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We presentab initio density functional calculations that show P(Al ) dopant atoms in small hydrogen-
terminated Si crystals to be negatively(positively) charged. These signs of the dopant charges arereversed
relative to the same dopants in bulk Si. We have therefore developed a self-consistent Poisson-Schrödinger
model that allows us to bridge these two regimes of different charge character. Our Poisson-Schrödinger model
is based on a nonorthogonal tight-binding model that reproduces the band structure of silicon very well, and we
have also developed parameters for P, Al, and H. Using this model, we predict this reversal of the dopant
charge to occur at crystal sizes of the order of 100 Si atoms. We explain it as a result of the competition
between fundamental principles governing charge transfer in bulk semiconductors and molecules. Based on
these general considerations, we expect it to occur in nanocrystals of most semiconductors. We also calculate
band-edge energies and dopant-level energies for a number of crystallites containing 29–888 Si atoms.
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I. INTRODUCTION

The exponential increase of the speed and capacity for
semiconductor technology, described by Moore’s law,1 has
been enabled through continued miniaturization. Each gen-
eration of semiconductor technology has a 30% smaller
length scale than the previous. Today, state-of-the-art semi-
conductors have a feature size of 90 nm. To continue this
miniaturization further, it is important to understand the
properties of semiconductors on the nanoscale where quan-
tum effects become prominent.

Introducing appropriate impurity atoms(known as “dop-
ants”) into a semiconductor can increase the electrical con-
ductivity by many orders of magnitude.2,3 By doping a semi-
conductor, we can engineer its electrical properties—i.e., its
conductivity and whether the current is mediated by elec-
trons or holes. Doping is key to the operation of modern
electronic devices. It is therefore important to understand the
effects of the doping of semiconductor nanocrystals.

A semiconductor has, in the ground state, a valence band
completely filled with electrons and a conduction band
which is completely empty. The semiconductor cannot con-
duct current in this state; to conduct, one has either to add
electrons to the conduction band or remove electrons from
the valence band so that holes form there. Thermal excitation
of electrons from the valence band to the conduction band is
not possible for most semiconductors at room temperature. A
substitutional impurity with one valence electron more than
the host semiconductor is called a donor because if the donor
is thermally ionized, the extra electron will be promoted to
the conduction band and can freely move throughout the
semiconductor crystal. Similarly an impurity with one va-
lence electron fewer than the host is called an acceptor be-
cause it can accept an electron excited from the valence
band, forming a hole. A donor(acceptor) is called shallow if
the energy required to excite an electron(hole) from the
impurity state to the conduction-(valence-) band edge is
small, making thermal excitation possible at room tempera-

ture. The ground states for shallow donors and acceptors in
bulk semiconductors such as silicon have been thoroughly
studied.3–9 The extra electron of a donor such as phosphorus
in silicon will occupy a hydrogenlike orbital, extended to a
radius of several lattice constants due to the reduced effec-
tive mass of the electron and dielectric shielding of the semi-
conductor host. The Bohr radius of this hydrogenlike orbital
can be computed in the effective mass approximation10 to be
30 Å,3 which is very large compared to the atomic scale;
consequently, the(negative) charge of the donor electron will
be spread out over a large number of atoms, leaving the
donor atom positively charged and the surrounding atoms
negatively charged. In the case of an acceptor such as alumi-
num in silicon, the acceptor hole will also be very spread out,
leaving the donor atom negatively charged, while the sur-
rounding atoms will be positively charged. This qualitative
picture of charge transfer between semiconductor host and
shallow dopant is well established for bulk semiconductor
materials and is fundamental to our understanding of the
properties of semiconductor devices. Recent experimental
and theoretical work11–19 has shown that it also holds for a
variety of doped semiconductor nanoparticles.

Chemistry offers a very different view of the charge trans-
fer between atoms. Here it is instead driven by the electrone-
gativity of the atom species—i.e., the ability of the atom
species to attract extra(negative) charge.20 Atoms with
nearly filled valence shells have a large electronegativity be-
cause filled shells are energetically stable. Conversely an
atom species with nearly empty valence shell will have a low
electronegativity and will prefer to lose electrons to achieve
a state without a partially filled valence shell. Simple semi-
conductors such as silicon have exactly half-filled valence
shells. A donor atom, such as phosphorus, has one more va-
lence electron and will thus have a larger electronegativity
than silicon and be negatively charged. The chemical view
therefore predicts quite the opposite charge-transfer effect
from conventional semiconductor theory. Similarly an accep-
tor such as aluminum in silicon, which has one electron
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fewer than the host, will have a smaller electronegativity and
become positively charged, again in contrast to conventional
semiconductor theory.

The chemical view is well established for molecules and
the semiconductor theory is well established for bulk semi-
conductors. We have performedab initio density functional
theory (DFT) calculations21 on small hydrogen-terminated
doped silicon crystallites, which confirm the chemical view,
illustrated by Fig. 1, which shows the charge distribution in
doped and undoped crystals, calculated using natural orbital
population analysis. Calculating charge distributions in a
nonorthogonal basis are nontrivial; one of the more accurate
ways to handle the nondiagonal parts of the charge distribu-
tion is by using natural atomic orbitals(NAO’s).22 NAO
populations are calculated by performing a basis transforma-
tion to an orthogonal basis with occupancy-weighted mini-
mum deviations from the parent basis. High-accuracyab ini-

tio density functional theory calculations using large basis
sets, such as the one used here, can unfortunately not be used
with very large crystals due to the practical limitations of
computers. We have therefore developed a self-consistent
Poisson-Schrödinger model based on a tight-binding model,
which reproduces the band structure of silicon very well, in
order to unify the chemical and bulk semiconductor regimes
and study the crossover between them. We present in this
article results for energy levels and charge distributions,
while earlier work on semiconductor nanocrystals has mainly
focused on optical properties.23,24

II. NONORTHOGONAL TIGHT-BINDING MODEL

Our Poisson-Schrödinger model for silicon is based on a
tight-binding (TB) model developed by Bernsteinet al.,25

hereafter referred to as the Bernstein model. We have chosen
this model because it reproduces the band structure of silicon
very well. We have modified the Bernstein model in the fol-
lowing ways: Bernstein’s on-site potentials are functions of
the local density of atoms; we instead make it a function of
orbital occupation, using valence orbital ionization energies
(VOIE’s).26 The reason for this change is that we want a
self-consistent model. Our on-site energies have been chosen
to agree with Bernstein’s in the case for bulk silicon, in order
to preserve the band structure. The on-site potential of an
orbital of typel P hs,p,dj on sitei is given as

hil = Alpil + Bl + Clqi + Vi , s1d

whereAl, Bl, andCl are fitting parameters, given in Table I,
0øpil ø2 is the population of the orbital,qi is the total
charge on the atom, andVi is the electric potential at the site.
See Appendix A for how to calculateVi. The distance-
dependent part of the two-center Hamiltonian matrix ele-
ments is given by25

FIG. 1. (Color online) On-site natural population(Ref. 22)
charge as function of the site’s radial coordinate for Si35H36. The
solid curve shows undoped crystallite. The dotted curve shows
charge distribution when the central atomsr =0d has been substi-
tuted for phosphorus(donor in bulk) and the dashed curve shows
the result for aluminum substitution(acceptor in bulk). The ellipse
shows which atoms are hydrogen.

TABLE I. On-site parameters. TheA andC parameters fors andp orbitals are taken from VOIE’s, while the values ford orbitals are
estimates, based on parameters from sulfur(Cd=0.64Cp andAd=0) since no VOIE was available. TheB parameters for Si have been chosen
so the on-site energies coincide with Bernstein’s parameters for bulk Si. TheB parameters for Al and P have been fitted to produce
reasonable charge distributions for small doped crystals.

Orbital A (Ry) B (Ry) C sRy/ed

Si-s 0.12201 −0.322132 −0.59460

Si-p 0.08232 0.352257 −0.59460

Si-d 0.0 1.08175 −0.37999

Al-s 0.10584 −0.0919849 −0.52331

Al- p 0.08305 0.576522 −0.52331

Al-d 0.0 1.15528 −0.33442

P-s 0.14626 −0.586838 −0.65781

P-p 0.08305 0.212551 −0.65781

P-d 0.0 1.00822 −0.42041
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Hll8msRd = sall8m + bll8mR+ cll8mR2de−g
ll 8m
2

RfsRd, s2d

wheremP hs ,p ,dj denotes the type of interaction between
the two orbitals of typel and l8, and all8m, bll8m, cll8m, and
gll8m are fitting parameters found in Ref. 25. The cutoff func-
tion fsRd is given by

fsRd = 5F1 + expSR− Rc + 5Lc

Lc
DG−1

, Rø Rc,

0, R. Rc,
6 s3d

whereRc=12.5 a.u. andLc=0.5 a.u. The distance-dependent
part of the overlap matrix elements is27

Sll8msRd = sdll8 + tll8mR+ qll8mR2 + r ll8mR3de−u
ll 8m
2

RfsRd,

s4d

wheretll8m, qll8m, r ll8m, andull8m are fitting parameters found
in Ref. 25. The angular dependence of the Hamiltonian and
overlap matrix elements is the standard two-center Slater-
Koster form.28 Some properties of this model are given in
Table II; see also the band structure in Fig. 2.

Since aluminum and phosphorus are isoelectronic, we use
the same hopping and overlap parameters as for silicon. The
on-site energies however are based on VOIE data, together
with a fit for theBl parameters; see Table I. See also Appen-
dix B.

For hydrogen we use ans basis with the on-site potential

hi = 0.008893qi
3 − 1.026776qi

2 − 1.979317qi + 0.232 +Vi ,

s5d

expressed in Ry and based on valence orbital ionization en-
ergy for the charge dependence;26 the value 0.232 is a fitted
parameter(see Appendix B). The distance-dependent part of
the two-center Hamiltonian between the hydrogen s orbital
and anl-type orbital in silicon is taken to be

HslsRd =
sld0

2

R2 fsRd, s6d

whered0=2.80 a.u. is the bond distance, andss=−0.49, sp
=−0.23, andsd=0 are fitting parameters. The hydrogen or-
bitals have been assumed to be orthogonal to all silicon or-
bitals; choosing nonzero overlap matrix elements does not
improve the fit noticeably.

To complete the Poisson-Schrödinger model, we self-
consistently solve the tight-binding model and the electro-
static potential by populating all the states below the Fermi
level with electrons. For nonzero temperature, a Fermi-Dirac
distribution may be used. The details of how the electrostatic
potential is calculated can be found in Appendix A. Our
model is similar to the one used by Lannooet al.13

III. RESULTS

We have applied the present model to calculate the
ground-state properties of a number of silicon nanocrystals
ranging in size from Si29H36 to Si888H372, with and without
dopants. The crystallites are constructed from a diamond lat-
tice by taking all atoms inside a sphere centered on one of
the lattice sites. The surface of the crystallite is treated by
first removing all silicon atoms that have only one bond with
the crystallite. The crystallite is then hydrogen terminated by
attaching hydrogen atoms to the surface silicon atoms at
what would have been neighboring silicon sites and the
silicon-hydrogen bonds are shortened to 1.48 Å(the bond
length in SiH4). Hydrogen termination is important to obtain
a clean energy gap.30 These crystallites have tetrahedral sym-
metry. We have also studied the effects of surface reconstruc-
tions by mimicking the reconstruction of a Sis100d231:H
surface31 where it is appropriate. The geometry of these re-
constructions is based on anab initio DFT calculation.21 The
reconstruction of the surface often breaks the tetrahedral
symmetry of the crystallites, with important implications for
the degeneracy of dopant states. The doped crystals have the
central silicon site substituted with aluminum or phosphorus.

Figure 3 shows how the energies of the valence- and
conduction-band edges change with nanocrystal size and also
the effects of surface reconstructions. The conduction-band-
edge energy varies little with nanocrystal size. The valence-
band edge moves up, narrowing the band gap to,1.5 eV for
Si888H372 (largest nanocrystal) from ,2.7 eV for Si29H36
(smallest nanocrystal). The surface reconstructions increase
the energies of both the conduction- and valence-band edges,
while the band gap remains approximately unchanged.

The band gap can be fitted to a function

TABLE II. Some properties of the tight-binding model(Ref.
25). Experimental values are given in parentheses(Ref. 29).

Position of conduction-band minima 87.7%G-X (85%)

Band gap 1.01 eV (1.12)

Light-hole mass 0.26me (0.15)

Heavy-hole mass 0.31me (0.54)

Longitudinal electron mass 0.55me (0.92)

Transverse electron mass 0.15me (0.19)

FIG. 2. Band structure of silicon, calculated in the present
model.
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Egsrd/Eg0 − 1 =Ar−b, s7d

where r =1.685N1/3 is the radius of the crystallite,N is the
number of Si atoms,Eg0 is the band gap in the bulk, andA
and b are fitting parameters. We find thatA=10.5 andb
=1.0; see fitted line in Fig. 3. Liuet al.30 and Zungeret al.32

reportb=1.37 in models without Coulomb interactions. Ef-
fective mass theory(particle in a box) predicts anr−2 scaling.
Our result, however, agrees very well with density functional
theory calculations.12,33,34Although we have the same power
scaling as DFT calculations for the band gap, we do not have
the same absolute magnitude(not the sameA): Our silicon
parameters are optimized for a correct band gap for bulk
silicon, but our hydrogen parameters have been fitted to re-
produce the DFT charge distribution in small crystals, not the
band gap. We therefore do not get exactly the same confine-
ment effect on the band gap as DFT. We note, however, that
there is still disagreement in the literature as to what the gap
is in these crystals, with quantum Monte Carlo calculations
differing substantially from DFT.35

There has been interest in how the system size affects the
dopant levels, and there have been a number of studies using
different methods—for example, effective mass theory,14–16

TB,16,17 partial retention of diatomic differential overlap
(PRDDO),18 and DFT.19 We define the dopant level as the
energy difference between the partly filled single-particle
dopant eigenstate and its nearest-neighbor eigenstate. Study-
ing the crystallites without surface reconstructions(see Fig.
4), we see that the Al dopant levels vary quite smoothly with
crystal size. We have fitted the function

Edsrd = A/r2 + B s8d

to the dopant-level energies, with parametersA=14 eV Å2

and B=0.112 eV. The experimental bulk value for an Al

dopant in silicon is 69 meV.29 Extrapolating to infinite crys-
tal size, we see that our model produces a somewhat too
large, but still very reasonable dopant level for aluminum.
For crystals with surface reconstructions, the tetrahedral ge-
ometry is broken and the dopant level, which in the case for
aluminum was threefold degenerate, is split. The splitting is
very small and poses problems both for interpretation of
what the dopant-level energy should be(see our definition of
dopant energy level above) and for the convergence of the
calculations(an energy splitting of less than 3 meV near the
Fermi level at 0 K poses a problem; this can be remedied by
increasing temperature to 30–100 K). The P dopant levels,
as opposed to Al, vary a lot from crystal to crystal. It is not
reasonable to try to fit a function in this case, but we note
that the largest crystallites studied in our calculations pro-
duce dopant energy levels near the experimental value
46 meV.29 We attribute the difference in behavior between
the acceptor and donor states to the fact that the electron
states have a larger probability on the surface sites, making
donor states much more sensitive to the surface than acceptor
states which typically are more localized to the interior of the
crystal; see the bottom graphs of Figs. 5 and 6. The introduc-
tion of surface reconstructions to the P-doped crystals does
not cause the same problems as with Al as generally the
donor ground states are not degenerate, but the donor states’
sensitivity to the surface still causes large changes. The gen-
eral behavior shown for unreconstructed crystals in the bot-
tom graph of Fig. 4 is, however, not changed by the recon-
structions(not shown). The strong variations for the donor-
state levels suggest that it would be difficult to engineer the
properties of a smalln-doped crystal without atomic control
in the manufacturing. It is also relevant in this regard that the
bands in these small structures are made up from discrete
energy levels, and even for our largest crystallites, these lev-
els have an energy spacing of 5–50 meV.

The charge on the impurity site for the phosphorus-doped
crystallites(see Fig. 4 and ther =0 position in top graph of

FIG. 3. (Color online) The valence-band-edge and conductance-
band-edge energies, as well as the band gap of the different un-
doped crystallites as function of crystallite radius. Solid lines and
circles show energies for crystals with unreconstructed surfaces.
Dashed lines and boxes show energies for crystals with surface
reconstructions. The dotted line is a fit of the function
Egsrd for comparison with Refs. 30 and 32.

FIG. 4. (Color online) The top graph shows the charge on the
dopant site for different Al-(solid line) and P-(dashed line) doped
crystals as function of crystal radius. The bottom graph shows the
energy of the dopant state for the same crystals. A fitEdsrd=A/ r2

+B to the Al-dopant energies is shown(dotted line).
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Fig. 5) exhibits a crossover from negative to positive when
going from small to large nanocrystals. This crossover be-
tween the quasimolecular behavior and bulk semiconductor
behavior occurs between PSi34H36 and PSi86H76. For the
aluminum-doped crystallites(Figs. 4 and 6) we find a cross-
over from a positive to a negative impurity site between
AlSi147H100 and AlSi292H172. The precise crossover points
are sensitive to the parameters of the model, and this result
should be regarded as a first(order of magnitude) estimate.
The charges on the impurity site in Figs. 5 and 6 are consis-
tently somewhat smaller in magnitude than in Fig. 1; we
attribute this difference to the fact that Mulliken population

analysis(Figs. 5 and 6) tends to smear the charge between
overlapping orbitals on neighboring atoms more than do
natural orbital calculations(Fig. 1). Mulliken population
analysis is the simplest way to calculate charge in a nonor-
thogonal basis; a nondiagonal element of the charge matrix is
simply equally distributed between the pair of overlapping
orbitals. The experimental VOIE parameters used in our
model are optimized for use with Mulliken population analy-
sis.

The dopant site charge(see Fig. 4) cannot be explained in
a simple way in terms of dopant-level energies, band-gap
energies, or band-edge energies(see Fig. 3); detailed self-
consistent calculations are required for reliable predictions.

The dielectric response to the impurity obviously changes
with crystal size, since the charge on the impurity changes;
this shows the importance of performing a self-consistent
calculation. One-electron(or -hole) models14–16 that have
been used to treat dopants in quantum dots can therefore not
be extended to the nanoscale as the effective impurity poten-
tial changes.

IV. CONCLUSIONS

We have developed a self-consistent Poisson-Schrödinger
model36 based on a nonorthogonal tight-binding model.25

The present model reproduces the band structure of silicon
very well, and we have developed parameters also for hydro-
gen, phosphorus, and aluminum in order to explore the prop-
erties of doped and hydrogen-terminated silicon nanocrys-
tals. Our model has allowed us to explore the crossover from
a previously unexplored regime in semiconductor nanocrys-
tals in which the molecular view of charge transfer between
atoms holds true to a regime where macroscopic solid-state
semiconductor theory prevails. The crossover is signaled by
a striking reversal of the sign of the charge transfer between
the host semiconductor and dopant atom that has not been
anticipated in previous experimental or theoretical work. We
predict that it should occur at nanocrystal sizes of the order
of 100 Si atoms. The charge reversal is not related in a
simple way to the band gap or the dopant energy levels of the
crystallites. Since very basic principles of solid-state semi-
conductor physics and molecular chemistry are the underly-
ing reasons for the charge reversal, we predict it to be a
general phenomenon occurring for a wide variety of nano-
scopic semiconductors and dopants. The charge crossover
also shows the importance of using a self-consistent model
since one-electron(or -hole) models does not include the
change in dielectric response to the impurity with crystal
size.

For Si nanocrystals we find an energy gap widening that
scales asr−1.0 consistent with density functional theory
calculations.12,33,34 We predict that the dopant energy level
for Al in Si crystallites varies smoothly and can be fitted to a
function Edsrd=A/ r2+B whereB is the dopant level in bulk
silicon. Donor levels should vary widely from crystallite to
crystallite, making it difficult to engineer properties of
P-doped Si nanocrystals without atomic control in manufac-
turing.

FIG. 5. (Color online) Top graph: total Mulliken charge on each
site as function of radial coordinate for three different P-doped crys-
tals. The charge distributions are generally very symmetric. Center
graph: Mulliken probability distribution for the donor single-
particle eigenstate. Bottom graph: radial probability distribution for
the dopant state, calculated by dividing the radial coordinate into
bins.

FIG. 6. (Color online) Top graph: total Mulliken charge on each
site as function of radial coordinate for three different Al-doped
crystals. The charge distributions are generally very symmetric.
Center graph: Mulliken probability distribution for the acceptor
single particle eigenstate. Bottom graph: radial probability distribu-
tion for the dopant state, calculated by dividing the radial coordi-
nate into bins.
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APPENDIX A: ELECTROSTATIC INTERACTION

This appendix describes how the electrostatic potential in
the structure is calculated, taking into account the polariza-
tion of the core electrons of silicon. The electrostatic poten-
tial at a site would, in the simplest case, be the sum of Cou-
lomb potentials from all other sites plus an on-site
contribution included in Eq.(1). Our tight-binding model,
however, only includes valence electrons but core electrons
will also contribute to the potential through dipole interac-
tion. We chose to view the silicon crystallite as a macro-
scopic medium with a dielectric constantkc relating to the
polarization of the cores. To do this, we have to define a
surface and calculate the surface polarization charge.

1. Polarization charge

We calculate the polarization charge densityspol at an
interface between two different media with dielectric con-
stantsk1 andk2 as a response to an applied electric fieldE0
(see Fig. 7).37 The electric fieldE0 can be from point charges
or other parts of the polarization surface. In the case of the
point charges, we have a local response from the dielectric
medium, shielding the charge to an effective value ofq/kr
wherekr is the local dielectric constant. The dielectric me-
dium produces charge density only near sources and near
surfaces and interfaces, so we need only to concern ourself
with these points.

There will be an electric field

Ep =
spol

2e0
sA1d

from the polarization surface, directed as

Ep1 = − Epn̂, Ep2 = Epn̂ sA2d

in the two media(see Fig. 7). The polarization in the two
media is

Pi = sE0 + Epide0ski − 1d. sA3d

The surface polarization charge density is given by

spol = sP1 − P2d · n̂, sA4d

wheren̂ is a surface normal. Equations(A1)–(A4) allow us
to calculate the surface polarization charge as

spol = 2e0E0 · n̂
k1 − k2

k1 + k2
. sA5d

The electric field can be written as

Esr d = o
j

qjsr − r jd
4pe0kjur − r ju3

+E
S

dr 8
spolsr 8dsr − r 8d
4pe0ur − r 8u3

,

sA6d

whereqj are point charges at positionsr j where the medium
has dielectric constantkj andS is the interface between the
two media. We discretize the surfaceS in order to compute
the surface charge,

E
S

dr 8 → o
l

Sl , sA7d

whereSl =Sln̂l are discrete area elements with normal vectors
defined in the direction from media 1 to media 2; the area
elements are centered at coordinatesr l. This assumes that the
field Esr d, which we will be integrating, is approximately
constant over the surface elementSl, which is not always
true; we must therefore make an exception for when we con-
sider the fieldElsr ld from a point charge atr l. We will want
to conserve the total flux from the point charge; exactly half
the flux from the point charge will go through the surface
elementSl when the position of the point charge approaches
the surface,

E
Sl

dSElsr d =
ql

2kle0
, sA8d

which allows us to define an effective and average electric
field at r l:

Elsr ld =
qln̂l

2kle0Sl
. sA9d

We can now write the electric field, Eq.(A6), as

Esr id = o
jÞi

qjsr i − r jd
4pe0kjur i − r ju3

+
qin̂i

2kie0Si
sA10d

+ o
lÞi

ql
polsr i − r ld

4pe0ur i − r lu3
+

qi
poln̂i

2e0Si
, sA11d

where

ql
pol = spolsr ldSl = 2e0Esr ld ·Sl

k1 − k2

k1 + k2
. sA12d

We obtain an equation forqi
pol,

FIG. 7. Interface between two dielectric media with dielectric
constantsk1 and k2. E0 is an applied electric field that induces
polarizationP1 andP1 of two the media. The polarization causes a
surfaces charge densityspol at the surface and electric fieldsEp1

andEp1 normal to the surface.
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qi
pol =

k1 − k2

k1 + k2
So

jÞi

qjsr i − r jd ·Si

2pkjur i − r ju3
+

qi

ki

+ o
lÞi

ql
polsr i − r ld ·Si

2pur i − r lu3
+ qi

polD , sA13d

which we can turn into the matrix equation

sI − Bdqpol = Aq, sA14d

whereI is the identity matrix, by performing the definitions

sqpoldi = qi
pol, sA15d

sqdi = qi , sA16d

sAdi j =
k1 − k2

k1 + k2
3 5 sr i − r jd ·Si

2pkjur i − r ju3
, i Þ j ,

1/ki , i = j ,
6 sA17d

sBdil =
k1 − k2

k1 + k2
3 5 sr i − r ld ·Si

2pur i − r lu3
, i Þ l ,

1, i = l .
6 sA18d

2. Normalization of polarization charge

Discretizing the interface with the polarization charge
poses some problems and we must take special care to ensure
charge conservation; we therefore utilize Gauss’ law to im-
pose charge conservation for the system. The interfaceS is a
closed surface; Gauss’ law states

E
S

qjsr − r jd ·dS

4pkje0ur − r ju3
= Hqj/kje0 for r j insideS,

0 for r j outsideS.
J

sA19d

Discretizing Gauss’ law, we get

o
iÞ j

qjsr − r jd ·Si

4pkje0ur − r ju3
+

qj

2kje0
= Hqj/kje0 for r j insideS,

0 for r j outsideS.
J .

sA20d

This can be applied toA:

o
i

sAdi j = Qj ; 5 2sk1 − k2d
kjsk1 + k2d

, r j insideS,

0, r j outsideS.
6 sA21d

For each point charge, we enforce Gauss’ law by creating
a normalized matrix

sANdi j ; sAdi j +
Qj − ol

sAdl j

ol
usAdl j u

usAdi j u. sA22d

For point charges on surface sites, we assign half of the
charge to be inside and half outside. We perform the same
normalization onB; however, here we consider the charge at

each site to be part of the surface and exactly half the flux of
the charge goes through the rest of the surfaceS, resulting in

Qj =
k1 − k2

k1 + k2
, j surface site. sA23d

3. Calculating the potential

The potential at each site is calculated by summing the
Coulomb potential from all other sites; for surface sites, we
also include the on-site polarization charge by assuming it is
spread over a circular disk with areaSi,

FIG. 8. (Color online) Charge on each site in three small ap-
proximately spherical hydrogen-terminated silicon crystals, as a
function of the site radial coordinates. The solid line shows charge,
calculated usingab initio density functional theory and natural
population, multiplied by 0.4. The dashed line shows Mulliken
charge for the current Poisson-Schrödinger model with the fitted
parameters for hydrogen.

FIG. 9. (Color online) Geometry for calculation of the dielectric
constant. The crystal is infinite in thex-y plane. The two charge
planes are placed halfway between two(100) atomic planes, chosen
so that theb<a/2. The surface is hydrogen terminated. The radius
of each sphere is proportional to the charge on the site. The on-site
charge is small everywhere except on the surface sites, which are
positive, and the hydrogen sites, which are negative.
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Vi = o
jÞi

qj/kj + qj
pol

4pe0ur i − r ju
+

qi
pol

2e0
ÎpSi

, sA24d

given that the potential at the center of a homogeneously
charged circular disk of radiusr is V=q/2e0pr, whereq is
the charge.

4. Surface of a structure

We are considering crystalline structures of silicon where
each atom is bound to four neighbors. We define a surface
site to be a site with less than four neighbors. This leaves us
with three cases for surfaces sites.

(i) Three neighbors. We set the surface normal to be
pointing in the direction of the missing neighbor. The area of
the surface site is set toSl =45.54 a.u.2; this is the correct
area for each site on a(111) surface, where all surface atoms
have exactly one missing neighbor.

(ii ) Two neighbors. We set the surface normal to be point-
ing in a central direction between the two missing neighbors.
The area of the surface site is set toSl =52.66 a.u.2; this is the
correct area for each site on a(100) surface, where all sur-
face atoms have exactly two missing neighbors.

(iii ) One neighbor. None of the structures considered have
this surface configuration.

APPENDIX B: FITTING OF PARAMETERS

1. Hydrogen

We obtained parameters for hydrogen by fitting toab ini-
tio density functional calculations,21 for a small approxi-

mately spherical hydrogen-terminated silicon crystal
sSi87H76d. The Mulliken charge calculations, used in our
model, produce smaller charges than natural orbital calcula-
tions, used in the DFT calculations. We have therefore cho-
sen to fit our Mulliken charge calculations to 40% of the
natural orbital DFT charge.

The fit is shown in Fig. 8. The parameters fitted were the
value 0.232 Ry in Eq.(5) for the on-site potential and the
hopping parametersSs=−0.49 Ry, Sp=−0.23 Ry, and
Sd=0 Ry in Eq.(6). The hydrogen orbitals are assumed to be
orthogonal to the silicon orbitals; allowing nonzero overlap
does not improve the fit noticeably.

2. Aluminum and phosphorus

Aluminum and phosphorus are isoelectronic with silicon,
so we use the same hopping and overlap parameters
as for silicon. The on-site Hamiltonian parameters for Al and
P are based on VOIE data(see Table I) for the charge
and occupation dependence[see Eq.(1)]. The parameters
Bl parameters in Eq.(1) have been fitted to show a crossover
for the charge on the dopant site and reasonable values
for dopant-level energies for the largest nanocrystals
considered. The parameters are, for aluminum,Bs=
−0.091 984 9 Ry,Bp=0.576 522 Ry, andBd=1.155 28 Ry,
and for phosphorus,Bs=−0.586 838 Ry,Bp=0.212 551 Ry,
andBd=1.008 22 Ry.

3. Dielectric constant

The theory for electrostatic interaction(Appendix A) con-
tains one fitting parameter—i.e., the susceptibility of the core
electrons expressed as a dielectric constantkc. The value of
kc=3.0 was decided by calculating the polarization charge in
the model, due to two charge planes with charge sheet den-
sities s and −s inserted into an infinite slab of silicon. See
Fig. 9 for computations in the(100) direction; the(111)-
direction computations are treated analogously. The total di-
electric constantk is calculated as

k =
s

snet
, sB1d

wheresnet is the shielded net charge in the top half of the
slab, obtained by adding the applied charge, the charge of the
valence electrons, the charge of the nuclei with core elec-
trons, and the polarization charges of the core electrons, in
the same way as in Appendix A. Figure 10 shows how the
dielectric constant of the model changes when the thickness
of the silicon slab and distance between the two charge
planes charge are increased. We see a slight anisotropy in the
model, but the dielectric constantk is near the experimental
value 11.8.

FIG. 10. (Color online) The dielectric constant for Si the model
for surfaces normal to the(100) and (111) directions, between two
charge planes, separated by distanceb. The effective dielectric con-
stant for core polarization used iskc=3.0.
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