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Modeling conduction in electron waveguides with finite-range impurities
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We study the conductance of an electron waveguide with a finite range impurity using reaction matrix
theory. We compute the scattering matrix for the waveguide and use it to obtain an exact expression for the
Landauer conductance. In an effort to simplify the computation of conductance in such systems, we review the
convergence difficulties that occur #function impurities in two space dimensions are used in place of finite
range impurities. We compare our exact result for the waveguide conductance with a finite range impurity with
the case of theS-function impurity with the finite number of modes. We determine conditions for which a
S-function impurity can be used to approximate the conductance when a finite range impurity is present.
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I. INTRODUCTION ductance of a waveguide with a finite range impurity, we first

There is considerable interest in modeling the effect ofcalculateSmatrix by using reaction matrix theory. We then
impurities on electron flow in GaAs/AlGaAs electron calculate the conductance with tifunction impurity and
waveguided. Models involving a single impurity inside a compare our results with that obtained for the finite range
waveguide have been discussed by Baghait by Boeset ~ impurity. Finally, in Sec. V we make some concluding re-
al.>* The combined effect of the impurity potential and back-marks.
scattering off the walls of the quantum waveguide can give
rise to quasibound states and resonance behavior and thereby || THE DELTA-FUNCTION IMPURITY IN 2D OPEN
have an important effect on the conductivity. The use of delta SPACE
functions to model finite range impurity potentials is very
attractive because they can simplify considerably the compu- The Hamiltonian operator for a single electron of mangs

tations necessary to obtain the conductivity in the presencl® two dimensional open space, in the presence of a
of impurities. However, as noted in Refs. 4 and 5,d-function potential located at the origin, can be written

S-functions in two or more space dimensions have conver- 2
gence problems. Because of these convergence problems, H:p—+v052(f):E, (1)
some authors have resorted to the use of more complicated 2me

potentials such as, for example, the impuiyfunction in  \yhere p and f are the momentum and position operators,

Ref. 6 or a one-dimensionafunction for one space dimen- egpecively, of the electroi is the total energy, antl, is
sion and a finite sized potentitd Gaussianalong the other ¢ strength of thes-function potential. The energy Green’s
space dimensiofi.However, as we will see, under certain function for this system can be written

conditions it is possible to us&function potentials to model

the effects of finite range impurities on the conductivity of _ 1 _ VoGo(r1,0)Gp(0,r5)

electron Wavegl_“des G(r 1lr2) - <r1| Ei _ ﬁ |r2> - GO(rler) + 1 _VoGo(0,0) y
We are particularly interested in the effects of impurities

on the conductance of semiconductor based two-dimensional 2

(2D) electron Wavegg|des or carbon nanotubes: For this re"’\l/T/hereGo(rl,rz) is the free particle energy Green’s function
son we restrict our discussion to electron flow in two space

dimensions. The problem of convergence occurs for all types 1

of boundary conditions in 2D space. In all cases, in order to Golry,ra) =(ryl—=——=1r2) 3
approximate a finite range potential bysdunction potential, E1-Ho

we must introduce a cutoff on the modes. For completenesgnd Hy=p2/2m,. If the 5-function potential is attractive,

in Sec. II, we show how to approximate a finite range poteny/; <0, we expect that a single bound state exists and the
tial in open space by a-function potential, and in Sec. Il pound state energy is given by a pole of the Green’s function.
we consider the conditions under which a finite range potenThe condition for the pole is 1¥,G,(0,0)=0. In two space

tial confined inside a hard wall containé closed systejn dimensions, this can be written in the form

can be approximated by&function potential. In Sec. IV, we

focus on the effect of finite range ard@function impurities 1 1 (" k

on the conductivity of a two-dimensional electron wave- N 2@ 0 k2_Bdk' (4)
guide. This last case is the most difficult because we must

compare the conductance of the waveguide when &hereEg=%°B/2m, is a bound state energy and is negative
&function impurity is present with the conductance when aand\=2m.V,/%2. If we integrate the right-hand side of Eq.

finite range impurity is present. In order to calculate the con{4), it diverges even though the left hand side has a finite
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value. Thus, in two space dimensions a bound state does nc

exist as long as the strength éfpotentialV, is finite. In a
scattering problem, the wave scattering amplitude is unde-
fined forVy#0.’

We can resolve this difficulty by introducing a cutof,
on the upper limit of the integration in Ed4). In other
words, if we integrate from 0 ta rather than from O toe,
we can obtain a bound state enerBy,given by

B = — A2g(2hmimVo)

5

Let us now compare this to the bound state energy in
cylindrical potential of finite radiusa. The Hamiltonian is

ﬁZ
H=-——+U(r)=E, (6)
2m,
where the potential is
U(r)=Vy/ma?, if0<r<aandU(r)=0ifr>a.
(7

The potential,U(r), becomes a two-dimensiondlfunction
in the limit, a—0. If we solve the Schrddinger equation,
Hy==Eyg, assuming that the wave functiogg, and its first

derivative are continuous at the surface of cylinder, we ob-

tain the bound state energy,

2h%e2y

. el2h?mlmeVo) ,
mea

)

where y is a Euler constanty=0.577. If we compare Eq.
(5) and(8), and require that thé-function potential give the

momentum cutoffA is inversely proportional to the radius a
of the impurity potential.

[ll. DELTA-FUNCTION IMPURITY IN A CLOSED
SYSTEM

For a 2D closed system containing finite range impurity

we can use the energy eigenstates of the impurity-free sy

tem as an orthonormal basis with which to compute th
eigenstates and eigenvalues of the system when the impur
is present. This basis set contains an infiniteuntable

number of states, but in practice we generally can use only

finite number of the basis states to compute physical quanti-

ties such as energy eigenvalues to get convergent resul
However, this is not true for the case obdunction impurity

e
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FIG. 1. The lowest three energy eigenvalues of a circular poten-
tial well, with a §-function impurity at the center, are plotted as a
function of the numbelN; of modes. Energies decrease approxi-
mately logarithmically withN; and do not converge.

|

where V(r)=V,48(r)/2=r for r<R and V(r)=« for r>R.
When thes-function impurity lies at the center of the circle,
only states with zero angular momentum need to be consid-
ered. For states with nonzero angular momentum, the wave
function vanishes at=0, and is not affected by the delta
function potential. Energy eigenstatefs(r), with zero an-
llﬁjlar momentum can be expanded in Bessel functions as

# 1a P
et Tt
ac rar  Id¢

hZ

o )w(r,@+V(r)w(r,¢):Ew(r,¢>,

9)

©

Pe(r) = Z

n=1

An

r
(Xon) J0<X0n§) )

: (10
R\c‘”ﬂ'\]l

whereJ, is the Bessel function of order andxg, is thenth
Sz_ero of Jp(x). If we substitute Eq(10) into Eq. (9), use the
orthonormality of Bessel functions and interchange- n,

’

iwe obtain the following equation for coefficients;:

a 2myV, 1 An

h2m 31 (%on) o2y Jion)

_ 2mR%E
ﬁZ

2
XOnAn +

A, (11
ts.

In practice, when we solve E@L1) for A,, and the energy

in the closed system where the values of phySiC&' quantitieéigenvmuesE, the total number of equations fé‘ﬁ must be

vary with mode number and never converge. However, w
can use thes-function impurity to approximate an impurity
with specified ranges, if we use a finite number of modes,
N;. We will show thatN; anda can be related explicitly.

Let us consider an electron confined in a 2D circular po
tential well with an infinitely hard wall and radiuR in the

&runcated to a finite valuB,. It is quite natural to expect the
eigenvalues to converge to some valueNasncreases, but
that does not occur. To see this, let us consider the case

whereV,=V,/(7#2/2my)=0.1. In Fig. 1, we plot the three

lowest (dimensionlessenergies E=E/ (h2/2m.R?), E;, Ey,

presence of a repulsive delta-function impurity that lies at theandﬁg for different values of\;. None of them converge to
center of the circular well. The Schrédinger equation for thisany specific values but decrease approximately logarithmi-

system, in cylindrical coordinates, can be written

cally with increasing values dfl..
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FIG. 2. The lowest three energy eigenvalues of a circular poten-  F|G. 3. The relation between the number of mo#igsand im-

tial well with a finite size Impurlty at the center are p|0tted as purity sized. The inset is p|0tted on a |og scale. For all energ’ies’
functions of the impurity size. The eigenenergies decrease wéh 1/ and N, satisfy the relatiofd=0.46x (1/N,).

for smalla in a manner similar to their dependencelyin Fig. 1.
The dip in eigenenergies at very small@ldccurs because the elec-

tron effectively no longer sees the impurity at smalBid/ N; is plotted in Fig. 3. We see that a smaller total number of

eigenmode#\; corresponds to a greater range of the impurity
a as we would expect. By plotting=a/R andN; on a log

Let us now find the energy eigenvalues of an electrorycaje the relation betweé@nand N, emerges clearly. For all
confined in a 2D circular potential well with a finite range gnergy eigenvalues, they can be fitted to the relation

impurity at t2he center. The potential(r) now has the form log@a=-0.78-1.00 log\,, or equivalentlya=0.46x (1/N,).
V(r)=V,/ma® for 0<r<a, V(r)=0 for a<r<R and Thys the impurity range is inversely proportional to total

V(r)=e for r>R. Note thatV(r) — Voé(r)/2ar for r<Ras  number of eigenmodesy,. As mentioned before, this rela-
a—0. Therefore, we will concentrate on the caseasfR.  tjon is valid only for sufficiently smal@ or, equivalently,

We consider states with zero angular momentum in order tyrge N, (in this casez<0.02 orN,> 20).
compare with the case of-function impurity. The eigen- 1o see how the relation betwe@nand N, changes with

states with zero angular momentum ape(r)=I,(«r) for Ny .
. the strength of the potentid,, we introduce a parameter
O<r<a and ye(r)=Adkn+BNo(kr) for a<r<R — g,ppa 14=Na=N,(a/R), whereR, the radius of the cir-

wzh_e(rze I{’/(X/)Whgg(z))()_ (Zan(é /2'20)()2n dakrze_ (ZBesI;eiliz)quctiroens, cular area, is a measure of the length scale of the region of
1= 2MeVo Me e e confinement. We find that fo¥,=0.1, ©=2.17, while for

quiring #=(r)=0 atr=R and requiring the continuity of the =
wave function and its derivative ata, we obtain Vo=10, u=2.32. As we change the strength of the impurity
by two orders of magnitude, the parameteionly changes
by about 10%. In other wordg, depends only weakly on the
strength of the impurity. This implies that for a given system,
a particular truncation ofN; modes corresponds approxi-
Using Eq.(12), energy eigenvalud~§i (i=1,2,3 for various _mately toa particular impurity size, no matter how strong the
impurity rangesa are computed. In Fig. 2, we show the Mpurity is.

relationship betwee~Ei anda=a/R with \~/0:O.1. We can see
that the energieéi decrease with & for smalla in a man-

ner similar to~Ei versusN; in Fig. 1. It is interesting to note
that unlike Fig. 1,Ei has a sudden dip at very smalld,/

which can be seen most clearly for the cas&pfersus 14 \yaveguide can have a large effect on the conductance of the
in Fig. 2. The dip occurs because for smalRlthe impurity  wayeguide because it can cause electron localization and
fills the cylindrical well and the particle effectively sees only yesonances. Using a two-dimensiongfunction simplifies
the cylindrical well. This cannot occur for the delta-potential consjderably the calculation of the Green’s function for a
impurity. _ . _ waveguide system. However, as is shown in Ref. 4, the con-
Let us next determine the range of the impufaythat  gyctance found by this method does not converge as mode
allows the finite impurity system to have the same energy,ymber is increased. In this section, we compare the conduc-
eigenvalues as théfunction impurity system truncated d  tance of a 2D quantum waveguide with a finite range impu-
basis states for the casg=0.1. The relation betweémand rity to its conductance with a-function impurity, and we

l3(ka) _ | Ji(kaINo(kR ~ J(KRINy(ka)
“lo(ka) " Jo(kaNG(KR) — Jo(kRINg(Ka)

(12

IV. THE CONDUCTANCE FOR SINGLE IMPURITY IN A
2D WAVEGUIDE

A single impurity inside a two-dimensional electron
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YA with the finite range impurity centered @4,,y,). The states
are zero at the waveguide walls 0 andy=L and they have

m zero slope at the interfaces-0 andx=2a. The eigenvalues
associated with these eigenfunctions are denatgedThe
statese;(x,y) =(x,y| ¢;) can be expanded in the form

’ R |

i
] x p=19=0

J

L=30 nm

O

1

FIG. 4. The geometry of the two-dimensional electron wave-
guide with a single disk shaped impuritl. is the width of the
waveguidea is the radius of the impurity ang, is the transversal
position of the impurity. | and Il denote the asymptotic regions an
Il denotes the reaction region.

(14)

whereBj,, are the expansion coefficients amjﬁ\s“ﬁa for
dq=0 while My=v1/a for q#0.
The wave functions in the asymptotic regions; 0 and
x>2a, are expanded in complete sets of stat®§(x,y),
determ_ine _cond_itions under which the system with the\;\gteerggg(;(’r;) daerr;otzeerloef;(tn?r:let) xz\);%ri}i(glec V;Z%ﬁ%s'a:;ge
&.functlon. |.mpur|ty can be. used to approximate the systenil:L_ Therefore, the stated, (x,y) have the form
with the finite range impurity.
The conductance of a 2D waveguide with a finite range 2 nmy
impurity is complicated to calculate. However, Akguc and Dr(xy) = (Xy|Po) = \/j)(ﬁ(x)sin(—>. (15
Reichf have shown how to calculate tig®matrix for com- L L
plicated(chaotio waveguide systems using the reaction Ma-—rhe final results of the computation will be independent of

trix theory proposed by Wigner and Eisenuth the sub- o choice of boundary conditions at the interfates.
sections below, we first introduce the reaction matrix theory  a¢ shown in Refs. 11 and 12. the energy eigenstates

for the scattering matrix of the waveguide and then use th%X y|E) of the waveguide can be expressed in the form
results to obtain the conductance in the presence of a finite '

range impurity. We then compare this with the conductance o %
when as-function impurity is present. (xY|E)=2 Yb;(x.y) + > D TD%xy).  (16)
j=1 a=r,| n=1
A. Reaction-matrix We require that the wave functia,y|E) be continuous at

Let us consider electron flow in a 2D waveguide. To bethe interfaces. The continuity of energy eigenstates, at the
specific we consider a waveguide formed from GaAs semiinterfaces between the reaction region and asymptotic re-
conductor material. We assume the width of waveguide igions, gives us
L=300 A and the mass of the electron nig* =0.067m,,

o0 |

wherem, is the mass of a free electron amd is the effec- . . WXy |
tive mass of an electron in GaAs/AlGaAs. Thxi (%) = 2 Ry(n,n’) ax | I

The Schrddinger equation for a single electron in the 2D n’=1 X
electron waveguide shown in Fig. 4 is given by % dx.

W22 2 - 2 Ry(nn) | T, (A7)
~2m* (ﬁ * ﬁ) +Ve(y) + Vix,y) | (xy) = E¥(XY), n'=1 X
(13) where

whereV,(y) is the potential that confines an electron in the r2 = &j n(Xa) Dj . (Xp)

> (18)

R, s(n,n") =
aﬁ’( ) 2m*j=1 E_)\J

waveguide and/,(x,y) represents the impurity potential. For
simplicity we assume the waveguide has infinitely hard walls
S0 Vq(y)= for y=<O0 ory=L andV,=0 for O<y<L. The s the (n,n’)th matrix element of the reaction matrix. The
impurity potential is a disk shaped barrier of radias quantity, ¢; ,(x,), is @ measure of the overlap between jtte
and centered afx=x,,y=y,). Thus, V|(x,y)=g/7a? for  reaction region state andth transverse mode in the
X=X, 1 COg¢),y=Yo+1 sin(¢) forr<aand O<¢p=<2m, and  asymptotic regions. It is defined
V,(x,y)=0 otherwise. Herg is a constanty is the distance
from the center of the impurity, and is the azimuthal angle 2" [ nmy
measured about the center of the impurity. bin(Xa) = \/Efo dyd:,—(xa,y)sm(T), (19)

As shown in Fig. 4, we divide the waveguide into left and
right asymptotic regions and a reaction region which conwherex;=0 andx,=2a.
tains the impurity. The wave function in the reaction region We must distinguish between propagating modes and eva-
is expanded in a complete orthonormal set of basis statesgscent modes in the asymptotic regions of the waveguide.
#i(x,y), which are essentially the eigenstates of a billiardThe propagating modes are given by
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p

P
X () = %ne'knx - —Le ' for x <0,
n \J

Vkn
ch db
hxic () = Lk~ ek for x >2a, (20
vky vkq
where the wave vectdy, is
2m*E  (nm\?
=\ T T (T) ' ()
If there arem propagating modes them=1,2,...,m. The

evanescent moddsn/L)?>2m* E/#?) are given by

e

b
Thxk (00 =~ \Fn

e for x< 0,

e

nXk (x)=- d—e X for x > 2a, (22
vk,
where
nm\> 2m*E
e[ -2 23
For evanescent modes, the indexm+1,m+2, ..., .

B. The scattering matrix

In order to construct the scattering matrix for this system,
we substitute Eq920) and (22), into Eq.(17) and then we
rewrite the matrices which involve evanescent modes i
terms of matrices which involve propagating modsse Ap-
pendiX. All matrices involving evanescent modes in the Ap-
pendix are infinite dimensional since there are an infinit
number of evanescent modes. However, for finite range im-

purities only a finite number of evanescent modes need b

kept to obtain and accurate expression for $m@atrix. The

number of propagating modes is determined by the Ferm.

energy. As shown in the Appendix, we can obtain the follow->
ing expression for ther@x 2m scattering matriXS-matrix):

|

wheret andt” aremx m matrices of transmission probability
amplitudes and andr’ are mx m matrices of reflection

probability amplitudes. The matrice and U’ are

2mx 2m matrices defined in the A, arf, is mXx m identity
matrix.

t

r-!

S= UT—P—1 Zyt=

1 +iZ

<r_
_ (24)
t

C. The conductance for waveguide with finite range impurity

The electron conductanég in the waveguide is given by

n.

]
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FIG. 5. Conductance of a waveguide with a finite range impurity

for different numbers of mode#\. The impurity is disk shape, the

potential strengttg=-7 feV cn?, and the radius=L/150. When
usingN=120, the conductance has converged to its final result. Just
before the opening of then+ 1)th channel, the transmission ampli-
tudet, , goes to zero. These transmission dips only occur for attrac-
tive impurities and involve an alignment of the impurity size and
the decay length 14,,1.

m
= z—ezE It |, (25
h |’J

where thee is the electron chargé,is Planck’s constant, and
the sum extends over all propagating modes. The transmis-
'sion amplitudes are determined from the expressions in Sec.
IV B. In our calculations, we locate the center of the impu-
rity at x,=a andy,=5L/12, and we choosa=L/150 and
g=-7 feV cnt. We consider an attractive impurity here. Fig-
ure 5 shows the electron conductance for a waveguide with a
inite range impurity, for different total numbers of modis,

N includes for propagating and evanescent mpd&scause

f the finite size of the impurity, we obtain convergent results
when we use large enough number of motiés 120 in this
case. In Fig. 6, the solid line shows the conductance for
N=120 and the dashed line is the conductance of a straight
waveguide without an impurity present. From Fig. 6, we see
that the impurity induces resonance and a considerable de-
crease in the conductance relative to the case when no im-
purity potential is present. Just before the threshold for the
(n+1)th channel opening, the transmission probability am-
plitude, t,,, goes to zero. This only occurs for attractive
impurities and for incident energies such that the inverse
wave vector 1k,,, becomes of order of the impurity siZé.

D. The conductance for waveguide with delta-function
impurity

Let us now compute the conductance whe#s-fainction
impurity is present atx,=0, y,=5L/12) (this case was also

the Landauer’s formula and can be expressed in terms of theonsidered in Refs. 2 and.3The Green’s function for this

transmission amplitudety as

04530

system is
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FIG. 6. Comparison of the conductance of a waveguide with FIG. 7. Conductance for a waveguide with a single impurity.
finite range impurity and a waveguide with no impurity. The solid The solid line is for a disk shape impurity with=-7 feV cn? and
line is for the waveguide with a disk shaped impurity with a=L/400. All other lines are for @&function impurity with a finite
g=-7 feV cn?, N=120, anda=L/150. The dotted line is for the number of moded\, andg=-7 feV cn?. The inset shows the de-

waveguide with no impurity. viation in the first resonance dip.
G(x,y,x',y',E) =G%x,y,x",y",E) resonances. As shown in Fig. 7, the conductance\{e:87
gives good agreement with the conductance of the disk shape

0 0 r o\
+ VOG (leloiyovE)G (OiyO’X 'y !E), potent|al

1-VG%(0,Y0,0.Y0,E) We again define a proportionality constapt, similar to
(26)  thatin Sec. lll. We can write the total number of modés
which gives us good approximation for the finite range im-
whereG%(x,y,x’,y’ ,E) is the Green’s function for the free purity, in the form
waveguide and is given by

L
o Ne=-—, (28)
>2m* lknlx=x'] 2au
n?  2ik, where the length scale of confinement.imstead of R and
27) the impurity length scale is& For the disk shape impurity
in a waveguidey is approximately 2.27. We have computed
(k, is given as in Sec. IV A The relation between the con- for different yalues of disk diameterm2and the strengtly
ductivity and the Green’s function was derived by Fisher and®f the potential. The results are shown in Table I. As
Lee?3 Using the Green’s function, we first calculate a trans-W€ change the strength and diameter of the potential
mission matrix and then calculate the conductance. When wagnificantly, u only changes slightly. If we replace the disk
However,(N,7/L)? must be larger thanr@* E;/%2 whereE;
is the Fermi energy so that we include all the propagating TABLE |. The constanju for the disk shape potential, diameter
modes and at least one evanescent mode. 2ain a quantum waveguide, widthfor different potential strength
We again use an electron effective mas$=0.067m, 9 and radius.
and assume the width of the waveguidelLis300 A. The
S-function impurity potential i8/(r)=gs%r), whereg is the g(fev cn?) 2a N, Iz
strength of the potential. We again choage-7 feV cnt.

2 '
Go(x,y, X",y ,E)==>, sin(niy>sin< nmy
L= L L

. . -7 L/50 23 2.17
In order to determine an appropriate cut-off mode number L/75 32 234
N;, we compare the conductance withsdunction impurity '
to that for a finite range impurity which was calculated in L/120 52 231
Sec. IV C. In Fig. 7, we plot the conductance for the finite L/200 87 2.30
range disk potential(the solid ling which has radius 9 L/50 22 297
a=L/400, and we plot the conductance for thdunction L/100 42 238
potential with several different mode numbeds We see '
that the conductance for the disk shape impurity and for the -12 L/50 22 2927
S-function impurity have qualitatively the same properties, L/120 52 231

namely the reduction of conductance and the appearance of

045307-6
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TABLE II. The constaniu for the square shape potential, width by using the modified-function model mentioned in Sec. II.
2ain a quantum waveguide, widthfor different potential strength  \We have shown here that it is, in fact, determined by the ratio

g and width.
g(feV cnmP) 2a N, n
-7 L/160 60 2.67
L/240 78 3.08
-9 L/80 30 2.67
=12 L/160 60 2.67
L/240 78 3.08

V,(x,y)=g/(2a)? for 0<x<2a and y,—a<y<yy+a, we
can again computg. The results are shown in Table II. The
value of u is 2.67 with 15% error. Thus, the quantiy

of the impurity range and the size of the confinement region
and we have obtained a quantitative expression for the trun-
cation condition.
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APPENDIX: THE SCATTERING MATRIX

In this Appendix, we construct the scattering matrix for an
electron wave in a waveguide with a finite range impurity.

appears to depend more on the geometry of the system thduet us first substitute Eq$20) and (22) into Eq.(17). This
on the size or strength of the impurity.

gives a matrix equation which we write schematically in the

In open systems, as-function impurity only allows
s-wave scattering. Scattering from a finite range impurity is
predominantlys-wave as long as the wave vectér,of the
incident particle and the range of the potentslsatisfy the
conditionka< 1.} For the calculations shown in Fig. 7, we
are in a regime where only a few propagating modes contrib-
ute andkra<<1. This appears to be the reason that the
S-function impurity reproduces so well the conductivity for

the finite range impurity, at least in regions away from thewhere

resonance. As shown in inset of Fig. 7, there is a small de-
viation of the resonance dip positions betweendtfanction
impurity (dotted ling and the finite range impuritysolid
line), although the conductance plateaus have good agree-
ment. Nevertheless the differences are small in the low en-
ergy regime. Thus, it appears that we can model a finite
range impurity in a two-dimensional waveguide by using a
S-function impurity with a finite number of modes, at least as
long as the conditiok-a<<1 is satisfied.

In a typical quantum point contact experiment, for ex-
ample, in Ref. 1, the Fermi wavelength: is 37 nm
(Ep=16 me\). In order to satisfy the conditiokra<1, a
should be much less than 58.89 A. Therefore we can apply
the delta function approximation for an impurity which has a
radius of order of a few angstroms.

V. CONCLUSIONS

A S-function potential in two or three space dimensions
does not yield convergent expressions for bound state ener-
gies in closed systems or scattering properties in open sys-
tems. However, we find that &function can be used to
model a finite range potential if the number of modes used is
truncated in an appropriate manner.

We have calculated the conductance for a finite range im-
purity in a two-dimensional waveguide by using the reaction
matrix theory. We have shown that the conductance for a
S-function impurity is the same as that of a finite range im-
purity as long as the mode numhiéris chosen correctly and
the Fermi energy is small enough.

Boeseet al,* noticed that the number of mode¢ is

following form:

o= By i(Ap+By)
-B. R -B.
_ 2 |=K-RK-| _ % (A1)
Cp,— D, i(C,+Dy)
_Se _Ee
Ri(p.p) Ri(p.e) Ri(e,p) Ry(ee)
Ri(p.p) Ri(p,e) R;(e,p) R,(ee) (A2)
Ri(p,p) Ri(p,e) Ri(ep) Ry(ee) |’
Rr(p,p) R:(p.,e) R.(ep) R.(ee
aEeik1X| bge—ik1X|
A=l T Bl (A3)
aP ekmi bP gtk
Crl)e_ikle dgeiklxr
G=l i b=l i (Ad)
ch ek db gk
bg& 1€° m+1X) dﬁﬁ 1e"<m+1xr
B.= : , Do= : (A5)
bRe dRe
Ep 0
_ K
K= ¢ : (A6)
K
0 - Ke

where Ep is a diagonal matrix with elementsjrn @

inversely proportional to the corresponding size of impurity=1, ... m) and K, is a diagonal matrix with elementsx,
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(n=m+1,... N). In these equations, the subscrpte) de- _ 7 7\ [ A+
notes propagatingevanescenimodes. If we consider tot& L =i L 2 PP
modes and there ara propagating modes for a given Fermi - = 7 7 )\= .=
energy,R,(p,p) is an mxm matrix, R,(p,e) is an mx (N p~Dp 3 47 \Cp+ Dp

-m) matrix, R,(e,e) is anLN—m)X(N—m) matrix, K, is where
mX m diagonal matrix and, is (N-m) X (N-m) diagonal 21:EpRII(pvp)Ep_EpRII(pue)Eegoal_EpRIr(pue)ieala

matrix. - (AL5)
After a lengthy linear algebra calculation, the matriggs

andD, which i.nvoﬂe g/an_escenthode.s, cgn be expressed inz2 _ EpR”(p, p)Ep _ EpR” (p7e)ge6062 _ EpR,r(p,e)Eegz,
terms of matriced\,, By, C,, andD, which involve propa- A16
gating modes and we obtain the following expressions: (A16)
Be=iQoQu(Ap + By) +iQoQa(Cp + D) (A7) Z3= KR (p, )K= KpRii (P, €)KeQoQ1 = KR (p,©)KGy1,
(A17)
and
i S S Z,= KRy (p.PIK; = K Ry (P, ©)KeQoQz — KRy (P, &K Gy
De=iY{(KeRy (€:P)Kp ~ KeRi(€:0KeQoQu) Ay + By) mrm : T Ale)

+ (KeRir(€,p)Kp ~ KeRi(€,6)KeQoQ2) (Cp + Dy}, The matricesZ,~Z, are allmx m matrices.

(A8) The scattering matrixS relates the outgoing propagating
where modes to the incoming propagating modes. Using (B),
we rewrite the Eq(A15) in the form
602 —_ —_ — 1 _— — ’ bp — UTlLiEUT ap Alg
KoRi(6,0)Ko = KRy (€, 0K YK R, (6,0)K, ~ 1 @) ez @ (A19)
(A9)
where
R _ - (7 %
Ql = KeRII(ea p)Kp - KeRIr(es e)KeYKeer(ea p)pr Z= (Z—l Z—2> .
(A10) ~ 3
The matrixZ in Eqg. (A20) is a 2nX 2m matrix,
62 = EeRIr(ea p)Ep - EeRIr(e7 e)EeY_KeRrr(ev p)Epa e_ik1XI
(Al11)
T e—lka|
- —— —  — —— u'= =ik
Gy = V(KR (€,p)K, ~ KeRi(€,60Q0Qp),  (A12) e
- R — N e—ikmxr,
Gy= Y( KeRrr(ex p)Kp = KeRy (e! e) QOQZ) ) (A13)
(A20)
and and 1, is mXm identity matrix. Therefore, the scattering
o matrix is given by
1
Y=— . (A14) = — =7
KeRrr(ere)Ke_ 1e gz UT_L:L — IE UT = (r_ t_,> (AZ]—)
1,+iZ tr

In the above equationd, is the (N—m) X (N-m) identity
matrix. If we substitute Eq$A7) and(A8) into Eq.(Al), we  wheret andt’ aremXx m matrices of transmission probability
obtain an equation relating the amplitudes of the propagatingmplitudes and and r’ are mx m matrices of reflection
modes, probability amplitudes.
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