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We present microscopic model calculations of phosphorousd-doped silicon. Using the planar Wannier
orbitals fY. C. Chang and G. Li, Comput. Phys. Commun.95, 158 s1996dg obtained based on the pseudopo-
tential method, we calculate the electronic structures of a large slabs1000 MLd self-consistentlysfor doping
electronsd, taking into account both the long-range Coulomb potential in the direction perpendicular to the
doping plane and the short-range interaction due to the 1/4 monolayersML d phosphord doping. Our results
show that the Fermi level after doping is about 100 meV below silicon conduction band minimumsCBMd. We
also find that the short-range interaction due to P dopants only has a minor influence on the Fermi level.
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I. INTRODUCTION

Quantum computation1–4 has attracted tremendous inter-
est in recent years. There have been numerous proposals for
the implementation of a scalable quantum computer. One of
them is the silicon-based architecture proposed by Kane,5

which uses the phosphorus nuclear spin as the quantum bit
squbitd. In this architecture, a phosphorus donor in Si is
placed,200 Å beneath a narrow conducting gatesA gated.
A single nonbondingsconduction bandd electron occupies the
hydrogen-like ground state with an average Bohr radius of
,25 Å. Voltage applied to anA gate displaces this electron
cloud away from its P-atom nucleus, decreasing the hyper-
fine interaction and lowering the nuclear magnetic resonance
sNMRd frequency in a dc magnetic field of,2 T. Individual
P nuclei can thereby be brought into resonance with an in-
plane ac magnetic field, permitting arbitrary spin rotations to
be performed on any single qubit using an appropriate se-
quence of gate pulses. AdditionalJ gates, located between
the P-atom donors of a planar array, would be used to induce
exchange coupling for two-qubit operations via overlap of
their electron wave functions. Results of quantum computa-
tion would eventually be read out by detecting the presence
or absence of electronic polarizations induced onto target
donors by differential gate biasing when coupled to an output
qubit, thereby determining overall wavefunction parity for a
two-electron ground state as adiabatically dictated by the do-
nor nuclear spins for strongJ gate coupling.

More recently Vrijenet al.suggest using only the electron
spins of the isolated donors for quantum computation.4 By
taking advantage ofg-factor variations available in SiGe het-
erolayerssSi:g=1.998, Ge:g=1.563d, electron spins could
be selectively tuned in and out of resonance under gate con-
trol. Bias voltages applied to an individual gate displace the
bound electron with respect to its P-atom nucleus, just as in
the proposal by Kane; but in this case the electron’s wave
function can sample layers of different alloy composition and
g factor, bringing its spin in and out of resonance for single-
qubit ESR rotations. Larger gate biases would be employed
to couple neighboring qubits by displacing their bound elec-
trons even farther into Ge-rich layers, lowering their binding
energies and substantially increasing the spatial extent of

their wave functions. SeparateJ gates between each pair of
donors could thereby be eliminated, along with the delicate
adiabatic transfers of spin information from nuclei to elec-
trons which are required under Kane’s original proposal. Uti-
lization of the electron spins in place of donor nuclear spins
has several other potential advantages:s1d higher ESR fre-
quencies could permit much faster single-qubit operations up
to 1 GHz, s2d the electron spins can be fully polarized at
realizable magnetic fields and temperatures, establishing a
well-characterized starting point for quantum calculations,
ands3d isotopic purity is no longer an absolute requirement.

The realization of the abovementioned Si-based quantum
computers depends on three critical issues.s1d Individual
P-atom donors must be accurately positioned into planar ar-
rays with a tolerance of 10 Åssmaller than the 25 Å Bohr
radiusd. s2d Each donor within the array must be epitaxially
encapsulated into Si or SiGe with no nearby charged defects,
surface states, or dangling bonds which might otherwise off-
set the bound electron charge distributions.s3d A single-
electron transistorsor comparably small FET channeld must
be incorporated very close to each read-out qubit, in order to
sense the extremely small charge displacements for electri-
cally polarized spin singlets under differential gate biasing.

One possible process for selectively patterning individual
donors, and larger self-ordered arrays, with atomic precision
is to use atom-resolved scanning-tunneling microscopy
sSTMd lithography on hydrogen-terminated silicon.6–8

Atomically clean surfaces are prepared in ultrahigh vacuum
sUHVd and passivatedin situ, with one hydrogen atom at-
tached to each silicon dangling bond to form a single-
monolayer “H-atom resist.” In tunneling mode, the STM’s
electron beam is confined to atomic dimensions, and hydro-
gen atoms can be removed by scanning at voltage and cur-
rent levels higher than those used for imaging.

Phosphorous donor atoms can be selectively deposited
onto the STM-exposed areas by adsorption of individual PH3
precursor molecules.8 Phosphine does not adsorb on
H-terminated surfaces at room temperature, and substrates
must be heated above 500 °C to evolve hydrogen and expose
bare Si dangling bonds in order to sustain common chemical
vapor deposition reactions involving SiH4, PH3, B2H6, and
related molecular species. On the other hand, recent STM
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imaging and surface studies have shown that PH3 is readily
adsorbed onto bare Sis100d -231 dimers at alternating sites
along a single row.9,10 Over extended areas of the bare sur-
face, the PH3 adsorption sites are staggered between adjacent
rows to form a self-ordered,1/4 ML cs232d adlayerswith
,50 Å domainsd at saturation coverage. By using the STM
to expose bare Si dangling bonds on a H-terminated surface,
selected areas can be targeted for self-ordered PH3 deposi-
tion. Overgrowth of the self-ordered PH3 precursor layers
will yield a new type of ultradense 2D electron gas. Because
we need to selectively pattern such layers into atom-scale
devices, a detailed understanding of their electronic structure
is essential.

Previously, several theoretical studies ofn-type d-doping
layers in Si based on the effective mass approximation have
been reported.11–13The main deficiency in the effective mass
approximation is that it fails to describe properly the inter-
valley couplings introduced by the self-consistent confining
potential. Furthermore, at doping density as high as 1/4 ML
as considered here, it is not clear how serious an effect the
short-range part of the doping potential will have. In this
paper, we perform microscopic model calculations of phos-
phorousd-doped silicon within an empirical pseudopotential
method. We consider a 1/4 monolayersML d phosphorous
d-doping sheet withs232d configuration embedded in a
large slabs1000 MLd of Si. The electronic structures of
d-doped Si are calculated within a planar Wannier-orbital
sPWOd basis, which is constructed via linear combinations of
the products of two-dimensional plane waves and one-
dimensional Gaussian functions.14 This basis is particularly
suited for planar structures including surfaces, interfaces, su-
perlattices, andd-doped systems as considered here. Due to
the localized naturesalong the perpendicular axisd of the
PWO’s, the Hamiltonian matrix is sparse; thus, it can be
solved efficiently. Our results show that the Fermi level after
doping is about 100 meV below silicon conduction band
minimum sCBMd. We also examined the effects of the short-
range interaction due to P dopants and find that it only has a
minor influence on the band structures of the system. This
implies that at current doping density, the charge distribution
is not very sensitive to the in-plane doping pattern. Our re-
sults are important for understanding the electronic structures
of nanoscale devices such as Si-based quantum computer.

II. METHOD OF CALCULATION

A. Hamiltonian for doping electrons

The electronic states of thed-doped Si are expanded in
terms of planar Wannier-orbitalssPWO’sd as described in
Ref. 14. A PWO is defined as14

kr,zuWnks
slzdl =Î 1

N2Dscell
o

n,a,s

Gi

e−isGi+Gs+kid·r

3 Cnks

w sa,n,sdfa,n
s,lzszdIpsGi,lzd, s1d

where,Cw’s are Wannier-orbital coefficients as obtained in
Ref. 14,N2D denotes the number of unit cells in the in-plane

direction of the system, whilescell is the area of the planar
s2Dd unit cell. Note that a Löwdin orthogonalization proce-
duressee Appendix of Ref. 14d has been used to convert the
nonorthogonal PWO basis into the orthogonal PWO basis. In
the above formula,Gi is a 2D reciprocal lattice vector of the
corresponding bulks131d system,Gs is a 2D reciprocal
lattice vector for the 2Dd-doped s232d system enclosed
within the bulk 2D Brillouin zonesBZd sindicated as dark
circles in Fig. 1d, andk i is a samplingk vector in the 2D BZ
of the s232d system. Therefore, we haveks;Gs+k i. The
phase factorIpsGi , lzd, which for an fcc lattice, is determined
by fsee Eq. 17 in Ref 14g,

Ip = H− 1 if Gx/s2p/ad and lz are both odd,

1 otherwise.
J s2d

fa,n
s,lzszd = FÎ p

2a
S 1

4a
DnG−1/2

fz− zs − zslzdgne−afz − zs − zslzdg
2
,

s3d

wheren=0,1 for even and odd basis functions. The expo-
nentssad are chosen to be

ha1
s,a2

s,a1
p,a2

pj = h0.3,0.75,0.5,1.5j,

in units of Bohr−2. There are two schemes to construct the
Gaussian functions. One is at the atomic siteson-sited, the
other at the bond centerson bondd. For the on-site scheme,
zs=ss−1da/4; s=1,2. For the on-bond scheme,zs=ss
−1da/4−a/8; s=1,2. In this study, the on-bond scheme is
used. In the above equations,lz is the label of each atomic
layer, while zslzd is the coordinate of thelz layer with the
origin set at the doping layer.

The Hamiltonian for doping electrons in thed-doped Si
can be written as a sum of the bulk HamiltoniansH0d and the
doping potentialsVdopd plus the electron-electron interaction
sveed screened by the valence electrons. We write

FIG. 1. Schematic diagram of the 131 sdashedd and cs232d
Brillouin zones ssolidd for Si s001d surface. The constant energy
surfaces for the six equivalent valleys projected in the 131 surface
BZ are shown as dashed ellipsessfor thex, y valleysd and a circle at
the centersfor the twoz valleysd.
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Vdopsr d = o
Ri

Vdsr − Rid, s4d

whereVdsr d is the difference in atomic pseudopotentials be-
tween P dopant and Si host atoms at each doping site,
screened by the valence electrons. In the Fourier space, the
doping potential takes the form

Ṽdopsqd = o
Ri

e−iq·RiṼdsqd, s5d

where

Ṽdsqd = −
8p

«sqdq2 + Ṽpssqd.

Throughout this paper, we have scaled all energy quantities
in units of Rydbergs and distance in Bohrs such that
"2/2m0=1, wherem0 is the free electron mass.«sqd is the
static dielectric function due to the valence electrons, which
can be approximated by the following analytic form:15

1

«sqd
=

1

«s0d
+ A

q2

sq2 + g1
2d

+ s1 − Ad
q2

sq2 + g2
2d

−
1

«s0d
q2

sq2 + g3
2d

, s6d

where «s0d=11.4, A=1.133, g1=0.798, g2=0.440, andg3

=2.645 in atomic units.Ṽpssqd denotes the pseudopotential
modification to the 1/r potential. For phosphorous donor in
Si, it has been shown thatVdsr d is well approximated by a
point-charge model,16 i.e., Vps is negligible. Similarly, the
screened electron-electron interaction is given by

ṽeesqd =
8p

«sqdq2 .

Adopting the Kohn-Sham density-functional theory17 for
the doping electrons, we obtain the following effective
Schrödinger equation:

hH0 + Vdopsr d + VHsr d + Vxcfrsr dgjcsr d = Ecsr d, s7d

whereVH is the self-consistent Hartree potential associated
with vee and Vxcfnsr dg is the exchange-correlation potential
within local density approximationsLDA d. The above equa-
tion is solved by expandingcsr d in terms of orthogonalized
PWO’s, which translates the differential equation into a
finite-dimension eigenvalue problem. Because the coupling
between PWO’s separated by a distance larger than the fifth
neighbor is negligibly small, the above Hamiltonian matrix
becomes a band matrix, which can be diagonalized quite
efficiently with the standardLAPACK library routines. Thus,
we can handle a large-sizes,1000 MLd slab 16 PWO’s in
each monolayer.

The matrix elements between any two PWO’s forH0 are
given by

kWnks
slzduH0uWn8ks8

slz8dl = o
Gi,Gi8

E dr

N2Dscell
e−isGi−Gi8+Gs−Gs8dr

3 o
ans

a8n8s8

E dzf
a8n8
s8lz8 szdH0fan

slzszd

3 Cnks

w sa,n,sdCn8ks8

w sa8,n8,s8d

; H0sn,lz,n8,lz8ddss8. s8d

Because the bulk HamiltonianH0 is invariant under transla-
tion of a lattice vector, we have

H0sn,n8,lz8 − lzd ; H0sn,lz + l,n8,lz8 + ld s9d

with l being an arbitrary atomic layer. Details ofH0sn,n8 , lzd
have been described in Ref. 14.

The matrix elements between any two PWO’s forVdopsr d
are given by

kWnks
slzduVdopsr duWn8ks8

slz8dl =E d3q

s2pd3Vdopsqd

3kWnks
slzdueiq·r uWn8ks8

slz8dl

= C0ulzudnn8dlz,lz8
dss8 − U0sk i,n,n8,lz,lz8,Gs,Gs8d − Cs`d,

s10d

whereC0=2apQ/«s0dscell, whereQ is the average doping
charge in a 2D unit cell. The first term on the right-hand side
describes the contribution of the long-range Coulomb inter-
action originated from thed-doping sheet, which is repre-
sented by a constant average charge density. The second
term,U0 captures the short-range contribution and the differ-
ence caused by replacing the discrete dopant charges by a
constant average charge density, which is also short range in
nature. Note that the presence ofU0 leads to coupling be-
tween states associated with differentGs. For as232d con-
figuration considered here, there are four differentGs. The
last term,Cs`d corresponds to the self-interaction Coulomb
energy of an infinite charged sheet, which will be cancelled
exactly by a corresponding term from the Hartree potential.
Detailed derivation for the above expression is given in the
Appendix.

To reduce computation effort, we solve the problem in a
two-step method. In the first step, we ignore the presence of
U0, which allows us to decouple states associated with dif-
ferent Gs. Thus, the size of the Hamiltonian matrix is re-
duced by a factor four. Furthermore, we replace the 3D
charge densityrsr d by an in-plane averaged charge density
r0szd. In this way, the results obtained in step 1 can be di-
rectly compared with those obtained from a multivalleyed
effective-mass model. In the second step, we use the eigen-
states obtained in the first stepswith energies within a se-
lected ranged as a new reduced basis. We then solve the full
problem within the reduced basis.

The matrix elements for exchange-correlation energyVxc
is approximated by
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kWn8,lz8,Gs8+ki
uVxcfrszdguWn,lz,Gs+ki

l

= VxcslzdkWn8,lz8,Gs8+ki
uWn,lz,Gs+ki

l

= Vxcslzddss8dn8ndlz8,lz
, s11d

sinceVxcfrszdg is a slow varying function ofz, which can be
approximated by its value atlz.

The exchange-correlation energy, in the reduced basis, is
expressed as

Vxcs j ,id = o
lz

Vxcslzd o
n,Gs

fCj ,Gs

0 sn,lzdg * Ci,Gs

0 sn,lzd, s12d

whereCi,Gs

0 sn, lzd is the expansion coefficient of the eigen-
states obtained in step 1 in terms of PWO’s. The exchange-
correlation energy is evaluated within DFT-LDA. We use the
XC functional calculated by Ceperley and Alder18 and pa-
rametrized by Zunger and Perdew.19 The energy and charge
density are rescaled according to

E =
m̄

«0
Ẽ, rszd = S m̄

«0
D3

r̃szd,

so that the XC functional derived for electrons with spherical
mass can apply. Herem̄=Î3 smt

*d2ml
* denotes the spherical av-

erage of the density-of-states effective mass,20 and «0=«s0d
is the long-wavelength dielectric constant. The effect of in-
tervalley scattering among six different pockets has been
ignored.21 Therefore, the charge density enters the XC func-
tional is the charge density per pocket. This approximation is
reasonable, because the exchange interaction is proportional
to 1/Dk2, whereDk is the difference in momentum between
two pockets, which is quite large.

B. The Hartree term

The self-consistent Hartree potential seen by a doping
electron is given by22

VHsr d =E d3q

s2pd3

8presqd
q2«sqd

eiq·r , s13d

where

resqd =E d3r ·e−iq·rresr d

is the Fourier transform of the electron charge densitysfor
doping electrons onlyd.

Due to the in-plane translational invariance of the electron
charge density,resqd is nonvanishing only atqi=Gi, where
Gi is some reciprocal lattice vector of the 2D lattice. Thus,
Eq. s13d becomes

VHsr d =
1

scell
E dqz

s2pdoGi

8presGi + qzẑd

sGi
2 + qz

2d«sÎGi
2 + qz

2d
eiqzz,

s14d

where scell is the surface unit cell area as defined before.
Since the long-range Coulomb potential is dominated by
small q, we can ignore the contribution from theGiÞ0

s“Umklapp”d terms. With this approximation, we have

VHszd =
4p

«s0d E dz8resz8duz− z8u, s15d

wherereszd is the in-plane averaged electron charge density

reszd ;
1

scellDz
reslzd. s16d

Dz is the layer thickness in thez direction andreslzd is the
in-plane averaged electron occupation at atomic layerlz,
which is given by

reslzd = o
m,ki

wki
rm

kislzdufEF − Emsk idg, s17d

wherewki
is the weighting factor and

rm
kislzd = o

n,s
uCn,Gs+ki

m slzdu2, s18d

where Dz is the layer thickness in thez direction and
Cn,Gs+ki

m slzd is the expansion coefficient of themth eigenstate
of the d-doped Si in terms of PWO’s.

The matrix elements between any two PWO’s forVHszd
are given by

kWnks
slzduVHszduWn8ks8

slz8dl = VHslzddnn8dlz,lz8
dss8 + Cs`d,

s19d

where we have used the property thatVHszd is a slow varying
function over an atomic distance and the fact that the PWO’s
are orthogonal. The last termCs`d describes the self-
interaction, which cancels the corresponding term forVdop
exactly.

C. Fermi filling

Within parabolic approximation, the energy dispersionsin
Ryd for each 2D subband in the vicinity ofG andD points,
respectively, is given by

Eiskd = Ei
sGd +

k2

mt
* ,

Eiskd = Ei
sDd +

skx − kDd2

ml
* +

skyd2

mt
* , s20d

wheremt
* andml

* are the transverse and longitudinal effective
masses, respectively, which are obtained by fitting the curva-
ture of each subband calculated by the present method. For
bulk Si, we obtainmt

* =0.192 andml
* =0.916, in good agree-

ment with experimental values. For subbands ind-doped Si,
these values are slightly modified. We obtainmt

* =0.211 and
ml

* =0.95. Here the spin-orbit splitting has been ignored, i.e.,
each subband has a twofold spin degeneracy. For 2D electron
gas, the 2D electron density is given by

sd = ne = 2E d2k

s2pd2o
i

n

ufEF − Eiskdg, s21d

whereEF is the Fermi level:
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sd =
mt

*

2p
Fo

i

nG

sEf − Ei
Gd + 4Îml

*

mt
* o

i

nD

sEf − Ei
DdG . s22d

The factor 4 appearing in the last term is due to the fact that
there are four equivalentD pockets in thex-y plane.

By rearranging the formulas above, we have

2psd = smt
*nG + 4Îml

*mt
*nDdEf

− Smt
*o

i

nG

Ei
G + 4Îml

*mt
*o

i

nD

Ei
DD , s23d

from which we get the expression for the Fermi energy

Ef =
2psd + mt

*oi
nG

Ei
G + 4Îml

*mt
*oi

nD
Ei

D

mt
*nG + 4Îml

* * mt
*nD

. s24d

In the above derivation, we have used the fact that

sDk i
Gd2 = mt

*sEf − Ei
Gd,

sDk i
Dxd2 = ml

*sEf − Ei
Dd, s25d

sDk i
Dyd2 = mt

*sEf − Ei
Dd.

In the vicinity of G and D points, the parabolic approxi-
mation works very well, even when the filling goes beyond
the Brillouin zone boundary in the vicinity of theD point.
This means that the energy difference is mostly due to the
kinetic energy, and the spatial distribution of wave functions
does not change appreciably withk. In this case the integra-
tion can be approximated by the area times the charge den-
sity for each occupied level at the pocket centers.

If we define rslzd as the charge density distribution at
atomic layerlz, and ri

sG,Ddslzd the probability distribution in
each state, we have

rslzd =
1

pa
Fo

i

nG

sk i
Gd2ri

Gslzd + 4Îml
*

mt
* o

i

nD

sk i
Dd2ri

DslzdG ,

s26d

wherek i
2;sEf −Eid. In practice, the Fermi level can be de-

termined in a simpler way. Define

sd = fGo
i

nG

sEf − Ei
Gd + fDo

i

nD

sEf − Ei
Dd s27d

with filling factor for each state in the two pockets as

fG =
mt

*

2p
, fD =

4Îml
*mt

*

2p
. s28d

States derived from twoz pockets are mixed by the doping
potential and form two closely spaced levels at theG point in
the 2D BZ, each with twofold degeneracy due to the spin.
States derived from the foursx,yd pockets appear as levels at
the D point in the 2D BZ. The four equivalentD valleys
remain degenerate in addition to the twofold spin degen-
eracy. Thus, we have

Ef =
1

nGfG + nDfDFsd + fGo
i

nG

Ei
G + fDo

i

nD

Ei
DG s29d

and

rslzd =
2

a
F fGo

i

nG

sEf − Ei
Gdri

Gslzd + fDo
i

nD

sEf − Ei
Ddri

DslzdG .

s30d

At finite temperatures, the chemical potentialm is deter-
mined by

sd =
2p

4p2Fo
i

nD

E dk2

1 + esEi
D−k2/mt

*−md/kBT

+Îml
*

mt
* o

i

nG

E dk2

1 + esEi
G−k2/mt

*−md/kBT
G . s31d

Carrying out the integration yields

sd =
kBT

2p
Fmt

*o
i

nG

ln
ai

G

ai
G + 1

+ Îmt
* * ml

*o
i

nD

ln
ai

D

ai
D + 1

G ,

whereai
G;esEi

G−md/kBT andai
D;esEi

D−md/kBT. Once the chemi-
cal potentialm is determined, the filled charge distribution is
given by

rslzd =
kBT

a/2
F fGo

i

nG

ln
ai

G

ai
G + 1

ri
Gslzd + fDo

i

nD

ln
ai

D

ai
D + 1

ri
DslzdG .

s32d

III. RESULTS

The subband structure of the 1/4 MLd-doped Si obtained
in step 1 swith long wavelength approximationd of the
present model is shown as solid curves in Fig. 2. Only the
region from the zone center tok=0.32p /a along thex direc-
tion is plotted. There is no extra structure from this point to

FIG. 2. Subband structuressfor kx=0,0.32p /ad of thed-doped
Si with doping density of 1/4 ML. The energy zero is placed at the
conduction-band minimum of bulk Si. The solid lines show the
band structure without the exchange-correlation and short-range ef-
fects, while the dotted lines show the band structure obtained in the
full model.
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the zone boundary. The labelnG denotes thenth confined
subband with subband minimum located at theG point szone
centerd, while nD denotes thenth confined subband with sub-
band minimum located at theD point which is at kD

=s0.165,0ds2p /ad in folded Brillouin zone. In bulk Si, the
conduction band has six equivalent valleys with minima
at s±kD ,0 ,0ds2p /ad, s0, ±kD ,0ds2p /ad, and s0,0, ±kDd
3s2p /ad, wherekD,0.85. With the present pseudopotential
model, we obtainkD,0.835. The constant energy surfaces
of the six equivalent valleys projected in the bulk 2D Bril-
louin zone are shown in Fig. 1. The four dashed ellipses
denote the four valleys in thex-y plane, while the circle at
the center denotes the twoz valleys sprojected into the sur-
face BZd. Due to zone folding in the surface BZ for thes2
32d system, thex and y D minima are folded tof±s1
−kDd ,0gs2p /ad, f0, ±s1−kDdgs2p /ad. The constant energy
surfaces of the fourx,y valleys folded into thes232d 2D BZ
are shown as solid ellipses in Fig. 1. The intervalley coupling
caused by the doping potential gives rise to a mixing of the
two folded z valleys snear theG pointd, which form two
closely spaced subbands labeled as 1G and 2G in Fig. 2. The
splitting between the two levels is about 20 meV.

The second conduction band of bulk Si becomes degen-
erate with the first conduction band at theX point. All six of
theseX-point states are folded to the zone center of thes2
32d 2D BZ and they are mixed due to the doping potential.
These six levels near the zone center are labeled 1D, 2D,
1X/2X, and 3G /4G, respectively, and they have different dis-
persion as seen in the figure. For the range ofk considered in
the figure, the 1D and 2D are derived from the two lowest
conduction bands near theX point salong thex directiond, the
1X/2X levels from the otherX point salong they directiond,
and the 3G /4G levels are from the thirdX point salong thez
directiond. The Fermi levelslabeledEFd obtained from the
full calculations is also shown in the figure for the purpose of
analyzing the carrier population. As seen in the figure, only
the 1G, 2G, and four equivalent 1D valleys sonly one out of
four is shown hered have significant populationsthe 1X/2X
subbands have a population less than 1% of the totald, which
justifies the analysis used in the previous section. Also note
that the 1D subband becomes slightly nonparabolic fork
near the zone center, which will cause a minor error in the
determination of the Fermi levelson the order of a few
meVd.

To examine the effects of the short-range interaction, we
also show in Fig. 2 the subband structures obtained by the
full model sdashed linesd. We see that the magnitudes of
corrections due toUSR are on the order of 10 meV and they
arek i dependent, which leads to a slight correctionsby about
1%d to the effective mass of each subband. Furthermore, the
coupling of differentGs terms due to the short-range part
sUSRd of the doping potential leads to a mixing of thex-y
valleys with thez valley, which appears as a weak anticross-
ing effect in the subband structure. This mixing, however, is
far away from the subband minima; thus, it does not modify
the parabolic shape of the valley significantly. We noticed
that in the vicinity of the subband minima, the band structure
is still well approximated by a parabola, which validates the
effective-mass approximations used in determining the Fermi
filling as discussed in the previous section.

Table I shows the effect of exchange-correlation energy
and the short-range interaction on the Fermi levelsEFd for
the case without coupling of differentGs terms. The
exchange-correlation effect lowers the Fermi level by
,60 meV, while the inclusion of the SR interaction in-
creases the Fermi level by,10 meV. After including both
the XC and SR effects, the Fermi level is located at
,100 meV below the conduction band minimumsCBMd of
bulk silicon.

Figure 3 shows the self-consistent potential of the 1/4
ML d-doped Si calculated in step 1sdashed curved and with
the full modelssolid curved. The horizontal axis shows thez
coordinate sin the direction perpendicular to the doping
planed in the units of Å. The potential displays a “V” shape,
which is typical ford-doped systems.23 The horizontal lines
indicate the confined energy levels below the Fermi level
associated with theG subband andD subband. The number
in the parentheses for theD subband indicates the valley
degeneracy, since there are four equivalent valleys in thex-
y plane. As seen in the figure, the inclusion of both XC and
SR effects lowers the depth of the doping potential by ap-
proximately 10%. However, this apparently mild effect on
the doping potential leads to a significant lowering of the
Fermi levelsby approximately 50 meVd.

If the short-range termsU0d is ignored, our method can be
applied to any 2D density, since Eq.s10d without U0 is in-
dependent of the doping pattern. Table II shows the results
sobtained with step 11 XCd for Fermi levelsrelative to the
conduction band minimum of bulk Sid for 2D doping density
ranging from 6.631011 cm−2 to 1.731014 cm−2 s1/4 ML
cased. Note that including theU0 term will push up the Fermi
level by 12 meV for the maximal doping case and its effect
on the lower doping cases should be much less. Our results
indicate that the Fermi level goes progressively deeper as the
doping concentration increases. The large range of variation

TABLE I. Effect of the exchange-correlationsXCd and short
rangesSRd interaction on the Fermi levelsEFd sin meVd, measured
with respect to the conduction band minimum.

Step 1 Step 1+XC Step 1+XC+SR

EF smeVd −52 −111 −99

FIG. 3. Self-consistent potential profile ofd-doped Si. The
lowest-lying confined states derived from each valley and the Fermi
level are labeled. The rightsleftd labels are for results obtained with
swithoutd the XC and SR effects.
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of the Fermi level with respect to CBM offers a more flexible
design for planar single-electron transistorssSETsd, which
can be constructed by using thed-doped Si layer as conduct-
ing sheets separated by an undoped regionsas barrierd and a
nanoscale patch ofd-doped Si as the central island. This type
of planar SETs can be more easily integrated with the quan-
tum bits made of isolated phosphorous donors.

The distribution of carriers among different valleys as the
density varies is also of interest. In Fig. 4, we show the
fractional occupancy of carriers in the subbands derived from
the z pocketssdenoted asG valleyd and thex,y pocketssde-
noted asD valleyd as functions of the doping density in units
of ML smonolayerd. As shown in the figure, in the extremely
low density limit, only thez pockets are populated. As the
density increases, the population in thex,y pockets gains
quickly and it exceeds thez-pocket population atn2D
.0.02 ML sor 1.3631013 cm−2d. For doping density be-
tween 0.1 and 0.25 ML, the carriers occupy the six pockets
almost evenly. Since electrons in thez pockets have smaller
in-plane effective mass, they can move faster than those elec-
trons in thex,y pockets. Thus, our calculation indicates that
the ratio in density of fast to slow electrons is large at the
low-density limit and it quickly reduces as density increases
and progressively approaches 1/2 asn2D approaches 0.25
ML.

IV. CONCLUSION

We have studied the self-consistent potential profile for
phosphorus doping sheet embedded in Siswith concentration
as high as a 1/4 monolayerd, taking into account the full
band structure effect with an empirical pseudopotential
model. We find that for the highest dopings1/4 ML cased,
the Fermi level lies approximately 100 meV below the
conduction-band minimumsCBMd. With this model, we can
examine the effect of the short-range part of the doping po-
tential on the subband structure and Fermi level. The main

effect of the short-range interaction is to cause a shift in
subband energies in the amount,10 meV and modify the
effective masses of the subbands by about 1%. Furthermore,
the 1/4 ML patterning leads to zone-folding effect that
causes mixing of thex-y valleys with thez valley. All these
effects combined lead to a change in the Fermi level by
about 10 meV. We have also studied the dependence of the
Fermi level in the delta-doping junction as a function of the
doping concentration and find that the separation between
the Fermi level and bulk CBM varies significantly as the
doping density changes. Our results provide useful design
parameters for the future fabrication of planar single-electron
transistorssSETsd made of phosphorous-doped Si, which can
be easily integrated with the quantum bits made of isolated
phosphorous donors. Here we have described a detailed mi-
croscopic approach for dealing withd-doped systems and
applied it to phosphoroussn-typed d-doped silicon. The same
method can also be applied top-type d-doped systems as
well asd doping in other host systems.
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APPENDIX

In this appendix, we provide details of the derivation for
matrix elements discussed in the text. The Fourier transform
of the products of two PWO’s is given by

kWnks
slzdue−iq·r uWn8ks8

slz8dl

= o
ans

a8n8s8

o
Gi,Gi8

ICnks

w sa,n,sdCn8ks8

w sa8,n8,s8dIpsDG,Dlzd,

sA1d

where

I ;
1

N2Dscell
E dzf

a8n8
s8lz8 szdfan

slzszdeiqzzE d2reisDG−qidr

= SE dzfan
slzszdf

a8n8
s8lz8 szdeiqzzDs2pd2dqi,DG sA2d

in which

DG ; Gi + Gs − Gi8 − Gs8.

Substituting Eqs.s5d, sA1d, and sA2d into Eq. s10d, we
have

kWnks
slzduVdopsr duWn8ks8

slz8dl

= o
ans

a8n8s8

E dzfan
slzszdf

a8n8
s8lz8 szd

1

scell
o

Gi,Gi8
E dqz

2p
VdsDG

2 + qz
2d

3eiqzzIpsDG,DlzdCnks

w sa,n,sdCn8ks8

w sa8,n8,s8d, sA3d

where

TABLE II. Fermi level sEFd sobtained with step 1+XCd versus
doping densitysn2Dd.

ML 1/4 1/16 1/64 1/256 1/1024

n2Ds1014 cm−2d 1.70 0.42 0.106 0.0265 0.0066

EF smeVd −111 −62 −36 −17 −8

FIG. 4. Fractional occupancy among different valleys versus the
doping density.

THEORETICAL STUDY OF PHOSPHOROUSd-DOPED... PHYSICAL REVIEW B71, 045309s2005d

045309-7



VdsDG
2 + qz

2deiqzz = 8pQF 1

«s0dsDG
2 + qz

2d
+

A

DG
2 + qz

2 + g1
2

+
1 − A

DG
2 + qz

2 + g2
2 −

1

«s0d
1

DG
2 + qz

2 + g3
2G .

Using the formula

E
−`

` e−ipxdx

a2 + x2 =
p

a
e−uapu sA4d

we have

kWnks
slzduVdopuWn8ks8

slz8dl = o
Gi,Gi8

Cnks

w sa,n,sdCn8ks8

w sa8,n8,s8d
− 4pQ

scell
o
ans

a8n8s8

E dzf
a8n8
s8lz8 szdfan

slzszdIpsDG,Dlzd

3 F 1

«s0d
e−uDGzu

uDGu
+ A

e−uÎg1
2+DG

2 zu

Îg1
2 + DG

2
+ s1 − Ad

e−uÎg2
2+DG

2 zu

Îg2
2 + DG

2
−

1

«s0d
e−uÎg3

2+DG
2 zu

Îg3
2 + DG

2 G . sA5d

Note that the first term in the above equation is divergent asDG→0. In this long wavelength limit, we have

lim
DG→0

E dzf
a8n8
s8lz8 szdfan

slzszd
1

uDGu
e−uDGzu =E dzf

a8n8
s8lz8 szdfan

slzszd
1

uDGu
f1 − uDGzu + OsuDGzu2dg < E dz· f

a8n8
s8lz8 szdfan

slzszds− uzud + Cs`d

= S− ulzu
a

2
D E dzf

a8n8
s8lz8 szdfan

slzszd + Cs`d. sA6d

The first term corresponds to the long-range Coulomb potential of a uniformly charged sheet. The second term corresponds to
the self-interaction Coulomb energy of an infinite charged sheet. This part will be cancelled exactly by the same contribution
from the negatively charged doping electronssin the Hartree termd. The charge neutrality of the system guarantees the exact
cancellation of theCs`d term.

The remaindersnondivergent termsd are denoted by

U0sk i,n,n8,lz,lz8,Gs,Gs8d = o
Gi,Gi8

o
ans

a8n8s8

4pQ

scell
E dzf

a8n8
s8lz8 szdfan

slzszdIpsDG,DlzdCnks

w sa,n,sdCn8ks8

w sa8,n8,s8d

3F 1

«s0d
e−uDGzu

uDGu
DGÞ0 + A

e−uÎg1
2+DG

2 zu

Îg1
2 + DG

2
+ s1 − Ad

e−uÎg2
2+DG

2 zu

Îg2
2 + DG

2
−

1

«s0d
e−uÎg3

2+DG
2 zu

Îg3
2 + DG

2 G . sA7d

The integrals are performed numerically via the Gaussian
quadrature technique.

To reduce the computation effort, the integral can be tabu-
lated as a function ofDG2, and calculated with interpolation
method. The accuracy of the method can be checked in vari-
ous ways. We have verified the numerical accuracy of the
above approximation by the dense mesh method and by
MATHEMATICA .

To calculate the short-range contribution, we take it to be
the difference ins-like unscreened atomic pseudopotential
for P and Si, obtained from first principles. It has the form

Vlocsrd = −
1

r
erfS 1

Î2r loc
D + fsrd, sA8d

wherer loc is the local core radius andfsrd is a short-ranged
function in numerical form. Since erfsxd=1−erfcsxd, we
have

Vlocsrd = −
1

r
+ erfcS 1

Î2r loc
D + fsrd. sA9d

The last two terms contain the short-range contribution. The
short-range part of the screened pseudopotential is given by

Vpssrd =
1

«
Vlocsrd +

1

«0r
.

The Fourier transformation of formVpssrd can be fitted with
linear combinations of Gaussian functions of the form

Ṽpssqd = o
l

cle
−alq

2
.
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