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Monte Carlo calculations for metal-semiconductor hot-electron injection
via tunnel-junction emission

lan Appelbaur
Gordon McKay Laboratory, Harvard University, Cambridge, Massachusetts 02138, USA
and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

V. Narayanamurti
Division of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge,
Massachusetts 02138, USA
(Received 8 July 2004; revised manuscript received 8 October 2004; published 18 January 2005

We present a detailed description of a scheme to calculate the injection current for metal-semiconductor
systems using tunnel-junction electron emission. We employ a Monte Carlo framework for integrating over
initial free-electron states in a metallic emitter and use interfacial scattering at the metal-semiconductor inter-
face as an independent parameter. These results have implications for modeling metal-base transistors and
ballistic electron emission microscopy and spectroscopy.
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I. INTRODUCTION analysis of Au/GaAd? Bauer et al. used it to model
Au/GaP and Mg/GaP and Lee has used a Monte Carlo
Atunnel junction consists of two conductors separated bynethod to simulate ballistic electron microscopy and attenu-
an insulating potential barrier. When an electrical voltageation below the Schottky interfadé!®de Andreset al. have
bias is applied between the two conductors, electrons caglso discussed Monte Carlo methods in their review on
convert their potential energy gained by the bias into kinetiBEEM.1® The present paper attempts to give a more detailed
energy by tunneling through the thin forbidden zone of thetreatment of this theory and its finer points than has been
insulator. previously described.
Tunnel junctions were studied by Sommerfeld and Bethe
and since then have been used with much success for hot- 1l. MONTE CARLO FOR BALLISTIC ELECTRONS
electron spectroscopy. For instance, Giaegtrl. studied . . L .
metallic superconductor gap energies in the early 1860s.. The entire process under Investigation Is e_ssenﬂally a se-
More recently, magnetic tunnel junctioriformed between nles of tW? stephs, as 'sch.ematlcally shown'm Fig. Il..The
two metallic ferromagneishave attracted much interest due]?ectrons rom the emltte(n_n BEES, a scanning meta ip
to their potential as nonvolatile memory elements and hard.—IrSt must couple to states in the metal-base layer via tunne_l-
drive read headd? ing to form a base current. Then, they can couple to states in
he semiconductor to form a collector current. The calcula-
ion of these currents involves the connection of one momen-
um state to another by using the principles of energy and
parallel momentum conservation in the planar approxima-
jon. This is a good assumption for planar devices, such as
e metal-base hot-electron transistor, and, in most cases, it is
uitable for BEESY
Traditional methods of modeling BEES spectra typically
igvolve the evaluation of complex integrals over initial and
inal states. The Monte Caffdmethod replaces numerical
methods for solving continuous integrals with random sam-
Most theoretical efforts describing metal—semiconductorpling of the f:omplicat_ed integratic_)n region Of. phase space.
Monte Carlo’s power in this case is apparent in the fact that

hot-electron injection via tunnel-junction emission have fo-
only the geometry ok space and knowledge of the connec-

cused on the latter application of tunnel-junction hot—electrorl. ficient ired t lculat | 10 arbit
injection (BEES. Many authors have presented theories to 'on Coetlicients are required to calcuiale vailes 1o arbitrary

explain the features of BEES spectra on various metalprecision. This provides a means to alter the model simply

semiconductor systems, including those with heterostructurreOr ad hocadditions, which would otherwise require substan-

collectors?1%In fact, although this paper concerns the Montetlal algorithm revision.
Carlo method for this purpose, this scheme has been used
numerous times before to model various aspects of this prob-
lem: Schowalter and Lee used Monte Carlo to examine hot- For modeling tunnel-junction injection of hot electrons,
electron transport in Au/St Ke et al. used it in a simplistic  we have only to sample the space of initial stafiesm the

Tunnel junctions have been used for hot-electron injectio
from metals into semiconductors for decades. First, the
were used in solid-state devices to make ultrafas
transistors;® which mate a tunnel junction to a Schottky
diode with a thin base. Later, they served as the basis for
three-terminal microscopy based on the scanning tunnelin
microscope, known as ballistic electron emission microscop
(BEEM) and its associated spectroscofBEES.”® In this
technique, the injected electron current is measured as
function of either the lateral probe positidBEEM) or the
tip bias (BEES.

IIl. TUNNEL JUNCTIONS
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from the Fermi energy have very low occupation probability
and so can, with very good approximation, be ignored. Sub-
sequent calculations use a cutoff ;8 pastEg.

In k space, this corresponds to a sphere with radius

% 2m 2mE- 8
kﬁigh cutoff— ﬁ(EF + 8/,8) = 52 (1 + Q) ) (3)

Tunnel Junction
[2mE: 8
khigh cutoff= 72 1+ E-B ~ke(1 +4IBEg), (4)
F

wherekg is the Fermi wave vector.

Our method of choosing an electron state is to randomly
pick a point within a cube of side #kpgn curors CENtEred at
|k|=0, until it falls inside a circumscribed sphere of radius
Knigh cutors (This is known as the von Neumann rejection
method) Then, we first find the contribution of that state to
the base tunneling currefthe first step in Fig. Lby calcu-
lating the products of the following:

(i) The thermal occupation probability of the initi@mit-
ter) state.

(i) The thermal vacancy probability of the findbase
state.

(iii) The incident charge flux on the metal-vacuum inter-
face.

(iv) The tunneling probability.

FIG. 1. Schematic diagram of the ballistic electron-injection  Then we can calculate the probability that the tunneling
process. The “X” shows the location of an examkispace state, electron makes the second step shown in Fig. 1 and contrib-
which conserves both parallel momentum and energy throughoyjites to the transmitted collector current.
the process. We have already examined componéint This probabil-

ity is given by the Fermi-Dirac function. Compone(ii) is
emitten, which contribute to the tunneling and transmittedthe probability that the state in the base, which conserves
hot-electron collector currents, summing the contributionsenergy and parallel momentum, @t occupied. Since the
from each sampling iteration. probability of occupation and vacancy must add to 1, the

The electrons involved in the calculation start their trans-vacancy probability is given by
port in the metal emittetor STM tip). The simplest model
for this metal is the free-electron gas, a model that takes into
account only a quadratic dispersion relation and the Pauli
exclusion principle. Since this means that

Metal
Tip

Semiconductor
Collector

Schottky
Barrier

1
PyacancfE) =1 — PEErV 1 " (5

whereE is the kinetic energy in the emitter ar&d/ is the

#2 P, potential energy gained from biasing the tunnel junction by a
otk +ike) <Ee (1) voltageV.
for all occupied states at zero temperature, they form a A. Electron flux

sphere ink space whose radius is determined by the highest
filled energyEg (the Fermi energy as shown in Fig. 1.

At nonzero temperaturd, the edge of this sphere is
smeared by thermal excitation according to the Fermi-Dira
distribution function,

Component(iii ), the incident flux, is proportional to the
projection of the electron velocity in the direction normal to
éhe interface(fk | /m); faster moving electrons will impinge
on the interface more often and thus have a greater probabil-
ity of contributing to the tunnel current. We immediately see
1 that the original spherical phase space we want to sample can
Poccupaiof E) = eBEER) 4 1 (2 pe reduced to a hemisphere because electrons with velocities
having negative components in the emission directjwer-
where Poceypation IS 0Ccupation probability an@g=1/(ksT),  pendicular to the interfagecan be excluded; they are not
wherekg is Boltzmann’s constant. incident on the metal-vacuum interface and therefore do not
The first step to the Monte Carlo method is to sample acontribute to the base current.

state from among all that have non zero occupation probabil- The proportionality constant relating charge flux to per-
ity. At zero temperature, this applies only to the states withinpendicular velocity is the phase-space volume of the sampled
the sphere, but at nonzero temperature, there are partialstate times the electron chargeTo calculate this quantity
filled states at every point ik space. However, states far eA3k, we must know how many states there are in the Fermi
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sphere. This is determined by the normalization condition

3
nzf _dk ©)
|

Kl <kg (2m)®

(at zero temperatuye ¢ vacuuny
The real-space electron densityis an empirically mea-
surable quantity. The Monte Carlo equivalent of this integral

is

2 A3k = 2NA3, (7) el

whereN is the sampling number. The factor of 2 is necessary
because, although the integral is over the entire sampling
sphere, our Monte Carlo sampling is restricted to only the F
forward-directed hemisphere. Therefora®k=n/2N. For

nonzero temperature, we replaewith the sum of the oc-

cupation probabilities,

1
NthermaI: E eﬁ(E_EF) +1 (8)

because we are sampling over a volume that is less dense
with electron states.

B. Tunneling probability FIG. 2. Schematic tunnel-junction energy diagram.

Component(iv), the tunneling probability, can be a non- 53127112
trivial exercise in application of the Schrédinger equation if = =————9(E_ + ¢ — E)%¥? - (Er + ¢ — eV- E)*?.
calculated exactly. However, we make use of an important 3nev
simplification. The tunnel barrier heigffor metal-base tran- (12

sistors: oxide conduction band offset; for BEEM/BEES: the

work function of the metal tipis manyeV. The maximum

tunneling electron energigiven by the applied bias vo_Itagg C. Base current summary

is typically around 1 V. The Wentzel-Kramers-Brillouin

(WKB) method, an approximation scheme, works well for Now we have all the components of the base current con-
tunneling processes such as this in which the tunneling erffibution of each sampled electron. Since this is a planar

ergy is far below the barrier height. theory, the current we calculate is actually a curensity
The WKB tunneling probability is We multiply by A, the effective junction area, to convert to a
real current.
pWKB= g=27, (9) Our calculation is now to simply evaluate, for states
within the sampling sphere, the sum
where "
n
1 b Ibase: eAE]ﬁ 2 kL Poccupatior(E)
y= %f p(x)dx. (10
¢ X Pyacancf B + eVPY K, ). (13)

The integration bounda andb are the bounds of the barrier. The dominating factor within this sum is the exponentially

For the planar approximation, the applied bias voltagedependent WKB transmission probability, which is respon-
drops evenly across the entire vacuum gap. Therefore, thsible for the sharply peaked energy probability shown in Fig.
barrier is a trapezoid, depicted in Fig. 2. We have, then, 3. The parallel momentum distribution is similarly peaked

close tok,=0 (Ref. 19.
1 (Yo eV
‘y:%f \/2m<——x+EF+¢—E)dx, (11
0

dgap D. A simplifying condition

wheredg,, is the vacuum gap widthy is the applied bias We can now pause to notice a simplifying condition in our
voltage, andg is the barrier height. In this planar approxi- method. For emitter electron states with low eneffpy in-
mation, E is the energy determined by the one-dimensionaktance E+eV<Eg-p), the vacancy probability for a com-
perpendicular component of the momentﬁﬁkﬁ/Zm. patible state in the base is negligibly small. Therefore, we
This is a trivial integral; we evaluate it to can restrict our sampling space further by ignoring initial
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FIG. 3. Energy distribution of tunneling electrons from Au
through a vacuum tunnel barrier with 1 V across it. The nonzero
temperaturg300 K) causes a smearing of the distribution near the
cusp corresponding to the emitter Fermi energy.

FIG. 4. Monte Carlo calculation of tunnel-junction current-
voltage spectrum. The barrier width is 6 A and the height is 5 eV
above the Fermi energip eV).

emitter states with energy below a low-energy cutoff; subse- st 1o\ pias, the number of electrons contributing to the

quent calculations sample initial states with energy greatefase current is small. These electrons originate in states close

than to the Fermi energy of the emitter, in a thin shell of outer
Eiow cutoff= Er — €V— 88, (14)  radiuske and inner radius o§,2m(EF—e\/)\{\ﬁ(.BSlncekL var-
o ies little over the thickness of the shelf,"*" and the inci-
resulting in a cutoff wave vector dent flux can be treated to first order as a constant. The
dominant effect determining the current change as the bias
2m L .
k|2 = —(Er—eV-8/p). (15) voltage changes is simply the change in the number of states
ow cutoff ﬁz F ; . .. .
contributing to the base current. This is determined by the

By decreasing the phase-space volume of sampled point¢0lume of the spherical shell,
our sampling density increases. This greatly improves the 4 \s"_ZmEF 3 V’—Zm(EF—eV) 3
Volume = -

accuracy of the calculation because the effect of discretizing

phase space is minimized as the limit of continuous sampling h h
is approached. However, our calculation must reflect this « EX2— (Ep - eV)%2. (17)
limitation of phase-space samplingg®k must now be calcu- )
lated with an effective sampling ~ For small voltagese V< Eg, we can make the approxima-
tion
N’ =N + N V. (16) E_
= Nihermal h /
T Ve Volumeo EY? - Eglz(l B 2%V> - Ei’é%v: (Se\ZEF)V

The first term is the contribution from the electrons that F F

form the base current, WitByq,, cytofr< E<Epigh cutors ThESE (18

electrons are in states that form a spherical shel pace. Therefore, we see that at low bias voltage, the volare,

The second term accounts for the remaining electrons withence, the tunnel currentaries, to first order, linearly with
E <Ejow cutors Which is a sphere. These states have occupéayjzs voltage.

tion probability very close to unity, and, therefore, we need Forev> E, every state contributes to the base current, so
only count how many of them we would have sampled with-the apove analysis does not apply. The current variation in
out the cutoff using the density determined By the sam-  thjs so-called Fowler-Nordheim regime is determined by the
pling number. tunneling probability, which increases exponentially with in-
creasing bias voltage. Even feW<Eg, the volume of con-
E. Results of Monte Carlo tunnel current calculation tributing states changes only a small amount as the voltage
Using this Monte Carlo framework, we have calculatedVa'ies due to the small density of states at low energy, so the
the tunnel-junction current-voltage characteristics using) 10€XPonentially increasing regime begins below the Fermi en-
samples in the emittet space. This is shown in Fig. 4. We ©9Y-
see at least two distinct regimes: at low bias, the current IV. COLLECTOR CURRENT CALCULATION
varies linearly with voltage and, at higher biasEg, the '
current increases exponentialiWe can understand this be- Now we focus our attention on the collector current. This
havior with a simple analysis of our theory. current is created by the tunneling electrons that ballistically
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travel through the metal base and couple with available states ky
in the semiconductor. Therefore, we must model the follow-
ing:

(i) Ballistic elastic and inelastic attenuation in the metal @
base. ﬁ

(ii) Interfacial ~ elastic scattering at the metal- -/ kx
semiconductor Schottky interface.

(iii ) Coupling to semiconductor states. @ @

(iv) Quantum mechanical reflection at the Schottky inter-
face.

A. Attenuation FIG. 5. Schematic Interface Brillouin Zone for GdA80. The

Component(i) is modeled by using empirical elastic and arrow on the upper right indicates parallel momentum compatible
P y 9 P with available semiconductor states, while the arrow in the lower

inelastic mean-free paths for ba”'St'(.: electréfghe mean- left indicates parallel momentum at which there are no available
free path is a length scale over which the electrons are af,oc

tenuated by scattering in an average sense. The length scales

are determined for different scattering processes; inelastic To find the semiconductor states compatible with our

scattering is, in general, energy dependent because the phase led el : | . f
space into which the electron can scatter changes with jte2MPIed electron state, we again apply conservation of en-

initial kinetic energy if energy is not conserved in the scat-Sr9y and parallel momentum._The constant energy spher.es
tering process. Higher-energy electrons are scattered mo e constructed and then projected onto the_mterface Bril-
and therefore have shorter mean-free paths than low-enerdggUin_zone (IBZ), or k, plane. A schematic IBZ for
electrons near the Fermi level. aAs(lO_O), for energy greater thaﬁmi” for _the .tWO lowest
Combining both elastic and inelastic processes yields ~conduction band valleyk andL, is shown in Fig. 5. .
If we also project the electron wave vector on this IBZ, it
_ 1 1 may overlap a projected constant-energy sphere of one of the
Pattenuation™ €XP| ~ Umeta 7\e|asnc+ Ninetasiic/ | (19 conduction band minima. If so, it contributes to the collector
current because both energy and parallel momentum are con-

wheredye is the thickness of the metal layer. served. However, itk, necessarily changes due to the band-
_ _ structure effects. This discontinuity in wave vector causes
B. Interfacial scattering guantum-mechanical reflection at the metal-semiconductor

Component(ii) is an addition to the original model of interface. The electron is transmitted with probabflity
ballistic electron-emission spectroscopy incorporated to take

into account empirical observations. It was found that the 4k5kmﬁ

theoretical spectra fit the experiment observations far better P, = _ Mm (21)
if a portion of the transmitted current were elastically scat- QM mSk 2’

tered, randomizing the parallel momentum. Therefore, we E m* K

model this process in the Monte Carlo framework by ran- ) ] . )
domly choosing, with a probabilit§P, electrons to be scat- Wheremy is the effective electron mass in the metal, is
tered via a random reorientation of the wave vector. To asthe effective electron mass in the semiconductor, lapeind
sure that this is an elastic process, the norm of the wavks are the perpendicular components of the electron wave
vector (proportional to the kinetic eneryys conserved. The Vectors in the metal and semiconductor, respectl_vely. In a
algorithm to do this is very similar to our state-sampling ‘free-electron” metalm,=1, a common approximation.
algorithm: we choose a random point within a unit sphere The collector current is then the evaluation of the sum
and then divide by its norm to make it a unit vector. This unit

vector is multiplied by the norm of the original wave vector. I collector= eA%% >k, Poccupatiot E)
C. Semiconductor conduction band model XPacancfE + V) PYKB(K ) )P attenuatiof E)
We now discuss componefiti). A simple model of the
semiconductor states kspace is thespherical bandnodel. XPQM(kL,E)f S(KL - Kl )%k, (22
In this model, each of the conduction band valleys have
spherical constant-energy surfaces vktbpace radius where the integral over thé function accounts for parallel
momentum conservation at the metal-semiconductor inter-

o V2Mbod E - Enn
h )
wherempsis the density of states effective mass &g, is

the conduction band minimum of the conduction valley, with  In contrast to solid-state tunel junctions where the geom-
respect to zero energy in the base metal. etry (and, hence, the tunnel-current—emitter-voltage relation-

200 face.
V. BALLISTIC ELECTRON EMISSION SPECTROSCOPY
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ship) is fixed, the tunneling distance with scanning probe L ;

microscopy is variable. In the BEES experiment, as the volt- 0o} e S T T TR T

age is varied, the tunnel current is held fixed by increasing 0 1 2 3 4 5
the width of the vacuum barrier accordingly via dynamic Bias Voltage [V]

feedback of tip height. To model this in our simulation, we FIG. 7. Intearal calculati (1 | uncti tvolt
need to calculate the base current before the collector current - /. Integral calcu'ation ot tunnel junction current-voltage
is calculated. However, implementing feedback directly jnSPectrum. The barrier width is 6 A and the h.e'ght Is 5 eV above the
the Monte Carlo algorithm would be very inefficient. There- Fermi energy(S V). Also shown for comparison are the results of

o the previously presented Monte Carlo method.
fore, we accelerate the process of finding the proper vacuum P yP

gap by using an integral expression for the tunnel current. o
difference between the areas of two concentric disks pro-

A. Integral expression for tunnel current jected by the Fermi sphere and the inner sphere,

i i 2m(Eg—e 2meV
We know from the discussion of the zero-temperature 4 _ w{(kﬁ —12) - [ (Er-eV) ki” _

tunnel-current theory that in the Monte Carlo formalism, h? h?
f (27)
Ipase= €A— > k| (E)PWKE(E)A3K. 2 I
base™ © mE +(B) © 23 with infinitesimal volume
We convert this sum into an integral by making the stan- _ 2meV
dard substitution dv=m 72 dk, . (28)
d3k
A% . (24) Therefore, we have
(277) 2% V2m(E—eV)/A > 2meV
. . . lpase= — =3 k e 7m—-5—dk,
and specifying the bounds of integration. m(27)3\ J,
In analogy to the arguments used before, our integration y
bounds enclose a half shell knspace with outer radiuk: F 2y 12 _ 12
and inner radiusy2m(Er-eV)/#. Figure 6 schematically +J\MM kel ~k)dk, | (29)

shows a projection of this region, broken up into two regions ) )
labeled | and 1. Since the integrand is dependent onli gn Since these two integrals cannot be evaluated analytically,
we can reduce the three-dimensional integral to a oneWe must use numerical quadrature. We now show the results
dimensional integral by a suitable choice of infinitesimal vol-Of this calculation of tunnel current as a function of bias
ume element. voltage in Fig. 7. Plotted on the same axis is the result of the
Region | is a spherical cap, with2m(Ez—-eV)/f <k, Monte Carlo simulation previously presented for compari-
<ke. To exploit the one-dimensional dependence, we use §0N- The remarkable agreement confirms the effectiveness of
thin disk as a differential volume element. The radius of thisth® Monte Carlo method. .
diskr is given by the equation of the circle projected by the To use these results for vacuum gap compensation to hold

Fermi sphere the tunnel current constant, we use a bisection algorithm.
The effectiveness of this scheme allows the base current to
K2 +r2=k2, (25)  be held to within 10° of the set point in the Monte Carlo
. . simulation with negligible computational overhead.
and because the area of the circledis #r2, we have for the imulation wi gig! putal v
differential volume element B. Electron injection results
dVv=A-dk, = (ke - K2 )dk, . (26) Due to its relative simplicity, we calculate the BEES for

Au/GaAs for voltages where the only contribution is from
Region Il is the portion of the spherical shell for which O theT valley (conduction band minimujmThe Schottky bar-
<k, <2m(Ex-eV)/%. The volume element for this shell is rier used in this calculation is 0.92 eV, and*=0.067.
then an annular disk. The area of the annulus is given by th&€hese results are shown in Fig. 8.
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FIG. 8. Monte Carlo BEES calculation for Au/GaAs at 300 K.
This simulation uses fGsamples ok space.

FIG. 9. A schematic of the “Fermi sea” in the tip metal. The
Notice that the collector current is zero for voltages belowarrow on the left represents the Fermi wave vektoand the arrow
the Schottky barrier and increases near quadratically thereagn the right represents the minimum electron wave vector magni-
ter. It has been claimed that the leading order of the voltag@ude[Eq. (33)]. At a tip bias above the Schottky barrier, only elec-
dependence in BEES is actually a 5/2 power fa&rom our  trons within a shel(dark shaded regigrbetween spheres of the two
development of the theory, we can see how this 5/2 poweradii have enough energy to couple with states in the
law arises. semiconductor.

C. Threshold behavior The volume ink-space of those electrons that have
The three major contributing factors to this power law are€nough energy to scatter into s_emicondu_ctor states above the
conservation of energy, conservation of momentum, ancchottky barrier is then the difference in volumes of two
quantum-mechanical scattering. Here we determine the leagPheres with radiikg [=ke and |ky|=\2m(Ex-€)/4% as
ing order contributions from each in the zero-temperaturéshown in Fig. 9:

BEES theory. 4 om\3
Volume == (\/—> Erd-(VEc-e7%]. (34
1. Conservation of energy 377 h? (VB -~ (VEe =7 (34)

Consider a system where the applied voltéayed thus the Expanding to first order gives
potential energy dropbetween tip and base is jusigreater 3
i i - 2m
t_han the Schottky barrier heighip Th_en, due to conserva Volume~ 277( /_) \,EFG. (35)
tion of energy across the tunnel barrier, h?

hokal  hkg, 2 Therefore, the volume of states knspace which contribute

#ase: Eqp_ +Egpte. (30 o the BEES collector current is proportional ¢o
The condition for injection of electrons into the semiconduc- 2. Conservation of momentum
tor is Not all electrons with enough energy will couple into
52 2 semiconductor states. The componentkoparallel to the
—Dae > F_+ Egp. (31 interface plane must be compatible with available states in
2m the semiconductor.
Combining Eq€30) and (31), we have Consider the available states of thevalley, just above
the Schottky barrier. These states form a surface, which
hzkt?E 2 _ projects a disk onto the interface Brillouin zone. Assuming
om Er—e. (32 quadraticE(k) dependence, the radius of this disk is propor-

) ) tional to Ve.
Therefore, at just above threshold, only the electrons in the Since only the electrons wiﬂﬁ‘ inside this disk will enter

tip with more kinetic ('a:nerghy thaEIF_GWi" satishfy the total 0 semiconductor, the contribution to the BEES collector
energy requirement. For these electrons, we have current above the Schottky barrier will be proportional to the

om ratio of the areas of th€ valley disk and another disk with
|Keip| = ?(EF— €). (33)  radiusk; characteristic of the tunneling process. This situa-
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Therefore, momentum conservation contributes another
factor proportional to the projected ares\e)?>xe to the
behavior of the BEES collector current.

0.2

Normalized Second Deriv. [arb]

FIG. 11. Scattering probabilitySP changes the relative contri-
butions of thel’ andL valleys in GaA$100) to reflect experimental
observations.

3. Quantum mechanical scattering A similar difficulty arose in the interpretation of BEES
Due to quantum-mechanical scattering, the transmissiofiPectra from Au/GaAd00. Since the GaAs conduction
coefficient for a state in the base metal with wave vektor band minimum(atI') lies at the zone center, one expects the

coupling with a state in the semiconductqris contribution from this valley to dominate over any additional
thresholds from higher conduction band minima, such.as
Ak ms 4ﬂ which in this crystal orientation lies near the perimeter of the
"m, my, IBZ. Contrary to this expectation, the contribution frdmis
Pom= m 2= m ke 2Ks- (36)  typically 3-4 times stronger thak.
(—km+ ks> km<— + k_> To explain this discrepancy, the standard planar tunneling
m m m

model was modified to includgewave scattering at the base

At just above threshold, is very small and,, is very large. ~metal-semiconductor interfadé.Electrons initially highly

Assuming again that the band structure has quadratic valley&rward-directed are scattered outside of the IBZ center
we see that where they can couple with states in the L valley. The scat-

_ tering probability (SP, the probability that an individual
Pom * ks Ve. (37) electron is scattered out of the zone center, was determined
2to be approximately 0.9 by fitting the model to the data.

In Fig. 11 we show the effect of varying SP in our Monte
Carlo algorithm. To model the scattering, SR electrons
have their three-dimensional electron wave vectors randomly
reoriented without altering the wave vector norm before cou-

We mentioned earlier the inclusion of the scattering prob-ling with semiconductor states. Instead of showing collector
ability (SP) to the theory so that it would more reflect em- current spectra, we show tisecond derivativef the collec-
pirical observations in certain systems. Here we explain thig¢or current(SD-BEES. This allows us to see the relative
assertion further. strengths of the thresholds in a clearer way. For comparison,

Since the probability that an electron tunnels across thexperiment data are superimposed on the series of simulated
insulating barrier increases with perpendicular momentumspectra. We see that the simulation that most accurately re-
the vacuum tunnel barrier acts as a filter that passes forwardlects the relative strengths of tlieandL valleys is the one
directed electron® These electrons have relatively little par- for which SP is close to 0.9.
allel momentum and, therefore, cannot couple with conduc- We also note the consistent discrepancy between the
tion valleys that lie far away from the IBZ center. simulated and observed SD-BEES at high bias. While this is

Au/Si Schottky diodes provided an early experimentalpartly due to our neglect of electron-phonon scattering in the
examplet! Since the conduction band minimum lies near thesemiconductor at high electron energy, it is mostly due to the
X point in the (100 direction, the(100) crystal orientation inadequacy of the spherical band model to accurately reflect
has states that lie at the IBZ center. With {id41) orienta- the true band structure far from the conduction valley mini-
tion, all states require nonzero parallel momentum. Theremum.
fore, BEES on thg100-crystal orientation should yield a
largerl. than(111). However, experiment has shown repeat-
edly that the two orientations vyield virtually the same We have presented a detailed description of Monte Carlo
spectrat? calculations of hot-electron injection via tunnel-junction

These three threshold behaviors multiply to give the 5/
power law.

VI. EFFECT OF SCATTERING PROBABILITY

VII. CONCLUSION

045320-8



MONTE CARLO CALCULATIONS FOR METAL-... PHYSICAL REVIEW B 71, 045320(2005

emission for applications to modeling spectroscopies, suchilities. With greater computing powead hocadditions can

as metal-base transistor transfer characteristics and BEEBe included to explore more sophisticated uses of hot-
The method is straightforward but involves many subtletieslectron injection, such as quantum-mechanical transmission
that drastically increase the effectiveness and accuracy of th@rough buried heterostructures and interactions with

calculation. These improvements include reduction of phasphonons within the collector, |eading to energy relaxation

space in the emitter Fermi sea to increase the effective samand momentum reorientatidneflection.

pling density and inclusion of integral methods and minimi-

zation to maintain constant tunnel current for BEEM spec-

troscopy simulation. After examination, this framework ACKNOWLEDGMENTS
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