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Quantum transport in disordered magnetic fields is investigated numerically in two-dimensional systems. In
particular, the case where the mean and the fluctuation of disordered magnetic fields are of the same order is
considered. It is found that in the limit of weak disorder the conductivity exhibits a qualitatively different
behavior from that in the conventional random magnetic fields with zero mean. The conductivity is estimated
by the equation of motion method and by the two-terminal Landauer formula. It is demonstrated that the
conductance stays on the order ofe2/h even in the weak disorder limit. The present behavior can be interpreted
in terms of the Drude formula. The Shubnikov–de Haas oscillation is also observed in the weak disorder
regime.
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I. INTRODUCTION

Quantum transport in disordered magnetic fields in two
dimensions(2D) has been studied widely by numerical and
by analytical methods. A two-dimensional disordered system
in random magnetic fields with zero mean arises in a mean
field theory of the fractional quantum Hall effect at filling
factor n=1/2.1 The magnetotransport aroundn=1/2 has
then been often analyzed by models with random magnetic
fields.1–7 The possibility of the Anderson transition in two-
dimensional system in random magnetic fields has also been
studied extensively in the past decade.8–14 Although much
work has been done to clarify whether or not the metallic
states exist in such a system which belongs to the unitary
universality class, the conclusions still remain controversial.
Systems in random magnetic fields show singularities at the
band center in the conductance fluctuations15 and in the den-
sity of states.14,16These singularities are expected to be gov-
erned by the chiral symmetry of the random magnetic field
system. In recent experiments, two-dimensional electron sys-
tems in random magnetic fields have been constructed and
the magnetotransport in such systems has been measured.17

The random magnetic fields with zero mean are realized by
attaching small magnets on the layer parallel to the 2D elec-
tron gas in a semiconductor heterostructure. It is then found
that the magnetoresistance exhibits similar structure to that
observed in the fractional quantum Hall effect aroundn
=1/2. It is thus important to understand the transport in ran-
dom magnetic fields both theoretically and experimentally.

In the present paper, we focus on another aspect of the
transport in disordered magnetic fields. In the previous
paper,18 we have investigated the magnetotransport in ran-
dom magnetic fields and found that the conductivity is insen-
sitive to the magnitude of the fluctuation of the random mag-

netic fields if the mean valueB̄ of random magnetic fields is
set to be of the same order of its fluctuationdB. This is in

contrast to the case ofB̄=0 where the conductivity diverges

as ~sdBd−2 in the limit of dB→0. It is thus an interesting
problem to clarify whether the system exhibits this insensi-
tivity even in the limit of zero magnetic fields. We thus focus
on the transport properties in the case wheredB< B̄, particu-
larly in the limit of weak magnetic fields. The characteristic
feature of such systems is that the magnetic fields have al-
most the same sign. We therefore consider, as a simplified
model, the two-dimensional system in random magnetic

fields with a fixed sign in order to analyze the casedB< B̄.
Generally, it is expected that the scattering mechanism in

random magnetic fields with a fixed sign is qualitatively dif-
ferent from that in the conventional random magnetic field
with zero mean. The system has, for example, no snake state
near the zero magnetic field lines, which plays an important
role in the semiclassical theory of the transport in the con-
ventional random magnetic fields.6,7 It would thus be useful
to study the present system also for the further understanding
of the quantum transport in the conventional random mag-
netic fields. On the other hand, in the strong magnetic field

limit B̄@dB it has been argued and demonstrated that the
statistical properties belong to the same universality class as
the quantum Hall transition in two dimensions.19,20The float
of extended states toward the limit of the weak magnetic

field B̄!dB has then become an important issue.20,21 Clari-

fying the transport properties of the present casesB̄<dBd,
particularly in the limit of weak magnetic fields, would be
important also in considering the connection between these
two limiting cases.

We evaluate numerically the conductance in random mag-
netic fields with a fixed sign by the equation of motion
method and by the Landauer formula. In the equation of
motion method, the conductance is obtained by examining
the electron diffusion directly. This method has an advantage
that it applies to very large systems. On the other hand, in the
case of the Landauer formula, large numbers of samples can
be considered, although system sizes are limited. With these
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two independent numerical method, we calculate the longi-
tudinal conductivity and find that the conductance exhibits a
qualitatively different behavior from that in the conventional
random magnetic fields, particularly, in the limit of weak
disorder. We also show that the present observations are not
changed significantly by introducing a small number of mag-
netic fields with the opposite sign.

II. MODEL

We adopt a model described by the following Hamil-
tonian on the square lattice

H = o
ki,jl

V expsiu j ,idCi
†Cj , s1d

whereCi
†sCid denotes the creation(annihilation) operator of

an electron on the sitei. The phaseshui,jj are related to the
disordered magnetic fluxeshfij through the plaquettesi , i
+ x̂, i + x̂+ ŷ, i + ŷd as

ui,i+x̂ + ui+x̂,i+x̂+ŷ + ui+x̂+ŷ,i+ŷ + ui+ŷ,i = − 2pfi/f0, s2d

wheref0=h/ ueu stands for the unit flux andx̂sŷd denotes the
unit vector in thexsyd direction. The fluxeshfij are assumed
to be distributed independently in each plaquette. The prob-
ability distributionPsfd of the flux f is given by

Psfd = H1/hrf for 0 ø f/f0 ø hrf ,

0 otherwise.
J s3d

The mean and the variance of the distribution are accord-
ingly given by

kfil =
hrf

2
f0 andkfif jl − kfilkf jl =

hrf
2

12
f0

2di,j , s4d

respectively.

III. ELECTRON DIFFUSION

In order to verify that the above system has a diffusive
regime, we first examine the diffusion of electrons by means
of the equation of motion method. For this, we numerically
solve the time-dependent Schrödinger equation by making
use of the decomposition formula for exponential
operators.22 The basic formula used in the present paper is
the forth order formula

expsxfA1 + ¯ + Angd = Ssxpd2S„xs1 − 4pd…Ssxpd2 + Osx5d,

s5d

where

Ssxd = exA1/2
¯ exAn−1/2exAnexAn−1/2

¯ exA1/2. s6d

The parameterp is given byp=s4−41/3d−1 andA1, . . . ,An are
arbitrary operators. We divide the Hamiltonian into five parts
as in the previous papers23 so that each part is represented as
the product of 232 submatrices. By applying this formula to
the time evolution operatorUstd;exps−iHt /"d, we obtain

Usdtd = U2spdtd2U2„s1 − 4pddt…U2spdtd2 + Osdt5d, s7d

with

U2si"xd = exH1/2
¯ exH4/2exH5exH4/2

¯ exH1/2, s8d

whereH=H1+¯ +H5. It is to be noted that theU2 can be
expressed in an analytical form while the original evolution
operatorU cannot be evaluated exactly without performing
the exact diagonalization of the whole system. This method
has already been applied to the various cases of 2D18,23,24

and 3D25 disordered systems.
Numerical calculations are performed in the system of the

size 9993999 with the fixed boundary condition. All the
length scales are measured in units of the lattice constanta.
To prepare the initial wave packet with energyE, we numeri-
cally diagonalize the subsystems21321d located at the cen-
ter of the whole system and take as the initial wave function
the eigenstate whose energy is closest toE. The single time
stepdt is set to bedt=0.2" /V and at least five realizations of
random magnetic fields are considered. With this time step,
the fluctuations of the expectation value of the Hamiltonian
is safely neglected throughout the present simulationst
ø2000" /Vd. We observe the second moment defined by

kr2stdlc ; kr2stdl − krstdl2, s9d

with

krnstdl =E rndVrd−1drucsr ,tdu2, s10d

where csr ,td denotes the wave function at timet. In the
diffusive regime, the second moment is expected to grow in
proportion tot

kr2lc = 2dDt, s11d

where the diffusion coefficient is denoted byD andd is the
dimensionality of the system. The diffusion coefficientD is
related to the conductivity by the Einstein relations=e2Dr.
Here r denotes the density of states. It is estimated by the
Green function method26 for strips with the width up to 30.

The second momentkr2lc for hrf =0.04 as a function of
time t is shown in Fig. 1. The fermi energy is assumed to be
E/V=0.5. It is clearly seen that, above a certain length scale,
the second moment grows in proportion to the timet. In this
regime, it is natural to expect that the system is diffusive.
The length scale, above which the diffusive behavior is ob-
served, must be related to the typical cyclotron radius of the
present system. Since the fermi energy is fixed close to the
band center, it would vary almost inversely proportional to
hrf. In fact, the length scales are estimated as,38, ,49, and
,70 for hrf =0.04, 0.03 and 0.02, respectively. Below these
length scales, the system is in a ballistic regime. In estimat-
ing the diffusion coefficient, we discard the data in the bal-
listic regime. It should be noted that, in the present regime of
hrf, the effective mean free path due to the fluctuation of
magnetic fields is much larger than the cyclotron radius de-
termined by the mean value of the magnetic fields. For in-
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stance, for the case ofhrf =0.02, the effective mean free path
is estimated to be around 2100a,18 whereas the cyclotron
radius is 40a.

The estimated conductivity is plotted as a function ofhrf
in Fig. 2. It is rather remarkable that the conductivity stays
on the order of the conductance quantume2/h even for the
small values ofhrf. This feature is in contrast to the case of
the conventional random magnetic fields, where the conduc-
tivity is likely to diverge inversely proportional to the square
of the fluctuation of the random magnetic fields. These facts
mean that, provided that the sign of the magnetic fields is
fixed, the conductivity is insensitive to the strength of its
fluctuation, and implies that the zero field limithrf→0 does
not coincide with thehrf =0 case and thus is a singular limit.

IV. CONDUCTANCE

In order to investigate this small conductivity in the weak
fluctuation regime, we examine also the conductance in the
two-terminal geometry based on the Landauer formula

G =
e2

h
TrsTT†d, s12d

whereT denotes the transmission matrix through the system.
We consider theL by L square system with two leads con-
nected to both sides of the system. No magnetic field is as-
sumed in the leads. For this system, we adopt the transfer
matrix formalism27 for evaluating the transmission coeffi-
cient numerically. The maximum system size considered in
the present work is 160 by 160 and the average over 1000
realizations of random field configurations is performed.
Since the mean value of the magnetic fields is not zero in the
present system, the effect of the edge states is, in general,
important for the transport properties. We therefore estimate
the conductance both with the fixed boundary conditions and
with periodic boundary conditions in the transverse direc-
tion.

In Fig. 3, the conductances for the fixed boundary condi-
tions for various system-sizes are shown as a function ofhrf.
It is clearly seen that the conductance is likely to diverge as
hrf→0, which is qualitatively different from the behavior
obtained by the analysis of the electron diffusion. It is also
seen that the value of the conductivity is much larger than
that estimated from the electron diffusion. It is expected that
these differences come from the fact that the edge states,
which are absent in the simulation of the electron diffusion,
exist in the case of the fixed boundary conditions. The ob-
servation that the conductance is almost inversely propor-
tional to hrf (Fig. 3) suggests that it is the manifestation of
the fact that the number of edge states increases ashrf

−1.
In order to remove the effect of edge states, we evaluate

the conductivity under the periodic boundary conditions in
the transverse direction(Fig. 4). It is seen that, in contrast to
the case of the fixed boundary conditions, the conductance
stays on the order of the conductance quantum even for the
small values ofhrf. It should be emphasized that for smallhrf
the conductance decreases as the size of the system is in-
creased. We thus recover the results obtained from the elec-

FIG. 1. The second moment averaged over 10 realization of
random magnetic fields as a function of timet for E/V=0.5 and
hrf =0.04. The fluctuation around the mean value is plotted at
t / s" /Vd=500, 1000, 1500, and 2000.

FIG. 2. The conductivity as a function ofhrf for E/V=0.5. For
hrf ,0.1, the conductivity stays on the order of the conductance
quantume2/h.

FIG. 3. The conductance under the fixed boundary conditions
for E/V=0.5 andL=60sopen circlesd, 80(open squares), 100(open
triangles), 120(solid triangles), 140(solid squares), and 160(solid
circles). The average over 1000 realizations of random fields is
performed.
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tron diffusion. This suggests that it is essential to remove the
effect of edge states for observing the small conductance in
the random magnetic fields with a fixed sign.

In the case of the periodic boundary conditions, the total
flux through the system is adjusted to be an integer multiple
of the flux quantumh/ ueu in order to ensure that the flux
through the leads to be zero. Practically, we divide the excess
flux into small pieces and subtract these pieces randomly
from the fluxes already distributed in the system as long as
they are positive, so that the above condition is satisfied. This
procedure produces a weak correlation in random fluxes
which should be negligible for large system sizes.

More detailed calculations of the conductance for the pe-
riodic boundary conditions are shown in Fig. 5. It is clearly
seen that the conductance oscillates periodically as a func-
tion of 1/hrf and its period is independent of the system
sizes. From our numerical data(Fig. 5), the period in 1/hrf is
estimated to beDs1/hrfd=1.33. The same type of oscillation
is observed also forE/V=0.3 and forE/V=0.7 with differ-

ent periods. The periods in 1/hrf are estimated to be 1.18 and
1.41, respectively. Here we show that these oscillations can
be understood as the Shubnikov–de Haas effect.28 In general,
the period of the Shubnikov–de Haas effect for tight-binding
lattice models is given by

Ds1/f̃extd =
4p2

a2S
, f̃ext ; fext/f0, s13d

where fext denotes the external flux through the plaquette
and S the area of the Fermi surface of the two-dimensional
electron system. By evaluatingS in the system without mag-
netic fields, we obtainDs1/f̃extd=2.36, 2.59, and 2.83 for
E/V=0.3, 0.5, and 0.7, respectively. Since, in the present
system, the mean value of the magnetic fieldkf /f0l is given

by hrf /2, we can identifyf̃ext to be hrf /2. We then find the
relation thatDs1/f̃extd=2Ds1/hrfd. With this relation, it is
clear that the periods of the Shubnikov–de Haas effect evalu-
ated by Eq.(13) are in excellent agreement with those of the
oscillation observed in our numerical data. It is rather re-
markable that the present system exhibits such a clear
Shubnikov–de Haas effect even though the flux distributes
uniformly from 0 tohrf. A smaller oscillation than that of the
conductance is observed in the density of states(Fig. 6),
which seems to be consistent with the analytical results6,29

for the conventional Shubnikov–de Haas oscillation of 2D
systems in magnetic fields.

Apart from this oscillation, the conductance shows a
smooth cross over from the smallhrf regime to thehrf =1
limit. It is to be noted that due to the periodicity of the
phasesu j ,i in the hamitonian, thehrf =1 limit is identical to
the case of the conventional random magnetic field with zero
mean. Our numerical data suggest that this cross over takes
place aroundhrf =0.1,0.2. With this cross over, the conduc-
tance is increased to a value,1.5e2/h (Fig. 5) as hrf is in-
creased. This enhancement of conductance in the regime
hrf .0.1 is also observed in the conductivity estimated by the
equation of motion method(Fig. 2).

V. DISCUSSION

We have investigated the longitudinal conductivity in the
two-dimensional disordered magnetic fields with a fixed

FIG. 4. The conductance under the periodic boundary conditions
for E/V=0.5 andL=60sopen circlesd, 80(open squares), 100(open
triangles), 120(solid triangles), 140(solid squares), and 160(solid
circles). The average over 1000 realizations of random fields is
performed.

FIG. 5. The conductance under the periodic boundary conditions
for E/V=0.5 and L=80sopen squaresd, 100(open triangles),
120(solid triangles) as a function of 1/hrf. The period in 1/hrf is
estimated to be 1.33.

FIG. 6. The density of states forE/V=0.5.
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sign. It has been demonstrated that the system shows a slow
diffusion and has accordingly a small conductance which is
on the order ofe2/h and is insensitive to the magnitudehrf of
the random fields. It would be useful to interpret these results
in terms of the Drude formulas=s0/ s1+vc

2t2d, wherevc

andt denote the cyclotron frequency and the relaxation time,
respectively. The conductivity forvc=0 is denoted bys0.
Here it should be kept in mind that the present system is
equivalent to the system in the conventional random mag-
netic field distributed from −hrf /2 to hrf /2, plus an additional
uniform magnetic fieldhrf /2. Namely, we can regard it as the
conventional random field system in an external uniform
magnetic field. From this point of view, we assume that the
relaxation timet is determined simply by the scattering due
to the conventional random fields with zero mean and is
insensitive to the additional uniform magnetic field. We also
assume that the effect of the additional uniform magnetic
field appears only invc. It is then deduced6,7 that s0~t
~hrf

−2 andvc~hrf, and therefore that forhrf !1,

s/se2/hd =
s0/se2/hd
s1 + vc

2t2d
<

A1hrf
−2

s1 + A2hrf
−2d

, s14d

whereA1 andA2 are constants independent ofhrf. If we take
the limit as hrf→0, we obtain thats / se2/hd→A1/A2. The
parametersA1 andA2 are basically determined by the fermi
energyE.6,7 For instance,A1 has been estimated to be 0.95
for E/V=0.5.18 The present argument based on the Drude
formula, though it does not account for the Shubnikov–de
Haas effect, seems to account for the fact that forhrf !1 the
conductance stays on the order ofe2/h and is insensitive to
hrf. In this context, the feature specific to the present system
is that botht and stvcd2 scales in the same way ashrf

−2.
Finally, we emphasize that these present transport proper-

ties are not restricted to the case of the strictly positive ran-
dom magnetic fields. These properties can be observed in the
case where the random magnetic fields are almost positive.
In Fig. 7, the conductance is shown for the case where the
random fluxes hfi /f0j are distributed in the range
f−0.05hrf ,0.95hrfg. It is clear that the Shubnikov–de Haas
effect is also observed even though the magnetic fields are
not strictly positive. This suggests that these properties are
general features of systems in the random magnetic fields
whose mean and fluctuation are of the same order.

In summary, we have studied numerically the transport
properties in two-dimensional random magnetic fields with a

fixed sign. In particular, the conductivity in the limit of small
fluctuation has been investigated. In the simulation of the
diffusion of electron wave functions, it is observed that the
system shows diffusive behavior in larger length-scales than
the typical cyclotron radius. The diffusion turns out to be
very slow and the conductivity evaluated from the diffusion
coefficient stays on the order of the conductance quantum
insensitive to the magnitude of fluctuation of the magnetic
fields. This behavior is also observed in the two-terminal
conductance evaluated by means of the Landauer formula
under the periodic boundary conditions. A clear
Shubnikov–de Haas effect has been observed for a wide
range ofhrf. For a system with edge states, the contribution
to the conductance from the edge channels is much larger
than that from the bulk, and hence these properties are not
observable. In this sense, these peculiar features are the bulk
properties of the positive random magnetic fields. It has been
argued that the singularity in the limit ofhrf→0 can be un-
derstood within the framework of the Drude formula.
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