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I. INTRODUCTION

A tunnel junction consists of two conductors separated by
an insulating potential barrier. When an electrical voltage
bias is applied between the two conductors, electrons can
convert their potential energy gained by the bias into kinetic
energy by tunneling through the thin forbidden zone of the
insulator.

Tunnel junctions were studied by Sommerfeld and Bethe1

and since then have been used with much success for hot-
electron spectroscopy. For instance, Giaeveret al. studied
metallic superconductor gap energies in the early 1960s.2

More recently, magnetic tunnel junctionssformed between
two metallic ferromagnetsd have attracted much interest due
to their potential as nonvolatile memory elements and hard-
drive read heads.3,4

Tunnel junctions have been used for hot-electron injection
from metals into semiconductors for decades. First, they
were used in solid-state devices to make ultrafast
transistors,5,6 which mate a tunnel junction to a Schottky
diode with a thin base. Later, they served as the basis for a
three-terminal microscopy based on the scanning tunneling
microscope, known as ballistic electron emission microscopy
sBEEMd and its associated spectroscopysBEESd.7,8 In this
technique, the injected electron current is measured as a
function of either the lateral probe positionsBEEMd or the
tip bias sBEESd.

Most theoretical efforts describing metal-semiconductor
hot-electron injection via tunnel-junction emission have fo-
cused on the latter application of tunnel-junction hot-electron
injection sBEESd. Many authors have presented theories to
explain the features of BEES spectra on various metal-
semiconductor systems, including those with heterostructure
collectors.9,10 In fact, although this paper concerns the Monte
Carlo method for this purpose, this scheme has been used
numerous times before to model various aspects of this prob-
lem: Schowalter and Lee used Monte Carlo to examine hot-
electron transport in Au/Si,11 Ke et al. used it in a simplistic

analysis of Au/GaAs,12 Bauer et al. used it to model
Au/GaP and Mg/GaP,13 and Lee has used a Monte Carlo
method to simulate ballistic electron microscopy and attenu-
ation below the Schottky interface.14,15de Andreset al. have
also discussed Monte Carlo methods in their review on
BEEM.16 The present paper attempts to give a more detailed
treatment of this theory and its finer points than has been
previously described.

II. MONTE CARLO FOR BALLISTIC ELECTRONS

The entire process under investigation is essentially a se-
ries of two steps, as schematically shown in Fig. 1. The
electrons from the emittersin BEES, a scanning metal tipd
first must couple to states in the metal-base layer via tunnel-
ing to form a base current. Then, they can couple to states in
the semiconductor to form a collector current. The calcula-
tion of these currents involves the connection of one momen-
tum state to another by using the principles of energy and
parallel momentum conservation in the planar approxima-
tion. This is a good assumption for planar devices, such as
the metal-base hot-electron transistor, and, in most cases, it is
suitable for BEES.17

Traditional methods of modeling BEES spectra typically
involve the evaluation of complex integrals over initial and
final states. The Monte Carlo18 method replaces numerical
methods for solving continuous integrals with random sam-
pling of the complicated integration region of phase space.
Monte Carlo’s power in this case is apparent in the fact that
only the geometry ofk space and knowledge of the connec-
tion coefficients are required to calculate values to arbitrary
precision. This provides a means to alter the model simply
for ad hocadditions, which would otherwise require substan-
tial algorithm revision.

III. TUNNEL JUNCTIONS

For modeling tunnel-junction injection of hot electrons,
we have only to sample the space of initial statessfrom the
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emitterd, which contribute to the tunneling and transmitted
hot-electron collector currents, summing the contributions
from each sampling iteration.

The electrons involved in the calculation start their trans-
port in the metal emittersor STM tipd. The simplest model
for this metal is the free-electron gas, a model that takes into
account only a quadratic dispersion relation and the Pauli
exclusion principle. Since this means that

"2

2m
skx

2 + ky
2 + kz

2d , EF s1d

for all occupied states at zero temperature, they form a
sphere ink space whose radius is determined by the highest
filled energyEF sthe Fermi energyd, as shown in Fig. 1.

At nonzero temperatureT, the edge of this sphere is
smeared by thermal excitation according to the Fermi-Dirac
distribution function,

PoccupationsEd =
1

ebsE−EFd + 1
, s2d

where Poccupation is occupation probability andb=1/skBTd,
wherekB is Boltzmann’s constant.

The first step to the Monte Carlo method is to sample a
state from among all that have non zero occupation probabil-
ity. At zero temperature, this applies only to the states within
the sphere, but at nonzero temperature, there are partially
filled states at every point ink space. However, states far

from the Fermi energy have very low occupation probability
and so can, with very good approximation, be ignored. Sub-
sequent calculations use a cutoff of 8kBT pastEF.

In k space, this corresponds to a sphere with radius

khigh cutof f
2 =

2m

"2 sEF + 8/bd =
2mEF

"2 S1 +
8

EFb
D , s3d

khigh cutof f=Î2mEF

"2 Î1 +
8

EFb
< kFs1 + 4/bEFd, s4d

wherekF is the Fermi wave vector.
Our method of choosing an electron state is to randomly

pick a point within a cube of side 2pkhigh cutof f centered at
ukWu=0, until it falls inside a circumscribed sphere of radius
khigh cutof f. sThis is known as the von Neumann rejection
method.d Then, we first find the contribution of that state to
the base tunneling currentsthe first step in Fig. 1d by calcu-
lating the products of the following:

sid The thermal occupation probability of the initialsemit-
terd state.

sii d The thermal vacancy probability of the finalsbased
state.

siii d The incident charge flux on the metal-vacuum inter-
face.

sivd The tunneling probability.
Then we can calculate the probability that the tunneling

electron makes the second step shown in Fig. 1 and contrib-
utes to the transmitted collector current.

We have already examined componentsid. This probabil-
ity is given by the Fermi-Dirac function. Componentsii d is
the probability that the state in the base, which conserves
energy and parallel momentum, isnot occupied. Since the
probability of occupation and vacancy must add to 1, the
vacancy probability is given by

PvacancysEd = 1 −
1

ebsE−EF+eVd + 1
, s5d

whereE is the kinetic energy in the emitter andeV is the
potential energy gained from biasing the tunnel junction by a
voltageV.

A. Electron flux

Componentsiii d, the incident flux, is proportional to the
projection of the electron velocity in the direction normal to
the interfaces"k' /md; faster moving electrons will impinge
on the interface more often and thus have a greater probabil-
ity of contributing to the tunnel current. We immediately see
that the original spherical phase space we want to sample can
be reduced to a hemisphere because electrons with velocities
having negative components in the emission directionsper-
pendicular to the interfaced can be excluded; they are not
incident on the metal-vacuum interface and therefore do not
contribute to the base current.

The proportionality constant relating charge flux to per-
pendicular velocity is the phase-space volume of the sampled
state times the electron chargee. To calculate this quantity
eD3k, we must know how many states there are in the Fermi

FIG. 1. Schematic diagram of the ballistic electron-injection
process. The “X” shows the location of an examplek-space state,
which conserves both parallel momentum and energy throughout
the process.
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sphere. This is determined by the normalization condition

n =E
uku,kF

d3k

s2pd3 s6d

sat zero temperatured.
The real-space electron densityn is an empirically mea-

surable quantity. The Monte Carlo equivalent of this integral
is

o D3k = 2ND3k, s7d

whereN is the sampling number. The factor of 2 is necessary
because, although the integral is over the entire sampling
sphere, our Monte Carlo sampling is restricted to only the
forward-directed hemisphere. Therefore,D3k=n/2N. For
nonzero temperature, we replaceN with the sum of the oc-
cupation probabilities,

Nthermal= o 1

ebsE−EFd + 1
s8d

because we are sampling over a volume that is less dense
with electron states.

B. Tunneling probability

Componentsivd, the tunneling probability, can be a non-
trivial exercise in application of the Schrödinger equation if
calculated exactly. However, we make use of an important
simplification. The tunnel barrier heightsfor metal-base tran-
sistors: oxide conduction band offset; for BEEM/BEES: the
work function of the metal tipd is manyeV. The maximum
tunneling electron energysgiven by the applied bias voltaged
is typically around 1 V. The Wentzel-Kramers-Brillouin
sWKBd method, an approximation scheme, works well for
tunneling processes such as this in which the tunneling en-
ergy is far below the barrier height.

The WKB tunneling probability is

PWKB= e−2g, s9d

where

g =
1

"
E

a

b

psxddx. s10d

The integration boundsa andb are the bounds of the barrier.
For the planar approximation, the applied bias voltage

drops evenly across the entire vacuum gap. Therefore, the
barrier is a trapezoid, depicted in Fig. 2. We have, then,

g =
1

"
E

0

dgapÎ2mS−
eV

dgap
x + EF + f − EDdx, s11d

wheredgap is the vacuum gap width,V is the applied bias
voltage, andf is the barrier height. In this planar approxi-
mation,E is the energy determined by the one-dimensional
perpendicular component of the momentum"2k'

2 /2m.
This is a trivial integral; we evaluate it to

g =
23/2m1/2dgap

3"eV
fsEF + f − Ed3/2 − sEF + f − eV− Ed3/2g.

s12d

C. Base current summary

Now we have all the components of the base current con-
tribution of each sampled electron. Since this is a planar
theory, the current we calculate is actually a currentdensity.
We multiply byA, the effective junction area, to convert to a
real current.

Our calculation is now to simply evaluate, for states
within the sampling sphere, the sum

Ibase= eA
"

m

n

2N o k'PoccupationsEd

3PvacancysE + eVdPWKBsk'd. s13d

The dominating factor within this sum is the exponentially
dependent WKB transmission probability, which is respon-
sible for the sharply peaked energy probability shown in Fig.
3. The parallel momentum distribution is similarly peaked
close toki=0 sRef. 19d.

D. A simplifying condition

We can now pause to notice a simplifying condition in our
method. For emitter electron states with low energysfor in-
stance,E+eV!EF−bd, the vacancy probability for a com-
patible state in the base is negligibly small. Therefore, we
can restrict our sampling space further by ignoring initial

FIG. 2. Schematic tunnel-junction energy diagram.
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emitter states with energy below a low-energy cutoff; subse-
quent calculations sample initial states with energy greater
than

Elow cutof f= EF − eV− 8/b, s14d

resulting in a cutoff wave vector

klow cutof f
2 =

2m

"2 sEF − eV− 8/bd. s15d

By decreasing the phase-space volume of sampled points,
our sampling density increases. This greatly improves the
accuracy of the calculation because the effect of discretizing
phase space is minimized as the limit of continuous sampling
is approached. However, our calculation must reflect this
limitation of phase-space sampling;D3k must now be calcu-
lated with an effective sampling

N8 = Nthermal+
N

Vshell
Vsphere. s16d

The first term is the contribution from the electrons that
form the base current, withElow cutof f,E,Ehigh cutof f. These
electrons are in states that form a spherical shell ink space.
The second term accounts for the remaining electrons with
E,Elow cutof f, which is a sphere. These states have occupa-
tion probability very close to unity, and, therefore, we need
only count how many of them we would have sampled with-
out the cutoff using the density determined byN, the sam-
pling number.

E. Results of Monte Carlo tunnel current calculation

Using this Monte Carlo framework, we have calculated
the tunnel-junction current-voltage characteristics using 106

samples in the emitterk space. This is shown in Fig. 4. We
see at least two distinct regimes: at low bias, the current
varies linearly with voltage and, at higher bias<EF, the
current increases exponentially.20 We can understand this be-
havior with a simple analysis of our theory.

At low bias, the number of electrons contributing to the
base current is small. These electrons originate in states close
to the Fermi energy of the emitter, in a thin shell of outer
radiuskF and inner radius ofÎ2msEF−eVd /". Sincek' var-
ies little over the thickness of the shell,PWKB and the inci-
dent flux can be treated to first order as a constant. The
dominant effect determining the current change as the bias
voltage changes is simply the change in the number of states
contributing to the base current. This is determined by the
volume of the spherical shell,

Volume =
4

3
pHFÎ2mEF

"
G3

− FÎ2msEF − eVd
"

G3J
~ EF

3/2 − sEF − eVd3/2. s17d

For small voltages,eV!EF, we can make the approxima-
tion

Volume~ EF
3/2 − EF

3/2S1 −
3eV

2EF
D < EF

3/23eV

2EF
= S3eÎEF

2
DV.

s18d

Therefore, we see that at low bias voltage, the volumesand,
hence, the tunnel currentd varies, to first order, linearly with
bias voltage.

For eV.EF, every state contributes to the base current, so
the above analysis does not apply. The current variation in
this so-called Fowler-Nordheim regime is determined by the
tunneling probability, which increases exponentially with in-
creasing bias voltage. Even foreV,EF, the volume of con-
tributing states changes only a small amount as the voltage
varies due to the small density of states at low energy, so the
exponentially increasing regime begins below the Fermi en-
ergy.

IV. COLLECTOR CURRENT CALCULATION

Now we focus our attention on the collector current. This
current is created by the tunneling electrons that ballistically

FIG. 3. Energy distribution of tunneling electrons from Au
through a vacuum tunnel barrier with 1 V across it. The nonzero
temperatures300 Kd causes a smearing of the distribution near the
cusp corresponding to the emitter Fermi energy.

FIG. 4. Monte Carlo calculation of tunnel-junction current-
voltage spectrum. The barrier width is 6 Å and the height is 5 eV
above the Fermi energys5 eVd.
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travel through the metal base and couple with available states
in the semiconductor. Therefore, we must model the follow-
ing:

sid Ballistic elastic and inelastic attenuation in the metal
base.

sii d Interfacial elastic scattering at the metal-
semiconductor Schottky interface.

siii d Coupling to semiconductor states.
sivd Quantum mechanical reflection at the Schottky inter-

face.

A. Attenuation

Componentsid is modeled by using empirical elastic and
inelastic mean-free paths for ballistic electrons.10 The mean-
free path is a length scale over which the electrons are at-
tenuated by scattering in an average sense. The length scales
are determined for different scattering processes; inelastic
scattering is, in general, energy dependent because the phase
space into which the electron can scatter changes with its
initial kinetic energy if energy is not conserved in the scat-
tering process. Higher-energy electrons are scattered more
and therefore have shorter mean-free paths than low-energy
electrons near the Fermi level.

Combining both elastic and inelastic processes yields

Pattenuation= expF− dmetalS 1

lelastic
+

1

linelastic
DG , s19d

wheredmetal is the thickness of the metal layer.

B. Interfacial scattering

Componentsii d is an addition to the original model of
ballistic electron-emission spectroscopy incorporated to take
into account empirical observations. It was found that the
theoretical spectra fit the experiment observations far better
if a portion of the transmitted current were elastically scat-
tered, randomizing the parallel momentum. Therefore, we
model this process in the Monte Carlo framework by ran-
domly choosing, with a probabilitySP, electrons to be scat-
tered via a random reorientation of the wave vector. To as-
sure that this is an elastic process, the norm of the wave
vectorsproportional to the kinetic energyd is conserved. The
algorithm to do this is very similar to our state-sampling
algorithm: we choose a random point within a unit sphere
and then divide by its norm to make it a unit vector. This unit
vector is multiplied by the norm of the original wave vector.

C. Semiconductor conduction band model

We now discuss componentsiii d. A simple model of the
semiconductor states ink space is thespherical bandmodel.
In this model, each of the conduction band valleys have
spherical constant-energy surfaces withk-space radius

R=
Î2mDOS

* sE − Emind
"

, s20d

wheremDOS
* is the density of states effective mass andEmin is

the conduction band minimum of the conduction valley, with
respect to zero energy in the base metal.

To find the semiconductor states compatible with our
sampled electron state, we again apply conservation of en-
ergy and parallel momentum. The constant energy spheres
are constructed and then projected onto the interface Bril-
louin zone sIBZd, or ki plane. A schematic IBZ for
GaAss100d, for energy greater thanEmin for the two lowest
conduction band valleysG andL, is shown in Fig. 5.

If we also project the electron wave vector on this IBZ, it
may overlap a projected constant-energy sphere of one of the
conduction band minima. If so, it contributes to the collector
current because both energy and parallel momentum are con-
served. However, itsk' necessarily changes due to the band-
structure effects. This discontinuity in wave vector causes
quantum-mechanical reflection at the metal-semiconductor
interface. The electron is transmitted with probability9

PQM =

4kskm
ms

mm

S ms

mm
km + ksD2 , s21d

wheremm is the effective electron mass in the metal,ms is
the effective electron mass in the semiconductor, andkm and
ks are the perpendicular components of the electron wave
vectors in the metal and semiconductor, respectively. In a
“free-electron” metal,mm=1, a common approximation.

The collector current is then the evaluation of the sum

Icollector= eA
"

m

n

2N8
o k'PoccupationsEd

3PvacancysE + VdPWKBsk'dPattenuationsEd

3PQMsk',Ed E dsks
i − km

i dd2k, s22d

where the integral over thed function accounts for parallel
momentum conservation at the metal-semiconductor inter-
face.

V. BALLISTIC ELECTRON EMISSION SPECTROSCOPY

In contrast to solid-state tunel junctions where the geom-
etry sand, hence, the tunnel-current–emitter-voltage relation-

FIG. 5. Schematic Interface Brillouin Zone for GaAss100d. The
arrow on the upper right indicates parallel momentum compatible
with available semiconductor states, while the arrow in the lower
left indicates parallel momentum at which there are no available
states.
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shipd is fixed, the tunneling distance with scanning probe
microscopy is variable. In the BEES experiment, as the volt-
age is varied, the tunnel current is held fixed by increasing
the width of the vacuum barrier accordingly via dynamic
feedback of tip height. To model this in our simulation, we
need to calculate the base current before the collector current
is calculated. However, implementing feedback directly in
the Monte Carlo algorithm would be very inefficient. There-
fore, we accelerate the process of finding the proper vacuum
gap by using an integral expression for the tunnel current.

A. Integral expression for tunnel current

We know from the discussion of the zero-temperature
tunnel-current theory that in the Monte Carlo formalism,

Ibase= eA
"

m o k'sEdPWKBsEdD3k. s23d

We convert this sum into an integral by making the stan-
dard substitution

D3k → d3k

s2pd3 s24d

and specifying the bounds of integration.
In analogy to the arguments used before, our integration

bounds enclose a half shell ink space with outer radiuskF

and inner radiusÎ2msEF−eVd /". Figure 6 schematically
shows a projection of this region, broken up into two regions
labeled I and II. Since the integrand is dependent only onk',
we can reduce the three-dimensional integral to a one-
dimensional integral by a suitable choice of infinitesimal vol-
ume element.

Region I is a spherical cap, withÎ2msEF−eVd /",k'

,kF. To exploit the one-dimensional dependence, we use a
thin disk as a differential volume element. The radius of this
disk r is given by the equation of the circle projected by the
Fermi sphere,

k'
2 + r2 = kF

2 , s25d

and because the area of the circle isA=pr2, we have for the
differential volume element

dV = A ·dk' = pskF
2 − k'

2 ddk'. s26d

Region II is the portion of the spherical shell for which 0
,k',Î2msEF−eVd /". The volume element for this shell is
then an annular disk. The area of the annulus is given by the

difference between the areas of two concentric disks pro-
jected by the Fermi sphere and the inner sphere,

A = pHskF
2 − k'

2 d − F2msEF − eVd
"2 − k'

2 GJ = p
2meV

"2

s27d

with infinitesimal volume

dV = p
2meV

"2 dk'. s28d

Therefore, we have

Ibase=
2"

ms2pd3SE
0

Î2msEF−eVd/"
k'e−2gp

2meV

"2 dk'

+E
Î2msEF−eVd/"

kF

k'e−2gpskF
2 − k'

2 ddk'D . s29d

Since these two integrals cannot be evaluated analytically,
we must use numerical quadrature. We now show the results
of this calculation of tunnel current as a function of bias
voltage in Fig. 7. Plotted on the same axis is the result of the
Monte Carlo simulation previously presented for compari-
son. The remarkable agreement confirms the effectiveness of
the Monte Carlo method.

To use these results for vacuum gap compensation to hold
the tunnel current constant, we use a bisection algorithm.
The effectiveness of this scheme allows the base current to
be held to within 10−3 of the set point in the Monte Carlo
simulation with negligible computational overhead.

B. Electron injection results

Due to its relative simplicity, we calculate the BEES for
Au/GaAs for voltages where the only contribution is from
the G valley sconduction band minimumd. The Schottky bar-
rier used in this calculation is 0.92 eV, andm* =0.067.
These results are shown in Fig. 8.

FIG. 6. A 2D projection of the shelllike integration region used
in the calculation of the tunnel junction current.

FIG. 7. Integral calculation of tunnel junction current-voltage
spectrum. The barrier width is 6 Å and the height is 5 eV above the
Fermi energys5 eVd. Also shown for comparison are the results of
the previously presented Monte Carlo method.
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Notice that the collector current is zero for voltages below
the Schottky barrier and increases near quadratically thereaf-
ter. It has been claimed that the leading order of the voltage
dependence in BEES is actually a 5/2 power law.21 From our
development of the theory, we can see how this 5/2 power
law arises.

C. Threshold behavior

The three major contributing factors to this power law are
conservation of energy, conservation of momentum, and
quantum-mechanical scattering. Here we determine the lead-
ing order contributions from each in the zero-temperature
BEES theory.

1. Conservation of energy

Consider a system where the applied voltagesand thus the
potential energy dropd between tip and base is juste greater
than the Schottky barrier heightESB. Then, due to conserva-
tion of energy across the tunnel barrier,

"2kbase
→ 2

2m
=

"2ktip
→ 2

2m
+ ESB+ e. s30d

The condition for injection of electrons into the semiconduc-
tor is

"2kbase
→ 2

2m
ù EF + ESB. s31d

Combining Eqs.s30d and s31d, we have

"2ktip
→ 2

2m
ù EF − e. s32d

Therefore, at just above threshold, only the electrons in the
tip with more kinetic energy thanEF−e will satisfy the total
energy requirement. For these electrons, we have

uktip
→u ùÎ2m

"2 sEF − ed. s33d

The volume in k-space of those electrons that have
enough energy to scatter into semiconductor states above the
Schottky barrier is then the difference in volumes of two
spheres with radiiuktip

→u=kF and uktip
→u=Î2msEF−ed /"2, as

shown in Fig. 9:

Volume =
4

3
pSÎ2m

"2 D3

fsÎEFd3 − sÎEF − ed3g. s34d

Expanding to first order gives

Volume< 2pSÎ2m

"2 D3

ÎEFe. s35d

Therefore, the volume of states ink space which contribute
to the BEES collector current is proportional toe.

2. Conservation of momentum

Not all electrons with enough energy will couple into
semiconductor states. The component ofk parallel to the
interface plane must be compatible with available states in
the semiconductor.

Consider the available states of theG valley, just above
the Schottky barrier. These states form a surface, which
projects a disk onto the interface Brillouin zone. Assuming
quadraticEskd dependence, the radius of this disk is propor-
tional to Îe.

Since only the electrons withkWi inside this disk will enter
the semiconductor, the contribution to the BEES collector
current above the Schottky barrier will be proportional to the
ratio of the areas of theG valley disk and another disk with
radiuski characteristic of the tunneling process. This situa-

FIG. 8. Monte Carlo BEES calculation for Au/GaAs at 300 K.
This simulation uses 108 samples ofk space.

FIG. 9. A schematic of the “Fermi sea” in the tip metal. The
arrow on the left represents the Fermi wave vectorkF and the arrow
on the right represents the minimum electron wave vector magni-
tudefEq. s33dg. At a tip bias above the Schottky barrier, only elec-
trons within a shellsdark shaded regiond between spheres of the two
radii have enough energy to couple with states in the
semiconductor.
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tion is depicted schematically in Fig. 10sRef. 19d.
Therefore, momentum conservation contributes another

factor proportional to the projected areapsÎed2~e to the
behavior of the BEES collector current.

3. Quantum mechanical scattering

Due to quantum-mechanical scattering, the transmission
coefficient for a state in the base metal with wave vectorkm
coupling with a state in the semiconductorks is

PQM =

4kskm
ms

mm

S ms

mm
km + ksD2 =

4
ms

mm

kmS ms

mm
+

ks

km
D2ks. s36d

At just above threshold,ks is very small andkm is very large.
Assuming again that the band structure has quadratic valleys,
we see that

PQM ~ ks ~ Îe. s37d

These three threshold behaviors multiply to give the 5/2
power law.

VI. EFFECT OF SCATTERING PROBABILITY

We mentioned earlier the inclusion of the scattering prob-
ability sSPd to the theory so that it would more reflect em-
pirical observations in certain systems. Here we explain this
assertion further.

Since the probability that an electron tunnels across the
insulating barrier increases with perpendicular momentum,
the vacuum tunnel barrier acts as a filter that passes forward-
directed electrons.19 These electrons have relatively little par-
allel momentum and, therefore, cannot couple with conduc-
tion valleys that lie far away from the IBZ center.

Au/Si Schottky diodes provided an early experimental
example.11 Since the conduction band minimum lies near the
X point in the s100d direction, thes100d crystal orientation
has states that lie at the IBZ center. With thes111d orienta-
tion, all states require nonzero parallel momentum. There-
fore, BEES on thes100d-crystal orientation should yield a
largerIc thans111d. However, experiment has shown repeat-
edly that the two orientations yield virtually the same
spectra.22

A similar difficulty arose in the interpretation of BEES
spectra from Au/GaAss100d. Since the GaAs conduction
band minimumsat Gd lies at the zone center, one expects the
contribution from this valley to dominate over any additional
thresholds from higher conduction band minima, such asL,
which in this crystal orientation lies near the perimeter of the
IBZ. Contrary to this expectation, the contribution fromL is
typically 3–4 times stronger thanG.

To explain this discrepancy, the standard planar tunneling
model was modified to includes-wave scattering at the base
metal-semiconductor interface.23 Electrons initially highly
forward-directed are scattered outside of the IBZ center
where they can couple with states in the L valley. The scat-
tering probability sSPd, the probability that an individual
electron is scattered out of the zone center, was determined
to be approximately 0.9 by fitting the model to the data.

In Fig. 11 we show the effect of varying SP in our Monte
Carlo algorithm. To model the scattering, SP3N electrons
have their three-dimensional electron wave vectors randomly
reoriented without altering the wave vector norm before cou-
pling with semiconductor states. Instead of showing collector
current spectra, we show thesecond derivativeof the collec-
tor current sSD-BEESd. This allows us to see the relative
strengths of the thresholds in a clearer way. For comparison,
experiment data are superimposed on the series of simulated
spectra. We see that the simulation that most accurately re-
flects the relative strengths of theG andL valleys is the one
for which SP is close to 0.9.

We also note the consistent discrepancy between the
simulated and observed SD-BEES at high bias. While this is
partly due to our neglect of electron-phonon scattering in the
semiconductor at high electron energy, it is mostly due to the
inadequacy of the spherical band model to accurately reflect
the true band structure far from the conduction valley mini-
mum.

VII. CONCLUSION

We have presented a detailed description of Monte Carlo
calculations of hot-electron injection via tunnel-junction

FIG. 10. sad The tunnel process gives rise to a momentum dis-
tribution with a characteristic widthssee Ref. 19, Fig. 3d. sbd This
distribution is compared to the projection of the available semicon-
ductor states.

FIG. 11. Scattering probabilitysSPd changes the relative contri-
butions of theG andL valleys in GaAss100d to reflect experimental
observations.

I. APPELBAUM AND V. NARAYANAMURTI PHYSICAL REVIEW B 71, 045320s2005d

045320-8



emission for applications to modeling spectroscopies, such
as metal-base transistor transfer characteristics and BEES.
The method is straightforward but involves many subtleties
that drastically increase the effectiveness and accuracy of the
calculation. These improvements include reduction of phase
space in the emitter Fermi sea to increase the effective sam-
pling density and inclusion of integral methods and minimi-
zation to maintain constant tunnel current for BEEM spec-
troscopy simulation. After examination, this framework
allows a simple analysis of the collector current dependence
on emitter voltage bias near the Schottky threshold.

Although the computational difficulty of the Monte Carlo
method increases when the path through phase space is ex-
tended and attaining high accuracy requires dense sampling,
this technique is useful even with modest computational fa-

cilities. With greater computing power,ad hocadditions can
be included to explore more sophisticated uses of hot-
electron injection, such as quantum-mechanical transmission
through buried heterostructures and interactions with
phonons within the collector, leading to energy relaxation
and momentum reorientationsreflectiond.
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