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We study the conductance of an electron waveguide with a finite range impurity using reaction matrix
theory. We compute the scattering matrix for the waveguide and use it to obtain an exact expression for the
Landauer conductance. In an effort to simplify the computation of conductance in such systems, we review the
convergence difficulties that occur ifd-function impurities in two space dimensions are used in place of finite
range impurities. We compare our exact result for the waveguide conductance with a finite range impurity with
the case of thed-function impurity with the finite number of modes. We determine conditions for which a
d-function impurity can be used to approximate the conductance when a finite range impurity is present.
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I. INTRODUCTION

There is considerable interest in modeling the effect of
impurities on electron flow in GaAs/AlGaAs electron
waveguides.1 Models involving a single impurity inside a
waveguide have been discussed by Bagwell2 and by Boeseet
al.3,4 The combined effect of the impurity potential and back-
scattering off the walls of the quantum waveguide can give
rise to quasibound states and resonance behavior and thereby
have an important effect on the conductivity. The use of delta
functions to model finite range impurity potentials is very
attractive because they can simplify considerably the compu-
tations necessary to obtain the conductivity in the presence
of impurities. However, as noted in Refs. 4 and 5,
d-functions in two or more space dimensions have conver-
gence problems. Because of these convergence problems,
some authors have resorted to the use of more complicated
potentials such as, for example, the impurityD function in
Ref. 6 or a one-dimensionald-function for one space dimen-
sion and a finite sized potentialsa Gaussiand along the other
space dimension.4 However, as we will see, under certain
conditions it is possible to used-function potentials to model
the effects of finite range impurities on the conductivity of
electron waveguides.

We are particularly interested in the effects of impurities
on the conductance of semiconductor based two-dimensional
s2Dd electron waveguides or carbon nanotubes. For this rea-
son we restrict our discussion to electron flow in two space
dimensions. The problem of convergence occurs for all types
of boundary conditions in 2D space. In all cases, in order to
approximate a finite range potential by ad-function potential,
we must introduce a cutoff on the modes. For completeness,
in Sec. II, we show how to approximate a finite range poten-
tial in open space by ad-function potential, and in Sec. III,
we consider the conditions under which a finite range poten-
tial confined inside a hard wall containersa closed systemd
can be approximated by ad-function potential. In Sec. IV, we
focus on the effect of finite range andd-function impurities
on the conductivity of a two-dimensional electron wave-
guide. This last case is the most difficult because we must
compare the conductance of the waveguide when a
d-function impurity is present with the conductance when a
finite range impurity is present. In order to calculate the con-

ductance of a waveguide with a finite range impurity, we first
calculateS-matrix by using reaction matrix theory. We then
calculate the conductance with thed-function impurity and
compare our results with that obtained for the finite range
impurity. Finally, in Sec. V we make some concluding re-
marks.

II. THE DELTA-FUNCTION IMPURITY IN 2D OPEN
SPACE

The Hamiltonian operator for a single electron of massme
in two dimensional open space, in the presence of a
d-function potential located at the origin, can be written

Ĥ =
p̂2

2me
+ V0d2sr̂ d = E, s1d

where p̂ and r̂ are the momentum and position operators,
respectively, of the electron,E is the total energy, andV0 is
the strength of thed-function potential. The energy Green’s
function for this system can be written

Gsr 1,r 2d = kr 1u
1

E1̂ − Ĥ
ur 2l = G0sr 1,r 2d +

V0G0sr 1,0dG0s0,r 2d
1 − V0G0s0,0d

,

s2d

whereG0sr 1,r 2d is the free particle energy Green’s function

G0sr 1,r 2d = kr 1u
1

E1̂ − Ĥ0

ur 2l s3d

and H0= p̂2/2me. If the d-function potential is attractive,
V0,0, we expect that a single bound state exists and the
bound state energy is given by a pole of the Green’s function.
The condition for the pole is 1−V0G0s0,0d=0. In two space
dimensions, this can be written in the form

1

l
= −

1

2p
E

0

` k

k2 − B
dk, s4d

whereEB="2B/2me is a bound state energy and is negative
andl=2meV0/"2. If we integrate the right-hand side of Eq.
s4d, it diverges even though the left hand side has a finite
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value. Thus, in two space dimensions a bound state does not
exist as long as the strength ofd-potentialV0 is finite. In a
scattering problem, thes wave scattering amplitude is unde-
fined for V0Þ0.7

We can resolve this difficulty by introducing a cutoff,L,
on the upper limit of the integration in Eq.s4d. In other
words, if we integrate from 0 toL rather than from 0 tò ,
we can obtain a bound state energy,B, given by

B = − L2es2"2p/meV0d. s5d

Let us now compare this to the bound state energy in a
cylindrical potential of finite radius,a. The Hamiltonian is

H = −
p̂2

2me
+ Usrd = E, s6d

where the potential is

Usrd = V0/pa2, if 0 , r , a andUsrd = 0 if r . a.

s7d

The potential,Usrd, becomes a two-dimensionald function
in the limit, a→0. If we solve the Schrödinger equation,
HcE=EcE, assuming that the wave function,cE, and its first
derivative are continuous at the surface of cylinder, we ob-
tain the bound state energy,

EB = −
2"2e−2g

mea
2 es2"2p/meV0d, s8d

whereg is a Euler constantsg=0.577d. If we compare Eq.
s5d ands8d, and require that thed-function potential give the
same bound state energy as the cylinder, we can find that the
momentum cutoffL is inversely proportional to the radius a
of the impurity potential.

III. DELTA-FUNCTION IMPURITY IN A CLOSED
SYSTEM

For a 2D closed system containing finite range impurity,
we can use the energy eigenstates of the impurity-free sys-
tem as an orthonormal basis with which to compute the
eigenstates and eigenvalues of the system when the impurity
is present. This basis set contains an infinitescountabled
number of states, but in practice we generally can use only a
finite number of the basis states to compute physical quanti-
ties such as energy eigenvalues to get convergent results.
However, this is not true for the case of ad-function impurity
in the closed system where the values of physical quantities
vary with mode number and never converge. However, we
can use thed-function impurity to approximate an impurity
with specified range,a, if we use a finite number of modes,
Nt. We will show thatNt anda can be related explicitly.

Let us consider an electron confined in a 2D circular po-
tential well with an infinitely hard wall and radiusR in the
presence of a repulsive delta-function impurity that lies at the
center of the circular well. The Schrödinger equation for this
system, in cylindrical coordinates, can be written

−
"2

2me
S ]2

]r2 +
1

r

]

]r
+

]2

]f2Dcsr,fd + Vsrdcsr,fd = Ecsr,fd,

s9d

where Vsrd=Vodsrd /2pr for r ,R and Vsrd=` for r .R.
When thed-function impurity lies at the center of the circle,
only states with zero angular momentum need to be consid-
ered. For states with nonzero angular momentum, the wave
function vanishes atr =0, and is not affected by the delta
function potential. Energy eigenstates,cEsrd, with zero an-
gular momentum can be expanded in Bessel functions as

cEsrd = o
n=1

`
An

RÎpJ1sx0nd
J0Sx0n

r

R
D , s10d

whereJn is the Bessel function of ordern andx0n is thenth
zero ofJ0sxd. If we substitute Eq.s10d into Eq. s9d, use the
orthonormality of Bessel functions and interchangen8↔n,
we obtain the following equation for coefficientsAn:

x0n
2 An +

2meVo

"2p

1

J1sx0nd o
n8=1

` An8

J1sx0n8d
=

2meR
2E

"2 An. s11d

In practice, when we solve Eq.s11d for An and the energy
eigenvalues,E, the total number of equations forAn must be
truncated to a finite valueNt. It is quite natural to expect the
eigenvalues to converge to some value asNt increases, but
that does not occur. To see this, let us consider the case

where Ṽo=Vo/ sp"2/2med=0.1. In Fig. 1, we plot the three

lowest sdimensionlessd energiessẼ=E/ s"2/2meR
2dd, Ẽ1, Ẽ2,

and Ẽ3 for different values ofNt. None of them converge to
any specific values but decrease approximately logarithmi-
cally with increasing values ofNt.

FIG. 1. The lowest three energy eigenvalues of a circular poten-
tial well, with a d-function impurity at the center, are plotted as a
function of the numberNt of modes. Energies decrease approxi-
mately logarithmically withNt and do not converge.
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Let us now find the energy eigenvalues of an electron
confined in a 2D circular potential well with a finite range
impurity at the center. The potential,Vsrd now has the form
Vsrd=Vo/pa2 for 0, r ,a, Vsrd=0 for a, r ,R and
Vsrd=` for r .R. Note thatVsrd→Vodsrd /2pr for r ,R as
a→0. Therefore, we will concentrate on the case ofa!R.
We consider states with zero angular momentum in order to
compare with the case ofd-function impurity. The eigen-
states with zero angular momentum arecEsrd= Ioskrd for
0, r ,a and cEsrd=AJoskrd+BNoskrd for a, r ,R,
where Iosxd, Josxd, and Nosxd are Bessel functions,
k2=s2meVo/p"2a2d−s2meE/"2d and k2=s2meE/"2d. By re-
quiring cEsrd=0 at r =R and requiring the continuity of the
wave function and its derivative atr =a, we obtain

k
I1skad
Ioskad

= − k
J1skadNoskRd − JoskRdN1skad
JoskadNoskRd − JoskRdNoskad

. s12d

Using Eq.s12d, energy eigenvaluesẼi si =1,2,3d for various
impurity rangesa are computed. In Fig. 2, we show the

relationship betweenẼi andã=a/R with Ṽo=0.1. We can see

that the energiesẼi decrease with 1/ã for small ã in a man-

ner similar toẼi versusNt in Fig. 1. It is interesting to note

that unlike Fig. 1,Ẽi has a sudden dip at very small 1 /ã,

which can be seen most clearly for the case ofẼ3 versus 1/ã
in Fig. 2. The dip occurs because for small 1 /ã the impurity
fills the cylindrical well and the particle effectively sees only
the cylindrical well. This cannot occur for the delta-potential
impurity.

Let us next determine the range of the impurityã that
allows the finite impurity system to have the same energy
eigenvalues as thed-function impurity system truncated toNt

basis states for the caseṼ0=0.1. The relation betweenã and

Nt is plotted in Fig. 3. We see that a smaller total number of
eigenmodesNt corresponds to a greater range of the impurity
ã as we would expect. By plottingã=a/R and Nt on a log
scale the relation betweenã andNt emerges clearly. For all
energy eigenvalues, they can be fitted to the relation
log ã=−0.78−1.00 logNt, or equivalentlyã=0.463 s1/Ntd.
Thus, the impurity range is inversely proportional to total
number of eigenmodes,Nt. As mentioned before, this rela-
tion is valid only for sufficiently smallã or, equivalently,
largeNt sin this case,ã,0.02 orNt.20d.

To see how the relation betweenã and Nt changes with

the strength of the potentialṼo, we introduce a parameterm
such that 1/m=Ntã=Ntsa/Rd, whereR, the radius of the cir-
cular area, is a measure of the length scale of the region of

confinement. We find that forṼo=0.1, m=2.17, while for

Ṽo=10, m=2.32. As we change the strength of the impurity
by two orders of magnitude, the parameterm only changes
by about 10%. In other words,m depends only weakly on the
strength of the impurity. This implies that for a given system,
a particular truncation ofNt modes corresponds approxi-
mately to a particular impurity size, no matter how strong the
impurity is.

IV. THE CONDUCTANCE FOR SINGLE IMPURITY IN A
2D WAVEGUIDE

A single impurity inside a two-dimensional electron
waveguide can have a large effect on the conductance of the
waveguide because it can cause electron localization and
resonances. Using a two-dimensionald-function simplifies
considerably the calculation of the Green’s function for a
waveguide system. However, as is shown in Ref. 4, the con-
ductance found by this method does not converge as mode
number is increased. In this section, we compare the conduc-
tance of a 2D quantum waveguide with a finite range impu-
rity to its conductance with ad-function impurity, and we

FIG. 2. The lowest three energy eigenvalues of a circular poten-
tial well with a finite size impurity at the center are plotted as
functions of the impurity size. The eigenenergies decrease with 1/ã
for small ã in a manner similar to their dependence onNt in Fig. 1.
The dip in eigenenergies at very small 1 /ã occurs because the elec-
tron effectively no longer sees the impurity at small 1 /ã.

FIG. 3. The relation between the number of modesNt and im-
purity sizeã. The inset is plotted on a log scale. For all energies,ã
andNt satisfy the relationã=0.463 s1/Ntd.

MODELING CONDUCTION IN ELECTRON WAVEGUIDES… PHYSICAL REVIEW B 71, 045307s2005d

045307-3



determine conditions under which the system with the
d-function impurity can be used to approximate the system
with the finite range impurity.

The conductance of a 2D waveguide with a finite range
impurity is complicated to calculate. However, Akguc and
Reichl8 have shown how to calculate theS-matrix for com-
plicatedschaoticd waveguide systems using the reaction ma-
trix theory proposed by Wigner and Eisenbud.9 In the sub-
sections below, we first introduce the reaction matrix theory
for the scattering matrix of the waveguide and then use the
results to obtain the conductance in the presence of a finite
range impurity. We then compare this with the conductance
when ad-function impurity is present.

A. Reaction-matrix

Let us consider electron flow in a 2D waveguide. To be
specific we consider a waveguide formed from GaAs semi-
conductor material. We assume the width of waveguide is
L=300 Å and the mass of the electron ism* =0.067me,
whereme is the mass of a free electron andm* is the effec-
tive mass of an electron in GaAs/AlGaAs.

The Schrödinger equation for a single electron in the 2D
electron waveguide shown in Fig. 4 is given by

F−
"2

2m*
S ]2

]x2 +
]2

]y2D + Vcsyd + VIsx,ydGCsx,yd = ECsx,yd,

s13d

whereVcsyd is the potential that confines an electron in the
waveguide andVIsx,yd represents the impurity potential. For
simplicity we assume the waveguide has infinitely hard walls
so Vcsyd=` for yø0 or yùL and Vc=0 for 0,y,L. The
impurity potential is a disk shaped barrier of radiusa
and centered atsx=xo,y=yod. Thus, VIsx,yd=g/pa2 for
x=xo+r cossfd,y=yo+r sinsfd for r ,a and 0øfø2p, and
VIsx,yd=0 otherwise. Hereg is a constant,r is the distance
from the center of the impurity, andf is the azimuthal angle
measured about the center of the impurity.

As shown in Fig. 4, we divide the waveguide into left and
right asymptotic regions and a reaction region which con-
tains the impurity. The wave function in the reaction region
is expanded in a complete orthonormal set of basis states,
f jsx,yd, which are essentially the eigenstates of a billiard

with the finite range impurity centered atsxo,yod. The states
are zero at the waveguide wallsy=0 andy=L and they have
zero slope at the interfacesx=0 andx=2a. The eigenvalues
associated with these eigenfunctions are denotedl j. The
statesf jsx,yd;kx,y uf jl can be expanded in the form

f jsx,yd = o
p=1

`

o
q=0

`

Bpq
j Î2

L
sinSppy

L
DMq cosSqpx

2a
D ,

s14d

whereBpq
j are the expansion coefficients andMq=Î1/2a for

q=0 while Mq=Î1/a for qÞ0.
The wave functions in the asymptotic regions,x,0 and

x.2a, are expanded in complete sets of states,Fn
asx,yd,

where a= lsrd denote left srightd asymptotic regions. The
statesFn

asx,yd are zero at the waveguide wallsy=0 and
y=L. Therefore, the statesFnsx,yd have the form

Fn
asx,yd ; kx,yuFn

al =Î2

L
xn

asxdsinSnpy

L
D . s15d

The final results of the computation will be independent of
the choice of boundary conditions at the interfaces.10

As shown in Refs. 11 and 12, the energy eigenstates
kx,y uEl of the waveguide can be expressed in the form

kx,yuEl = o
j=1

`

g jf jsx,yd + o
a=r,l

o
n=1

`

Gn
aFn

asx,yd. s16d

We require that the wave functionkx,y uEl be continuous at
the interfaces. The continuity of energy eigenstates, at the
interfaces between the reaction region and asymptotic re-
gions, gives us

Gn
axkn

a sxad = o
n8=1

`

Ralsn,n8dUdxkn8

l

dx
U

xl

Gn8
l

− o
n8=1

`

Rarsn,n8dUdxkn8

r

dx
U

xr

Gn8
r , s17d

where

Rabsn,n8d =
"2

2m* o
j=1

`
f j ,nsxadf j ,n8sxbd

E − l j
s18d

is the sn,n8dth matrix element of the reaction matrix. The
quantity,f j ,nsxad, is a measure of the overlap between thej th
reaction region state andnth transverse mode in the
asymptotic regions. It is defined

f j ,nsxad =Î2

L
E

0

`

dyf jsxa,ydsinSnpy

L
D , s19d

wherexl =0 andxr =2a.
We must distinguish between propagating modes and eva-

nescent modes in the asymptotic regions of the waveguide.
The propagating modes are given by

FIG. 4. The geometry of the two-dimensional electron wave-
guide with a single disk shaped impurity.L is the width of the
waveguide.a is the radius of the impurity andy0 is the transversal
position of the impurity. I and III denote the asymptotic regions and
II denotes the reaction region.
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Gn
l xkn

l sxd =
an

p

Îkn

eiknx −
bn

p

Îkn

e−iknx for x , 0,

Gn
r xkn

r sxd =
cn

p

Îkn

eiknx −
dn

p

Îkn

e−iknx for x . 2a, s20d

where the wave vectorkn is

kn =Î2m* E

"2 − Snp

L
D2

. s21d

If there arem propagating modes thenn=1,2, . . . ,m. The
evanescent modesssnp /Ld2.2m* E/"2d are given by

Gn
l xkn

l sxd = −
bn

e

Îkn

eknx for x , 0,

Gn
r xkn

r sxd = −
dn

e

Îkn

e−knx for x . 2a, s22d

where

kn =ÎSnp

L
D2

−
2m* E

"2 . s23d

For evanescent modes, the indexn=m+1,m+2, . . . , `.

B. The scattering matrix

In order to construct the scattering matrix for this system,
we substitute Eqs.s20d and s22d, into Eq. s17d and then we
rewrite the matrices which involve evanescent modes in
terms of matrices which involve propagating modesssee Ap-
pendixd. All matrices involving evanescent modes in the Ap-
pendix are infinite dimensional since there are an infinite
number of evanescent modes. However, for finite range im-
purities only a finite number of evanescent modes need be
kept to obtain and accurate expression for theS-matrix. The
number of propagating modes is determined by the Fermi
energy. As shown in the Appendix, we can obtain the follow-
ing expression for the 2m32m scattering matrixsS-matrixd:

S̄= U†1p − iZ̃

1p + iZ̃
U† = S r̄ t̄8

t̄ r̄8
D s24d

wheret̄ andt̄8 arem3m matrices of transmission probability
amplitudes andr̄ and r̄8 are m3m matrices of reflection

probability amplitudes. The matricesZ̃ and U† are
2m32m matrices defined in the A, and1p is m3m identity
matrix.

C. The conductance for waveguide with finite range impurity

The electron conductanceG in the waveguide is given by
the Landauer’s formula and can be expressed in terms of the
transmission amplitudestij as

G =
2e2

h
o
i,j

m

utij u2, s25d

where thee is the electron charge,h is Planck’s constant, and
the sum extends over all propagating modes. The transmis-
sion amplitudes are determined from the expressions in Sec.
IV B. In our calculations, we locate the center of the impu-
rity at xo=a and yo=5L /12, and we choosea=L /150 and
g=−7 feV cm2. We consider an attractive impurity here. Fig-
ure 5 shows the electron conductance for a waveguide with a
finite range impurity, for different total numbers of modes,N
sN includes for propagating and evanescent modesd. Because
of the finite size of the impurity, we obtain convergent results
when we use large enough number of modessN=120 in this
cased. In Fig. 6, the solid line shows the conductance for
N=120 and the dashed line is the conductance of a straight
waveguide without an impurity present. From Fig. 6, we see
that the impurity induces resonance and a considerable de-
crease in the conductance relative to the case when no im-
purity potential is present. Just before the threshold for the
sn+1dth channel opening, the transmission probability am-
plitude, tn,n, goes to zero. This only occurs for attractive
impurities and for incident energies such that the inverse
wave vector 1/kn+1 becomes of order of the impurity size.2,3.

D. The conductance for waveguide with delta-function
impurity

Let us now compute the conductance when ad-function
impurity is present atsxo=0, yo=5L /12d sthis case was also
considered in Refs. 2 and 3d. The Green’s function for this
system is

FIG. 5. Conductance of a waveguide with a finite range impurity
for different numbers of modes,N. The impurity is disk shape, the
potential strengthg=−7 feV cm2, and the radiusa=L /150. When
usingN=120, the conductance has converged to its final result. Just
before the opening of thesn+1dth channel, the transmission ampli-
tudetn,n goes to zero. These transmission dips only occur for attrac-
tive impurities and involve an alignment of the impurity size and
the decay length 1/kn+1.
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Gsx,y,x8,y8,Ed = G0sx,y,x8,y8,Ed

+
V0G

0sx,y,0,y0,EdG0s0,y0,x8,y8,Ed
1 − V0G

0s0,y0,0,y0,Ed
,

s26d

whereG0sx,y,x8 ,y8 ,Ed is the Green’s function for the free
waveguide and is given by

G0sx,y,x8,y8,Ed =
2

L
o
n=1

`

sinSnpy

L
DsinSnpy8

L
D2m*

"2

eiknux−x8u

2ikn

s27d

skn is given as in Sec. IV Ad. The relation between the con-
ductivity and the Green’s function was derived by Fisher and
Lee.13 Using the Green’s function, we first calculate a trans-
mission matrix and then calculate the conductance. When we
construct the Green’s function, we keep onlyNt modes.
However,sNtp /Ld2 must be larger than 2m* Ef /"2 whereEf

is the Fermi energy so that we include all the propagating
modes and at least one evanescent mode.

We again use an electron effective massm* =0.067me
and assume the width of the waveguide isL=300 Å. The
d-function impurity potential isVisrd=gd2sr d, whereg is the
strength of the potential. We again chooseg=−7 feV cm2.

In order to determine an appropriate cut-off mode number
Nt, we compare the conductance with ad-function impurity
to that for a finite range impurity which was calculated in
Sec. IV C. In Fig. 7, we plot the conductance for the finite
range disk potentialsthe solid lined which has radius
a=L /400, and we plot the conductance for thed-function
potential with several different mode numbersNt. We see
that the conductance for the disk shape impurity and for the
d-function impurity have qualitatively the same properties,
namely the reduction of conductance and the appearance of

resonances. As shown in Fig. 7, the conductance forNt=87
gives good agreement with the conductance of the disk shape
potential.

We again define a proportionality constant,m, similar to
that in Sec. III. We can write the total number of modesNt
which gives us good approximation for the finite range im-
purity, in the form

Nt =
L

2am
, s28d

where the length scale of confinement isL instead of 2R and
the impurity length scale is 2a. For the disk shape impurity
in a waveguide,m is approximately 2.27. We have computed
m for different values of disk diameter 2a and the strengthg
of the potential. The results are shown in Table I. As
we change the strength and diameter of the potential
significantly,m only changes slightly. If we replace the disk
shape impurity potential with a square shaped impurity,

FIG. 6. Comparison of the conductance of a waveguide with
finite range impurity and a waveguide with no impurity. The solid
line is for the waveguide with a disk shaped impurity with
g=−7 feV cm2, N=120, anda=L /150. The dotted line is for the
waveguide with no impurity.

FIG. 7. Conductance for a waveguide with a single impurity.
The solid line is for a disk shape impurity withg=−7 feV cm2 and
a=L /400. All other lines are for ad-function impurity with a finite
number of modesNt and g=−7 feV cm2. The inset shows the de-
viation in the first resonance dip.

TABLE I. The constantm for the disk shape potential, diameter
2a in a quantum waveguide, widthL for different potential strength
g and radius.

gsfeV cm2d 2a Nt m

−7 L /50 23 2.17

L /75 32 2.34

L /120 52 2.31

L /200 87 2.30

−9 L /50 22 2.27

L /100 42 2.38

−12 L /50 22 2.27

L /120 52 2.31
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VIsx,yd=g/ s2ad2 for 0,x,2a and y0−a,y,y0+a, we
can again computem. The results are shown in Table II. The
value of m is 2.67 with 15% error. Thus, the quantitym
appears to depend more on the geometry of the system than
on the size or strength of the impurity.

In open systems, ad-function impurity only allows
s-wave scattering. Scattering from a finite range impurity is
predominantlys-wave as long as the wave vector,k, of the
incident particle and the range of the potential,a, satisfy the
conditionka!1.14 For the calculations shown in Fig. 7, we
are in a regime where only a few propagating modes contrib-
ute and kFa!1. This appears to be the reason that the
d-function impurity reproduces so well the conductivity for
the finite range impurity, at least in regions away from the
resonance. As shown in inset of Fig. 7, there is a small de-
viation of the resonance dip positions between thed-function
impurity sdotted lined and the finite range impurityssolid
lined, although the conductance plateaus have good agree-
ment. Nevertheless the differences are small in the low en-
ergy regime. Thus, it appears that we can model a finite
range impurity in a two-dimensional waveguide by using a
d-function impurity with a finite number of modes, at least as
long as the conditionkFa!1 is satisfied.

In a typical quantum point contact experiment, for ex-
ample, in Ref. 1, the Fermi wavelengthlF is 37 nm
sEF=16 meVd. In order to satisfy the conditionkFa!1, a
should be much less than 58.89 Å. Therefore we can apply
the delta function approximation for an impurity which has a
radius of order of a few angstroms.

V. CONCLUSIONS

A d-function potential in two or three space dimensions
does not yield convergent expressions for bound state ener-
gies in closed systems or scattering properties in open sys-
tems. However, we find that ad-function can be used to
model a finite range potential if the number of modes used is
truncated in an appropriate manner.

We have calculated the conductance for a finite range im-
purity in a two-dimensional waveguide by using the reaction
matrix theory. We have shown that the conductance for a
d-function impurity is the same as that of a finite range im-
purity as long as the mode numberNt is chosen correctly and
the Fermi energy is small enough.

Boeseet al.,4 noticed that the number of modesNt is
inversely proportional to the corresponding size of impurity

by using the modifiedd-function model mentioned in Sec. II.
We have shown here that it is, in fact, determined by the ratio
of the impurity range and the size of the confinement region
and we have obtained a quantitative expression for the trun-
cation condition.
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APPENDIX: THE SCATTERING MATRIX

In this Appendix, we construct the scattering matrix for an
electron wave in a waveguide with a finite range impurity.
Let us first substitute Eqs.s20d and s22d into Eq. s17d. This
gives a matrix equation which we write schematically in the
following form:

1
Āp − B̄p

− B̄e

C̄p − D̄p

− D̄e

2 = K̄ · R̄ · K̄ ·1
isĀp + B̄pd

− B̄e

isC̄p + D̄pd

− D̄e

2 sA1d

where

R̄=1
Rllsp,pd Rllsp,ed Rllse,pd Rllse,ed
Rlrsp,pd Rlrsp,ed Rlrse,pd Rlrse,ed
Rrlsp,pd Rrlsp,ed Rrlse,pd Rrlse,ed
Rrrsp,pd Rrrsp,ed Rrrse,pd Rrrse,ed

2 , sA2d

Āp = 1 a1
peik1xl

]

am
peikmxl

2, B̄p = 1 b1
pe−ik1xl

]

bm
pe−ikmxl

2 , sA3d

C̄p = 1 c1
pe−ik1xr

]

cm
pe−ikmxr

2, D̄p = 1 d1
peik1xr

]

dm
peikmxr

2 , sA4d

B̄e = 1bm+1
p ekm+1xl

]

bN
pekNxl

2, D̄e = 1dm+1
p e−km+1xr

]

dN
pe−kNxr

2 sA5d

and

K̄ ;1
K̄p . . . . . . 0

] K̄e � ]

] � K̄p ]

0 . . . . . . K̄e

2 , sA6d

where K̄p is a diagonal matrix with elementsÎkn sn
=1, . . . ,md and K̄e is a diagonal matrix with elementsÎkn

TABLE II. The constantm for the square shape potential, width
2a in a quantum waveguide, widthL for different potential strength
g and width.

gsfeV cm2d 2a Nt m

−7 L /160 60 2.67

L /240 78 3.08

−9 L /80 30 2.67

−12 L /160 60 2.67

L /240 78 3.08
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sn=m+1, . . . ,Nd. In these equations, the subscriptp sed de-
notes propagatingsevanescentd modes. If we consider totalN
modes and there arem propagating modes for a given Fermi
energy,Rllsp,pd is an m3m matrix, Rllsp,ed is an m3 sN
−md matrix, Rllse,ed is an sN−md3 sN−md matrix, K̄p is

m3m diagonal matrix andK̄e is sN−md3 sN−md diagonal
matrix.

After a lengthy linear algebra calculation, the matricesB̄e

andD̄e which involve evanescent modes, can be expressed in

terms of matricesĀp, B̄p, C̄p, and D̄p which involve propa-
gating modes and we obtain the following expressions:

B̄e = iQ̄0Q̄1sĀp + B̄pd + iQ̄0Q̄2sC̄p + D̄pd sA7d

and

De = iȲhsK̄eRrlse,pdK̄p − K̄eRrlse,edK̄eQ̄0Q̄1dsĀp + B̄pd

+ sK̄eRrrse,pdK̄p − K̄eRrlse,edK̄eQ̄0Q̄2dsC̄p + D̄pdj,

sA8d

where

Q̄0 =
1

K̄eRllse,edK̄e − K̄eRrlse,edK̄eȲK̄eRrlse,edK̄e − 1e

,

sA9d

Q̄1 = K̄eRllse,pdK̄p − K̄eRlrse,edK̄eȲK̄eRrlse,pdK̄p,

sA10d

Q̄2 = K̄eRlrse,pdK̄p − K̄eRlrse,edK̄eȲK̄eRrrse,pdK̄p,

sA11d

Ḡ1 = ȲsK̄eRrlse,pdK̄p − K̄eRrlse,edQ̄0Q̄1d, sA12d

Ḡ2 = ȲsK̄eRrrse,pdK̄p − K̄eRrlse,edQ̄0Q̄2d, sA13d

and

Ȳ =
1

K̄eRrrse,edK̄e − 1e

. sA14d

In the above equations,1e is the sN−md3 sN−md identity
matrix. If we substitute Eqs.sA7d andsA8d into Eq.sA1d, we
obtain an equation relating the amplitudes of the propagating
modes,

1 Āp − B̄p

C̄p − D̄p
2 = iSZ1 Z2

Z3 Z4

D1 Āp + B̄p

C̄p + D̄p
2

where

Z̄1 = K̄pRllsp,pdK̄p − K̄pRllsp,edK̄eQ̄0Q̄1 − K̄pRlrsp,edK̄eḠ1,

sA15d

Z̄2 = K̄pRlrsp,pdK̄p − K̄pRllsp,edK̄eQ̄0Q̄2 − K̄pRlrsp,edK̄eḠ2,

sA16d

Z̄3 = K̄pRrlsp,pdK̄p − K̄pRrlsp,edK̄eQ̄0Q̄1 − K̄pRrlsp,edK̄eḠ1,

sA17d

Z̄4 = K̄pRrrsp,pdK̄p − K̄pRrlsp,edK̄eQ̄0Q̄2 − K̄pRrrsp,edK̄eḠ2.

sA18d

The matricesZ̄1–Z̄4 are allm3m matrices.

The scattering matrixS̄ relates the outgoing propagating
modes to the incoming propagating modes. Using Eq.sA6d,
we rewrite the Eq.sA15d in the form

Sb̄p

d̄p
D = U†1p − iZ̃

1p + iZ̃
U†Sāp

c̄pD sA19d

where

Z̃ = SZ1 Z2

Z3 Z4
D .

The matrixZ̃ in Eq. sA20d is a 2m32m matrix,

U† =1
e−ik1xl

�

e−ikmxl

e−ik1xr

�

e−ikmxr ,

2
sA20d

and 1p is m3m identity matrix. Therefore, the scattering
matrix is given by

S̄= U†1p − iZ̃

1p + iZ̃
U† = S r̄ t̄8

t̄ r̄8
D sA21d

wheret̄ andt̄8 arem3m matrices of transmission probability
amplitudes andr̄ and r̄8 are m3m matrices of reflection
probability amplitudes.
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