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We have used the variational procedure in the effective-mass and nondegenerate parabolic band approxima-
tions in order to investigate the effects of a magnetic field on the exciton effective mass and dispersion in
semiconductor heterostructures. Calculations are performed for bulk GaAs, and two-dimensional and quasi-
two-dimensional excitons in coupled GaAs-sGa,AldAs quantum wells for applied magnetic fields perpendicu-
lar to the layers. A simple hydrogenlike envelope wave function provides the expected behavior for the exciton
dispersion in a wide range of the center-of-mass momenta, and an analytical expression for the exciton
effective mass is obtained. Present results lead to a magnetic-field dependent exciton effective mass and
dispersion in quite good agreement with available experimental measurements in coupled GaAs-sGa,AldAs
quantum wells.
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I. INTRODUCTION

In the last few decades a considerable amount of theoret-
ical and experimental studies has been carried out on the
exciton properties in multiple quantum wellsQWd hetero-
structures. The central motivation of these studies has been
the possible applications of these systems in optoelectronic
devices. From the physical point of view, the main interest is
concerned with the change of the physical properties of ex-
citons when the electrons and holes are confined in different
regions of the direct space or in different points of the in-
verse space. In particular, when the electron and hole are
confined in the same space region and in the same point of
thek space, the overlap of the single-particle wave functions
is large as, for example, in a single QW heterostructure, and
the exciton is called a direct exciton. On the other hand, it
may happen that, due to the presence of confining potentials,
the spatial separation of the electron and hole is such that it
leads to a small overlap of the single-particle wave functions
and to dramatic changes of the physical properties of the
system, as in coupled double QW’s: in this case, the exciton
is referred to as an indirect exciton.

The application of a magnetic field on semiconductor het-
erostructures provides very useful band-structure data, and a
variety of magneto-optical studies have been performed to
obtain valuable experimental and theoretical information on
exciton states under external magnetic fields. Most of the
theoretical work in the literature do not take into account the
coupling between the center-of-masssc.m.d motion and
the internal structure of the exciton. Gor’kov and
Dzyaloshinski�1 have investigated the c.m./internal structure
coupling for three-dimensionals3Dd excitons and, more re-
cently, a number of studies have been performed in order to
investigate the influence of the exciton c.m. momentum on
the exciton properties in the cases of two-dimensionals2Dd
and quasi-2D excitons.2–14 For example, Paquetet al.2 inves-
tigated the properties of a Bose condensate of noninteracting
2D magnetic excitons considering the influence of the mo-

tion of the particles in the direction perpendicular to the
magnetic field, of the coupling to higher Landau levels, and
of the spin-orbit interaction. By using magnetoabsorption
and electroabsorption techniques, Fritzeet al.3 studied the
effects of the applied magnetic fields parallel and perpen-
dicular to the QW layers on the exciton behavior, and dis-
cussed how in-plane magnetic fields change the nature of the
exciton by inducing a two-body velocity-dependent interac-
tion. Bayer and co-workers4 investigated the heavy-hole and
light-hole excitons in coupled double QW’s by photolumi-
nescencesPLd and photoluminescence excitationsPLEd
spectroscopy in magnetic fields up to 13 T. Other authors5,6

studied the problem of the quasi-2D exciton in a transverse
magnetic field, and obtained an expression for the exciton
spectrum in an arbitrary field for a large separation between
the confining-electron and -hole planes.6 The effects of an
in-plane magnetic field on the photoluminescence spectra in
coupled QW’s was also studied by Gorbatsevich and
Tokatly7 and Butovet al.,8 and more recently by Changet
al.11 Moreover, Parlangeliet al.9 investigated the optical
properties of GaAs/Al0.35Ga0.65As asymmetric double QW’s
under in-plane magnetic fields, and observed the energy-
momentum dispersion of spatially indirect excitons.

Experiments of particular interest to this work were the
studies by Butovet al.10 and by Lozovik et al.,13 who
performed the first experimental measurements of the
dispersion of a quasi-2D exciton in a coupled double
GaAs/Al0.33Ga0.67As QW heterostructure under an external
magnetic field, and indirectly obtained the exciton effective
mass in the direction perpendicular to the magnetic field as a
function of the applied field. They also formulated the
quantum-mechanical problem of the quasi-2D exciton under
an applied magnetic field and numerically solved10,13,14 the
Schrödinger equation in the imaginary-time formalism. The
aim of the present work is to study 3D, 2D, and quasi-2D
excitons, within a variational procedure which enables one to
obtain a realistic exciton wave function in an analytical way,
a clear advantage for performing calculations related to a
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number of optical quantities associated with the exciton
properties. Also, we shall obtain an analytical expression of
the exciton effective mass in the direction perpendicular to
the applied field by using the corresponding exciton varia-
tional wave function, and show that the present results lead
to a magnetic-field-dependent exciton effective mass and dis-
persion in quite good agreement with available experimental
measurements.10,13

The paper is organized as follows. In Sec. II we give our
theoretical derivations for 3D, 2D, and quasi-2D excitons,
propose the trial wave function to be used in the variational
calculations, and obtain the analytical expression to evaluate
the magnetic-field dependent exciton effective mass. Section
III is concerned with the present theoretical results together
with a discussion and comparison with experimental data10,13

in coupled GaAs-Ga0.67Al0.33As QW’s. Finally, our conclu-
sions are given in Sec. IV.

II. THEORETICAL FRAMEWORK

We consider the problem of an exciton in a semi-
conductor heterostructure, grown along thez axis, under an

applied magnetic fieldBW , within the effective-mass and

nondegenerate-parabolic band approximations. IfAW srWd is the
vector potential associated to the magnetic field, the Hamil-
tonian for the exciton may be given by

Ĥ =
1

2me
SpŴe +

e

c
AW eD2

+
1

2mh
SpŴh −

e

c
AW hD2

+ Veszed + Vhszhd −
e2

eurWe − rWhu
, s1d

wherepŴe, pŴh andme, mh are the momentum operators and the
effective masses of the electron and hole, respectively,Ve
andVh are the electron and hole confining potentials, respec-
tively, e is the absolute value of the electron charge,e is the
dielectric constantsconsidered the same throughout the het-

erostructured, AW e=AW srWed andAW h=AW srWhd.
Introducing the operator associated to the exciton c.m.

magnetic momentum1

PŴ = pŴe +
e

c
AW e + pŴh −

e

c
AW h −

e

c
BW 3 srWe − rWhd, s2d

it is easy to show that its three components commute be-
tween themselves, and it satisfies

dPŴ

dt
= − ¹eVeszed − ¹hVhszhd, s3d

which leads to the conservation of thePŴ '=sP̂x, P̂yd trans-

verse components ofPŴ . By assuming the magnetic field
along the growth direction, and taking the symmetric gauge

AW srWd= 1
2BW 3 rW for the vector potential, one may seek for si-

multaneous eigenfunctions of Eq.s1d andPŴ ' as1

CsrWe,rWhd = expF i

"
SPW ' +

e

2c
BW 3 rWD ·RWGFPW '

srW ,ze,zhd,

s4d

whererW=rWe−rWh is the internal exciton coordinate,rW =rWe−rWh

is the in-plane internal exciton coordinate,RW =s1/MdsmerWe

+mhrWhd is the in-plane exciton c.m. coordinate,M =me+mh

is the total exciton mass, andFPW '
satisfies

FĤez+ Ĥhz+ Ĥ2D −
e2

er
GFPW '

= EXFPW '
, s5d

wherer =Îr2+sze−zhd2 and

Ĥez=
p̂ez

2

2me
+ Veszed, s6ad

Ĥhz=
p̂hz

2

2mh
+ Vhszhd, s6bd

Ĥ2D =
1

2m
p̂'

2 + g
e

2mc
BW · srW 3 pŴ'd

+
e2

8mc2sBW 3 rW d2 + FW · rW +
P'

2

2M
. s6cd

In the above equations,EX is the exciton energy,m is the

exciton reduced mass,g=smh−med /M, PŴ '=−i"s] /]rWd, and

FW =se/McdPW '3BW . Here we note that the dependence of the

exciton energy onPW ' is given by the last two terms in Eq.

s6cd, and that the termFW ·rW represents the direct coupling
between the c.m. and the in-plane internal exciton coordi-
nate, i.e., it is determined by the interaction of the transverse

electric dipole −erW with the electric fields1/edFW in the c.m.
frame.

The conservation ofPW ' allow us to reduce the original
problem with six degrees of freedom into one with only four
degrees of freedom. Equations5d will be used to study exci-
ton properties in the 2D, quasi-2D, and 3D cases.

A. 3D exciton

For the 3D exciton, one may use Eq.s5d with Ve=Vh=0.
As a consequence, thez-component of the c.m. exciton mo-
mentum is also a constant of motion, and by introducing the
c.m. coordinateZ=s1/Mdsmeze+mhzhd and the relative coor-
dinatez=ze−zh, one obtains

Ĥez+ Ĥhz=
1

2m
p̂z

2 +
1

2M
P̂z

2, s7d

wherep̂z=−i"s] /]zd andP̂z=−i"s] /]Zd. The last term of Eq.
s7d only contributes by a constant to the exciton energy, and
one may include it inEX. The study of the 3D exciton then
reduces to solving the problem

ĥ3DFPW '
srWd = EXFPW '

srWd, s8d

with
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ĥ3D =
1

2m
p̂z

2 + Ĥ2D −
e2

er
s9d

and r =Îr2+z2.

B. Quasi-2D and 2D excitons

As is well known, in a multiple QW heterostructure the
electron and hole forming the exciton may be located in the
same well or in different wells of the heterostructure, corre-
sponding to direct or indirect excitons, respectively. If the
wells of the heterostructure are deep and narrow, then the
movement of the electron and hole may be considered as
essentially 2D. Under these conditions, the properties of the
exciton may be described by finding the solutions of the
problem

ĥ2DFPW '
srW d = EXFPW '

srW d s10d

with

ĥ2D = Ĥ2D −
e2

er
, s11d

wherer =Îr2+d2, andd is the distance between the electron
and hole confining planes. Ifd=0 the exciton is called a
direct exciton or a 2D exciton, whereas ifdÞ0, the exciton
is called an indirect exciton or a quasi-2D exciton.

C. Variational calculation

As one is not able to exactly solve Eqs.s8d and s10d,
approximated procedures are needed in order to obtain the
exciton properties. In this sense, the variational procedure is
a very useful tool for obtaining approximated solutions for
the exciton problem under the influence of the heterostruc-
ture confining potential and applied external fields. We shall
therefore use the variational scheme to obtain the ground
state of 3D, 2D, and quasi-2D excitons under applied mag-
netic fields, and taking into account the effects of the c.m./
internal structure coupling.

From Eq.s8d one may see that the exciton moves in an
effective potential with two local minima separated by the
vector1,13

rW0 =
c

eB2BW 3 PW ', s12d

one of that corresponding to the Coulomb potential and the
other to the magnetic-parabolic potential. For a nonzero

value of the applied magnetic field, andPW '=0W, both minima
coincide, and Eq.s8d may be approximately solved via the
trial wave function15

F0srWd = N0 expF−
r2

4lB
2 − lrG , s13d

wherel is a variational parameter,lB=Î"c/eB is the mag-
netic length, andN0 is a normalization constant.

As uPW 'u→`, urW0u→`, and the properties of the exciton
states are essentially determined by the magnetic-parabolic

potential.1,13 In this case, the exciton wave function associ-
ated to the exciton ground state, with energy1

2"vc, is given
by

F`srWd = N` expFi
g

2"
PW ' · rW −

srW − rW0d2

4lB
2 G , s14d

where vc=eB/mc is the cyclotron frequency andN` is a
normalization constant. The above results suggests a trial
wave function of the form

FPW '
srWd = N expFi

g

2"
PW ' · rW −

srW − rW0d2

4lB
2 − lrG s15d

to describe the exciton ground state associated to Eq.s8d. We
note that Eq.s15d leads to the correct behavior ofEX sRefs.

13 and 14d as uPW 'u→0 anduPW 'u→`, and therefore one may
expect that it would provide a good interpolation for the
exciton energy as function of the in-plane c.m. momentum.
The variational parameterl is obtained via the minimization
of

EXsld = kFPW '
uĥ3DuFPW '

l. s16d

Of course, the wave functions15d may be used to describe
the exciton ground state in the 2D and quasi-2D cases by
taking r =Îr2+d2, together with a variational parameter ob-
tained through the minimization of

EXsld = kFPW '
uĥ2DuFPW '

l. s17d

Finally, in all cases the ground-state exciton energyEX and
the exciton binding energyEB are related by

EX =
1

2
"vc − EB. s18d

D. Exciton effective mass

Before obtaining the exciton effective mass, one may re-

call that bothĥ2D andĥ3D remain invariant, forPW '=0W, under
the inversion of the spatial coordinates. As a consequence,
the corresponding wave functions may be chosen with a de-
fined parity and, therefore, the average ofrW is equal to zero

in this case. On the other hand, forPW 'Þ0W, the operatorsĥ2D

and ĥ3D are invariants under simultaneous inversion of the

spacial coordinates andPW ', and therefore,EXsPW 'd is an even

function of PW '. Moreover, all terms inĥ2D and ĥ3D are also
invariant under an arbitrary rotationT around thez axis, with

the exception ofFW ·rW , which transforms according to the rule

FW ·T−1rW =
e

Mc
sPW ' 3 BW d ·T−1rW =

e

Mc
sTPW ' 3 BW d · rW ,

s19d

and therefore the dispersionEXsPW 'd depends approximately

on P'
2 for small values ofuPW 'u, i.e., the c.m. momentum-

dependence of the exciton energy is given by
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EXsPW 'd = EXs0Wd +
P'

2

2MX
s20d

for small values ofuPW 'u, whereMX is the exciton effective
mass in the plane perpendicular to the applied magnetic field.

We shall obtain theMX exciton effective mass by suppos-
ing that the exciton envelope wave functionFPW '

is exactly
known. Then, according to the Hellmann-Feynman
theorem16

]EXsPW 'd

]PW '

=KFPW '
U ]ĥb

]PW '

UFPW 'L
=

1

M
SPW ' +

e

c
BW 3 kFPW '

urW uFPW '
lD , s21d

with b=2D, 3D and noticing that

]EXsPW ' = 0Wd

]PW '

= 0 s22d

and

1

MX
=

]2EXsPW ' = 0Wd
]Px

2 =
]2EXsPW ' = 0Wd

]Py
2 , s23d

it is straightforward to show that

1

MX
=

1

M
F1 −

eB

c

]

]Px
kFPW '

uyuFPW '
lG

PW '=0W

=
1

M
F1 +

eB

c

]

]Py
kFPW '

uxuFPW '
lG

PW '=0W
. s24d

Finally, by substituting Eq.s15d into Eq. s24d, one obtains

MX =
M

1 −
kr2l0

2lB
2

, s25d

where kr2l0= ukFPW '
ur2uFPW '

luPW '=0W. Obviously, asB→0, MX

→M and one recovers the exciton total mass, as expected.

III. RESULTS AND DISCUSSION

We have calculated the ground-state exciton energyEX
fsee Eq.s18dg as a function of the in-plane c.m. exciton mo-
mentum for different values of the applied magnetic field.
The parameters we have used wereme=0.067m0 and mh
=0.18m0 sm0 is the free-electron massd for the electron and
heavy-hole effective masses, respectively,17–19 and e=12.35
for the GaAs dielectric constant. Theoretical results are
shown in Fig. 1, with energies in units of the exciton Ryd-
berg sRyd and as a consequence, the exciton energy may be
rewritten asEX/Ry=gB−EB/Ry, where gB="vc/2Ry is a
quantity proportional to the magnetic fieldsgB=1 corre-
sponds to an applied magnetic field of<3.5 Td. The in-plane
c.m. momentum isp=P' /P0, in units of P0=e2M /e". One
may distinguish two regimes for the exciton. The transition
between these two regimes takes place at a certain value of

the c.m. momentumPtr sor ptr =Ptr /P0d, which is a function
of the magnetic field as discussed by Lozoviket al.13,14

Whenp,ptr the exciton behaves as an hydrogenlike system
shydrogenlike regimed, whereas whenp.ptr the exciton
properties change abruptlysmagnetoexciton regimed. As p
→` the exciton behaves as a free and uncorrelated electron-
hole system whose energy is the sum of the lowest electron
and hole Landau-level energies, i.e.,1

2"vc sor gB if the en-
ergy is expressed inRy units; see Fig. 1d. The behavior of the
exciton properties as functions of the c.m. momentum may
be understood in terms of the Lorentz’ force acting sepa-
rately upon the electron and hole. Asp increases beyond of
ptr the electron-hole pair becomes more and more polarized,
due to the increasing Lorentz’ force. As a consequence, the
Coulomb attraction between the electron and the hole falls
more and more, and the exciton binding energy tends toward
to zero. For small values of the c.m. momentumsp,ptrd, the
effects of the Lorentz’ force over the electron-hole pair are
weak, and the exciton remains near to the condition of a
hydrogenlike system.

Figure 2 shows the in-plane c.m. momentum dependence
of the binding energy for the 3DfFig. 2sadg, 2D fFig. 2sbdg,
and quasi-2D excitons ford=0.5 a0 andd=a0 fFigs. 2scd and
2sdd respectivelyg, where a0 is the exciton effective Bohr
radius. Calculations were performed for different values of
the applied magnetic field, starting withB=1 T and increas-
ing the field-value by 1 T untilB=10 T. As the exciton c.m.
momentum increases the binding energy decreases, and tends
towards zero asp tends to infinity. Of course, when the dis-
tanced sbetween the planes which confine the electron and
holed increasesfFig. 2scd and 2sddg, the exciton binding en-
ergy decreases due to a smaller Coulomb interaction. How-
ever, when the magnetic field is increased, the exciton wave
function becomes more localized for all values of the in-
plane c.m. momentum, leading to an increase in the exciton
binding energy. The magnetic-field dependence of the exci-
ton binding energies is shown in Fig. 3. Figures 3sad and 3sbd
correspond to the 3D and 2D excitons, respectively, whereas
Figs. 3scd and 3sdd correspond to quasi-2D excitons withd
=0.3 a0 and d=0.5 a0, respectively. Calculations were car-
ried out for various values of the exciton c.m. momentump.
It is well known that the exciton binding energy depends on

FIG. 1. 3D ground-state exciton energysfor bulk GaAsd in units
of the exciton Rydberg as a function of the in-plane c.m. momen-
tum for different values of the applied magnetic field. The magnetic
fields are given in units ofgB="vc/2Ry snotice dashed lines with
the corresponding values ofgBd.
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the magnetic field asÎB in the zero c.m. momentum limit.10

Whenp.ptr, this dependence changes abruptly, and for suf-
ficiently large values ofp the exciton binding energy trans-
forms into a linear function ofB with a decreasing slope
whenp is increased.

An important quantity related to the exciton wave func-
tion is the exciton probability density, which is closely re-

lated to the localization properties of the exciton in real
space. In Fig. 4 we examine the behavior ofruCPu2, in cy-
lindrical coordinates, as a function ofr, for z=0 andw=0,
where r=Îx2+y2 is the exciton in-plane coordinate,w the
axial angle, andz the coordinate in the magnetic-field direc-
tion. Results correspond to a 3D exciton forB=1 T, and for
two different values ofp at both sides ofptr .0.235. Full
dots at the bottom axes represent the absolute value ofrW0,
denoted asr0, which is the distance from the origin of coor-
dinates to the magnetic-orbit center. Whenp,ptr fsee Fig.
4sadg the probability density behaves as in the hydrogenlike
case, as expected, whereas ifp.ptr fsee Fig. 4sbdg one may
see a Gaussian profile of the probability density which is
peaked near the magnetic-orbit center. These facts clearly
illustrate the transition of the exciton from the hydrogenlike
regime to the magnetoexciton regime.

As the in-plane c.m. momentum is increased, one may
expect that the probability density peak position becomes
closer to the magnetic-orbit center. As a consequence, one
may also expect that the average of the exciton in-plane co-
ordinate tends towardsr0 as p increases. Figure 5sad shows
the momentum dependence of the averagekrl ssolid linesd
and of the magnetic-orbit center positionr0 sdashed linesd
for different values of the magnetic field fromB=1 T to B
=10 T in steps of 1 T. Notice that in the limitp→` the
averagekrl tends towardsr0. In Fig. 5sbd it is shown the
momentum dependence of the exciton quantum-confined
Bohr radius,20 defined asaX=kCu1/r uCl−1, for the same val-
ues of the applied magnetic field used in Fig. 5sad. Notice
that bothkrl andaX are measures of the exciton spatial ex-
tension. Again one may see the transition between the two

FIG. 2. Exciton binding energies as functions of the in-plane
c.m. momentum for different values of the applied magnetic field
snotice that full curves correspond to increasing values of 1 T from
B=1 T to B=10 Td. sad corresponds to the 3D case, whereassbd
relates to the 2D case, andscd andsdd to the quasi-2D exciton with
d=0.5 a0 and d=a0, respectively, wherea0 is the exciton Bohr
radius.

FIG. 3. Magnetic-field dependence of the exciton binding ener-
gies for different values of the in-plane c.m. momenta.sad corre-
sponds to the 3D case, whereassbd relates to the 2D exciton, andscd
and sdd to the quasi-2D case withd=0.3 a0 and d=0.5 a0,
respectively.

FIG. 4. Probability densityruCu2 for a 3D exciton as a function
of the in-plane coordinater. The probability density is evaluated at
w=0 andz=0. In sad we show the hydrogenlike exciton regime,
whereas insbd we display the magnetoexciton regime. The full dot
at the bottom axis is the position of the magnetic-orbit center.

MAGNETIC-FIELD EFFECTS ON QUASI-TWO… PHYSICAL REVIEW B 71, 045316s2005d

045316-5



exciton regimes, and the linear-momentum dependence of
krl and aX in the magnetoexciton regime. Obviously, the
exciton becomes more spatially extended and polarized asp
increases. Figures 5scd and 5sdd show the average ofkrl and
of the exciton quantum-confined Bohr radius as functions of
the applied magnetic field, respectively, for different values
of p. In the hydrogenlike regime the magnetic-field depen-
dence ofkrl andaX is quite slow, whereas in the magnetoex-
citon regime these magnitudes depend hyperbolically on the
magnetic field. Results from Fig. 5 were performed for a 3D
GaAs exciton, and we note that results obtained for 2D and
quasi-2D excitons, although not shown here, are very similar.

We have also compared our theoretical calculations with
some of the experimental data previously reported. In Fig. 6,
full dots correspond to the experimental results from Butov
et al.10 and Lozoviket al.,13 who studied the dispersion of an
indirect exciton in GaAs/Ga0.67Al0.33As double-coupled
QW’s. Moreover, they have determined a mean interlayer
separation in the indirect exciton regime corresponding to
d=115 Å which is close to the distance between the QW
centers. The experimental data are therefore compared with
the present theoretical calculationsssolid linesd for a
quasi-2D exciton withd=115 Å and for the magnetic-field
values in the experiment. We included in the exciton-peak
energy the effects of the heterostructure confining potential
by summing the electron and hole confining energies to the
exciton energy and gap energy, according to the sample
specifications done by Butovet al.10 Notice the good agree-
ment between experimental measurements and present calcu-
lations. For a better quantitative agreement between experi-
mental and theoretical results, one may explicitly include in
the exciton Hamiltonian the electron and hole confining po-

tentials, and propose a more realistic variational wave func-
tion for the exciton ground state.

Finally, we display in Fig. 7 the magnetic-field depen-
dence of the exciton effective mass, expressed in units of the
free-electron massfm=MX/m0, see Eq.s25dg, for 2D sdashed
lined, 3D sdoted lined, and quasi-2Dssolid lined excitons.
Full dots correspond to the experimental results from Butov
et al.10 and Lozovik et al.13 for an indirect exciton in a
GaAs/Ga0.67Al0.33As double-coupled QW withd=115 Å.
Our theoretical calculation corresponding to the quasi-2D ex-
citon was also performed ford=115 Å, according to the ex-
perimental specifications. Notice that, in all cases, the exci-
ton effective mass increases when the magnetic field is
increased. In the case of a quasi-2D exciton, for large values
of the magnetic field the discrepancy between the theoretical
curve and the experimental points becomes larger. This prob-
lem may be solved, in part, by including in the theoretical
model the effects of the double-coupled QW confining po-
tential.

IV. CONCLUSIONS

In summary, we have solved the Schrödinger equation
corresponding to the 3D, 2D, and quasi-2D excitons by using

FIG. 5. Average of the in-plane coordinater=Îx2+y2 and of the
quantum-confined Bohr radius for a 3D exciton as functions of the
in-plane c.m. momentum for different values of the applied mag-
netic fieldfsad andsbd, respectivelyg, and as functions of the applied
magnetic field for various values of the c.m. momentafscd andsdd,
respectivelyg. Dashed lines insad correspond to the c.m. momentum
dependence ofr0.

FIG. 6. Exciton dispersion for different values of the applied
magnetic field. HereK=P' /" is in units of 106 cm−1. Solid lines
represent present calculations for the quasi-2D case withd
=115 Å, whereas full dots correspond to the experimental results
from Butov et al. sRef. 10d and Lozoviket al. sRef. 13d in coupled
GaAs-Ga0.67Al0.33As QW’s.

FIG. 7. Exciton effective massm=MX/m0 as a function of the
magnetic field for 2Dsdashed lined, 3D sdot lined, and quasi-2D
ssolid lined excitons. Full dots correspond to the experimental re-
sults from Butovet al. sRef. 10d and Lozoviket al. sRef. 13d in
coupled GaAsuGa0.67Al0.33As QW’s.

REYES-GÓMEZ, OLIVEIRA, AND de DIOS-LEYVA PHYSICAL REVIEW B71, 045316s2005d

045316-6



the variational procedure. We proposed a simple hydrogen-
like trial wave function, which provides the correct
behavior13,14 of the calculated magnitudes in the limitp
→0 andp→`, and that is very useful in order to carry out
calculations, for example, of the optical magnitudes related
to the exciton properties. We also obtained an analytical ex-
pression to evaluate the exciton effective mass by using the
proposed variational wave function. Present theoretical re-
sults for the exciton dispersion and for exciton effective mass
were found in good agreement with experimental data in
coupled GaAs-Ga0.67Al0.33As QW’s. Of course, a better cor-
respondence between experimental and theoretical results
would be obtained if one includes both the effects of the

confining potential as well as of the complex band structure
in the theoretical calculations.
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