the micro-
scopic calculation of the quasiparticle self-energy and many-
body effective mass enhancement in a 2D EG. We have per-
formed a systematic study based on the many-body local-
fields theory, taking advantage of the results of the most
recent diffusion Monte Carlo calculations of the static charge
and spin response of the EG expressed through static local-
field factors. We have carried out extensive calculations of
both the real and imaginary parts of the quasiparticle self-
energy. We have also presented results for the effective mass
enhancement and for the renormalization constant over a
wide range of coupling strength. In this respect we have
critically examined the merits of the on-shell approximation
versus the Dyson-equation calculation. Depending on the
local-field factors, the OSA predicts a spurious divergence of
the effective mass at strong coupling, and a solution of the
Dyson equation is therefore necessary in order to obtain the
correct value of the effective mass within Fermi-liquid
theory. The comparison to the experiment data of Ref. 56
shows that, as already evident even in the higher density
regime24,27,28,32of a MOSFET, the simultaneous inclusion of
charge- and spin-density fluctuations beyond the random
phase approximation is crucial in accounting for exchange
and short-range correlations and can lead to substantial cor-
rections at low carrier densities. A possible role of dynamic
correlations, entering through the frequency dependence of
the local-field factors, remains to be examined.
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rs Various calculations mD
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* /m Z
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G+&G− 1.247 2.026 0.391
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G+&G− 1.410 ↗ 0.289

10 RPA 1.215 3.650 0.244

G+ 1.100 1.415 0.311
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FIG. 10. Effective mass enhancement for a quasi-2D EG con-
fined in a GaAs/AlGaAs triangular quantum well of the type used
in Refs. 51 and 56. The notation is as in Fig. 7.
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APPENDIX A: DETAILS ON THE EXPLICIT
CALCULATION OF THE REAL PART

OF THE CH CONTRIBUTION

Using Eq.s3d we find that the real part of the CH term
evaluated atv=jk /" is given by

uReSCHsk,vduv=jk/" = −E d2q

s2pd2vqPE
0

+` dV

p

3
Imf«−1sq,Vdg

jk/" − jk+q/" − V
. sA1d

The angular integration can be performed analytically, with
the result

E
0

2p du

jk/" − jk+q/" − V
=

2pQfV − Vminskdg
ÎfV + "q2/s2mdg2 − "2k2q2/m2

,

sA2d

whereVminskd=−"q2/ s2md+"kq/m. In carrying out the fre-
quency integration care must be taken to include the contri-
bution from the plasmon poleVpl. Using the expression for
the imaginary part of the charge-charge susceptibility near
Vpl,

Im xCsq,Vd = pvC
−1sqduRex0sq,VduV=Vpl

3FU ] Rex0sq,Vd
]V

U
V=Vpl

G−1

dsV − Vpld,

sA3d

we find that the real part of the CH term is given by

uReSCHsk,vduv=jk/" = −E
0

qc qdq

2p

vCsqduRex0sq,VduV=Vpl

ÎfVpl + "q2/s2mdg2 − "2k2q2/m2FU ] Rex0sq,Vd
]V

U
V=Vpl

G−1

QfVpl − Vminskdg

−E
0

+` qdq

2p
PE

maxf0,Vminskd,Vlowg

Vup dV

p

vC
2sqdIm xCsq,Vd + 3vS

2sqdIm xSsq,Vd
ÎfV + "q2/s2mdg2 − "2k2q2/m2

. sA4d

Here qc marks the onset of Landau damping andVupslowd
="q2/ s2md±"qkF /m are the upper and lower edges of the
electron-hole continuum.

The range of the momentum integration deserves special
attention. In the first term in Eq.sA4d, due to the step func-
tion the range ofq-integration is determined by the intersec-
tions betweenVminskd andVpl ssee Fig. 11d. In Sec. IV A we
have introduced thers-dependent wave numberkp; this is the
wave numberk at whichVminskd is tangent toVpl. There are
two cases:sid for k,kp there are no intersections and, thus,
the range ofq integration goes from 0 toqc; and sii d for k

ùkp there can be either onesq1d or two intersectionssq1,2d,
so that the range of integration isf0,q1g or f0,q1gø fq2,qcg,
respectively. It is the crossover from conditionsid to sii d that
leads to the plasmon dip inuReSCHsk,vduv=jk/".

In the second term in Eq.sA4d the range ofq integration
runs up toq= +` and this gives rise to the logarithmic di-
vergence discussed in Ref. 36 and briefly mentioned in Ref.
64. As already shown in Sec. II, what matters are self-energy
differences, which are free of singularities. Numerically, we
deal only with the finite quantity uReSCHsk ,vduv=jk/"

−SCHskF ,0d.

FIG. 11. Illustrating the integration range relevant to Eq.sA4d,
with V in units of «F /". The shaded area represents the electron-
hole continuum.Vminsqd is shown for three values ofk sdashed
curvesd: from top to bottom,k=3.0kF, kp, and 0.8kF with kp

.2.32kF. The plasmon dispersion relationVplsqd sdotted curved is
also shown.
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APPENDIX B: LINE+RESIDUE DECOMPOSITION

In this appendix we discuss a mathematically equivalent
decomposition of the QP self-energy, introduced by Quinn
and Ferrell,20 which has been often employed in the
literature.3 This amounts to writing

Sretsk,vd = SXskd + Slinesk,vd + Sressk,vd. sB1d

Here the first term is the Hartree-Fock self-energy58

SXskd =H− 2e2kFEsk̄2d/p sk̄ ø 1d

− 2e2kFk̄fEs1/k̄2d − s1 − 1/k̄2dKs1/k̄2dg/p sk̄ . 1d
J , sB2d

where k̄=k/kF and Ksxd, Esxd are complete elliptical inte-
grals of the first and second kind, respectively. The second
term in Eq.sB1d, which is purely real, is given by

Slinesk,vd = −E d2q

s2pd2vqE
−`

` dV

2p
F 1

«sq,iVd
− 1G

3
1

v + iV − jk+q/"
. sB3d

Finally, the third term is the so-called residue contribution,

Sressk,vd =E d2q

s2pd2vqF 1

«sq,v − jk+q/"d
− 1G

3fQsv − jk+q/"d − Qs− jk+q/"dg. sB4d

Within this decomposition it is the “line” contribution that
needs to be regularized for an ultraviolet divergence.

As a check of our numerical results obtained by means of
the SX-CH decompositions, we have recalculated the QP
self-energy, effective mass, and renormalization constant by
this alternative route. This turned out to require a substan-
tially harder numerical effort. For completeness we summa-
rize in Figs. 12 and 13 our results for the line and residue
terms.

FIG. 12. The exchange plus regularized “line” contribution to
the retarded self-energysin units of Rydd evaluated atv=jk /", as a
function of k/kF for rs=1 and 5.

FIG. 13. The real part of the “residue” contribution to the re-
tarded self-energysin units of Ryd evaluated atv=jk /" as a func-
tion of k/kF for rs=1 stop paneld and 5sbottom paneld.
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