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We present microscopic model calculations of phospho®dsped silicon. Using the planar Wannier
orbitals[Y. C. Chang and G. Li, Comput. Phys. Commufb, 158 (1996] obtained based on the pseudopo-
tential method, we calculate the electronic structures of a large($G00 ML) self-consistently(for doping
electron$, taking into account both the long-range Coulomb potential in the direction perpendicular to the
doping plane and the short-range interaction due to the 1/4 mondlslyerphosphors doping. Our results
show that the Fermi level after doping is about 100 meV below silicon conduction band mini@iih). We
also find that the short-range interaction due to P dopants only has a minor influence on the Fermi level.
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I. INTRODUCTION their wave functions. Separafiegates between each pair of
Quantum computatidn® has attracted tremendous inter- donors could thereby be eliminated, along with the delicate
est in recent years. There have been numerous proposals f3fiabatic transfers of spin information from nuclei to elec-
the implementation of a scalable quantum computer. One qtfon_s which are required under Kane's original proposal. Uti-
them is the silicon-based architecture proposed by Kane Ization of the electron spins in place of dqnor nuclear spins
which uses the phosphorus nuclear spin as the quantum BIfS Several other potential advantagés:higher ESR fre-
(qubit. In this architecture, a phosphorus donor in Si isduéncies could permit much faster single-qubit operations up
placed~200 A beneath a narrow conducting gétegate. to 1 GHz, (2) the electron spins can be fully polarized at

A single nonbondingconduction bangelectron occupies the realizable magnetic fields and temperatures, establishing a

) . . ll-characterized starting point for quantum calculations
hydrogen-like ground state with an average Bohr radius of'c ; : o . '
~y25 Ag Voltagg applied to a gate displacges this electron and (3) isotopic purity is no longer an absolute requirement.

loud f s Pat | d inq the h The realization of the abovementioned Si-based quantum
cloud away from Its F-atom nucleus, decreasing the NYpele, g ters depends on three critical issu@s. Individual

fine interaction and lowering the nuclear magnetic resonancg a1om donors must be accurately positioned into planar ar-
(NMR) frequency in a dc magnetic field 6f2 T. Individual - 4ys with a tolerance of 10 Asmaller than the 25 A Bohr
P nuclei can thereby be brought into resonance with an ingagiyg. (2) Each donor within the array must be epitaxially
plane ac magnetic field, permitting arbitrary spin rotations toencapsulated into Si or SiGe with no nearby charged defects,
be performed on any single qubit using an appropriate sesyrface states, or dangling bonds which might otherwise off-
quence of gate pulses. Additionalgates, located between set the bound electron charge distributiofi3) A single-
the P-atom donors of a planar array, would be used to inducelectron transistofor comparably small FET channehust
exchange coupling for two-qubit operations via overlap ofbe incorporated very close to each read-out qubit, in order to
their electron wave functions. Results of quantum computasense the extremely small charge displacements for electri-
tion would eventually be read out by detecting the presenceally polarized spin singlets under differential gate biasing.
or absence of electronic polarizations induced onto target One possible process for selectively patterning individual
donors by differential gate biasing when coupled to an outputionors, and larger self-ordered arrays, with atomic precision
qubit, thereby determining overall wavefunction parity for ais to use atom-resolved scanning-tunneling microscopy
two-electron ground state as adiabatically dictated by the do'STM) lithography on hydrogen-terminated silicr?.
nor nuclear spins for strong gate coupling. Atomically clean surfaces are prepared in ultrahigh vacuum
More recently Vrijenet al. suggest using only the electron (UHV) and passivateih situ, with one hydrogen atom at-
spins of the isolated donors for quantum computati@y.  tached to each silicon dangling bond to form a single-
taking advantage aj-factor variations available in SiGe het- monolayer “H-atom resist.” In tunneling mode, the STM's
erolayers(Si:g=1.998, Geg=1.563, electron spins could electron beam is confined to atomic dimensions, and hydro-
be selectively tuned in and out of resonance under gate comgen atoms can be removed by scanning at voltage and cur-
trol. Bias voltages applied to an individual gate displace thaent levels higher than those used for imaging.
bound electron with respect to its P-atom nucleus, just as in Phosphorous donor atoms can be selectively deposited
the proposal by Kane; but in this case the electron’s wavento the STM-exposed areas by adsorption of individual PH
function can sample layers of different alloy composition andprecursor moleculés. Phosphine does not adsorb on
g factor, bringing its spin in and out of resonance for single-H-terminated surfaces at room temperature, and substrates
qubit ESR rotations. Larger gate biases would be employethust be heated above 500 °C to evolve hydrogen and expose
to couple neighboring qubits by displacing their bound elecbare Si dangling bonds in order to sustain common chemical
trons even farther into Ge-rich layers, lowering their bindingvapor deposition reactions involving SiHPH;, B,Hg, and
energies and substantially increasing the spatial extent oklated molecular species. On the other hand, recent STM
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imaging and surface studies have shown that BHeadily PN
adsorbed onto bare @00)-2x 1 dimers at alternating sites N
along a single ro:1° Over extended areas of the bare sur- R VN
face, the PHadsorption sites are staggered between adjacent .

rows to form a self-ordered1/4 ML c(2 X 2) adlayer(with
~50 A domain$ at saturation coverage. By using the STM

to expose bare Si dangling bonds on a H-terminated surface, —
selected areas can be targeted for self-ordereg ddposi-

tion. Overgrowth of the self-ordered RHbrecursor layers .

will yield a new type of ultradense 2D electron gas. Because “ A

we need to selectively pattern such layers into atom-scale . N [010]

devices, a detailed understanding of their electronic structure A

is essential.
Previously, several theoretical studiesmetype 5-doping N

layers in Si based on the effective mass approximation have

been reportedt—13The main deficiency in the effective mass  FIG. 1. Schematic diagram of thexil (dashedl and c(2 % 2)

approximation is that it fails to describe properly the inter-Brillouin zones(solid) for Si (001 surface. The constant energy

valley couplings introduced by the self-consistent confiningsurfaces for the six equivalent valleys projected in thellsurface

potential. Furthermore, at doping density as high as 1/4 MLBZ are shown as dashed ellipsésr thex, y valleys and a circle at

as considered here, it is not clear how serious an effect thi@e center(for the twoz valleys.

short-range part of the doping potential will have. In this

paper, we perform microscopic model calculations of phosdirection of the system, while is the area of the planar

phorousé-doped silicon within an empirical pseudopotential (2D) unit cell. Note that a Léwdin orthogonalization proce-

method. We consider a 1/4 monolay@L) phosphorous dure(see Appendix of Ref. J4has been used to convert the

&-doping sheet with(2X2) configuration embedded in a nonorthogonal PWO basis into the orthogonal PWO basis. In

large slab(1000 ML) of Si. The electronic structures of the above formulaG, is a 2D reciprocal lattice vector of the

S5-doped Si are calculated within a planar Wannier-orbitalcorresponding bulk1Xx 1) system,Gg is a 2D reciprocal

(PWO) basis, which is constructed via linear combinations oflattice vector for the 2Ds-doped (2 2) system enclosed

the products of two-dimensional plane waves and onewithin the bulk 2D Brillouin zone(BZ) (indicated as dark

dimensional Gaussian functiotsThis basis is particularly circles in Fig. 3, andk, is a sampling vector in the 2D BZ

suited for planar structures including surfaces, interfaces, swf the (2x 2) system. Therefore, we have=Gg+k,. The

perlattices, and-doped systems as considered here. Due t@hase factot,(G,1,), which for an fcc lattice, is determined

the localized naturdalong the perpendicular ayiof the by [see Eq. 17 in Ref 14

PWO's, the Hamiltonian matrix is sparse; thus, it can be

solved efficiently. Our results show that the Fermi level after -1 if G/(2nw/a) andl, are both odd,

dqp_ing is about 100 meV beI(_)w silicon conduction band P 1 otherwise.

minimum (CBM). We also examined the effects of the short-

range interaction due to P dopants and find that it only has a -1/

minor influence on the band structures of the system. Thisfo,|z(z) :[ /1<i> } [z-2 _Z(Iz)]ve—a[z—zg—z(lz)]Z

implies that at current doping density, the charge distribution “” 2a\da 7 ’

is not very sensitive to the in-plane doping pattern. Our re- 3)

sults are important for understanding the electronic structures

of nanoscale devices such as Si-based quantum computerwhere »=0,1 for even and odd basis functions. The expo-

nents(a) are chosen to be

[001]

(2

Il. METHOD OF CALCULATION (&, 5, P, aB} ={0.3,0.75,0.5,15

A. Hamiltonian for doping electrons . . )
) ) _in units of Bohr<. There are two schemes to construct the
The electronic states of th&doped Si are expanded in Gayssian functions. One is at the atomic ¢ite-site, the

Ref. 14. A PWO is defined &5 z,=(c-1)a/4; ¢=1,2. For theon-bond schemez,=(c
1 —-1)a/4-al8; o=1,2. Inthis study, the on-bond scheme is
(p, Wiy (1)) = 1/ > eiGrGstkyp used. In the above equatiors,is the label of each atomic
° N2pOcell .0 layer, while z(1,) is the coordinate of thé, layer with the
Gi origin set at the doping layer.
% C;vks(a' v, U)ijIVZ(Z)lp(Gqu), (1) The Hamiltonian for doping electrons in thidoped Si

can be written as a sum of the bulk Hamiltoniaiy) and the
where, C"'s are Wannier-orbital coefficients as obtained in doping potentialVy,,) plus the electron-electron interaction
Ref. 14,N,p denotes the number of unit cells in the in-plane (vee screened by the valence electrons. We write
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Vdop(r) = %: Vi(r =Ry), (4) (Wi (|Z)|HO|W kg ()= 2 f —i(GH—GH’+GS—Gé)p
I GG NopOcell
whereV(r) is the difference in atomic pseudopotentials be-
tween P dopant and Si host atoms at each doping site, X > fdzf”, (2Hof 7 4(2)
screened by the valence electrons. In the Fourier space, the avo
doping potential takes the form a'v'e!
~ 3 X Cri (a, v,a’)C‘év,k (a' V', 0")
= iRy s s
Vaod @) = 2 € 9RIVy(q), (5 ,
RH = HO(n1|Z1n’1|z)5SS" (8)
where Because the bulk Hamiltonia, is invariant under transla-
tion of a lattice vector, we have
V() == (q)q +Voda). Ho(n,n',12 = 1) = Ho(n,l,+1,n", 12 +1) (9)

Throughout this paper, we have scaled all energy quantltle\é\/:cel t?eeé?qg daer;carzggjaz %tgfmllclllayer Details p(n,n",|.)

in units of Rydbergs and distance in Bohrs such that ,
#2/2my=1, wherem is the free electron mass(q) is the reThs/ér:]aérlx elements between any two PWO's Y1)
static dielectric function due to the valence electrons, whicH€ 9 y
can be approximated by the following analytic fotn:

2 2

: d’q
<Wnks(|z)|vdop(r)|Wn’ks/(|z)>=f Wvdop(Q)

11 q PN N _
e@ =0 P TN X (W (1) W (1))
_ iq—z (6) = CO||z|5nn’5lz,lé ss T UO(kH!n1nl!|21|é!Gsts’) - C(OO),
2(0) (@*+ %)’ 20

where £(0)=11.4, A=1.133, y,=0.798, 7,=0.440, andy;  where Cy=2amQ/&(0)o, WhereQ is the average doping
=2.645 in atomic unitsV,{q) denotes the pseudopotential charge in a 2D unit cell. The first term on the right-hand side
modification to the 1v potential. For phosphorous donor in describes the contribution of the long-range Coulomb inter-
Si, it has been shown thaty(r) is well approximated by a action originated from the>-doping sheet, which is repre-
point-charge modé¥ i.e., Vps is negligible. Similarly, the sented by a constant average charge density. The second

screened electron-electron interaction is given by term, U, captures the short-range contribution and the differ-
ence caused by replacing the discrete dopant charges by a
8w constant average charge density, which is also short range in
Vedd) = s(q)q nature. Note that the presence @f leads to coupling be-

tween states associated with differ&y For a(2x 2) con-
Adopting the Kohn-Sham density-functional thebrjor  figuration considered here, there are four differént The
the doping electrons, we obtain the following effective last term,C(e) corresponds to the self-interaction Coulomb
Schrédinger equation: energy of an infinite charged sheet, which will be cancelled
exactly by a corresponding term from the Hartree potential.
{Ho+ Vaop(r) + Vu(r) + Vi dp(r) }(r) =Eydr),  (7) Detailed derivation for the above expression is given in the
Appendix.
whereVy is the self-consistent Hartree potential associated To reduce computation effort, we solve the problem in a
with vee and V,[n(r)] is the exchange-correlation potential two-step method. In the first step, we ignore the presence of
within local density approximatiofLDA). The above equa- Uy, which allows us to decouple states associated with dif-
tion is solved by expanding(r) in terms of orthogonalized ferent G.. Thus, the size of the Hamiltonian matrix is re-
PWO's, which translates the differential equation into aduced by a factor four. Furthermore, we replace the 3D
finite-dimension eigenvalue problem. Because the couplingharge density(r) by an in-plane averaged charge density
between PWO's separated by a distance larger than the fifthy(z). In this way, the results obtained in step 1 can be di-
neighbor is negligibly small, the above Hamiltonian matrix rectly compared with those obtained from a multivalleyed
becomes a band matrix, which can be diagonalized quiteffective-mass model. In the second step, we use the eigen-
efficiently with the standardAPAck library routines. Thus, states obtained in the first stéwith energies within a se-
we can handle a large-siZe-1000 ML) slab 16 PWO’s in  lected rangeas a new reduced basis. We then solve the full

each monolayer. problem within the reduced basis.
The matrix elements between any two PWO's lity are The matrix elements for exchange-correlation enérgy
given by is approximated by

045309-3



QIAN, CHANG, AND TUCKER PHYSICAL REVIEW B71, 045309(2005

<an,|;,GS,+k”|ch[P(Z)]|Wn,|Z,GS+k”> (“*Umklapp”) terms. With this approximation, we have
- 4
= XC('Z)<Wn’vlé'Gs’*'kH|an|szs+kH> VH(Z) - (_g) j dZ'pe(Z’)|Z— Z’|, (15)
&
= 1) Oss Onrni 1. 11
roll2) G By ndz’lz 1y wherep(2) is the in-plane averaged electron charge density
sinceV,p(2)] is a slow varying function of, which can be 1
approximated by its value & pel2) = pelly). (16)
The exchange-correlation energy, in the reduced basis, is Tcelldz

expressed as A, is the layer thickness in the direction andpg(l,) is the

Vielisi) = |EZ ch(lz)r% [CJQ’GS(n'IZ)]* CiO,Gs(nvlz)r (12) whri)(l;?]nii ;\\igf;]a%(;d electron occupation at atomic ldyer
where CSGS(n,IZ) is the expansion coefficient of the eigen- pell) = > Wk”pmﬂz)ﬁ[E,: -En(k)], (17
states obtained in step 1 in terms of PWQO's. The exchange- mkj
correlation energy is evaluated within DFT-LDA. We use thewherew, is the weighting factor and
XC functional calculated by Ceperley and Aldeand pa- !
rametrized by Zunger and PerdéWThe energy and charge PRI = > |CT Ly (1), (18)
density are rescaled according to ns o

m~ m\3 where A, is the layer thickness in the direction and
E=_E p(2) = <—> p(2), Ch,(I2) is the expansion coefficient of theth eigenstate

0 0 of the 5-doped Si in terms of PWQO's.
so that the XC functional derived for electrons with spherical The matrix elements between any two PWO'’s ¥4y(2)
mass can apply. Hema={(m;)?m denotes the spherical av- are given by
erage of the density-of-states effective m#sand £,=¢(0) o
is the long-wavelength dielectric constant. The effect of in- <Wnks(|2)|VH(Z)|Wn’ksf(|z)> —VH(|z)5nn’5'z"£ 53 + C(=),
tervalley scattering among six different pockets has been (19)
ignored?! Therefore, the charge density enters the XC func-
tional is the charge density per pocket. This approximation igvhere we have used the property tg(2) is a slow varying
reasonable, because the exchange interaction is proportiorf@nction over an atomic distance and the fact that the PWO’s
to 1/Ak?, whereAk is the difference in momentum between are orthogonal. The last terr@(«) describes the self-
two pockets, which is quite large. interaction, which cancels the corresponding term \fgg,

exactly.

B. The Hartree term C. Fermi filling

The self-consistent Hartree potential seen by a doping

electron is given bi? Within parabolic approximation, the energy dispersiion

Ry) for each 2D subband in the vicinity af and A points,
d%q 8mp«(q) . respectively, is given by
Vu(r) = — e, 13
H(r) f (277)3 q28(q) € ( )

kZ
El(k) = E|(F) +—,
m

where

pe(Q) = f d’r - €797 pe(r) Ei(k) =EX) + M + (—kﬁ (20
m m

is the Fourier transform of the electron charge denfity  \yherem; andmy are the transverse and longitudinal effective

doping electrons only o masses, respectively, which are obtained by fitting the curva-
Due to the in-plane translational invariance of the electron,.e of each subband calculated by the present method. For

charge densitype(q) is nonvanishing only afj,=G;, where |k Sj we obtainm; =0.192 andm =0.916, in good agree-

G, is some reciprocal lattice vector of the 2D lattice. Thus,ment with experimental values. For subbands-idoped Si,

Eq. (13) becomes these values are slightly modified. We obtaip=0.211 and
+a5 . m, =0.95. Here the spin-orbit splitting has been ignored, i.e.,
Vy(r) = J da, prg(G” : (]222) =€, each subband has a twofold spin degeneracy. For 2D electron
ocen ) (27) G (GF +)e(NGF + 1)) gas, the 2D electron density is given by
(14) d2k n
where g is the surface unit cell area as defined before. ‘Td:ne:zj (277)229 0lEr - EiK)], (21)

Since the long-range Coulomb potential is dominated by
small g, we can ignore the contribution from th®,#0  whereEr is the Fermi level:
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«f nf wnd 0.10 . —
m ) A
oa= | S (B -EN) + 4/ D (B -EY |. (22 0.00 b2t
2T i m[ i =~ 2.7 ° Z
©0.10 &
The factor 4 appearing in the last term is due to the fact that ”;_0 20 | %
there are four equivalert pockets in thex-y plane. 2
By rearranging the formulas above, we have i -0.30 |
27y = (mn' + 4ymym n®)Eq 040 22 e
r A 000 005 0.10 015 020 025 0.30
. n . N n A Wavevector, k(2n/a)
m > Bl +4mm X E; (23
i i FIG. 2. Subband structuréfor k,=0~0.327/a) of the 5~doped

Si with doping density of 1/4 ML. The energy zero is placed at the
conduction-band minimum of bulk Si. The solid lines show the
band structure without the exchange-correlation and short-range ef-

from which we get the expression for the Fermi energy

2moy+m SN EN + 4ym m =0 E

E = i =i B (24) fects, while the dotted lines show the band structure obtained in the
m:nr + 4\,/mr * m:nA full model.
In the above derivation, we have used the fact that - .
n n
* 1

(Akir)2 =m, (B - Eir)u Ei= 57 x| oat frz Eir + fAE EiA (29

n f* +n°f i i
(Ak™2=my (B - E), 25 and

I A
AkM)2 = my (B¢ - EY). 2| < .
(S EmE & pll)==| "2 (Er=EDpl (1) + FA 2 (Er—EMpi(l,) |-
In the vicinity of I" and A points, the parabolic approxi- a i i

mation works very well, even when the filling goes beyond (30)
the Brillouin zone boundary in the vicinity of th& point.

This means that the energy difference is mostly due to the At finite temperatures, the chemical potentiais deter-
kinetic energy, and the spatial distribution of wave functionsmined by

does not change appreciably wkhn this case the integra- Y
tion can be approximated by the area times the charge den- _2m dk?
sity for each occupied level at the pocket centers. 947 42 1 + B -K2my ~p)lkgT
If we define p(l,) as the charge density distribution at -
atomic layerl,, and pi(F’A)(lz) the probability distribution in m'nz dk2
each state, we have Y, m, < J 1+ B Kt | (31
* N°
m Carrying out the integration yields
pll) = [E (K2l (1) + 44—+ <k?>2p?<lz>], ying grafiony
_kaT T o
(26) 5 [ E In +\,mt m|2 In .
wherek?= (E;-E,). In practice, the Fermi level can be de-
termined in a simpler way. Define where af = ¢(E -#keT and aiAEe(Ei ~whksT Once the chemi-
r A cal potentialu is determined, the filled charge distribution is
: : iven by
o="S E-ED+ P (E-E) @)
i i A
r ai r A A A
with filling factor for each state in the two pockets as p(l) = [f 2 I” 1P (1) +f 2.: In L (lz)} :
I
* 4 s’rm* * 32
L AL LY (29) (32
2 2

States derived from twa pockets are mixed by the doping
potential and form two closely spaced levels atlhgoint in
the 2D BZ, each with twofold degeneracy due to the spin. The subband structure of the 1/4 Mkdoped Si obtained
States derived from the fox,y) pockets appear as levels at in step 1 (with long wavelength approximationof the

the A point in the 2D BZ. The four equivalenk valleys  present model is shown as solid curves in Fig. 2. Only the
remain degenerate in addition to the twofold spin degen¥egion from the zone center t6=0.327/a along thex direc-
eracy. Thus, we have tion is plotted. There is no extra structure from this point to

Ill. RESULTS
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the zone boundary. The labael’ denotes thenth confined TABLE |. Effect of the exchange-correlatio(KC) and short
subband with subband minimum located at Ehpoint (zone  range(SR) interaction on the Fermi levéEg) (in meV), measured
centej, while nA denotes thath confined subband with sub- with respect to the conduction band minimum.

band minimum located at thé point which is atk,

=(0.165,0Q(2w/a) in folded Brillouin zone. In bulk Si, the Step 1 Step 1+XC Step 1+XC+SR
conduction band has six equivalent valleys with minima
at (+ky,0,0(27/a), (0,%k,,0)(2m/a), and (0,0,+k,)  Er (MeV) 52 -1 99

X (2l a), wherek, ~0.85. With the present pseudopotential

model, we obtairk,~0.835. The constant energy surfaces Taple | shows the effect of exchange-correlation energy
of the six equivalent valleys projected in the bulk 2D Bril- 54 the short-range interaction on the Fermi lef&!) for

louin zone are shown i.n Fig. 1. The fou'r dasheq eIIipseﬁhe case without coupling of differenGg terms. The
denote the four valleys in the-y plane, while the circle at exchange-correlation effect lowers the Fermi level by

the center denotes the twovalleys (projected into the sur- ~60 meV, while the inclusion of the SR interaction in-

face B2. Due to zone folding in the surface BZ for tli2 . . .
. creases the Fermi level by 10 meV. After including both
X2) system, thex and y A minima are folded to+(1 the XC and SR effects, the Fermi level is located at

-ky),0l(27/a), [0, +(1-k,)](27/a). The constant energy ; .
surfaces of the foux, y valleys folded into th¢2 < 2) 2D BZ bulllggiﬂl%\; below the conduction band minimy@BM) of

are shown as solid ellipses in Fig. 1. The intervalley coupling Figure 3 shows the self-consistent potential of the 1/4

caused by the doping potential gives rise to a mixing of th . . .
two folded z valleys (near thel' point), which form two %L S-doped Si calculated in step(tlashed curveand with

closely spaced subbands labeled Esahd 7" in Fig. 2. The the fu_II modgl(solid gurve}. The horizontal axis shows th@
splitting between the two levels is about 20 meV. coordinate (in the direction perpendicular to the doping
The second conduction band of bulk Si becomes degerlan® in the units of A. The potential displays a “v" shape,
erate with the first conduction band at tKepoint. All six of ~ Which is typical for &-doped system&: The horizontal lines
theseX-point states are folded to the zone center of (e indicate the confined energy levels below the Fermi level
% 2) 2D BZ and they are mixed due to the doping potential.associated with th& subband and subband. The number
These six levels near the zone center are labeled2h\, in the parentheses for th& subband indicates the valley
1X/2X, and 3°/4T, respectively, and they have different dis- degeneracy, since there are four equivalent valleys irxthe
persion as seen in the figure. For the rangk obnsidered in Yy plane. As seen in the figure, the inclusion of both XC and
the figure, the A and 2A are derived from the two lowest SR effects lowers the depth of the doping potential by ap-
conduction bands near tiepoint (along thex direction, the ~ proximately 10%. However, this apparently mild effect on
1X/2X levels from the otheK point (along they direction,  the doping potential leads to a significant lowering of the
and the F/4I levels are from the thirK point (along thez ~ Fermi level(by approximately 50 me\
direction. The Fermi level(labeledEg) obtained from the If the short-range ternUy) is ignored, our method can be
full calculations is also shown in the figure for the purpose ofapplied to any 2D density, since E{L0) without U is in-
analyzing the carrier population. As seen in the figure, onlydependent of the doping pattern. Table Il shows the results
the 1", 2I", and four equivalent A valleys(only one out of  (obtained with step 1 XC) for Fermi level(relative to the
four is shown herghave significant populatiofthe 1X/2X  conduction band minimum of bulk Sfor 2D doping density
subbands have a population less than 1% of the)tatdlich ~ ranging from 6.6< 10 cm™to 1.7x10* cm™ (1/4 ML
justifies the analysis used in the previous section. Also noteasg. Note that including thé&y term will push up the Fermi
that the A subband becomes slightly nonparabolic for level by 12 meV for the maximal doping case and its effect
near the zone center, which will cause a minor error in theon the lower doping cases should be much less. Our results
determination of the Fermi levelon the order of a few indicate that the Fermilevel goes progressively deeper as the
meV). doping concentration increases. The large range of variation
To examine the effects of the short-range interaction, we

also show in Fig. 2 the subband structures obtained by the 0

full model (dashed lings We see that the magnitudes of ;'0'1

corrections due tdJgg are on the order of 10 meV and they %‘0'2 I

arek, dependent, which leads to a slight correctiby about £ -03

1%) to the effective mass of each subband. Furthermore, the g 04

coupling of differentG4 terms due to the short-range part 2-05 ¢

(Ugg) of the doping potential leads to a mixing of tkey 'g}-o.s

valleys with thez valley, which appears as a weak anticross- -0.7 t

ing effect in the subband structure. This mixing, however, is 0.8 : . :

far away from the subband minima; thus, it does not modify 0 i e trom goping lafé’r(A) 50

the parabolic shape of the valley significantly. We noticed

that in the vicinity of the subband minima, the band structure FIG. 3. Self-consistent potential profile af-doped Si. The

is still well approximated by a parabola, which validates thelowest-lying confined states derived from each valley and the Fermi
effective-mass approximations used in determining the Fernmievel are labeled. The riglileft) labels are for results obtained with
filling as discussed in the previous section. (without) the XC and SR effects.
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TABLE II. Fermi level (Eg) (obtained with step 1+XCversus  effect of the short-range interaction is to cause a shift in

doping density(nzp). subband energies in the amountl0 meV and modify the
effective masses of the subbands by about 1%. Furthermore,
ML 1/4  1/16 1/64 1/256  1/1024 the 1/4 ML patterning leads to zone-folding effect that

_ causes mixing of the-y valleys with thez valley. All these
Mpp(10°om™) 170 042 0106 00265  0.0066 cfroris combined lead to a change in the Fermi level by
Er (meV) —111 - =62 36 -17 -8 about 10 meV. We have also studied the dependence of the
Fermi level in the delta-doping junction as a function of the
) ) . doping concentration and find that the separation between
of the Fermi level Wlf[h respect to CBM o_ffers a more fI_eX|bIe the Fermi level and bulk CBM varies significantly as the
design for planar single-electron transisté&ETS, which  445ing density changes. Our results provide useful design
can be constructed by using theloped Si layer as conduct- 55 meters for the future fabrication of planar single-electron
ing sheets separated by an undoped regisnbarrierand a  y5ngjstorg SET made of phosphorous-doped Si, which can
nanoscale patch adoped Si as the central island. This type o easily integrated with the quantum bits made of isolated
of planar SETs can be more easily integrated with the quans,sphorous donors. Here we have described a detailed mi-
tum bits made of isolated phosphorous donors. croscopic approach for dealing withdoped systems and
The distribution of carriers among different valleys as theapplied it to phosphorous-type) 6-doped silicon. The same

density varies is also of interest. In Fig. 4, we show the athod can also be applied wtvpe s-doped svstems as
fractional occupancy of carriers in the subbands derived fronj o, as & doping in othe?phost ts];/:l{tzms. P 4

the z pockets(denoted ad’ valley) and thex,y pockets(de-
noted asA valley) as functions of the doping density in units ACKNOWLEDGMENTS
of ML (monolaye}. As shown in the figure, in the extremely )
low density limit, only thez pockets are populated. As the  This work was supported by a DARPA contract under
density increases, the population in tkegy pockets gains Grant. No. DAAD19-01-1-0324. Fruitful discussions with X.
quickly and it exceeds the-pocket population atn,, Cartoixa are also acknowledged.
>0.02 ML (or 1.36x 10" cm?). For doping density be-
tween 0.1 and 0.25 ML, the carriers occupy the six pockets
almost evenly. Since electrons in ta@ockets have smaller  |n this appendix, we provide details of the derivation for
in-plane effective mass, they can move faster than those elegatrix elements discussed in the text. The Fourier transform
trons in thex,y pockets. Thus, our calculation indicates thatof the products of two PWQ’s is given by
the ratio in density of fast to slow electrons is large at the _
low-density limit and it quickly reduces as density increases (W (1)]€7% Wiy, (1))
and progressively approaches 1/2 approaches 0.25
ML. Prog v app 35 app = E E IC\,';'kS(a, v,O')Cnl,ks,(a’,V’,o")lp(AG,Alz),

aT GGy

ror
v o

APPENDIX

a

IV. CONCLUSION (A1)

We have studied the self-consistent potential profile forwhere
phosphorus doping sheet embedded imih concentration

as high as a 1/4 monolayertaking into account the full | = 1 fdzfﬂ;(z)fmz(z)eiqzzf d2peldaae
band structure effect with an empirical pseudopotential NopOcen alviay

model. We find that for the highest dopiridj/4 ML case,

the Fermi level lies approximately 100 meV below the :<f dszlz(z)f":'%(z)eiq22>(277)25q AG (A2)
conduction-band minimurfCBM). With this model, we can weTew r

examine the effect of the short-range part of the doping PO which

tential on the subband structure and Fermi level. The main
AG = G” + GS_ GH, - GSI.

1.0
- Substituting Egs(5), (Al), and (A2) into Eq. (10), we
08 have
$06 ,
§ <Wnks(|z)|vd0p(r)|Wn’ks,(|z)>
$O.4 _
= " 1 d
= 02 = > f dZﬂi';(Z)fZ,';,(Z)— > Z—qZVd(Aé+q§)
0.0 . . . . avo UCG”GH,GH' ™
0.00 0.05 0.10 0.15 0.20 0.25 a'v'o!

Doping density(ML) )
X9, (AG,Al)Chi (a,v,0)Ciy_(a',v',0"),  (A3)

FIG. 4. Fractional occupancy among different valleys versus the
doping density. where
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o =ipx
Vd(A2 + qz)elqzz— 87Q (0)(:2 n qz) Aé n ':3 N }’% f_w Zzii)z( = ge—\ap\ (A4)
s A 1 1
AG+AT+7; (0 AZ+Z+ 5]
Using the formula we have

- 47Q o
Wi (1) Vogod Wi, (1)) = 2 Ci (e, v,0)Cyy (@0~ > fdzf", (2)f7'2(2)1 (AG, Al)
G, G” cell ’a]},g"
|: 1 elde e‘|\““’7§+AéZ| e \\72+AGZ\ 1 e—I\'y§+A(232|:|
— +A +(1-A)—F— D (A5)
[0 b A TN w0 e a

Note that the first term in the above equation is divergemh@s- 0. In this long wavelength limit, we have

lim fdsz:'V;,(z)fg';(z)ﬁe-lAGzl:fdzf’, ,(z)fol (2)——
G

Jim [1- el +0llacz) = [ dz- 125 @rzka- )+

|A |
:<—||Z|g> f dzfjf'j,(z)fg';(z)m(oo). (AB)

The first term corresponds to the long-range Coulomb potential of a uniformly charged sheet. The second term corresponds to
the self-interaction Coulomb energy of an infinite charged sheet. This part will be cancelled exactly by the same contribution
from the negatively charged doping electrditsthe Hartree termn The charge neutrality of the system guarantees the exact
cancellation of theC(«) term.

The remaindefnondivergent termsare denoted by

Uo(kj,n,n',1,,17,Gs,Gy) = E E 4mQ

GH G" avo Ucell

o' v

f 428 @172 (AG ALCY (v, a)Cyy (V)

{ 1 e“AGZ‘A Ae-|\57§+AéZ| (1- ) \\y2+AGz\ 1 e—\'y§+A(232|:| a7
_— +tA—V——=+ ——
e(0) [Ag] 7" }2+A2 V2+A2  £(0) 2+ A2
[
The integrals are performed numerically via the Gaussian 1
quadrature technique. Vloc(r)z_F"'erf o +1(r). (A9)
loc

To reduce the computation effort, the integral can be tabu-
lated as a function oAG?, and calculated with interpolation
method. The accuracy of the method can be checked in variFhe last two terms contain the short-range contribution. The
ous ways. We have verified the numerical accuracy of thghort-range part of the screened pseudopotential is given by
above approximation by the dense mesh method and by
MATHEMATICA .

To calculate the short-range contribution, we take it to be 1

. e : . V1) = vm(r) =
the difference ins-like unscreened atomic pseudopotential gl
for P and Si, obtained from first principles. It has the form

The Fourier transformation of fori,{(r) can be fitted with
linear combinations of Gaussian functions of the form

Vioe(r) == % erf( ,_1 ) +f(r), (A8)

V2l e

wherer,,. is the local core radius anfdr) is a short-ranged
function in numerical form. Since dxK)=1-erfdx), we '\“/pgq) => Cle—amz_
have '
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