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Poisson-Schrodinger andab initio modeling of doped Si nanocrystals: Reversal of the charge
transfer between host and dopant atoms
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We presentab initio density functional calculations that show(Rl) dopant atoms in small hydrogen-
terminated Si crystals to be negativelyositively) charged. These signs of the dopant chargeseversed
relative to the same dopants in bulk Si. We have therefore developed a self-consistent Poisson-Schrédinger
model that allows us to bridge these two regimes of different charge character. Our Poisson-Schrédinger model
is based on a nonorthogonal tight-binding model that reproduces the band structure of silicon very well, and we
have also developed parameters for P, Al, and H. Using this model, we predict this reversal of the dopant
charge to occur at crystal sizes of the order of 100 Si atoms. We explain it as a result of the competition
between fundamental principles governing charge transfer in bulk semiconductors and molecules. Based on
these general considerations, we expect it to occur in nanocrystals of most semiconductors. We also calculate
band-edge energies and dopant-level energies for a number of crystallites containing 29—-888 Si atoms.
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[. INTRODUCTION ture. The ground states for shallow donors and acceptors in
bulk semiconductors such as silicon have been thoroughly
The exponential increase of the speed and capacity fastudied®® The extra electron of a donor such as phosphorus
semiconductor technology, described by Moore’s tawas in silicon will occupy a hydrogenlike orbital, extended to a
been enabled through continued miniaturization. Each gerradius of several lattice constants due to the reduced effec-
eration of semiconductor technology has a 30% smalletive mass of the electron and dielectric shielding of the semi-
length scale than the previous. Today, state-of-the-art semeéonductor host. The Bohr radius of this hydrogenlike orbital
conductors have a feature size of 90 nm. To continue thisan be computed in the effective mass approximéatitmbe
miniaturization further, it is important to understand the 30 A2 which is very large compared to the atomic scale;
properties of semiconductors on the nanoscale where quanensequently, thénegative charge of the donor electron will
tum effects become prominent. be spread out over a large number of atoms, leaving the
Introducing appropriate impurity atonggnown as “dop-  donor atom positively charged and the surrounding atoms
ants” into a semiconductor can increase the electrical connegatively charged. In the case of an acceptor such as alumi-
ductivity by many orders of magnitud€.By doping a semi- num in silicon, the acceptor hole will also be very spread out,
conductor, we can engineer its electrical properties—i.e., itdeaving the donor atom negatively charged, while the sur-
conductivity and whether the current is mediated by elecrounding atoms will be positively charged. This qualitative
trons or holes. Doping is key to the operation of modernpicture of charge transfer between semiconductor host and
electronic devices. It is therefore important to understand thehallow dopant is well established for bulk semiconductor
effects of the doping of semiconductor nanocrystals. materials and is fundamental to our understanding of the
A semiconductor has, in the ground state, a valence bangproperties of semiconductor devices. Recent experimental
completely filled with electrons and a conduction bandand theoretical wo®=° has shown that it also holds for a
which is completely empty. The semiconductor cannot convariety of doped semiconductor nanoparticles.
duct current in this state; to conduct, one has either to add Chemistry offers a very different view of the charge trans-
electrons to the conduction band or remove electrons fronfer between atoms. Here it is instead driven by the electrone-
the valence band so that holes form there. Thermal excitatiogativity of the atom species—i.e., the ability of the atom
of electrons from the valence band to the conduction band ispecies to attract extrgnegative charge?® Atoms with
not possible for most semiconductors at room temperature. Aearly filled valence shells have a large electronegativity be-
substitutional impurity with one valence electron more thancause filled shells are energetically stable. Conversely an
the host semiconductor is called a donor because if the don@tom species with nearly empty valence shell will have a low
is thermally ionized, the extra electron will be promoted toelectronegativity and will prefer to lose electrons to achieve
the conduction band and can freely move throughout the state without a partially filled valence shell. Simple semi-
semiconductor crystal. Similarly an impurity with one va- conductors such as silicon have exactly half-filled valence
lence electron fewer than the host is called an acceptor beshells. A donor atom, such as phosphorus, has one more va-
cause it can accept an electron excited from the valenckence electron and will thus have a larger electronegativity
band, forming a hole. A dongacceptoy is called shallow if  than silicon and be negatively charged. The chemical view
the energy required to excite an electr@mwle) from the therefore predicts quite the opposite charge-transfer effect
impurity state to the conductionvalence} band edge is from conventional semiconductor theory. Similarly an accep-
small, making thermal excitation possible at room temperator such as aluminum in silicon, which has one electron
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tio density functional theory calculations using large basis

0.6/ - 4
L\ — SipHy ] sets, such as the one used here, can unfortunately not be used
A P8131H36 . . .o .
04F AlSt H . with very large crystals due to the practical limitations of
L \ T 17736 1

computers. We have therefore developed a self-consistent
] Poisson-Schrédinger model based on a tight-binding model,
- which reproduces the band structure of silicon very well, in

1 order to unify the chemical and bulk semiconductor regimes

and study the crossover between them. We present in this
article results for energy levels and charge distributions,

while earlier work on semiconductor nanocrystals has mainly

focused on optical propertié$?+
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FIG. 1. (Color online On-site natural populatiorfRef. 22
charge as function of the site’s radial coordinate fogl$is. The
solid curve shows undoped crystallite. The dotted curve shows Qur Poisson-Schrédinger model for silicon is based on a
charge distribution when the central atqn=0) has been substi- tight-binding (TB) model developed by Bernsteit al,?
tuted for phosphorugdonor in bulk and the dashed curve shows hereafter referred to as the Bernstein model. We have chosen
the result for aluminum substitutiatcceptor in bulk The ellipse  this model because it reproduces the band structure of silicon
shows which atoms are hydrogen. very well. We have modified the Bernstein model in the fol-

lowing ways: Bernstein’s on-site potentials are functions of
fewer than the host, will have a smaller electronegativity andhe local density of atoms; we instead make it a function of
become positively charged, again in contrast to conventionadrpital occupation, using valence orbital ionization energies
semiconductor theory. (VOIE’s).2% The reason for this change is that we want a

The chemical view is well established for molecules andself-consistent model. Our on-site energies have been chosen
the semiconductor theory is well established for bulk semito agree with Bernstein’s in the case for bulk silicon, in order

conductors. We have performed initio density functional to preserve the band structure. The on-site potential of an
theory (DFT) calculationd! on small hydrogen-terminated orbital of typel e {s,p,d} on sitei is given as

doped silicon crystallites, which confirm the chemical view,
illustrated by Fig. 1, which shows the charge distribution in
doped and undoped crystals, calculated using natural orbital
population analysis. Calculating charge distributions in a
nonorthogonal basis are nontrivial; one of the more accurateshereA;, B;, andC,; are fitting parameters, given in Table I,
ways to handle the nondiagonal parts of the charge distribld=<p; <2 is the population of the orbitak); is the total
tion is by using natural atomic orbitaldNAQO’s).?2 NAO  charge on the atom, and is the electric potential at the site.
populations are calculated by performing a basis transformeSee Appendix A for how to calculat¥;. The distance-
tion to an orthogonal basis with occupancy-weighted mini-dependent part of the two-center Hamiltonian matrix ele-
mum deviations from the parent basis. High-accuraoyni-  ments is given b3

II. NONORTHOGONAL TIGHT-BINDING MODEL

hi =Ap; + B+ Ciq; + V;, (1)

TABLE I. On-site parameters. Th& and C parameters fos andp orbitals are taken from VOIE's, while the values fdbiorbitals are
estimates, based on parameters from suly0.64C, andAy=0) since no VOIE was available. THgparameters for Si have been chosen
so the on-site energies coincide with Bernstein’s parameters for bulk SiBT&rameters for Al and P have been fitted to produce
reasonable charge distributions for small doped crystals.

Orbital A (Ry) B (Ry) C (Ry/e)
Si-s 0.12201 -0.322132 —-0.59460
Si-p 0.08232 0.352257 -0.59460
Sid 0.0 1.08175 -0.37999
Al-s 0.10584 -0.0919849 -0.52331
Al-p 0.08305 0.576522 -0.52331
Al-d 0.0 1.15528 -0.33442
P-s 0.14626 -0.586838 -0.65781
P-p 0.08305 0.212551 -0.65781
Pd 0.0 1.00822 -0.42041
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TABLE Il. Some properties of the tight-binding modgRef. h, = 0.008898F - 1.026776* - 1.979317; + 0.232 +V,,
25). Experimental values are given in parenthe@esf. 29. ' ' )

expressed in Ry and based on valence orbital ionization en-

Position of conduction-band minima 87.7P6X (85%)

Band gap 1.0lev (.13 ergy for the charge dependeriéehe value 0.232 is a fitted
Light-hole mass 0.26, 0.15 paramete(see Appendix B The distance-dependent part of
Heavy-hole mass 0.8 (0.59 the two-center Hamiltonian between the hydrogen s orbital
Longitudinal electron mass 0.6% (0.92 and anl-type orbital in silicon is taken to be
Transverse electron mass (0315} (0.19 )

Ha(R) = 21(R), ©

2
Hy . (R) = (8, + by R+ ¢ ROEURER), (2 _ _
where dy=2.80 a.u. is the bond distance, agg-0.49, s,
=-0.23, andsy=0 are fitting parameters. The hydrogen or-
bitals have been assumed to be orthogonal to all silicon or-
bitals; choosing nonzero overlap matrix elements does not
improve the fit noticeably.
To complete the Poisson-Schrddinger model, we self-
consistently solve the tight-binding model and the electro-
‘<R— R.+ 5LC> 1 _ static potential by populating all the states below the Fermi
f(R) = 1+ex L, » R=R, 3) level with electrons. For nonzero temperature, a Fermi-Dirac
distribution may be used. The details of how the electrostatic
0, R>R., potential is calculated can be found in Appendix A. Our
model is similar to the one used by Lannebal '3
whereR.=12.5 a.u. and..=0.5 a.u. The distance-dependent

part of the overlap matrix elementsis

where u € {o, 7, 8} denotes the type of interaction between
the two orbitals of typd andl’, anda,, by,, ¢, and
g+, are fitting parameters found in Ref. 25. The cutoff func-
tion f(R) is given by

Ill. RESULTS

Si (R = (8 +ty, R+ q”,#R2+ r||,#R3)e"“ﬁ'MRf(R), We have applied the present model to calculate the
ground-state properties of a number of silicon nanocrystals
) ranging in size from SiHsg to SigggH370, With and without
dopants. The crystallites are constructed from a diamond lat-
wherety,, Qi i, @nduy., are fitting parameters found tice by taking all atoms inside a sphere centered on one of
in Ref. 25. The angular dependence of the Hamiltonian anthe lattice sites. The surface of the crystallite is treated by
overlap matrix elements is the standard two-center Slateffirst removing all silicon atoms that have only one bond with
Koster form?® Some properties of this model are given in the crystallite. The crystallite is then hydrogen terminated by
Table II; see also the band structure in Fig. 2. attaching hydrogen atoms to the surface silicon atoms at
Since aluminum and phosphorus are isoelectronic, we usghat would have been neighboring silicon sites and the
the same hopping and overlap parameters as for silicon. Thailicon-hydrogen bonds are shortened to 1.48tde bond
on-site energies however are based on VOIE data, togeth&ngth in SiH,). Hydrogen termination is important to obtain
with a fit for the B, parameters; see Table I. See also Appen-a clean energy gaf).These crystallites have tetrahedral sym-
dix B. metry. We have also studied the effects of surface reconstruc-
For hydrogen we use asmbasis with the on-site potential tions by mimicking the reconstruction of a($002x1:H
surfacé! where it is appropriate. The geometry of these re-
15 constructions is based on ab initio DFT calculatior?* The
I \ reconstruction of the surface often breaks the tetrahedral
10 /
\

symmetry of the crystallites, with important implications for
the degeneracy of dopant states. The doped crystals have the
central silicon site substituted with aluminum or phosphorus.

Figure 3 shows how the energies of the valence- and
conduction-band edges change with nanocrystal size and also
the effects of surface reconstructions. The conduction-band-
edge energy varies little with nanocrystal size. The valence-
band edge moves up, narrowing the band gap 16 eV for
SiggdHa7- (largest nanocrystplfrom ~2.7 eV for SpgHsg
(smallest nanocrystal The surface reconstructions increase
the energies of both the conduction- and valence-band edges,

FIG. 2. Band structure of silicon, calculated in the presentwhile the band gap remains approximately unchanged.
model. The band gap can be fitted to a function
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FIG. 3. (Color onling The valence-band-edge and conductance-d FIG. 4 (Color_ onling The t.op_graph shows the charge on the
: . opant site for different Al{solid line) and P-(dashed ling doped
band-edge energies, as well as the band gap of the different un- . .
. : . . - crystals as function of crystal radius. The bottom graph shows the
doped crystallites as function of crystallite radius. Solid lines and A2
. ; . energy of the dopant state for the same crystals. Kfit)=A/r
circles show energies for crystals with unreconstructed surfaceer.B to the Al-dopant energies is showdotted ling
Dashed lines and boxes show energies for crystals with surface P g '
reconstructions. The dotted line is a fit of the function

E,(r) for comparison with Refs. 30 and 32. dopant in silicon is 69 me¥? Extrapolating to infinite crys-

tal size, we see that our model produces a somewhat too

b large, but still very reasonable dopant level for aluminum.
Eg(r)/Ego— 1 =Ar", @) For crystals with surface reconstructions, the tetrahedral ge-

wherer=1.683\"3 is the radius of the crystallite is the ometry is broken and the dopant level, which in the case for

number of Si atomsE, is the band gap in the bulk, anl aluminum was threefold degenerate, is spIit.. The split'ting is
and b are fitting pargmeters. We find th&=10.5 andb &V small and poses problems both for Interpretation of
=1.0; see fitted line in Fig. 3. Liet al® and Zungeket al32 what the dopant-level energy should (see our definition of
reportb=1.37 in models without Coulomb interactions. Ef- dopant energy level aboyand for the convergence of the

fective mass theorgparticle in a box predicts a2 scaling. calculationg(an energy splitting of less than 3 meV near the

Our result, however, agrees very well with density functional.':erml level at 0 K poses a problem; this can be remedied by

theory calculationd?3334Although we have the same power increasing temperature to 30-100.Khe P dopant levels,
scaling as DFT calculations for the band gap, we do not hav8S opposed to Al, vary a lot frqm c_rystgl to crystal. It is not
reasonable to try to fit a function in this case, but we note
ﬁhat the largest crystallites studied in our calculations pro-
silicon, but our hydrogen parameters have been fitted to reggce 325’33‘ etr':?tr)g)t/ Ifﬁ/elzlﬁnear thg (E)xpr)]enmersjtatl value
produce the DFT charge distribution in small crystals, not the meVv:= Ve allribute the difierence in benavior between

band gap. We therefore do not get exactly the same confinéhe acceptor and donor states to the fact that _the elect_ron
ment effect on the band gap as DFT. We note, however, th tates have a larger probab|lllty on the surface sites, making
there is still disagreement in the literature as to what the ga onor states much more sensitive to the surface than acceptor

is in these crystals, with quantum Monte Carlo calculation tates which typically are more localized to the interior of the
differing substantiaily from DE®5 crystal; see the bottom graphs of Figs. 5 and 6. The introduc-

There has been interest in how the system size affects tI“Haon of surface reconstructions to the_P-doped crystals does
dopant levels, and there have been a number of studies usifi@t cause the same problems as with Al as generally the

different methods—for example, effective mass theé6rif no_t[.glrtoutndthstatesfare n'?'ltl degenerlate, b“rt] the dorfl(_)r: states
TB,'®17 partial retention of diatomic differential overlap sensilivity to the surtace Stll causes largeé changes. 1 he gen-

(PRDDO),18 and DFT® We define the dopant level as the eral behavior shown for unreconstructed crystals in the bot-

: - : _.tom graph of Fig. 4 is, however, not changed by the recon-
energy difference between the partly filled single-particle ructions(not shown. The strong variations for the donor-

dopant eigenstate and its nearest-neighbor eigenstate. Stuc& . e .
ing the crystallites without surface reconstructigese Fig. ate levels suggest that it would be difficult to engineer the

4), we see that the Al dopant levels vary quite smoothly With_properties of a S”_‘a""d‘.’Ped crystal Without.atomic control
cr;/stal size. We have fitted the function in the manufacturing. It is also relevant in this regard that the

bands in these small structures are made up from discrete

Eq(r) =AIr2+B (8)  energy levels, and even for our largest crystallites, these lev-
els have an energy spacing of 5-50 meV.
to the dopant-level energies, with parametarsi4 eV A The charge on the impurity site for the phosphorus-doped

and B=0.112 eV. The experimental bulk value for an Al crystallites(see Fig. 4 and the=0 position in top graph of
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0.2 T , , , , - —] analysis(Figs. 5 and §tends to smear the charge between
2 0-01?{ A : E overlapping orbitals on neighboring atoms more than do
goo.og; g natural orbital calculationgFig. 1). Mulliken population
8 O?TZT:‘:‘---‘V\;,__ ; i 1 analysis is the simplest way to calculate charge in a nonor-
005E oy by i e R T thogonal basis; a nondiagonal element of the charge matrix is
Bels — PSi, H_,| | simply equally distributed between the pair of overlapping
T e e PSisoHual orbitals. The experimental VOIE parameters used in our
_0.05—//'\\\“1 s P a model are optimized for use with Mulliken population analy-
O ———— SIS
o3k I3 ] The dopant site chargsee Fig. 4 cannot be explained in
< 02k Lol o N a simple way in terms of dopant-level energies, band-gap
901-_ '——I N energies, or band-edge energisee Fig. 3, detailed self-
A 'O-_L s e B e : 1 consistent calculations are required for reliable predictions.
0 2 4 6 8 10 12 14 16 18 The dielectric response to the impurity obviously changes
r[A] with crystal size, since the charge on the impurity changes;

. _ this shows the importance of performing a self-consistent
FIG. 5. (Color onling Top graph: total Mulliken charge on each ca|culation. One-electroiior -hole) modeld4-16 that have
site as function of radial coordinate for three different P-doped crysyeen used to treat dopants in quantum dots can therefore not

tals. The charge distributions are generally very symmetric. Centefq extended to the nanoscale as the effective impurity poten-
graph: Mulliken probability distribution for the donor single- tial changes.

particle eigenstate. Bottom graph: radial probability distribution for

the dopant state, calculated by dividing the radial coordinate into

bins. IV. CONCLUSIONS
Fig. 5 exhibits a crossover from negative to positive when
going from small to large nanocrystals. This crossover be-
tween the quasimolecular behavior and bulk semiconduct
behavior occurs between RB$iss and PSigH,s For the
aluminum-doped crystallited-igs. 4 and §we find a cross-
over from a positive to a negative impurity site between
AlSi4H1g9 and AlSkgH 7, The precise crossover points

We have developed a self-consistent Poisson-Schrddinger

odef® based on a nonorthogonal tight-binding motel.
he present model reproduces the band structure of silicon
very well, and we have developed parameters also for hydro-
gen, phosphorus, and aluminum in order to explore the prop-
erties of doped and hydrogen-terminated silicon nanocrys-
are sensitive to the parameters of the model, and this resutﬁlls' O_ur model has allowed us to explo_re the crossover from
a previously unexplored regime in semiconductor nanocrys-

should be regarded as a firgtrder of magnitudeestimate. tals in which the molecular view of charge transfer between

The charges on the impurity site in Figs. 5 and 6 are ConSiSétoms holds true to a regime where macroscopic solid-state
tently somewhat smaller in magnitude than in Fig. 1; we 9 P

attribute this difference to the fact that Mulliken population sem|.cgnductor theory preyalls. The crossover s signaled by
a striking reversal of the sign of the charge transfer between

the host semiconductor and dopant atom that has not been

= 091%-_ ' S anticipated in previous experimental or theoretical work. We
ED A ,"\\ w5 predict that it should occur at nanocrystal sizes of the order
g 0-08; ,’__\'_ e B of 100 Si atoms. The charge reversal is not related in a
@) -0.0SW ‘{ \'I"--.-‘: L ompe P . - simple way to the band gap or the dopant energy levels of the
o015 T = ' ‘ crystallites. Since very basic principles of solid-state semi-
& 0.1i\\ - 21218873372 ] _conductor physics and molecular chemistry are th_e underly-
= r L [ 175 16 1 ing reasons for the charge reversal, we predict it to be a
0.05¢ . ._,,‘”\.\ ——— AlSigH,, ] general phenomenon occurring for a wide variety of nano-
R e NN scopic semiconductors and dopants. The charge crossover
i 03 | . 5 also shows the importance of using a self-consistent model
=021 [ oged o y since one-electrorfor -hole models does not include the
5:0.1_:': ) e (Y ; . change in dielectric response to the impurity with crystal
0 L | L 1 L 1 e | L I Size.
¢ 2 * 8 Sr [A]IO 2 11 la I For Si nanocrystals we find an energy gap widening that

scales asr™C consistent with density functional theory
FIG. 6. (Color onling Top graph: total Mulliken charge on each calculf’;\tior.1§.2*33v34yve pre,diCt that the dopant energy level
site as function of radial coordinate for three different Al-doped for AI_ in Si crystallites varies Sm_OOtth and can be f_'ttEd toa
crystals. The charge distributions are generally very symmetriciunction Eq(r)=A/r?+B whereB is the dopant level in bulk
Center graph: Mulliken probability distribution for the acceptor Silicon. Donor levels should vary widely from crystallite to

single particle eigenstate. Bottom graph: radial probability distribu-crystallite, making it difficult to engineer properties of
tion for the dopant state, calculated by dividing the radial coordi-P-doped Si nanocrystals without atomic control in manufac-

nate into bins. turing.
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> Pi= (Eo+ Ep)eo(ki = 1). (A3)
i The surface polarization charge density is given by
S e 0o = (Py=Py) -, (Ad)
wheren is a surface normal. Equatioid1)—~A4) allow us
Ep Ep 0
to calculate the surface polarization charge as
<
ki ko
Py P, Opol = 260E0 ‘n Ktk (AS)
1T K
k1 ks o .
The electric field can be written as
FIG. 7. Interface between two dielectric media with dielectric (r=-r) (=17
constantsk; and k,. Eq is an applied electric field that induces E(r)= 2 —qJ—J—3 +f dr,Zpol—3,
polarizationP; andP; of two the media. The polarization causes a j 47T€0kj|r - rj| S dareglr — 1|
surfaces charge density,, at the surface and electric fieldSy, (A6)

andEp; normal to the surface.
whereq; are point charges at positionswhere the medium
ACKNOWLEDGMENTS has dielectric constar and S is the interface between the

) . two media. We discretize the surfaBan order to compute
This work was supported by NSERC and the Canadiaqne syrface charge,

Institute for Advanced Research.
APPENDIX A: ELECTROSTATIC INTERACTION fsdr - 2 S (A7)

This appen_dix describes hO\.N th_e electrostatic potentia_l ir\‘/vhereS,=Sﬁ| are discrete area elements with normal vectors
the structure is calculated, taking into account the pOIa”Zaaefined in the direction from media 1 to media 2: the area

tion of th? core eleqtrons O.f silicon. The electrostatic POeNGlements are centered at coordinated his assumes that the
tial at a site would, in the simplest case, be the sum of Cou

lomb tentials f I oth i | " field E(r), which we will be integrating, is approximately
omt 'bp? en_laT drg”? aE (1) g sl_ers“ guj an O(;I]-ISI € constant over the surface eleme®t which is not always
;:]on ribution Im(': uled in Iq( )- lur tlg A tl)ntlng mol et’ true; we must therefore make an exception for when we con-
OWEVer, only Includes valence electrons but core electrongyq . o fieldE(r;) from a point charge at;. We will want
will also contribute to the potential through dipole interac- h | flux f h int ch . v half
tion. We chose to view the silicon crystallite as a macro-to conserve the total flux from the point charge; exactly ha
’ the flux from the point charge will go through the surface

scopic ”?ed'“m with a dielectric COT‘Sta"lI relating to th_e elementS, when the position of the point charge approaches
polarization of the cores. To do this, we have to define 3he surface

surface and calculate the surface polarization charge.
a
2k|60’

1. Polarization charge f dSE(r) = (A8)
S

We calculate the polarization charge density, at an _ _ _ _
interface between two different media with dielectric con-Which allows us to define an effective and average electric
stantsk; andk, as a response to an applied electric figld ~ field atr;:

(see Fig. 7.3 The electric fieldE, can be from point charges A
or other parts of the polarization surface. In the case of the E/(r)= N, ) (A9)
point charges, we have a local response from the dielectric 2k €S
medlum,_shleldlng the_ charge to an effective \_/alueq_bﬁtr We can now write the electric field, EGA6), as
wherek, is the local dielectric constant. The dielectric me-
dium produce§ charge density only near sources and near _s g(r;=r)) gif;
surfaces and interfaces, so we need only to concern ourself E(ri) = IPEPRE , (A10)
. . j#i 47760kj|r| I’]| 2ki€pS
with these points.
There will be an electric field

qlpol(l,i _ f|) ipolﬁi

o , (A11)
E,= pol (A1) 7 Ameri—1® T 265
260
from the polarization surface, directed as where
- a —E A ki —k
Epr=—EpN, Ep=Eyn (A2) AP = 0pol(1)S = 260E(r)) - Slﬁ- (A12)
in the two media(see Fig. 7. The polarization in the two e
media is We obtain an equation fay®,
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pol k ( qJ(rI j) Si ql

D kgt ko \ 15 27k - |3 ]
oI E
Pri-r) - S ) .
— +q"”', (A13)
1% 27'f|r -r? o = E
which we can turn into the matrix equation gﬁ R
=
(I -B)dpoi=Aq, (A14) © g
wherel is the identity matrix, by performing the definitions g
(onl)i = Qip0|1 (A15) :
()i =a, (A16) 9

ky — ko MJ)_Si FIG. 8. (Color onling Charge on each site in three small ap-

(A)j; = X § 2ak|ri—r*’ b (A17)  proximately spherical hydrogen-terminated silicon crystals, as a
Ky +ko P function of the site radial coordinates. The solid line shows charge
1/k;, i=j, i . o ge.
calculated usingab initio density functional theory and natural
population, multiplied by 0.4. The dashed line shows Mulliken
-k (ri— r|) S . + charge for the current Poisson-Schrodinger model with the fitted
(B); = Tk, X\ 2alri—1|*’ ' (A18)  parameters for hydrogen.
1, i=1
each site to be part of the surface and exactly half the flux of
the charge goes through the rest of the surfgaesulting in
2. Normalization of polarization charge kl— k, . .
. . . . L Q= j surface site. (A23)
Discretizing the interface with the polarization charge Ky + ko'

poses some problems and we must take special care to ensure
charge conservation; we therefore utilize Gauss’ law to im-
pose charge conservation for the system. The intei¥dsea 3. Calculating the potential

closed surface; Gauss'’ law states The potential at each site is calculated by summing the

q(r=r)-dS _ ) qlke for rjinsides, Coulomb potential from all other sites; for surface sites, we
f also include the on-site polarization charge by assuming it is

Amkjelr - | spread over a circular disk with ar&g

0  forr; outsideS.
(A19)
Discretizing Gauss’ law, we get
qi(r=ry -S L :{qj/kjeo for rj inside S,
7 amkielr =12 2kieo 0 forr; outsideS.

(A20)
This can be applied té:
2(ks — k
2k~ k) riinsideS

E (A =Q; =1 ki(ky + k)’ . ’ (A21)
' 0, r; outsideS.

For each point charge, we enforce Gauss’ law by creating
a normalized matrix

QJ - 2 (A) FIG. 9. (Color onling Geometry for calculation of the dielectric
(An)ij = (A); + |( Al (A22)  constant. The crystal is infinite in they plane. The two charge
E |( )u planes are placed halfway between @60) atomic planes, chosen

so that theb~=a/2. The surface is hydrogen terminated. The radius
For point charges on surface sites, we assign half of thef each sphere is proportional to the charge on the site. The on-site
charge to be inside and half outside. We perform the sameharge is small everywhere except on the surface sites, which are
normalization orB; however, here we consider the charge atpositive, and the hydrogen sites, which are negative.
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14 - | - | ‘ - mately spherical hydrogen-terminated silicon crystal
I 4R y o x 1 (Sig/H,¢). The Mulliken charge calculations, used in our
12__ 4 OGRS J BB g BEQRERSERT ] model, produce smaller charges than natural orbital calcula-
210k, + X i tions, used in the DFT calculations. We have therefore cho-
§ [ ™ S 1 sen to fit our Mulliken charge calculations to 40% of the
£ g ! 8(1)(1);3122322 - natural orbital DFT charge.
o T 1 The fit is shown in Fig. 8. The parameters fitted were the
5 6~ 7 value 0.232 Ry in Eq(5) for the on-site potential and the
ﬁ I i hopping parameters§=-0.49 Ry, §,=-0.23 Ry, and
_ 4? ] S;=0 Ry in Eq.(6). The hydrogen orbitals are assumed to be
o i orthogonal to the silicon orbitals; allowing nonzero overlap
L does not improve the fit noticeably.
0 L 1 1

L | | L
- = b‘[tg] 5 5 2. Aluminum and phosphorus
Aluminum and phosphorus are isoelectronic with silicon,
FIG. 10. (Color onling The dielectric constant for Si the model g5 we use the same hopping and overlap parameters
for surfaces normal to thel00) and (111) directions, between two 5 for sjlicon. The on-site Hamiltonian parameters for Al and
charge planes, separated by distanc&he effective dielectric con- P are based on VOIE datsee Table ) for the charge
stant for core polarization used kg=3.0. and occupation dependen¢see Eq.(1)]. The parameters
B, parameters in Eq1) have been fitted to show a crossover
qj/kj+qf°' pol for the charge on the dopant site and reasonable values
~ T [ (A24)  for dopant-level energies for the largest nanocrystals
j#i 4"77'50|r| rJ| 260\*775 . .
considered. The parameters are, for aluminuBy=
given that the potential at the center of a homogeneously0.091 984 9 Ry,B,=0.576 522 Ry, andB;=1.155 28 Ry,
charged circular disk of radiusis V=q/2eynr, whereq is  and for phosphorus3,=-0.586 838 Ry B,=0.212 551 Ry,
the charge. andB4=1.008 22 Ry.

Vi:

4. Surface of a structure 3. Dielectric constant

We are considering crystalline structures of silicon where The theory for electrostatic interactioAppendix A) con-
each atom is bound to four neighbors. We define a surfackins one fitting parameter—i.e., the susceptibility of the core
site to be a site with less than four neighbors. This leaves uglectrons expressed as a dielectric conskanThe value of
with three cases for surfaces sites. kc:30 was decided by Calculating the polarization charge in

(i) Three neighborsWe set the surface normal to be the model, due to two charge planes with charge sheet den-
pointing in the direction of the missing neighbor. The area ofSities o and o inserted into an infinite slab of silicon. See
the surface site is set t§=45.54 a.l%; this is the correct Fig. 9 for computations in th¢100) direction; the(111-
area for each site on(@11) surface, where all surface atoms direction computations are treated analogously. The total di-

have exactly one missing neighbor. electric constank is calculated as
(ii) Two neighborsWe set the surface normal to be point- .
ing in a central direction between the two missing neighbors. k=—, (B1)
The area of the surface site is se§e52.66 a.l?; this is the Onet
correct area for each site on(200) surface, where all sur- \ynere ¢, is the shielded net charge in the top half of the
face atoms have exactly two missing neighbors. slab, obtained by adding the applied charge, the charge of the
(iii) One neighbarNone of the structures considered havegjence electrons, the charge of the nuclei with core elec-
this surface configuration. trons, and the polarization charges of the core electrons, in
the same way as in Appendix A. Figure 10 shows how the
APPENDIX B: FITTING OF PARAMETERS dielectric constant of the model changes when the thickness

of the silicon slab and distance between the two charge

planes charge are increased. We see a slight anisotropy in the
We obtained parameters for hydrogen by fittingatmini- model, but the dielectric constaktis near the experimental

tio density functional calculatior®, for a small approxi- value 11.8.

1. Hydrogen
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