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We investigate quantum transport through strongly disordered barriers, made of a material with exception-
ally high resistivity that behaves as an Anderson insulator or a “bad metal” in the bulk, by analyzing the
distribution of Landauer transmission eigenvalues for a junction where such barrier is attached to two clean
metallic leads. We find that scaling of the transmission eigenvalue distribution with the junction thickness
(starting from the single interface limitalways predicts a nonzero probability to find high transmission
channels even in relatively thick barriers. Using this distribution, we compute the zero frequency shot noise
power (as well as its sample-to-sample fluctuatipaad demonstrate how it provides a single number char-
acterization of nontrivial transmission properties of different types of disordered barriers. The appearance of
open conducting channels, whose transmission eigenvalue is close to one, and corresponding violent mesos-
copic fluctuations of transport quantities explain at least some of the peculiar zero-bias anomalies in the
Anderson-insulator/superconductor junctions observed in recent experipdeiaknin, A. Frydman, and Z.
Ovadyahu, Phys. Rev. B1, 13037(2000]. Our findings are also relevant for the understanding of the role of
defects that can undermine quality of thin tunnel barriers made of conventional band insulators.
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I. INTRODUCTION Within this framework, pure tunnel barrier is a rather simple

The advent of mesoscopic quantum physiés the early ~ C2S€ where all transmission eigenvallgs<1 are the same

1980s has profoundly influenced our understanding of trans@Nd much smaller than orighe opposite limit,T,=1, is a

port in solids. Advances in microfabrication and nanofabri-ProPerty of the ballistic transport occurring through fully

cation technology have brought about small enough struc@Pen conducting channgls .
Since many electronic devices employ quantum-

tures (=1 um) in which, at low enough temperaturé¥ . . : . . :
<1 K), propagation of an electron is described by a singlemeChan'Cal tunneling through an insulating barrier, their de

f A f . . . ?"~sign and optimization requires us to understand whether
wave function(instead of density matrices in macroscopic yansport occurs via pure tunneling or if it is affected also by

solidg since inelastic dephasing processes can be suppressgfh defects in the barri€f In particular, high-critical current
below the temperature-dependent dephasing lebgtfihus,  density for Josephson tunnel junctidrer impedance level
their transport properties have to be analyzed in terms ofpr magnetic tunnel junctioisrequire ultrathin and highly
quantities that take into account nonlocal features of quantransparent barriers that can easily be pushed out of the genu-
tum dynamics(such as the quantum correctidrs the con-  ine tunneling regimé.The diagnostics of nontrivial barrier
ductivity which are nonlocal on the scalelof), finite size of  properties requires us to investigate quantities beyond just
the sample, boundaries, and measurement setup of macrite conductance since its exponential decrease with the bar-
scopic external circuit, rather than using traditional local andier thickness, as a naive criterion of pure tunneling, can be
self-averaging quantitiessuch as the conductivityappli-  generated by vastly different underlying microscopic mecha-
cable to bulk materials at high enough temperatures. nisms. For example, recent experimédthave pointed out
Particularly influential ideas have emanated from thehow homogeneous ultrathif.g., thickness-1 nm) alumi-
Landauer-Buttiker approaétf to quantum transport which num oxide barriers can accommodate high transmission
treats conduction within the phase-coherent sample as @hannelsT,=1 (which are detrimental for various device
complicated (multichannel quantum-mechanical scattering operatio). This is due to extended states induced by
problem. This viewpoint introduces a set of transmission codisorde? or intrinsic transport mechanism in disordered me-
efficients as the fundamental property of a mesoscopic corsoscopic systentsyather than due to rare defects such as
ductor. The transmission coefficienfs are formally defined pinholes with more than unit-cell dimension.
as the eigenvalues ", which is the product of a transmis- ~ When static disorder becomes strong enough, solids un-
sion matrixt and its Hermitian conjugatg. In the two-probe  dergo localization-delocalizatiofLD) transition leading to
geometry, where mesoscopic sample is attached to two seman Anderson insulatdf. Such phase is substantially different
infinite ideal metallic leads, the matrix connects the trans- from the conventional Bloch-Wilson band insulator since
mission amplitudes of the flux-normalized states in the leftdensity of states at the Fermi energy remains finite in Ander-
lead to the outgoing states in the right lead. Thus, the basis @&fon insulators. On the other hand, the wave function associ-
eigenchannels, which diagonalizes the matti% offers a  ated with the localized states is confined within the region of
simple intuitive picture where conductor can be viewed as & characteristic size specified by the localization lerfgth
parallel circuit of independent transmission channels charac- Here we explore quantum transport through a strongly
terized by channel-dependent transmission probabilify disordered barrier, separating the two clean metallic elec-
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trodes, by computing statistical properties of the transmis- Ep=0

sion eigenvalues for an ensemble of three-dimensi3ial 0 W=6 W=16.5
samples with different impurity configuration. We focus on : (l=a) : \u4
the appearance of completely open transmission chahiéls | : . -
T,=1, as the barrier thickness increases from the single in- o Dot Bad Metal + Anderson
terface limit to the junction thickness where tunneling Metal Insulator

through the Anderson insulator takes place, and their effect
on experimentally accessible transport properties. That is, the F|G. 1. (Color online The boundaries of different transport re-
full statistics of T, allows us to obtain frequently measured gimes, determined by the strength of the disoMerin a bulk 3D
guantities that contain the signatures of such nontrivial transeonductor described by the half-filléé-=0) Anderson model. At
parency propertiega) the zero-frequency power spectrum of W= 6, the Boltzmann equation breaks dogputative semiclassical
the shot nois¥ and (b) the conductandeGys of a hybrid  mean free path becomes smaller than the lattice spating),
junction composed of a thin Anderson insulator attached to avhile atW=16.5 wave functions become localized. Within the in-
superconductor, whose unusual properties have been utermediate “bad metal” regime, particle motion is “intrinsic” diffu-
earthed in recent mesoscopic transport experimén@ur  sion that requires nonperturbative quantum descripitiRef. 16.
findings on quantum transmissivity of single interface and
thin barriers of strongly disordered materials are relevantross sectiol?). The disorder is introduced by setting a ran-
also for the analogous classical coherent scattering problemgom on-site potential such tha, is uniformly distributed in
such as the light propagation through a thin, but stronglhithe interval[-W/2,W/2]. The whole band of the Anderson
diffusive, medium'* model becomes localized, i.e., the LD transition takes place
The paper is organized as follows. In Sec. Il we introduceat the Fermi energ-=0 of the half-filled band, when criti-
the Hamiltonian model of the disordered barrier and correcal disorder strengthV,~ 16.5 is reached.
sponding real-space Green function technique that allows us |t is important for subsequent discussion to recall that
to obtain an exact transmission matrix of a specific samplethere are three fundamentally different transport regimes in
In Sec. Il we study the scaling of the distributionBfas a  bulk 3D disordered conductdfs(i.e., in the cubed XL
function of the barrier thickness, where disorder strengthx | with a given concentration of impuritigs(a) the semi-
serves as a parameter whose tuning induces Anderson insglassical regime, where the Bloch-Boltzmann theory and per-
lator, as well as a “bad metal” regime upon approaching theurbative quantum correctior(ebtained from the Kubo for-
LD transition from the metallic side. Measurable transportmula) describe resistivity of diffusivé¢ <L) systems:(b)
quantites—shot noise and  proximity ~conductancethe “bad metal” regime characterized by exceptionally huge
Gys—determined by these distributions are discussed in Segesistivities and lack of semiclassical mean free pafthe
IV. In particular, we find the shot noise to be a sensitivepytative mean free path would be smaller than the lattice
single parameter characterization of the transparency of mukpacing¢ < a; nevertheless such “intrinsic” quantum diffu-
tichannel barriers, as well as of different types of diffusionsjon can still be described by a diffusion constant extracted

through dirty metallic barriers. We conclude in Sec. V. from the Kubo formul&), whereby semiclassical description
and perturbative methods, based on the expansion in a small
Il. TRANSMISSION PROPERTIES OF THE ANDERSON parameter 14-¢, break down; andc) the Anderson local-
MODEL FOR THE DISORDERED BARRIER ized regime when disorder becomes strong enough to push

the conductance of a disordered sample bél2ef/h. Note

that to observe the effects stemming from localization of
wave functions, the size of the conductor has to be greater
than the localization length > &—on length scales smaller
than ¢ one cannot differentiate an Anderson insulator from a
disordered metal. Figure 1 delineates the boundaries of these
which is a tight-binding HamiltoniafTBH) defined on a regimes for a system modeled by the half-filled Anderson
simple cubic latticeL XL, XL, The nearest neighbor hop- Hamiltonian of Eq.(1).

We model noninteracting electrons in the disordered bar.
rier by a standard Anderson modél,

H= 23 emlm)m|+t 3 mXnl, @

(m,n)

ping matrix element, betweenorbitals(r|m)=y(r —m) on The transmission matrik,
adjacent atoms located at sit@sof the lattice, is denoted by — -
t and sets the unit of energy. Helkeis the thickness of the t= 2\/— Im E,_Grl,\,\/— Im 3, (2)

junction in the units of the lattice spacimag(i.e.,L isequalto ) N
the number of disordered interfaces of the cross sedtjon s obtained from the real-space Green funct@r?

X L, which are stacked along theaxis, chosen as the direc- R 1
tion of transport, and coupled via hoppitgp form the bar- Gée=z——, 3
rier). We setl,=L,=20, which yields the quantum point con- E-H-X"?

tact conductancesopd Er=0)=259G, (Go=2€?/h is the A Aa _ A
conductance quantunof the corresponding clean system at- WhereGiy, Gy, are submatrices @& (G*=[G']') that con-
tached to two leads of the same cross sectian, for this ~ Nect layersL=1 andL=N of the sample along th& axis.
setup, there are at most 259 fully open Landauer conductinglere ImEL,R=(E[_R—E",’_"R)/2i are self-energy matriceg,
channelsT,=1 at half-filling, out of 400 supported by its retarded;a, advancel which describe the coupling of the
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sample to the leadswith 3'=3" +3¢ (32=[3']"). This par- _ (G 1

. . - y . Pep(T) = ——7—.
ticular computationally efficient implementation of the 7GoT¥2\1-T
Landauer-Buttker formalism, which takes the microscopic

Hamiltonian as an input, has its origins in the treatment ofy/pile P<s(T) has been derivédin the limit where barrier
tunneling current in metal/insulator/metdMIM) junc- thickness is much smaller than the Fermi wavelength
tions—it was developed in order to evade pathological propjecent experimentshave suggested that it might be valid
erties of a tunneling Hamiltonian when attempting to takegyen for thicker strongly disordered barrler<L < ¢, on the

into account higher order tunneling procesSes. _ proviso that its width is smaller than the localization length
All of the results shown in Secs. Il and IV are obtained

by evaluating exactly the Landauer transmission matrix for pgesjdes diffusive wires and dirty interfaces, analytical ex-
zero-temperature quantum transport in the half-filéd  pressions foiP(T) have been found for chaotic cavities and
=0) Anderson Hamiltonian Eq(1) for a finite-size barrier. youple barrier junctions, as well as for combinations of these
The disorder averaging is performed over an ensemble coRgyr generic casebDespite important insights obtained from
taining 1000 different samples for metallic disorder strengthsjifferent approach@4:18.1921.23hat yield Po(T) and Peg(T),
W<16.5 and, due to the need to search for rare events g theory exists that would make it possible to obtain an
=1 in special configurations of disorder, for 10 000 samplesypjicit expression foP(T) of a 3D mesoscopic disordered
on the insulating sideV=16.5. conductor which is in the nonsemiclassical diffusive regime
(i.e., the bad metal in Fig.)lextending all the way into the
localized regimé.
We plot in Fig. 2numerically exact PT) as a function of
the barrier thickness, obtained by diagonalizitigin Eq. (2)
The distribution function of the eigenvalu@sis formally ~ for €ach sample of an ensemble of disorder configurations.
defined as For metallic diffusive barriergpanel(a)], ¢ <L < ¢ (note that
a quasi-one-dimensional system will inevitably turn into an
insulator whenL > ¢ independently of the strength of the
P(T) = <2 5(T—Tn)>, (4)  disorde?¥), transmission eigenvalue distributions follow
n Pp(T) prediction. However, for barriers made of the bad
metal, P(T) is not equal to eitherPp(T) or weak-
where(- - -) stands for averaging over all possible realizationslocalization-corrected P(T), even though it remains bimo-
of impurity configurations for a given disorder strength. dal distribution with most of the channels being either closed
Early mesoscopic studies of phase-coherent disordered com; =0 or openT,=1 [panel(b)]. Note that no single inter-
ductors have been focused on bulk systems in the weak scgtce on the metallic side of the LD transitit¥i< 16.5 can be
tering regime, where one finds celebrated perturbative quartescribed byPsg(T) [panels(a) and (b)].
tum interference effect{such as weak localization and  when the disorder is strong enough to drive the LD tran-
conductance fluctuatiohsvithi_n diffusive transport regimé.  sition in the bulk 3D sample®s5(T) becomes valid in the
For such systems, an analytical expressionHoi) has been  single plane limit[panel(c)]. Moreover, it is also useful to
obtained by Dorokhot? some extent to describe(T) for barriers composed of few
such planes, as suggested by experiment and semi-intuitive
G 1 arguments of Ref. 9. Finally, in Sec. IV we demonstrate that
= EQT\/F’ ©) the shot noise provides very sensitive tool to compare differ-
ent distributionsP(T) encountered here, as well as to differ-

) o ) entiate those that are apparently similauch as the distri-

Here(G) is the disorder-averaged conductance. The distributeatures ofP(T), such as the appearance of open channels in
tion Pp(T) is universal in the sense that it does not depend oRjisordered tunnel barriér! directly affect the suppression
sample-specific propertiésuch as dimension, geometry, and of the shot noise power below its triviéPoisson limii value
carrier density. Although strictly derived for a quasi-one- which characterizes pure tunneling.
dimensional wire(i.e., wire whose length is much bigger  To contrast the transport through strongly disordered bar-
than its width, the scaling of transmissions implied by riers with tunneling through barriers made of a material with
Pp(T) seems to have much wider validity, as long as thea gap in the density of statésuch as the conventional band-
conductor is in thgBloch-Boltzmann metallic regime! insulators  determined by single-particle  quantum
The importance of interface scattering in giant magnetoremechanic$,or more intricate Mott insulators which are gov-
sistance phenomeffahas given an impetus to reexamine erned by strongly correlated physi&s we introduce disor-
transport through disordered interfaces. For the transparenefered binary alloyA, B, 5 between the metallic leads. This
of dirty interface, whose disorder-averaged two-probe consystem, which is composed of an equal number of atéms
ductance is much smaller than the conductance of correandB randomly distributed throughout the simple cubic lat-
sponding point contact(G)<Ggpe, @ Schep-Bauer tice, is modeled by random potential enetgy=—¢cg on the
distributiorf!?? has been found to be applicable: diagonal of TBH in Eq(1). As shown in Fig. 3, large enough

(6)

IIl. TRANSMISSION THROUGH DISORDERED
INTERFACES AND THIN BARRIERS

Pp(T)
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FIG. 3. (Color onling The distribution of transmission eigenval-
uesP(T) and the conductand@t Er=0) of tunnel barriers of dif-
ferent thickness that are made of disordered binary allgyBfs
[panel(@)]. The binary alloy is modeled by the Anderson Hamil-
tonian Eq.(1) with ex=—eg=4.6 being randomly distributed on its
diagonal. This random potential energy induces a hard gap in the
eigenspectrum arounB:=0, as shown in the pan¢b), which is
phenomenologically similar to the gap in the density of states of
band or Mott insulators.

6o 02 04 05 Ox 10 beyond the ultrathin limit. In the case of single interfaces and
Transmission Eigenvalue T . . : . .
ultrathin barriers, the disordered region does not provide

FIG. 2. (Color onling The distribution of transmission eigenval- €N0Ugh spatial extension in the transport direction to allow
ues P(T) obtained in an ensemble of 1000 disordered barriers afor the localization of wave functior. This also leads to

each junction thicknessés The chosen disorder strengtsof the ~ €mergence of the low-energy extended states within conven-
random potential in the Anderson Hamiltonian generate the followtional ultrathin aluminum oxide barriers that contain disorder
ing systems in thick enough barriefg. 1): (a) for W=4, diffusive  or defects> We plot in Fig. 4 the decay of the number of
semiclassical metalb) for W=10, bad metal, an¢c) for W=22,  open channels as the barrier thickness increases, where the
Anderson insulatofhere we use an ensemble of 10 000 barjiers disorder strengths correspond to the Anderson insulator in
The dashed and dotted line plot the Schep-BaRgy(T) and the  Fig. 1. The appearance of open channels beyond ultrathin
Dorokhov Py (T) distributions, expected to be valid for dirty inter-

face and diffusive semiclassical metal, respectively. Note that these 2 10°p8 T w w=165]
are not fits, but analytical expressiofsee Eqs(5) and (6)] that 2 F = A W=22
depend on the disorder-average barrier conductance as a single § 10} fz. . * W=30 1
parameter. 5 10} SR .,
5 PO L [ |
ep=|eg| will open a hard gap arouni==0 in the density of & 107} o, 25, 1
states(DOS). The single interface of a solid with the gap in "f o, Ala
the bulk DOS can display distinctive transport propertres, 2 10} ¢ . ¢ 1
which manifest here as a nontrivial distributi®(T) where § T S 2
non-negligible transmission eigenvalues have finite probabil- 0 2 4 6 8 10 12 14
ity to appear. However, already for the ultrathin barriers Barrier Thickness L
=4, all transmission eigenvalues fall within the interVa| FIG. 4. (Color onling The number of open conducting channels,
€[0,0.004, while the conductance exhibits typical expo- whose transmission eigenvalues are close to Bne[0.95, 1, in
nential decay as a function &f an ensemble of 10 000 barriers for a given junction thickness. The

On the other hand, the disordered barriers always displayarriers are made of strongly disordered materials, characterized by
a nontrivial distribution of transmission eigenvalues, whichthe disorder strengttW={16.5,22, 39, which behaves as an Ander-
can accommodate open channels even at very Mfgend  son insulator in the bulksee also related Figs. 1 angl 2
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barrier widths is a type of a rare event in the Anderson insuleads to a complete noise suppresdiar0. The shot noise is
lating phasgnote that other types of rare events can arise ira genuine quantum transport phenomenon since determinis-
special configurations of disorder, even in the metallictic classical transport also suppres&eto zero due to the
phasé?). lack of stochasticity associated with quantum mechanical
When Anderson insulator samples become larger than  propagation of electrons. The “magic” suppression factors,
phonon-assisted tunneling allows charges to propagate bsuch asF=1/3, areexpected to be universally valid, i.e.,
hopping between the localized sites, thereby generating imdependent on the details of the system such as geometric
finite conductance. However, the transport studied here takgsarameters of the conductor or its resistance. Skweé /3
place through phase-coherent barriges., their size satisfies follows from Pp(T) used in Eq.(7), while Pgg(T) gives F
L,L,,L,<Ly) and, therefore, effectively at zero temperature.=1/2, theFano factors may serve as an indirect and experi-
The open channels inside the Anderson insulator junctionmentally observable confirmation of a particular distribution
are due to the tunneling via rather special configurations of(T).
localized states that provide a path for resonant transmission The knowledge ofP(T) makes it possible to compute the
of electrons’® One example of such a rare event is a wavedisorder-average of any quantity that can be cast into a form
function, with energy close to the Fermi ener@®-=0), of the so-called linear statistigs=>a(T,),
which is symmetric with respect to the leads. Such a wave
function would make possible resonant transmisgigs 1, — -
so that the conductance is proportional to the probability of A <§ a(T“)> f dTaP(T). ®
finding such a special barrier. This can be seen by comparin% ) )
Fig. 4 (which essentially gives the probability to encounter The most frequently investigated examples of such
an open channel in a given ensemble of baryiesghe cor- quantities} measured in the two-probe geometry and at zero-

responding barrier conductances plotted in Fig. 7. temperature, arég) the Landauer conductance
2¢? 2¢?
(G)= T<2 Th) =" f dTTRT), 9)

IV. LINEAR STATISTICS: SHOT NOISE AND PROXIMITY n

CONDUCTANCE (b) the Fano factor
' Oyer the past deca_lde experimental and theoretical inves- ST1-T,) dTT(L - T)P(T)
tigation of the shot noise, as a random process characterizing n
nonequilibrium state into which a phase-coherent conductor (Fy= = . (10
is driven by the applied voltage, has become one of the most < Tn> f dTTRT)
active frontiers in mesoscopic physisThe power spec- n

trum of the shot noise, at zero frequency and at zero teMM, the linear conductance of a normal-region/superconductor
perature, can be expreséédin terms of the Landauer trans- (NS junction

mission eigenvaluesT, for noninteracting electrons
transported through a conductor attached to two leads: 2€? 2T§ 2¢? 212
Guo="2 >3 )= | dT-——P(),
+o0 LyXLy h \% (2-T,) h 2-T)
_ TR 127 = 2a\2C. _
s_zf_x dt'[I(0)I{E) - 12] = 2eV/ . nEl T(1-T,). (11)

(7)  which holds in the zero-voltage, zero-temperature, and zero-
_ magnetic-field limit, and for disorder confined to there-
Herel is the time average of the current flowing through thegion. When the transparency of thdS interface is small
system under the applied voltaye Thus, by measuring the (e.g., due to an insulator in betweesingle particle tunnel-
shot noise one effectively probes second momenP(@f), ing is the dominant transport mechanism which renders
thereby obtaining complementary information to traditional{Gyg/{G)<1 ((G) is the conductance of the junction in the
conductance that is associated with the first momef(@j. normal statg This is due to the fact that there are no avail-
The suppression of the shot noise pov@s2Fel with  able states within the energy gap of S. However, in

respect to the Poisson lim@=2el is quantified by the Fano disordered-metal/superconductor junctions with transparent
factorF. In the pure tunneling regim&, <10 F=1 because NSinterface (Gyg is enhanced due to the proximity effect
transfer of electrons through the barrier is uncorrelated irwhich is microscopically generated by Andreev reflection at
time and, therefore, described by the Poisson statistics. Ottie NSinterface. In this process, an incident electron is re-
the other hand, in the diffusive metallic conductgérsore  flected as a hole, while a Cooper pair is pushed into the
precisely, in the disordered Bloch—Boltzmann conductors irsuperconductor. The expression {@yg is obtained by tak-
Fig. 1 whose size is such thétL), the shot noise power is ing into account Andreev processes via Bogoliubov—De
reduced by a factdt F=1/3.This is due to the correlations Gennes equations, while neglecting the self-consistency
generated by Fermi statistics—electron injection into thdssue$[e.g., superconducting order parameter is assumed to
conductor is less likely if another electron is already occu-be a step function, thereby neglecting its depression osthe
pying one of the conducting channels. In the ballistic limitside of the junctioff as well as the terms of the order
T,=1, Pauli principle correlating noninteracting fermions (A/Eg)?]. For noninteracting quasiparticles that participate in
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FIG. 5. (Color online The disorder-averaged Fano factor, quan- 40 .j‘](l L=7
tifying suppression of the shot noise powgs 2Fel from its Pois- A .
_ ; ; ; ; 020 025 0.30_ 035
son vaIueF—l, as a function of the bqrrler thlckness. Egch curve is Fano Factor <F>
parametrized by the strength of the disorédémtroduced in barrier
(see Fig. 1 Note that the three horizontal lines are labeledias FIG. 6. (Color onling The full distribution function of the Fano

F:§ shot noise suppression expected in the diffusive semiclassicdhctor for several ensembles of barriers whose disorder averaged
conductorgi.e., Bloch-Boltzmann metal in Fig. 1 whose transpar- (F) is plotted in Fig. 5.

ency is described by (T)]; (ii) F=% for dirty interfaces described o .
by Pss(T); and(iii) F=1 as a signature of pure tunneling through an duantities in opere.g., conductance, local density of states,
insulator. current relaxation times, ejcor closed(e.g., eigenfunction

amplitudes, polarizability, level curvatures, ¢tmesoscopic

purely Andreev processes at a perfectly transpaiSinter-  systems. These distributions can become particularly broad
face Gyg/ G=2 [the upper bound is set by the ratio of Eq. upon approaching the LD transitiéThus, Fig. 6 introduces
(12) and Eq.(9) for T,=1]. Another superconducting tech- the full distribution function of the Fano factor revealing that
nique which allows us to experimentally probe the transpareven in the diffusive metallic barriers there are sample-to-
ency of atomié® and mesoscopic conductdiis to sandwich ~ sample fluctuations yielding wide distributiofsver the in-
them between two superconducting leads and analyze tHervalF €[0,1]) when disorder is increased.
subharmonic gap structure of theV characteristic of such The possibility of fully open channel@wvith transparen-
Josephson junctions, which turns out to be deternfihby  cies close to ond@,=1) to appear in the Anderson insulator
P(T). barriers, as demonstrated in Sec. lll, has been indirectly sug-

Figure 5 demonstrates thet 3 suppression is indeed ap- gested by a zero-bias anomaly in th&/ characteristic of
plicable in the Bloch-Boltzmann transport regime, i.e., in thenormal-metal/Anderson-insulator/superconductor (NIS)
transport through thick enough barrigisut still L<L,,L,) junctions!! Furthermore, the comparison of the conductance
where semiclassical diffusivé¢ <L) charge propagation (Gng Of the NIS junction with the conductancés) of the
takes place. Moreover, the suppression factor saturatggnction in the normal staté.e., (G) is the conductance of
(F(L))—Fy as a function of the barrier thickness also for the metal/Anderson-insulator/metal junctioallows one to
diffusion through the bad metal barrier. However, itstest the importance of different special configurations of lo-
asymptotic valugry, is steadily increasin§M>% as a func- calized states that make possible resonant tunneling respon-
tion of W when W=6 crosses over the boundary of semi- Sible for the increase of the zero-bias conductance. For ex-
classical transport regime in Fig. 1. For the Anderson insu@mple, in the case of resonant tunneling through a chain of
lator barriersW=16.5, the Fano factor i$<<F(L)><1, as two localized site¥ (Gyg~0.2%G). The same trend was
long as there is a probability to encounter open channel§onjectured to persist in barriers where tunneling through
(Fig. 4) through the barrier. It is also a monotonic function of quasi-one-dimensional chains of arbitrary number of local-
the barrier thickness sincé(T) scales withL in a fashion ized states can occéi.As the thickness of the barrier in-
shown in panel(c) of Fig. 2. When all channels become Créases, more complex con_f|gurat|ons would allow for per-
closed in thick Anderson insulator barriers, the Fano factofolation paths through localized states. However, they have
reaches its trivial asymptotic valy&)=1, thereby signaling "ot been observed in experiments measuring thg no_rmal con-
that pure tunneling takes place through such barriers, Thuguctance (G).  Nevertheless, the puzzling finding of
Fig. 6 suggests that the Fano factor offers a unique singI@Xp‘?r"‘”em1S1L on NISjunctions isGyg/G €[1.0,5.0.
scalar quantity that is able to resolve disordered thin barriers Figure 7 plots the conductance of the Anderson insulator
with different transmission properties, as well as to labeunctions, as well as the corresponding rdtBg/(G) when
diffusive transport regimes of Fig. 1 within thick barriers. one of the normal leads of tHdIM junction is turned into a

Quantum coherence, its nonlocal features, and randonsuperconducting one. The distributions RT) obtained in
ness of microscopic details cause large fluctuations of physisec. Il yields (Gyg/(G) €[0.4,0.9 as a function of the
cal quantities in disordered mesoscopic systé@entrary to  barrier thickness. However, we recall here that conductance
the intuition developed from thermal fluctuatiotend their  fluctuations in strongly disordered phase-coherent samples
self-averaging propertigsin statistical physics of macro- can reach the same magnitude as the conductance®itdelf.
scopic systems, the average value and variance are ndherefore, we investigate the full distribution function of
enough to characterize the distributions of various physicaGyg/ G in Fig. 8, which shows that particular phase-coherent

045308-6



QUANTUM TRANSPARENCY OF ANDERSON INSULATOR. PHYSICAL REVIEW B 71, 045308(2005

= o w=22 W=30
DN 10 [5 1 L=14] 1] L~14
QI/IO'[ gzl 1 )
(/.'\7 o ‘AZZII ]
vo10y ...AA oLl 'R <) 1~6] ¥ 16
Q R A w
§10' e woi6s "o Ao I “
2 A W=22 ®e, 1 ™
2 =
%10 [ o w=30 °e 1
@]

0 2 4 6 8 10 12 14

Barrier Thickness L ot T
r—r—r—r—r G_/G
(b) = W=165 e/
. . FIG. 8. The full distribution functior(sampled over 10 000 re-
(/5 alizations of disorderof Gyg/G (see also Fig. J7quantifying me-
v soscopic sample-to-sample fluctuations for the Anderson insulator
’\% barriers characterized by the disorder strengir{22,30G and
(\.;) thicknessL={1,6,14.
R TR ideal metallic leadscaleswith the thickness of the barrier,
Barrier Thickness L as well as its dependence on the disorder strength which

. . determines different quantum-transport regimes. When barri-

FIG. 7. (Color onling The disorder-averagedover 10000 o < o0 made of the bad metaharacterized by exceptionally
sampleg conductance of the Anderson insulator junctions of differ- . s . .
ent thickness, attached to two metallic ledds Panel(b) plots the high res'SF'V'ty_and lack O_f semiclassical meah free p_ath
ratio (Gng/(G) of the disorder-averaged linear conductance of aP(T) remains bimodal, but it d'oefs ”‘?t obey Scallng predicted
normal-region/superconductor junctipnhere the normal region is Py the standard Dorokhov distribution. The validity of the
the barrier from(a)] and(G) from (a). The dotted horizontal line Dorokhov distribution is confirmed for conductors where
serves to highlight thatGye/(G) is mostly confined within the ~Semiclassical diffusive metallic transport takes place, but
interval[0.4, 0.. which are not just quasi-one-dimensional wires of length
much greater than its cross section, as assumed in different
theoretical derivations. The characteristic signature of the
distributions of all metallidsemiclassical or quantyndiffu-
sive barriers is encoded into the scale independent Fano fac-
tor F=1/3 measuring suppression of the shot noise power.
In special configurations of disorder, strongly disordered

samples can indeed exhibit 0.2 Gyg/ G <2 similarly to the
ones found in experimentd. Nonetheless, on mani}IS
samples can indeed exhibit 0.2 Gyg/ G <2 similarly to the
ones found in experiment$. Nonetheless, on maniIS
junctions of Ref. 11Gyg/G>2 is observed. This suggests
that the interplay of proximity effect in the Anderson insula- (i.e.. Anderson insulatorbarriers can accommodate full
tor and electronic interactiofs(that can play an important " _ ; . y
role in the localized phase due to lack of screepitakes open channel§, ~1 due to resonant trajectories through lo-
place. Such effects are not captured by Ed), which takes calized states. I_n experiments, this would lead to systems
into account only Andreev reflection of noninteracting qua-SUch as MIM junctions with F<1 or normal-metal/
siparticles at th\Sinterface. Their treatment would require Anderson-insulator/superconductor junctions where ratio
more involved theoretical approaches, such as possible corfins/ G takes any value € Gyg/G<2 allowed within the
bination of dynamical mean-field theory extended to inho-Proximity theory that excludes electron correlation effects in
mogeneous  systed¥s (that include superconducting the Anderson insulator phase. On the other hand, the expla-
regiong3® with the typical medium theory of Anderson nation of Gyg/G>2 would require us to treat proximity ef-
localizatior?* which would make it possible to study prox- fect in strongly correlated and strongly disordered systems.
imity effect in strongly correlated and disordered systems

(modeled by the standard Hubbard model with diagonal dis-
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