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Quantum transport properties of two-dimensional systems in disordered magnetic fields
with a fixed sign
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Quantum transport in disordered magnetic fields is investigated numerically in two-dimensional systems. In
particular, the case where the mean and the fluctuation of disordered magnetic fields are of the same order is
considered. It is found that in the limit of weak disorder the conductivity exhibits a qualitatively different
behavior from that in the conventional random magnetic fields with zero mean. The conductivity is estimated
by the equation of motion method and by the two-terminal Landauer formula. It is demonstrated that the
conductance stays on the orderedfh even in the weak disorder limit. The present behavior can be interpreted
in terms of the Drude formula. The Shubnikov—de Haas oscillation is also observed in the weak disorder
regime.
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l. INTRODUCTION as «(8B)72 in the limit of 8B— 0. It is thus an interesting
OprobIem to clarify whether the system exhibits this insensi-

Quantum transport in disordered magnetic fields in tw tivity even in the limit of zero magnetic fields. We thus focus

dimensiong2D) has been studied widely by numerical and o i
by analytical methods. A two-dimensional disordered systenf" the transport properties in the case whée-=B, particu-

in random magnetic fields with zero mean arises in a meabirly in the limit of weak magnetic fields. The characteristic
field theory of the fractional quantum Hall effect at filling eature of such systems is that the magnetic fields have al-

factor »=1/21 The magnetotransport aroune=1/2 has most the same sign. We therefore consider, as a simplified

then been often analyzed by models with random magneti@Odel’ the two-dimensional system in random magnetic

fields~7 The possibility of the Anderson transition in two- fields with a fixed sign in order to analyze the caie~B.
dimensional system in random magnetic fields has also been Generally, it is expected that the scattering mechanism in
studied extensively in the past dec&d¥ Although much random magnetic fields with a f!xed sign is qual|tat|ve_ly c_ilf-
work has been done to clarify whether or not the metallicfe_rent from that in the conventional random magnetic field
states exist in such a system which belongs to the unitary¥ith zero mean. The system has, for example, no snake state
universality class, the conclusions still remain controversialnear the zero magnetic field lines, which plays an important
Systems in random magnetic fields show singularities at th&le in the semiclassical theory of the transport in the con-
band center in the conductance fluctuatidmsid in the den-  ventional random magnetic fiel@s.It would thus be useful
sity of stated*16 These singularities are expected to be gov-t0 study the present system also for the fqrther understanding
erned by the chiral symmetry of the random magnetic field®f the quantum transport in the conventional random mag-
system. In recent experiments, two-dimensional electron syd1€tic fields. On the other hand, in the strong magnetic field
tems in random magnetic fields have been constructed arlinit B> 6B it has been argued and demonstrated that the
the magnetotransport in such systems has been med3uredtatistical properties belong to the same universality class as
The random magnetic fields with zero mean are realized bghe quantum Hall transition in two dimensiotf°The float
attaching small magnets on the layer parallel to the 2D elecef extended states toward the limit of the weak magnetic

tron gas in a semiconductor heterostructure. It is then foungle|d B< B has then become an important isg8é! Clari-

that the magnetoresistance exhibits similar structure to thq{/ing the transport properties of the present céBe- oB)

observed in the fractional quantum Hall effect around X . S e
=1/2. It isthus important to Snderstand the transport in ran_partlcularly in the limit of weak magnetic fields, would be

dom magnetic fields both theoretically and experimentally. ltwgo”r;:\i:};gligslgsconSIderlng the connection between these

In the present paper, we focus on another aspect of the We evaluate numerically the conductance in random mag-

transport in disordered magnetic fields. In the previous i fiaids with a fixed sign by the equation of motion

paper;® we have investigated the magnetotransport in "N ethod and by the Landauer formula. In the equation of
dom magnetic fields and found that the conductivity is insen- y ' q

sitive to the magnitude of the fluctuation of the random ma motion method, the conductance is obtained by examining
9 —- Y%he electron diffusion directly. This method has an advantage

netic fields if the mean valuB of random magnetic fields is  that it applies to very large systems. On the other hand, in the
set to be of the same order of its fluctuatioB. This is in  ¢case of the Landauer formula, large numbers of samples can
contrast to the case &@=0 where the conductivity diverges be considered, although system sizes are limited. With these
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two independent numerical method, we calculate the longi- U(8t) = Uy(pdt)2U,((1 - 4p) st)U,(pdt)? + O(8t°), (7)
tudinal conductivity and find that the conductance exhibits a

qualitatively different behavior from that in the conventional with

random magnetic fields, particularly, in the limit of weak ]

disorder. We also show that the present observations are not Up(ifix) = @2 .. @ldZgtlogtidz. .. g2 - (g)

changed significantly by introducing a small number of mag- _ .
netic fields with the opposite sign. whereH=H;+---+H;. It is to be noted that th&J, can be

expressed in an analytical form while the original evolution
operatorU cannot be evaluated exactly without performing
the exact diagonalization of the whole system. This method

II. MODEL has already been applied to the various cases df#i3*
We adopt a model described by the following Hamil- and 30° disordered systems. _
tonian on the square lattice Numerical calculations are performed in the system of the
size 999< 999 with the fixed boundary condition. All the
H=2, Vexpi aj,i)CiTij (1)  length scales are measured in units of the lattice constant
(%)) To prepare the initial wave packet with eneigywe numeri-

cally diagonalize the subsystef®1x 21) located at the cen-
ter of the whole system and take as the initial wave function
the eigenstate whose energy is closesEtd@he single time
stepdt is set to bedt=0.2r/V and at least five realizations of
random magnetic fields are considered. With this time step,
A o oot oo ot e = — ! the fluctuations of the expectation value of the Hamiltonian
Bisict Oy + Gesaging * by 2mdido. (2 is safely neglected throughout the present simulation
where ¢y=h/|e| stands for the unit flux an&(y) denotes the <2000:/V). We observe the second moment defined by
unit vector in thex(y) direction. The fluxeg¢,} are assumed
to be distributed independently in each plaquette. The prob- () = (r3(t)) = (r(v)?, 9
ability distribution P(¢) of the flux ¢ is given by

where CiT(Ci) denotes the creatigannihilation operator of
an electron on the site The phasegd, ;} are related to the
disordered magnetic fluxelsp} through the plaquettéi,i
+X,i+X+Y,i+y) as

with
1/hn‘ for0= ¢/¢0< hl’f!
0 otherwise.

P(¢) = { ()

<r”(t)>:Jr”erd‘ldr|¢(r,t)|2, (10)

The mean and the variance of the distribution are accord-

ingly given by where y(r ,t) denotes the wave function at tinte In the
diffusive regime, the second moment is expected to grow in

h hG _
()=~ do and(didy) ~ (){)) = T, 466, (4)  proportion fot
respectively. (r%)c=2dDt, (11)

where the diffusion coefficient is denoted Byandd is the
dimensionality of the system. The diffusion coefficiéhtis
IIl. ELECTRON DIFFUSION related to the conductivity by the Einstein relatiore’Dp.
In order to verify that the above system has a diffusivell€re p denotes the density of states. It is estimated by the
regime, we first examine the diffusion of electrons by meand3r€en function methdd fgr strips with the width up to 30.
of the equation of motion method. For this, we numerically The second momen(r<); for h=0.04 as a function of
solve the time-dependent Schrodinger equation by makingmet is shown in Fig. 1. The fermi energy is assumed to be
use of the decomposition formula for exponentia| E/V=0.5.1Itis Clearly seen that, above a certain |ength scale,

operator€2 The basic formula used in the present paper ishe second moment grows in proportion to the timkn this

the forth order formula regime, it is natural to expect that the system is diffusive.
) X 5 The length scale, above which the diffusive behavior is ob-
expix[Ar+ -+ +Ay]) = S(XP)“S(X(1 - 4p)) S(xp)~ + O(x°), served, must be related to the typical cyclotron radius of the

(5) present system. Since the fermi energy is fixed close to the

band center, it would vary almost inversely proportional to

where h;. In fact, the length scales are estimated-&8, ~49, and

S(X) = @AV2. . @Pn-12gX g if2 . XAY2, (6) ~70 for h4=0.04, 0.03 ancj O_.02, res_pgctively. Below these

length scales, the system is in a ballistic regime. In estimat-

The parametep is given byp=(4—-4"3)tandA,, ... A, are ing the diffusion coefficient, we discard the data in the bal-
arbitrary operators. We divide the Hamiltonian into five partslistic regime. It should be noted that, in the present regime of
as in the previous papéfsso that each part is represented ashy, the effective mean free path due to the fluctuation of
the product of X 2 submatrices. By applying this formula to magnetic fields is much larger than the cyclotron radius de-
the time evolution operatdd(t) =exp(—iHt/%), we obtain termined by the mean value of the magnetic fields. For in-
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N FIG. 3. The conductance under the fixed boundary conditions
FIG. 1. The second moment averaged over 10 realization OFor E/V=0.5 andL=60(0pen circle, 80(0pen squares 1())/(Iopen
random magnetic fields as a function of tirhdor E/V=0.5 and riangles £L2(Isolid triangles, 14Qsolid squares and 16solid
h:=0.04. The fluctuation around the mean value is plotted af . ' ' o . .
rf _ circles. The average over 1000 realizations of random fields is
t/(#/V)=500, 1000, 1500, and 2000.

performed.

stance, for the case 0f;=0.02, the effective mean free path &2
is estimated to be around 2188 whereas the cyclotron G=—Tr(TTH, (12)
radius is 4@. h

The estimated conductivity is plotted as a functionhgf

in Fig. 2. It is rather remarkable that the conductivity staysyhereT denotes the transmission matrix through the system.
on the order of the cpnductanqe quanta%ﬁh even for the  \nve consider thd. by L square system with two leads con-
small value§ ohy. This feature is in contrast to the case of yected to both sides of the system. No magnetic field is as-
the conventional random magnetic fields, where the conducs,med in the leads. For this system, we adopt the transfer
tivity is likely to diverge inversely proportional to the square magrix formalisni’ for evaluating the transmission coeffi-
of the fluctuation of the random magnetic fields. These factgjant numerically. The maximum system size considered in
mean that, provided that the sign of the magnetic fields ighe present work is 160 by 160 and the average over 1000
fixed, the condu'ctlv[ty is insensitive tp th? gtrength of itseglizations of random field configurations is performed.
fluctuation, and implies that the zero field linfif— 0 does  gjnce the mean value of the magnetic fields is not zero in the
not coincide with theh;=0 case and thus is a singular limit. present system, the effect of the edge states is, in general,
important for the transport properties. We therefore estimate
the conductance both with the fixed boundary conditions and
IV. CONDUCTANCE with periodic boundary conditions in the transverse direc-

In order to investigate this small conductivity in the weak tion. ] . ]
fluctuation regime, we examine also the conductance in the !N Fig. 3, the conductances for the fixed boundary condi-

two-terminal geometry based on the Landauer formula  tions for various system-sizes are shown as a functidmof
It is clearly seen that the conductance is likely to diverge as

h;— 0, which is qualitatively different from the behavior
obtained by the analysis of the electron diffusion. It is also
seen that the value of the conductivity is much larger than
15 | k that estimated from the electron diffusion. It is expected that
these differences come from the fact that the edge states,
which are absent in the simulation of the electron diffusion,
exist in the case of the fixed boundary conditions. The ob-
servation that the conductance is almost inversely propor-
tional to h; (Fig. 3) suggests that it is the manifestation of
05 1 the fact that the number of edge states increasés’as
In order to remove the effect of edge states, we evaluate
the conductivity under the periodic boundary conditions in
0 ' the transverse directiafirig. 4). It is seen that, in contrast to
' h ' the case of the fixed boundary conditions, the conductance
1if
stays on the order of the conductance quantum even for the
FIG. 2. The conductivity as a function f; for E/V=0.5. For ~ small values ohy. It should be emphasized that for smigl
hs<0.1, the conductivity stays on the order of the conductancéhe conductance decreases as the size of the system is in-
quantume?/h. creased. We thus recover the results obtained from the elec-
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FIG. 4. The conductance under the periodic boundary conditions '

for E/V=0.5 andL=60(open circley, 80(open squargs 10Qopen FIG. 6. The density of states f&/V=0.5.
triangleg, 12Qsolid triangle$, 14Qsolid squares and 16@solid
circles. The average over 1000 realizations of random fields isent periods. The periods in k4 are estimated to be 1.18 and
performed. 1.41, respectively. Here we show that these oscillations can
be understood as the Shubnikov—de Haas effdctgeneral,

tron diffusion. This suggests that it is essential to remove thehe period of the Shubnikov—de Haas effect for tight-binding
effect of edge states for observing the small conductance imttice models is given by
the random magnetic fields with a fixed sign. 2

In the case of the periodic boundary conditions, the total A(Lpoy) = 47
flux through the system is adjusted to be an integer multiple a<s

of the flux quantumh/le| in order fo ensure .th.at the flux where ¢, denotes the external flux through the plaquette
through the leads to be zero. Practically, we divide the eXCeS$ 'S the area of the Fermi surface of the two-dimensional

flux into small pieces and subtract these pieces randoml | iy -
S . .B I h h -
from the fluxes already distributed in the system as long aé ectron system. By evaluatirigin the system without mag

they are positive, so that the above condition is satisfied. Thig€tic fields, we obtain\(1/e,)=2.36, 2.59, and 2.83 for
procedure produces a weak correlation in random fluxe§/V=0-3, 0.5, and 0.7, respectively. Since, in the present
which should be negligible for large system sizes. system, the mean value of the magnetic fighd ¢o) is given

More detailed calculations of the conductance for the peby hy/2, we can identifyee,, to be h/2. We then find the
riodic boundary conditions are shown in Fig. 5. It is clearly relation thatA(l/?f)ext):zA(l/hrf)_ With this relation, it is
seen that the conductance oscillates periodically as a fuanear that the periods of the Shubnikov—de Haas effect evalu-
tion of 1/h; and its period is independent of the systemated by Eq(13) are in excellent agreement with those of the
sizes. From our numerical datig. 5), the period in 1 is  oscillation observed in our numerical data. It is rather re-
estimated to be\(1/h)=1.33. The same type of oscillation markable that the present system exhibits such a clear
is observed also foE/V=0.3 and forE/V=0.7 with differ-  Shubnikov—de Haas effect even though the flux distributes
uniformly from O toh,. A smaller oscillation than that of the
conductance is observed in the density of stgtég. 6),
which seems to be consistent with the analytical re%eéits
for the conventional Shubnikov—de Haas oscillation of 2D
systems in magnetic fields.

Apart from this oscillation, the conductance shows a
smooth cross over from the smdi}; regime to theh;=1
limit. It is to be noted that due to the periodicity of the
phasesy;; in the hamitonian, théy;=1 limit is identical to
the case of the conventional random magnetic field with zero
mean. Our numerical data suggest that this cross over takes
place aroundh;=0.1~0.2. With this cross over, the conduc-
tance is increased to a valuel.5¢?/h (Fig. 5) ashy is in-

5 10 Is 20 ’5 creased. This enhancement of conductance in the regime
1/, h:>0.1 is also observed in the conductivity estimated by the
" equation of motion metho¢Fig. 2).

FIG. 5. The conductance under the periodic boundary conditions
for E/V=0.5 and L=80(open squargs 10Qopen triangles
12Q(solid triangle$ as a function of 1. The period in 1k is We have investigated the longitudinal conductivity in the
estimated to be 1.33. two-dimensional disordered magnetic fields with a fixed

’ :Z)ext = d’exl/ ¢0’ (13)
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V. DISCUSSION
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sign. It has been demonstrated that the system shows a slo 2
diffusion and has accordingly a small conductance which is :
on the order of?/h and is insensitive to the magnitutig of

the random fields. It would be useful to interpret these results L5
in terms of the Drude formular=oy/(1+w?7), where w,
and 7 denote the cyclotron frequency and the relaxation time, <
respectively. The conductivity fow,=0 is denoted byo,.
Here it should be kept in mind that the present system is
equivalent to the system in the conventional random mag-
netic field distributed from k;/2 to hs/2, plus an additional 0.5
uniform magnetic field;/2. Namely, we can regard it as the
conventional random field system in an external uniform

Gi(ed

magnetic field. From this point of view, we assume that the 0 : : :
relaxation timer is determined simply by the scattering due 5 10 15 20 25
to the conventional random fields with zero mean and is 1/h.

insensitive to the additional uniform magnetic field. We also _
assume that the effect of the additional uniform magnetic F!G- 7. The conductance fdE/V=0.5 in the case where the
field appears only inw.. It is then deduced that Oo% T random fluxesp/ ¢ are @stnbuted in thg raqgie0.0S"lrf,O.Qﬁlrf].
«h=2 and w.>h.. and therefore that fan..< 1 Open squares, open triangles, and solid triangles représes,

rf e e 100, and 120, respectively.
al(@h)  AhF

(1+0??)  (1+AND'

al(€?lh) = (14

fixed sign. In particular, the conductivity in the limit of small
fluctuation has been investigated. In the simulation of the
whereA; andA, are constants independentlof. If we take  diffusion of electron wave functions, it is observed that the
the limit ash;— 0, we obtain thato/(€?/h) — A;/A,. The  system shows diffusive behavior in larger length-scales than
parameterd\; and A, are basically determined by the fermi the typical cyclotron radius. The diffusion turns out to be
energyE.%7 For instanceA; has been estimated to be 0.95 Very slow and the conductivity evaluated from the diffusion
for E/V=0.518 The present argument based on the Drudecoefficient stays on the order of the conductance quantum
formula, though it does not account for the Shubnikov—ddnsensitive to the magnitude of fluctuation of the magnetic
Haas effect, seems to account for the fact thatfpr 1 the fields. This behavior is also observed in the two-terminal
conductance stays on the orderedfh and is insensitive to conductance evaluated by means of the Landauer formula
hy. In this context, the feature specific to the present systerinder the periodic boundary conditions. A clear
is that bothr and (7w,)? scales in the same way 352_ Shubnikov—de Haas effect has been observed for a wide
Finally, we emphasize that these present transport propefange ofhy. For a system with edge states, the contribution
ties are not restricted to the case of the strictly positive ranto the conductance from the edge channels is much larger
dom magnetic fields. These properties can be observed in tfiean that from the bulk, and hence these properties are not
case where the random magnetic fields are almost positi\,@_bservable. In this sense, these peculiar features are the bulk
In Fig. 7, the conductance is shown for the case where theroperties of the positive random magnetic fields. It has been
random fluxes {¢;/ ¢} are distributed in the range argued that the singularity in the limit &—0 can be un-
[-0.05h,,0.95]. It is clear that the Shubnikov—de Haas derstood within the framework of the Drude formula.
effect i.s also o.b.served_ even though the magnetic fie_lds are ACKNOWLEDGMENTS
not strictly positive. This suggests that these properties are
general features of systems in the random magnetic fields The authors thank Y. Ono, B. Kramer, and S. Kettemann
whose mean and fluctuation are of the same order. for valuable discussions. Numerical calculations were partly
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properties in two-dimensional random magnetic fields with astitute for Solid State Physics, University of Tokyo.
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