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We investigate quantum transport through strongly disordered barriers, made of a material with exception-
ally high resistivity that behaves as an Anderson insulator or a “bad metal” in the bulk, by analyzing the
distribution of Landauer transmission eigenvalues for a junction where such barrier is attached to two clean
metallic leads. We find that scaling of the transmission eigenvalue distribution with the junction thickness
sstarting from the single interface limitd always predicts a nonzero probability to find high transmission
channels even in relatively thick barriers. Using this distribution, we compute the zero frequency shot noise
power sas well as its sample-to-sample fluctuationsd and demonstrate how it provides a single number char-
acterization of nontrivial transmission properties of different types of disordered barriers. The appearance of
open conducting channels, whose transmission eigenvalue is close to one, and corresponding violent mesos-
copic fluctuations of transport quantities explain at least some of the peculiar zero-bias anomalies in the
Anderson-insulator/superconductor junctions observed in recent experimentsfA. Vaknin, A. Frydman, and Z.
Ovadyahu, Phys. Rev. B61, 13037s2000dg. Our findings are also relevant for the understanding of the role of
defects that can undermine quality of thin tunnel barriers made of conventional band insulators.
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I. INTRODUCTION

The advent of mesoscopic quantum physics1–3 in the early
1980s has profoundly influenced our understanding of trans-
port in solids. Advances in microfabrication and nanofabri-
cation technology have brought about small enough struc-
tures s&1 mmd in which, at low enough temperaturessT
!1 Kd, propagation of an electron is described by a single
wave functionsinstead of density matrices in macroscopic
solidsd since inelastic dephasing processes can be suppressed
below the temperature-dependent dephasing lengthLf. Thus,
their transport properties have to be analyzed in terms of
quantities that take into account nonlocal features of quan-
tum dynamicsssuch as the quantum corrections3 to the con-
ductivity which are nonlocal on the scale ofLfd, finite size of
the sample, boundaries, and measurement setup of macro-
scopic external circuit, rather than using traditional local and
self-averaging quantitiesssuch as the conductivityd appli-
cable to bulk materials at high enough temperatures.

Particularly influential ideas have emanated from the
Landauer-Büttiker approach2–4 to quantum transport which
treats conduction within the phase-coherent sample as a
complicatedsmultichanneld quantum-mechanical scattering
problem. This viewpoint introduces a set of transmission co-
efficients as the fundamental property of a mesoscopic con-
ductor. The transmission coefficientsTn are formally defined
as the eigenvalues oftt †, which is the product of a transmis-
sion matrixt and its Hermitian conjugatet†. In the two-probe
geometry, where mesoscopic sample is attached to two semi-
infinite ideal metallic leads, thet matrix connects the trans-
mission amplitudes of the flux-normalized states in the left
lead to the outgoing states in the right lead. Thus, the basis of
eigenchannels, which diagonalizes the matrixtt †, offers a
simple intuitive picture where conductor can be viewed as a
parallel circuit of independent transmission channels charac-
terized by channel-dependent transmission probabilityTn.

Within this framework, pure tunnel barrier is a rather simple
case where all transmission eigenvaluesTn!1 are the same
and much smaller than onesthe opposite limit,Tn=1, is a
property of the ballistic transport occurring through fully
open conducting channelsd.

Since many electronic devices employ quantum-
mechanical tunneling through an insulating barrier, their de-
sign and optimization requires us to understand whether
transport occurs via pure tunneling or if it is affected also by
the defects in the barrier.5,6 In particular, high-critical current
density for Josephson tunnel junctions7 or impedance level
for magnetic tunnel junctions8 require ultrathin and highly
transparent barriers that can easily be pushed out of the genu-
ine tunneling regime.5 The diagnostics of nontrivial barrier
properties requires us to investigate quantities beyond just
the conductance since its exponential decrease with the bar-
rier thickness, as a naive criterion of pure tunneling, can be
generated by vastly different underlying microscopic mecha-
nisms. For example, recent experiments5,9 have pointed out
how homogeneous ultrathinse.g., thickness,1 nmd alumi-
num oxide barriers can accommodate high transmission
channelsTn.1 swhich are detrimental for various device
operation6d. This is due to extended states induced by
disorder5 or intrinsic transport mechanism in disordered me-
soscopic systems,9 rather than due to rare defects such as
pinholes with more than unit-cell dimension.

When static disorder becomes strong enough, solids un-
dergo localization-delocalizationsLDd transition leading to
an Anderson insulator.10 Such phase is substantially different
from the conventional Bloch-Wilson band insulator since
density of states at the Fermi energy remains finite in Ander-
son insulators. On the other hand, the wave function associ-
ated with the localized states is confined within the region of
a characteristic size specified by the localization lengthj.

Here we explore quantum transport through a strongly
disordered barrier, separating the two clean metallic elec-
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trodes, by computing statistical properties of the transmis-
sion eigenvalues for an ensemble of three-dimensionals3Dd
samples with different impurity configuration. We focus on
the appearance of completely open transmission channels11,12

Tn.1, as the barrier thickness increases from the single in-
terface limit to the junction thickness where tunneling
through the Anderson insulator takes place, and their effect
on experimentally accessible transport properties. That is, the
full statistics ofTn allows us to obtain frequently measured
quantities that contain the signatures of such nontrivial trans-
parency properties:sad the zero-frequency power spectrum of
the shot noise13 and sbd the conductance4 GNS of a hybrid
junction composed of a thin Anderson insulator attached to a
superconductor, whose unusual properties have been un-
earthed in recent mesoscopic transport experiments.11 Our
findings on quantum transmissivity of single interface and
thin barriers of strongly disordered materials are relevant
also for the analogous classical coherent scattering problems,
such as the light propagation through a thin, but strongly
diffusive, medium.14

The paper is organized as follows. In Sec. II we introduce
the Hamiltonian model of the disordered barrier and corre-
sponding real-space Green function technique that allows us
to obtain an exact transmission matrix of a specific sample.
In Sec. III we study the scaling of the distribution ofTn as a
function of the barrier thickness, where disorder strength
serves as a parameter whose tuning induces Anderson insu-
lator, as well as a “bad metal” regime upon approaching the
LD transition from the metallic side. Measurable transport
quantities—shot noise and proximity conductance
GNS—determined by these distributions are discussed in Sec.
IV. In particular, we find the shot noise to be a sensitive
single parameter characterization of the transparency of mul-
tichannel barriers, as well as of different types of diffusion
through dirty metallic barriers. We conclude in Sec. V.

II. TRANSMISSION PROPERTIES OF THE ANDERSON
MODEL FOR THE DISORDERED BARRIER

We model noninteracting electrons in the disordered bar-
rier by a standard Anderson model,10

Ĥ = o
m

«mumlkmu + t o
km,nl

umlknu, s1d

which is a tight-binding HamiltoniansTBHd defined on a
simple cubic latticeL3Ly3Lz. The nearest neighbor hop-
ping matrix element, betweens orbitals kr uml=csr −md on
adjacent atoms located at sitesm of the lattice, is denoted by
t and sets the unit of energy. HereL is the thickness of the
junction in the units of the lattice spacinga si.e.,L is equal to
the number of disordered interfaces of the cross sectionLy
3Lz which are stacked along thex axis, chosen as the direc-
tion of transport, and coupled via hoppingt to form the bar-
rierd. We setLy=Lz=20, which yields the quantum point con-
tact conductanceGQPCsEF=0d=259GQ sGQ=2e2/h is the
conductance quantumd of the corresponding clean system at-
tached to two leads of the same cross sectionsi.e., for this
setup, there are at most 259 fully open Landauer conducting
channelsTn=1 at half-filling, out of 400 supported by its

cross section15d. The disorder is introduced by setting a ran-
dom on-site potential such that«m is uniformly distributed in
the intervalf−W/2 ,W/2g. The whole band of the Anderson
model becomes localized, i.e., the LD transition takes place
at the Fermi energyEF=0 of the half-filled band, when criti-
cal disorder strengthWc<16.5 is reached.

It is important for subsequent discussion to recall that
there are three fundamentally different transport regimes in
bulk 3D disordered conductors16 si.e., in the cubesL3L
3L with a given concentration of impuritiesd: sad the semi-
classical regime, where the Bloch-Boltzmann theory and per-
turbative quantum correctionssobtained from the Kubo for-
mulad describe resistivity of diffusives,!Ld systems;sbd
the “bad metal” regime characterized by exceptionally huge
resistivities and lack of semiclassical mean free path, sthe
putative mean free path would be smaller than the lattice
spacing,,a; nevertheless such “intrinsic” quantum diffu-
sion can still be described by a diffusion constant extracted
from the Kubo formula16d, whereby semiclassical description
and perturbative methods, based on the expansion in a small
parameter 1/kF,, break down; andscd the Anderson local-
ized regime when disorder becomes strong enough to push
the conductance of a disordered sample below4 2e2/h. Note
that to observe the effects stemming from localization of
wave functions, the size of the conductor has to be greater
than the localization lengthL@j—on length scales smaller
thanj one cannot differentiate an Anderson insulator from a
disordered metal. Figure 1 delineates the boundaries of these
regimes for a system modeled by the half-filled Anderson
Hamiltonian of Eq.s1d.

The transmission matrixt,

t = 2Î− Im ŜLĜ1N
r Î− Im ŜR, s2d

is obtained from the real-space Green functionĜr,a

Ĝr,a =
1

E − Ĥ − Ŝr,a
, s3d

whereĜ1N
r , ĜN1

a are submatrices ofĜr,a sĜa=fĜrg†d that con-
nect layersL=1 andL=N of the sample along thex axis.

Here ImŜL,R=sŜL,R
r −ŜL,R

a d /2i are self-energy matricessr,
retarded;a, advancedd which describe the coupling of the

FIG. 1. sColor onlined The boundaries of different transport re-
gimes, determined by the strength of the disorderW, in a bulk 3D
conductor described by the half-filledsEF=0d Anderson model. At
W<6, the Boltzmann equation breaks downsputative semiclassical
mean free path becomes smaller than the lattice spacing,øad,
while at W<16.5 wave functions become localized. Within the in-
termediate “bad metal” regime, particle motion is “intrinsic” diffu-
sion that requires nonperturbative quantum descriptionsRef. 16d.
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sample to the leads,2 with Ŝr =ŜL
r +ŜR

r sŜa=fŜrg†d. This par-
ticular computationally efficient implementation of the
Landauer-Büttker formalism, which takes the microscopic
Hamiltonian as an input, has its origins in the treatment of
tunneling current in metal/insulator/metalsMIM d junc-
tions—it was developed in order to evade pathological prop-
erties of a tunneling Hamiltonian when attempting to take
into account higher order tunneling processes.17

All of the results shown in Secs. III and IV are obtained
by evaluating exactly the Landauer transmission matrix for
zero-temperature quantum transport in the half-filledsEF

=0d Anderson Hamiltonian Eq.s1d for a finite-size barrier.
The disorder averaging is performed over an ensemble con-
taining 1000 different samples for metallic disorder strengths
W,16.5 and, due to the need to search for rare eventsTn
.1 in special configurations of disorder, for 10 000 samples
on the insulating sideW*16.5.

III. TRANSMISSION THROUGH DISORDERED
INTERFACES AND THIN BARRIERS

The distribution function of the eigenvaluesTn is formally
defined as

PsTd = Ko
n

dsT − TndL , s4d

wherek¯l stands for averaging over all possible realizations
of impurity configurations for a given disorder strength.
Early mesoscopic studies of phase-coherent disordered con-
ductors have been focused on bulk systems in the weak scat-
tering regime, where one finds celebrated perturbative quan-
tum interference effectsssuch as weak localization and
conductance fluctuationsd within diffusive transport regime.1

For such systems, an analytical expression forPsTd has been
obtained by Dorokhov18

PDsTd =
kGl
2GQ

1

TÎ1 − T
, s5d

and rederived within different theoretical frameworks.3,19

HerekGl is the disorder-averaged conductance. The distribu-
tion PDsTd is universal in the sense that it does not depend on
sample-specific propertiesssuch as dimension, geometry, and
carrier densityd. Although strictly derived for a quasi-one-
dimensional wiresi.e., wire whose length is much bigger
than its widthd, the scaling of transmissions implied by
PDsTd seems to have much wider validity, as long as the
conductor is in thesBloch-Boltzmannd metallic regime.4

The importance of interface scattering in giant magnetore-
sistance phenomena20 has given an impetus to reexamine
transport through disordered interfaces. For the transparency
of dirty interface, whose disorder-averaged two-probe con-
ductance is much smaller than the conductance of corre-
sponding point contact kGl,GQPC, a Schep-Bauer
distribution21,22 has been found to be applicable:

PSBsTd =
kGl

pGQ

1

T3/2Î1 − T
. s6d

While PSBsTd has been derived23 in the limit where barrier
thickness is much smaller than the Fermi wavelengthlF,
recent experiments9 have suggested that it might be valid
even for thicker strongly disordered barrierlF!L,j, on the
proviso that its width is smaller than the localization length
j.

Besides diffusive wires and dirty interfaces, analytical ex-
pressions forPsTd have been found for chaotic cavities and
double barrier junctions, as well as for combinations of these
four generic cases.4 Despite important insights obtained from
different approaches3,4,18,19,21,22that yieldPDsTd andPSBsTd,
no theory exists that would make it possible to obtain an
explicit expression forPsTd of a 3D mesoscopic disordered
conductor which is in the nonsemiclassical diffusive regime
si.e., the bad metal in Fig. 1d extending all the way into the
localized regime.4

We plot in Fig. 2numerically exact PsTd as a function of
the barrier thickness, obtained by diagonalizingtt † in Eq. s2d
for each sample of an ensemble of disorder configurations.
For metallic diffusive barriersfpanelsadg, ,!L!j snote that
a quasi-one-dimensional system will inevitably turn into an
insulator whenL.j independently of the strength of the
disorder3,4d, transmission eigenvalue distributions follow
PDsTd prediction. However, for barriers made of the bad
metal, PsTd is not equal to eitherPDsTd or weak-
localization-corrected24 PDsTd, even though it remains bimo-
dal distribution with most of the channels being either closed
Tn.0 or openTn.1 fpanelsbdg. Note that no single inter-
face on the metallic side of the LD transitionW&16.5 can be
described byPSBsTd fpanelssad and sbdg.

When the disorder is strong enough to drive the LD tran-
sition in the bulk 3D samples,PSBsTd becomes valid in the
single plane limitfpanelscdg. Moreover, it is also useful to
some extent to describePsTd for barriers composed of few
such planes, as suggested by experiment and semi-intuitive
arguments of Ref. 9. Finally, in Sec. IV we demonstrate that
the shot noise provides very sensitive tool to compare differ-
ent distributionsPsTd encountered here, as well as to differ-
entiate those that are apparently similarfsuch as the distri-
butions in panelscdg. This is due to the fact that nontrivial
features ofPsTd, such as the appearance of open channels in
disordered tunnel barrier,5,11 directly affect the suppression
of the shot noise power below its trivialsPoisson limitd value
which characterizes pure tunneling.

To contrast the transport through strongly disordered bar-
riers with tunneling through barriers made of a material with
a gap in the density of statesssuch as the conventional band-
insulators determined by single-particle quantum
mechanics,5 or more intricate Mott insulators which are gov-
erned by strongly correlated physics25d, we introduce disor-
dered binary alloyA0.5B0.5 between the metallic leads. This
system, which is composed of an equal number of atomsA
andB randomly distributed throughout the simple cubic lat-
tice, is modeled by random potential energy«A=−«B on the
diagonal of TBH in Eq.s1d. As shown in Fig. 3, large enough

QUANTUM TRANSPARENCY OF ANDERSON INSULATOR… PHYSICAL REVIEW B 71, 045308s2005d

045308-3



«A= u«Bu will open a hard gap aroundEF=0 in the density of
statessDOSd. The single interface of a solid with the gap in
the bulk DOS can display distinctive transport properties,25

which manifest here as a nontrivial distributionPsTd where
non-negligible transmission eigenvalues have finite probabil-
ity to appear. However, already for the ultrathin barriersL
=4, all transmission eigenvalues fall within the intervalTn
P f0,0.004g, while the conductance exhibits typical expo-
nential decay as a function ofL.

On the other hand, the disordered barriers always display
a nontrivial distribution of transmission eigenvalues, which
can accommodate open channels even at very largeW and

beyond the ultrathin limit. In the case of single interfaces and
ultrathin barriers, the disordered region does not provide
enough spatial extension in the transport direction to allow
for the localization of wave functions.21 This also leads to
emergence of the low-energy extended states within conven-
tional ultrathin aluminum oxide barriers that contain disorder
or defects.5 We plot in Fig. 4 the decay of the number of
open channels as the barrier thickness increases, where the
disorder strengths correspond to the Anderson insulator in
Fig. 1. The appearance of open channels beyond ultrathin

FIG. 2. sColor onlined The distribution of transmission eigenval-
ues PsTd obtained in an ensemble of 1000 disordered barriers at
each junction thicknessesL. The chosen disorder strengthsW of the
random potential in the Anderson Hamiltonian generate the follow-
ing systems in thick enough barrierssFig. 1d: sad for W=4, diffusive
semiclassical metal,sbd for W=10, bad metal, andscd for W=22,
Anderson insulatorshere we use an ensemble of 10 000 barriersd.
The dashed and dotted line plot the Schep-BauerPSBsTd and the
Dorokhov PDsTd distributions, expected to be valid for dirty inter-
face and diffusive semiclassical metal, respectively. Note that these
are not fits, but analytical expressionsfsee Eqs.s5d and s6dg that
depend on the disorder-average barrier conductance as a single
parameter.

FIG. 3. sColor onlined The distribution of transmission eigenval-
uesPsTd and the conductancesat EF=0d of tunnel barriers of dif-
ferent thickness that are made of disordered binary alloy A0.5B0.5

fpanel sadg. The binary alloy is modeled by the Anderson Hamil-
tonian Eq.s1d with «A=−«B=4.6 being randomly distributed on its
diagonal. This random potential energy induces a hard gap in the
eigenspectrum aroundEF=0, as shown in the panelsbd, which is
phenomenologically similar to the gap in the density of states of
band or Mott insulators.

FIG. 4. sColor onlined The number of open conducting channels,
whose transmission eigenvalues are close to oneTnP f0.95,1g, in
an ensemble of 10 000 barriers for a given junction thickness. The
barriers are made of strongly disordered materials, characterized by
the disorder strengthW=h16.5,22,30j, which behaves as an Ander-
son insulator in the bulkssee also related Figs. 1 and 2d.
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barrier widths is a type of a rare event in the Anderson insu-
lating phasesnote that other types of rare events can arise in
special configurations of disorder, even in the metallic
phase30d.

When Anderson insulator samples become larger thanLf,
phonon-assisted tunneling allows charges to propagate by
hopping between the localized sites, thereby generating a
finite conductance. However, the transport studied here takes
place through phase-coherent barrierssi.e., their size satisfies
L ,Ly,Lz,Lfd and, therefore, effectively at zero temperature.
The open channels inside the Anderson insulator junctions
are due to the tunneling via rather special configurations of
localized states that provide a path for resonant transmission
of electrons.29 One example of such a rare event is a wave
function, with energy close to the Fermi energysEF=0d,
which is symmetric with respect to the leads. Such a wave
function would make possible resonant transmissionTn.1,
so that the conductance is proportional to the probability of
finding such a special barrier. This can be seen by comparing
Fig. 4 swhich essentially gives the probability to encounter
an open channel in a given ensemble of barriersd to the cor-
responding barrier conductances plotted in Fig. 7.

IV. LINEAR STATISTICS: SHOT NOISE AND PROXIMITY
CONDUCTANCE

Over the past decade experimental and theoretical inves-
tigation of the shot noise, as a random process characterizing
nonequilibrium state into which a phase-coherent conductor
is driven by the applied voltage, has become one of the most
active frontiers in mesoscopic physics.13 The power spec-
trum of the shot noise, at zero frequency and at zero tem-
perature, can be expressed4,13 in terms of the Landauer trans-
mission eigenvalues Tn for noninteracting electrons
transported through a conductor attached to two leads:

S= 2E
−`

+`

dt8fIstdIst8d − Ī2g = 2eV
2e2

h o
n=1

Ly3Lz

Tns1 − Tnd.

s7d

Here Ī is the time average of the current flowing through the
system under the applied voltageV. Thus, by measuring the
shot noise one effectively probes second moment ofPsTd,
thereby obtaining complementary information to traditional
conductance that is associated with the first moment ofPsTd.

The suppression of the shot noise powerS=2FeĪ with

respect to the Poisson limitS=2eĪ is quantified by the Fano
factorF. In the pure tunneling regimeTn!1⇒F=1 because
transfer of electrons through the barrier is uncorrelated in
time and, therefore, described by the Poisson statistics. On
the other hand, in the diffusive metallic conductorssmore
precisely, in the disordered Bloch–Boltzmann conductors in
Fig. 1 whose size is such that,!Ld, the shot noise power is
reduced by a factor13 F=1/3. This is due to the correlations
generated by Fermi statistics—electron injection into the
conductor is less likely if another electron is already occu-
pying one of the conducting channels. In the ballistic limit
Tn=1, Pauli principle correlating noninteracting fermions

leads to a complete noise suppressionF=0. The shot noise is
a genuine quantum transport phenomenon since determinis-
tic classical transport also suppressesS to zero due to the
lack of stochasticity associated with quantum mechanical
propagation of electrons. The “magic” suppression factors,
such asF=1/3, areexpected to be universally valid, i.e.,
independent on the details of the system such as geometric
parameters of the conductor or its resistance. SinceF=1/3
follows from PDsTd used in Eq.s7d, while PSBsTd gives F
=1/2, theFano factors may serve as an indirect and experi-
mentally observable confirmation of a particular distribution
PsTd.

The knowledge ofPsTd makes it possible to compute the
disorder-average of any quantity that can be cast into a form
of the so-called linear statisticsA=onasTnd,

kAl = Ko
n

asTndL =E dTasTdPsTd. s8d

The most frequently investigated examples of such
quantities,4 measured in the two-probe geometry and at zero-
temperature, aresad the Landauer conductance

kGl =
2e2

h Ko
n

TnL =
2e2

h
E dTTPsTd, s9d

sbd the Fano factor

kFl =
Ko

n

Tns1 − TndL
Ko

n

TnL =
E dTTs1 − TdPsTd

E dTTPsTd
, s10d

scd the linear conductance of a normal-region/superconductor
sNSd junction

kGNSl =
2e2

h Ko
n

2Tn
2

s2 − Tnd2L =
2e2

h
E dT

2T2

s2 − Td2PsTd,

s11d

which holds in the zero-voltage, zero-temperature, and zero-
magnetic-field limit, and for disorder confined to theN re-
gion. When the transparency of theNS interface is small
se.g., due to an insulator in betweend, single particle tunnel-
ing is the dominant transport mechanism which renders
kGNSl / kGl!1 skGl is the conductance of the junction in the
normal stated. This is due to the fact that there are no avail-
able states within the energy gapD of S. However, in
disordered-metal/superconductor junctions with transparent
NS interface,kGNSl is enhanced due to the proximity effect
which is microscopically generated by Andreev reflection at
the NS interface. In this process, an incident electron is re-
flected as a hole, while a Cooper pair is pushed into the
superconductor. The expression forkGNSl is obtained by tak-
ing into account Andreev processes via Bogoliubov–De
Gennes equations, while neglecting the self-consistency
issues4 fe.g., superconducting order parameter is assumed to
be a step function, thereby neglecting its depression on theS
side of the junction26 as well as the terms of the order
sD /EFd2g. For noninteracting quasiparticles that participate in
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purely Andreev processes at a perfectly transparentNS inter-
face GNS/Gø2 fthe upper bound is set by the ratio of Eq.
s11d and Eq.s9d for Tn=1g. Another superconducting tech-
nique which allows us to experimentally probe the transpar-
ency of atomic28 and mesoscopic conductors9 is to sandwich
them between two superconducting leads and analyze the
subharmonic gap structure of theI-V characteristic of such
Josephson junctions, which turns out to be determined27 by
PsTd.

Figure 5 demonstrates thatF= 1
3 suppression is indeed ap-

plicable in the Bloch-Boltzmann transport regime, i.e., in the
transport through thick enough barrierssbut still L,Ly,Lzd
where semiclassical diffusives,!Ld charge propagation
takes place. Moreover, the suppression factor saturates
kFsLdl→FM as a function of the barrier thickness also for
diffusion through the bad metal barrier. However, its
asymptotic valueFM is steadily increasingFM .

1
3 as a func-

tion of W when W*6 crosses over the boundary of semi-
classical transport regime in Fig. 1. For the Anderson insu-
lator barriersW*16.5, the Fano factor is13 , kFsLdl,1, as
long as there is a probability to encounter open channels
sFig. 4d through the barrier. It is also a monotonic function of
the barrier thickness sincePsTd scales withL in a fashion
shown in panelscd of Fig. 2. When all channels become
closed in thick Anderson insulator barriers, the Fano factor
reaches its trivial asymptotic valuekFl=1, thereby signaling
that pure tunneling takes place through such barriers. Thus,
Fig. 6 suggests that the Fano factor offers a unique single
scalar quantity that is able to resolve disordered thin barriers
with different transmission properties, as well as to label
diffusive transport regimes of Fig. 1 within thick barriers.

Quantum coherence, its nonlocal features, and random-
ness of microscopic details cause large fluctuations of physi-
cal quantities in disordered mesoscopic systems.1 Contrary to
the intuition developed from thermal fluctuationssand their
self-averaging propertiesd in statistical physics of macro-
scopic systems, the average value and variance are not
enough to characterize the distributions of various physical

quantities in opense.g., conductance, local density of states,
current relaxation times, etc.d or closedse.g., eigenfunction
amplitudes, polarizability, level curvatures, etc.d mesoscopic
systems. These distributions can become particularly broad
upon approaching the LD transition.4 Thus, Fig. 6 introduces
the full distribution function of the Fano factor revealing that
even in the diffusive metallic barriers there are sample-to-
sample fluctuations yielding wide distributionssover the in-
terval FP f0,1gd when disorder is increased.

The possibility of fully open channelsswith transparen-
cies close to oneTn.1d to appear in the Anderson insulator
barriers, as demonstrated in Sec. III, has been indirectly sug-
gested by a zero-bias anomaly in theI-V characteristic of
normal-metal/Anderson-insulator/superconductor sNISd
junctions.11 Furthermore, the comparison of the conductance
kGNSl of the NIS junction with the conductancekGl of the
junction in the normal statesi.e., kGl is the conductance of
the metal/Anderson-insulator/metal junctiond allows one to
test the importance of different special configurations of lo-
calized states that make possible resonant tunneling respon-
sible for the increase of the zero-bias conductance. For ex-
ample, in the case of resonant tunneling through a chain of
two localized sites31 kGNSl<0.27kGl. The same trend was
conjectured to persist in barriers where tunneling through
quasi-one-dimensional chains of arbitrary number of local-
ized states can occur.31 As the thickness of the barrier in-
creases, more complex configurations would allow for per-
colation paths through localized states. However, they have
not been observed in experiments measuring the normal con-
ductance kGl. Nevertheless, the puzzling finding of
experiments11 on NIS junctions isGNS/GP f1.0,5.0g.

Figure 7 plots the conductance of the Anderson insulator
junctions, as well as the corresponding ratiokGNSl / kGl when
one of the normal leads of theMIM junction is turned into a
superconducting one. The distributions ofPsTd obtained in
Sec. III yields kGNSl / kGlP f0.4,0.6g as a function of the
barrier thickness. However, we recall here that conductance
fluctuations in strongly disordered phase-coherent samples
can reach the same magnitude as the conductance itself.4,32

Therefore, we investigate the full distribution function of
GNS/G in Fig. 8, which shows that particular phase-coherent

FIG. 5. sColor onlined The disorder-averaged Fano factor, quan-

tifying suppression of the shot noise powerS=2FeĪ from its Pois-
son valueF=1, as a function of the barrier thickness. Each curve is
parametrized by the strength of the disorderW introduced in barrier
ssee Fig. 1d. Note that the three horizontal lines are labeled assid
F= 1

3 shot noise suppression expected in the diffusive semiclassical
conductorsfi.e., Bloch-Boltzmann metal in Fig. 1 whose transpar-
ency is described byPDsTdg; sii d F= 1

2 for dirty interfaces described
by PSBsTd; andsiii d F=1 as a signature of pure tunneling through an
insulator.

FIG. 6. sColor onlined The full distribution function of the Fano
factor for several ensembles of barriers whose disorder averaged
kFl is plotted in Fig. 5.
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samples can indeed exhibit 0.27,GNS/G,2 similarly to the
ones found in experiments.11 Nonetheless, on manyNIS
samples can indeed exhibit 0.27,GNS/G,2 similarly to the
ones found in experiments.11 Nonetheless, on manyNIS
junctions of Ref. 11GNS/G.2 is observed. This suggests
that the interplay of proximity effect in the Anderson insula-
tor and electronic interactions33 sthat can play an important
role in the localized phase due to lack of screeningd takes
place. Such effects are not captured by Eq.s11d, which takes
into account only Andreev reflection of noninteracting qua-
siparticles at theNS interface. Their treatment would require
more involved theoretical approaches, such as possible com-
bination of dynamical mean-field theory extended to inho-
mogeneous systems33 sthat include superconducting
regionsd33 with the typical medium theory of Anderson
localization34 which would make it possible to study prox-
imity effect in strongly correlated and disordered systems
smodeled by the standard Hubbard model with diagonal dis-
order used hered.

V. CONCLUSION

We have investigated howstatisticsof the Landauer trans-
mission eigenvaluesPsTd for 3D barriers attached to two

ideal metallic leadsscaleswith the thickness of the barrier,
as well as its dependence on the disorder strength which
determines different quantum-transport regimes. When barri-
ers are made of the bad metalscharacterized by exceptionally
high resistivity and lack of semiclassical mean free pathd,
PsTd remains bimodal, but it does not obey scaling predicted
by the standard Dorokhov distribution. The validity of the
Dorokhov distribution is confirmed for conductors where
semiclassical diffusive metallic transport takes place, but
which are not just quasi-one-dimensional wires of length
much greater than its cross section, as assumed in different
theoretical derivations. The characteristic signature of the
distributions of all metallicssemiclassical or quantumd diffu-
sive barriers is encoded into the scale independent Fano fac-
tor Fù1/3 measuring suppression of the shot noise power.
In special configurations of disorder, strongly disordered
si.e., Anderson insulatord barriers can accommodate fully
open channelsTn.1 due to resonant trajectories through lo-
calized states. In experiments, this would lead to systems
such as MIM junctions with F,1 or normal-metal/
Anderson-insulator/superconductor junctions where ratio
GNS/G takes any value 0,GNS/G,2 allowed within the
proximity theory that excludes electron correlation effects in
the Anderson insulator phase. On the other hand, the expla-
nation ofGNS/G.2 would require us to treat proximity ef-
fect in strongly correlated and strongly disordered systems.
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FIG. 7. sColor onlined The disorder-averagedsover 10 000
samplesd conductance of the Anderson insulator junctions of differ-
ent thickness, attached to two metallic leadssad. Panelsbd plots the
ratio kGNSl / kGl of the disorder-averaged linear conductance of a
normal-region/superconductor junctionfwhere the normal region is
the barrier fromsadg and kGl from sad. The dotted horizontal line
serves to highlight thatkGNSl / kGl is mostly confined within the
interval f0.4, 0.6g.

FIG. 8. The full distribution functionssampled over 10 000 re-
alizations of disorderd of GNS/G ssee also Fig. 7d quantifying me-
soscopic sample-to-sample fluctuations for the Anderson insulator
barriers characterized by the disorder strengthW=h22,30j and
thicknessL=h1,6,14j.
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