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A series ofGWcalculations for zinc-blende Zn, Cd, and Hg chalcogenidessS, Se, and Ted is presented. The
resulting quasiparticle gaps are 0.3–0.6 eV smaller than in experiment. The cation semicore states remain
similarly underbined as in previousGW calculations for IIB-VI materials. It is shown that application of the
plasmon-pole model for screening leads to systematic and qualitative errors: the band gaps result larger and the
occupied band widths undergo expansion, instead of contraction. Several steps, like including off-diagonal
matrix elements of the self-energy, updating eigenvalues in the Green’s function and screening, and using the
special vertex corrections, are examined. We also propose a scheme to treat core corrections in the case when
Zn2+, Cd2+, or Hg2+ pseudopotentials are used in aGW calculation.
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I. INTRODUCTION

The IIB-VI semiconductors are a special class of materi-
als. The zinc-, cadmium-, and mercury chalcogenides show a
large spectrum of properties, making them good candidates
for modern optoelectronic and spintronic applications. From
the theoretical standpoint they are very interesting and chal-
lenging materials as well. Many of their special properties
are largely determined by the interaction between the local-
ized semicored electrons with the valencesp electrons. Due
to this sp-d interaction theab initio description of IIB-VI
compounds is more complex than for group-IV or -III-V
semiconductors and in some sense less satisfactory. For ex-
ample, energy gaps between occupied and empty bands pro-
vided by the local-density approximationsLDA d of the
density-functional theory1 sDFTd deviate much more from
experiment than is usually the case. Similarly, the shallow
semicored levels are strongly underbined within the LDA.
LDA calculations for these materials have been available for
a long time, and the problems were recognized and analyzed
in detail by Wei and Zunger.2 It is well known, however, that
the LDA band structure, as well as presumably any Kohn-
Sham band structure, need not correspond to physical, one-
particle excitations in the system, so the problems with the
LDA are in a sense understood. On the other hand, an inter-
esting question is whether the description of electronic exci-
tations by theGW approximation3–9 were as successfull for
IIB-VI compounds as it turned out to be for standard semi-
conductors.

Partially, an answer to this question is given by a few
already existing calculations for IIB-VI compounds: the cal-
culations of Aryasetwan and co-workers10,11 for ZnO, ZnS,
and ZnSe, of Rohlfinget al.12,13 for CdS and ZnS, of Rohlf-
ing and Louie14 for HgSe, and very recently, of Luoet al.15

for ZnS and ZnSe. Zakharovet al.16 have applied theGW
approximation to the case of all zinc and cadmium chalco-
genides in their zinc-blende and wurtzite phases. In their
calculation, however, the important for physics of these com-
pounds semicored states have not been explicitly considered
and kept rigidly in the core. It is interesting to note that all
these calculations differ in the way theGWapproximation is
applied and also differ in the obtained results. In addition, in

a very recentGWcalculation for several materials by Kotani
and van Schilfgaarde17 it was claimed that the application of
the GW method including all electrons, as opposed to
pseudopotentials, leads to a systematic lowering of the cal-
culated gaps, thus spoiling the usually good-quality results of
the GW-pseudopotential calculations. This finding seems to
be in accordance with the most recent all-electron andself-
consistentapplication of theGWscheme to Si and Ge by Ku
and Eguiluz.18 These authors report on the opposite effect of
core electrons and self-consistency on the band gap in Si and
Ge and suggest the universality of this phenomenon.

In this situation, in order to draw more general conclu-
sions, it is important to work out a large database of results
obtained with the same methodology and technicalities for
all IIB-VI compounds. For this reason we present in this pa-
perGWcalculations for ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe,
HgS, HgSe, and HgTe in the zinc-blende modification. Our
calculations are based on pseudopotentials. However, using
Zn20+, Cd20+, and Hg20+ pseudopotentials—i.e., explicitly in-
cluding the most important core electrons—namely,s, p, and
d electrons from then=3, n=4, andn=5 shells of Zn, Cd,
amd Hg atoms, respectively—ensures being not far from the
all-electron limit. The mixed-basis expansion for Bloch or-
bitals is used without any shape approximation to the Kohn-
Sham potential. The screened Coulomb interactionWsvd is
calculated within the random phase approximationsRPAd
with an explicit v dependence. The results are compared
then with ones obtained using the plasmon-polesPPd
approximation.4,6 The role of the exchange-correlation con-
tribution to screening, as described by the time-dependent
LDA, is shortly discussed. The effect of the off-diagonal
matrix elements of the self-energy is also examined. As
usual, our calculations are not self-consistent in theinteract-
ing Green’s function; however, the first step towards self-
consistency is examined. It consists in updating the quasipar-
ticle energies in the construction of the Green’s function and
response.

Our results show that with the exception ofb-HgS, the
GW energy gaps between conduction and valence states are
0.3–0.6 eV smaller than in experiment. Imposing a limited
self-consistency by updating the eigenvalues increases the
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gaps by 0.1–0.4 eV, thus leading to a rather good agreement
with experiment. Our results concerning the binding energy
of semicore states agree with previous observations10–13,15,17

that the GW theory, although performing better than the
LDA, still underbinds theses states. When the plasmon-pole
approximation is used instead of the full,v-dependent, RPA
screening, systematic trends are noted:sid GW energy gaps
get larger,sii d semicore states are more bound, andsiii d oc-
cupied bandwidths undergo an opposite shift than is obtained
with the full, frequency-dependent screening.

In the next section a short presentation of our implemen-
tation of theGW scheme is given together with some tech-
nicalities. In Sec. III the results are presented and compared
with experiment. In Sec. IV the first steps towards self-
consistency, vertex corrections, and the role of the off-
diagonal matrix elements of self-energy are discussed. In
Sec. V the results of an approach using Zn2+, Cd2+, and Hg2+

pseudopotentials are presented.

II. GW APPROXIMATION

The band structure of a solid is the energy-
quasimomentum dependence of one-particle excitations—
i.e., of electrons or holes created in the system—e.g., in the
inverse-photoemission or photoemission process. It is de-
scribed by poles of one-particle Green’s functions Fourier
transformed to the energy-momentum domain. Green’s func-
tions are obtained solving the Dyson equation, in which the
electron-electron interaction is contained in two terms: the
electrostatic, Hartree potential and the non-Hermitian,
energy-dependent, and spatially nonlocal operator, called the
self-energy. The complexity of obtaining theinteracting
Green’s functions—i.e., the Green’s functions when the
electron-electron interaction is described more realistically
than in the one-particle approximation—comes from the
complexity of calculation of self-energies. This is made man-
agable only using approximations. The most popular ap-
proximation applied in theab initio framework is theGW
approximation.3,4 In this scheme the self-energy is repre-
sented by a product of the Green’s functionG and the dy-
namically screened interparticlesCoulombd interaction
W=e−11/r:

S = iGW. s1d

e−1 is the inverse, longitudinal, RPA, electronic, dielectric
function of the system.

First applications of theGW approximation to real solids
date back to the works of Strinatiet al.,5 Hybertsen and
Louie,6 and Godbyet al.7 Since then, it has been applied to
many materials; the results are described in two recent
reviews.8,9 In most cases the “standard” put forward by the
Hybertsen-Louie calculation6 was followed—theGW ap-
proximation is applied perturbatively on top of the zeroth-
order, LDA band structure, within the pseudopotential frame-
work, using plane-wave expansion of Bloch functions and
interactions and modeling the energy dependence ofe−1 by
the plasmon-pole approximation.4,6 The work of Zakharovet
al.16 for zinc and cadmium chalcogenides is based on the
same methodology, with the exception that the screening was

approximated by a model function and the Green’s function
entering Eq.s1d was iteratively updated. The authors used
Zn2+ and Cd2+ pseudopotentials and the semicored states
were ignored in theirGWcalculation. Since then, a few more
rigorous calculations for IIB-VI compounds have appeared,
with an explicit account of the semicored states. In particu-
lar, Rohlfinget al.12 have shown for the case of cubic CdS
that when the semicore Cd 4d states are treated as valence
states in aGW calculation, it is mandatory to include also
more deep core states from the samen=4 shell. This is an
important and general conclusion concerning not only CdS
and other IIB-VI materials, but valid for all cases where lo-
calizedd orbitals must be treated explicitly.19

Similarly to Rohlfinget al.,12 our implementation of the
GWscheme for IIB-VI compounds is based on the cation 20+
sZn20+,Cd20+,Hg20+d and anion 6+sS6+,Se6+,Te6+d LDA
pseudopotentials.20 The zeroth-order, LDA band structure is
obtained using the mixed-basis set composed of localized
gaussians ofs, p, andd symmetry at cation sites and plane
waves with a cutoff of 30 Ry. We believe that such a basis
describes well both the localized core and semicores, p, and
d states as well as the highly excited conduction bands. This
is an important prerequisite of aGW calculation because of
the slow convergence of theGW self-energy with respect to
the contribution of highly excited states.21,22 The frequency-
dependent RPA screened Coulomb interactionWsvd is cal-
culated in Fourier space at the Monkhorst-Pack23 k mesh of
32 points in the Brillouin zone. The Coulomb singularity is
integrated out using the Gygi-Baldereschi method.24 The cal-
culations follow our previous implementations of theGW
scheme.21,25,26As usual, the Dyson equation is solved in the
diagonal approximation—i.e., projecting all relevant quanti-
ties on the particular state of interestfkn sk is the wave
vector andn is the band indexd:

EQP = Ekn
LDA + kfknuSsEQPd − Vxc

LDAufknl. s2d

EQP, Ekn
LDA, and Vxc

LDA are the quasiparticle energy, LDA
Kohn-Sham energy, and LDA exchange-correlation potential
respectively. Equations2d can be solved forEQP iteratively
or, for not large quasiparticle shiftsEQP−Ekn

LDA, analytically,
through the linearization of the self-energy aroundEkn

LDA:

EQP = Ekn
LDA + ZkfknuSsEkn

LDAd − Vxc
LDAufknl. s3d

Z is the renormalization constant:

Z = S1 −
dkfknuSsEkn

LDAdufknl
dE

D−1

. s4d

The spin-orbitsSOd interaction is included perturbatively
after the LDA self-consistency orGW self-energy has been
obtained.

It was found out by Rohlfinget al.12 for CdS that using
the Cd12+ pseudopotential—i.e., explicitly including the Cd
4d states and keeping rigidly in core the Cd 4s and Cd 4p
states—significantly deteriorates the results. The underbound
in the LDA Cd 4d states get even less bound in theGW
calculation. On the other hand, putting the wholen=4 shell
of Cd into the core—i.e., working with Cd2+ pseudopotential
sand following the “standard” of the Hybertsen and Louie6d
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results for CdS—according to Rohlfinget al.12—in an energy
gap unusually—about 1.2 eV—bigger than the experimental
gap. This is in contrast with the calculation of Zakharovet
al.,16 whose gap for zinc-blende CdS was only 0.3 eV bigger
than in experiment. Our results support the observation of
Rohlfinget al.12 We will address this point in Sec. V and will
also suggest that one should take a careful care of core den-
sity corrections in that case in order to get resonable results.

All calculations have been done using the experimental,
zinc-blende lattice constants, which are 10.214, 10.713, and
11.504 a.u. for ZnS, ZnSe, and ZnTe; 11.017, 11.497, and
12.245 a.u. for CdS, CdSe, and CdTe; and 11.057, 11.497,
and 12.210 a.u. for HgS, HgSe, and HgTe, respectively.

III. RESULTS

In Tables I–III the LDA-Kohn-Sham andGW energies of
a few states at theG, X, and L points are given for zinc-
blende Zn, Cd, and Hg chalcogenides respectively. TheGW
results are obtained with the frequency-dependent, RPA-type
screening of the electron-electron interactionscolumn de-
noted “GW” d. For comparison, the results obtained with the
plasmon-pole approximation based on the static limit of the
screening matrices are also presentedscolumn “GW-PP”d.27

The results in Tables I–III are obtained using scalar-
relativistic pseudopotentials—however, without including
the spin-orbit interaction. We present these results in order to

TABLE I. ZnS, ZnSe, and ZnTe in the zinc-blende structure: one-electron energiessin eVd at G, X, andL points.sLDA d Kohn-Sham-
LDA results,sGWd GW-RPA calculations with full, frequency-dependent screening, andsGW-PPd GW-RPA using the plasmon-pole model
of screening. Spin-orbit interaction not included.

ZnS ZnSe ZnTe

LDA GW GW-PP LDA GW GW-PP LDA GW GW-PP

G1c 1.84 3.41 3.50 1.02 2.37 2.46 1.04 2.27 2.39

G15v 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

G12d −6.02 −6.59 −6.68 −6.33 −6.98 −7.04 −6.82 −7.48 −7.46

G15d −6.50 −7.01 −7.18 −6.69 −7.30 −7.42 −7.05 −7.68 −7.70

G1v −13.08 −12.57 −13.32 −13.23 −12.90 −13.66 −11.83 −11.52 −12.26

X1c 3.19 4.59 4.62 2.79 3.92 3.94 2.11 3.11 3.20

X5v −2.25 −2.24 −2.42 −2.20 −2.20 −2.38 −2.20 −2.19 −2.35

X3v −4.69 −4.66 −4.91 −4.86 −4.79 −5.09 −5.11 −4.96 −5.27

X1v −11.79 −11.37 −12.02 −12.15 −11.89 −12.51 −10.63 −10.41 −10.97

L1c 3.06 4.71 4.80 2.31 3.68 3.76 1.61 2.72 2.82

L3v −0.88 −0.89 −0.94 −0.88 −0.88 −0.94 −0.91 −0.91 −0.97

L1v −5.39 −5.18 −5.66 −5.31 −5.12 −5.60 −5.27 −5.09 −5.50

L1v −12.12 −11.68 −12.35 −12.43 −12.15 −12.80 −10.95 −10.71 −11.30

TABLE II. Same as Table I for CdS, CdSe, and CdTe in the zinc-blende structure.

CdS CdSe CdTe

LDA GW GW-PP LDA GW GW-PP LDA GW GW-PP

G1c 0.82 2.13 2.23 0.29 1.38 1.48 0.49 1.51 1.64

G15v 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

G12d −7.24 −7.88 −7.95 −7.49 −8.21 −8.25 −7.92 −8.65 −8.62

G15d −7.72 −8.29 −8.44 −7.88 −8.53 −8.64 −8.19 −8.88 −8.92

G1v −12.35 −11.84 −12.56 −12.60 −12.25 −12.97 −11.21 −10.91 −11.59

X1c 3.30 4.54 4.59 2.92 3.90 3.95 2.43 3.22 3.29

X5v −1.95 −1.92 −2.08 −1.90 −1.89 −2.05 −1.90 −1.91 −2.05

X3v −4.11 −3.94 −4.22 −4.20 −4.07 −4.36 −4.42 −4.30 −4.57

X1v −11.76 −11.37 −11.97 −12.09 −11.86 −12.41 −10.67 −10.52 −11.04

L1c 2.70 4.13 4.25 2.11 3.27 3.39 1.59 2.57 2.70

L3v −0.78 −0.78 −0.83 −0.77 −0.78 −0.83 −0.79 −0.81 −0.85

L1v −4.57 −4.37 −4.76 −4.51 −4.37 −4.75 −4.53 −4.42 −4.76

L1v −11.90 −11.48 −12.11 −12.21 −11.95 −12.54 −10.79 −10.60 −11.16
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allow for a better comparison with other calculations, which
are usually published without the account of the SO. Includ-
ing the spin-orbit splitting enables a comparison with experi-
ments. This is done in the Tables IV–VI in the column de-
noted “GW.” The presented value of the binding energy of
cations’ semicored statessĒdd is the average value over all
spin components at theG point. For mercury chalcogenides
the spin-orbit splitting at the valence-band maximumsDod is
also shownfDo=EsG8d−EsG7dg.

The LDA results presented in Tables IV–VI confirm the
well-known fact that the LDA energy gaps of IIB-VI com-

pounds deviate much more from experiment than is the case
for III-V or the group-IV semiconductors. For example, the
LDA absolute energy gaps amount to only 10% or 13% of
the experimental values for CdSe and CdTe, respectively. In
the case of mercury chalcogenides, the negative experimental
gaps of the order of −0.2 to −0.3 eV are exceeded several
times in the LDA theorys−1.23 eV and −1.17 eV for HgSe
and HgTe, respectivelyd.28Another characteristic result of the
LDA approach is the strong underbinding of the cations’
semicored states. Both effects are related and were analized
in detail in the Ref. 2. In theGW approach the energy gaps
are represented much better than in the LDA, as can be seen
in Tables IV–VI. It should be noted, however, that the agree-
ment with experiment is less satisfactory than was the case in
other semiconductors, which do not possess semicore states.
The binding energies of semicored states, although being
shifted towards experimental values, still deviate pro-
nouncely from experiment. The quasiparticle shift is highly
not sufficient for the semicore states and—as was shown
previously by Rohlfinget al.12—results mainly from the

TABLE III. Same as Table I for HgS, HgSe, and HgTe in the zinc-blende structure.

HgS HgSe HgTe

LDA GW GW-PP LDA GW GW-PP LDA GW GW-PP

G15c 5.84 6.77 6.79 5.37 6.20 6.21 4.15 4.79 4.81

G15v 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

G1c −0.65 +0.03 +0.05 −1.14 −0.51 −0.49 −0.90 −0.31 −0.25

G12d −6.20 −6.48 −6.46 −6.39 −6.82 −6.83 −6.77 −7.21 −7.19

G15d −7.12 −7.29 −7.45 −7.14 −7.46 −7.62 −7.31 −7.68 −7.77

G1v −13.23 −12.76 −13.61 −13.42 −13.03 −13.82 −12.02 −11.71 −12.48

X1c 3.08 3.95 4.08 2.66 3.43 3.53 1.79 2.39 2.45

X5v −2.37 −2.35 −2.58 −2.32 −2.30 −2.51 −2.29 −2.29 −2.50

X3v −4.94 −4.88 −5.00 −5.13 −5.11 −5.26 −5.48 −5.46 −5.64

X1v −12.47 −12.15 −12.81 −12.76 −12.51 −13.10 −11.23 −11.07 −11.63

L1c 1.41 2.28 2.32 0.94 1.72 1.74 0.56 1.20 1.23

L3v −0.99 −1.01 −1.08 −0.98 −0.99 −1.07 −0.99 −1.01 −1.11

L1v −5.62 −5.49 −5.88 −5.58 −5.45 −5.81 −5.55 −5.48 −5.81

L1v −12.66 −12.30 −13.01 −12.93 −12.64 −13.29 −11.44 −11.24 −11.85

TABLE IV. Absolute energy gapsEgd and the average position

of semicored states atG with respect to the VBMsĒdd for zinc-
blende ZnS, ZnSe, and ZnTe. Comparison of LDA and variousGW
calculations with experimental resultssRef. 32d. Spin-orbit interac-
tion included perturbatively.GW corresponds toGW-RPA type of
self-energy withG and W given by the LDA calculation.G8W8
corresponds toGW-RPA with G andW recalculated by updating the
eigenvalues.GWG denotes the results obtained with the LDA vertex
function includedfEq. s8dg. G8W8G corresponds to the LDA vertex
function and updated eigenvalues inG andW in the same time. All
values in eV.

LDA GW G8W8 GWG G8W8G Expt.

ZnS

Eg 1.82 3.38 3.80 3.56 3.99 3.84

Ēd
−6.33 −6.87 −7.49 −7.41 −8.02 −8.97

ZnSe

Eg 0.88 2.24 2.58 2.33 2.68 2.82

Ēd
−6.68 −7.31 −7.82 −7.86 −8.37 −9.37

ZnTe

Eg 0.74 1.98 2.26 1.97 2.27 2.39

Ēd
−7.26 −7.90 −8.43 −8.50 −9.03 −9.80

TABLE V. Same as Table IV for zinc-blende CdS, CdSe, and
CdTe. All values in eV. Experimental results from Ref. 32.

LDA GW G8W8 GWG G8W8G Expt.

CdS

Eg 0.80 2.11 2.47 2.26 2.63 2.48

Ēd
−7.55 −8.15 −8.56 −8.59 −8.99 −9.20

CdSe

Eg 0.17 1.25 1.56 1.34 1.66 1.70

Ēd
−7.85 −8.53 −8.98 −8.97 −9.40 −9.73

CdTe

Eg 0.21 1.22 1.47 1.25 1.51 1.61

Ēd
−8.37 −9.08 −9.52 −9.53 −9.96 −10.50
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strong exchange interaction with core electrons in states with
the same principal quantum number.

The case of the cubic HgS—so-calledb-HgS—needs a
comment. The natural stable form of HgS is a trigonal, cin-
nabar structure. The zinc-blende structure of HgS is stabi-
lized under a few percent admixture of transition metals,
which replace Hg ions in the lattice. The experimental result
of −0.11 eV for the energy gap ofb-HgS quoted in Table VI
has been obtained for samples with 2% content of transition
metals sFe, Co, Mnd.29 The energy gapEg in Table VI is
assigned to the energy difference between theG6 and G8
states; therefore, it results as negative within LDA theory for
b-HgS and both other mercury chalcogenides. However, in
the LDA, b-HgS is an open-gap insulator with an “exotic”
electronic structure: unlike the usual situation with theG7
state below theG8 one, the ordering of both states is re-
versed. In the LDA,G8 andG7 built the valence-band maxi-
mum sVBM d and the conduction-band minimumsCBMd, re-
spectively. For this reason the spin-orbit splitting ofb-HgS
in Table VI is reported with the minus signsDo=−0.12 eVd
and the “true” LDA absolute energy gap inb-HgS is
+0.12 eV. This change of the sign ofDo is an extreme mani-
festation of the common to the LDA description of all
IIB-VI compounds decrease ofDo at the VBM. As analyzed
by Wei and Zunger,2 it results from the unphysically strong
sin the LDAd hybridization of the cations’ semicored states
with anionsp orbitals. The results for HgSe and HgTe in
Table VI show that the calculatedDo is of ,0.2 eV smaller
than the experimental value. In the case ofb-HgS the 0.2 eV
reduction ofDo results in a change of its sign. In theGW
theory theG6 level gets shifted upwards and the energy gap
Eg becomes slightly positive forb-HgS sEg=0.06 eVd. How-
ever, because within the perturbative application of theGW
theory LDA wave functions of zeroth order remain un-
changed, the spin-orbit splittingDo does not change essen-
tially either. As a result, the true absolute energy gap of

b-HgS is in theGW theory still “exotic”: it is positive,
amounts to 0.06 eV and is built by theG6 and G7 levels as
VBM and CBM, respectively.

The unusual energy-level sequence in both LDA andGW
descriptions ofb-HgS is an artifact of the overemphasized in
LDA sp-d hybridization, which is not romoved in the pertur-
batively appliedGW theory. However, it seems to be also the
reason for the rather moderate successes of theGW descrip-
tion of all other IIB-VI compounds. A question arises
then: what should be improved? Should one include also
off-diagonal elements of the self-energy in order to decouple
the p and d states? Or should one apply theGW theory
self-consistently and/or with the account of physically im-
portant and computationally managable vertex corrections?
A short discussion of these points will be given in the next
section.

At the end of this section we would like to comment on
the validity of the plasmon-pole approximation in theGW
calculations. Using the plasmon-pole models for the fre-
quency dependence of screening makes the calculations sig-
nificantly more efficient. This is for two reasons. First, one
avoids time-consuming calculations of the dynamical-
response functions at a dense mesh of frequences. In the
plasmon-pole model it is sufficient to calculate response ma-
trices at zero frequency only. Second, when the plasmon-pole
model is used, the energy integration present in the formula
for the GW self-energy is done analytically. It is therefore
interesting to know whether the significant gain in the com-
putational effort is shadowed or not by a loss of accuracy.
Tables I–III point out at a few clear trends.

sid The absolute energy gaps in theGW-PP calculations
are always,0.1 eV bigger than in a full-GW calculation.
The difference grows for higher conduction bands.

sii d The binding energy of semicored states is also
,0.1 eV bigger in theGW-PP approximation.

siii d The most interesting fact, however, is that occupied
valencesp states undergo opposite quasiparticle shifts in the
full-GW- andGW-PP calculations. The full-GWshifts lead to
a contraction of valence bands, whereas theGW-PP shifts
lead to the expansion with respect to the LDA results. The
difference between both calculations is about 0.6–0.8 eV at
the bottom of the valence band.

All these facts mean that the quasiparticle shifts of the
LDA energies are bigger when the PP model is applied than
with the full response functions. In addition, the difference
between shifts calculated with two screening methods is par-
ticularly large for the valence-band minimum. Since the qua-
siparticle shifts result from a competition between the wid-
ening efect of the pure exchange diagram and the opposite
efect of the correlation part of the self-energy and because
the exchange part is the same for both screening models, the
differences point to the fact that the correlation part of the
self-energy is weaker with the PP model than without it. It is
so, because the PP models put too big a spectral weight in the
response to the plasmon type—i.e., higher-energy excitations
on the cost of the lower-energy, electron-hole excitations.
Because the correlation part of the self-energy of the
valence-band minimum is largely built up from the virtual
transitions to energetically close semicored states, this shift-
ing of spectral weight leads to dramatic consequences.

TABLE VI. Same as Table IV for zinc-blende HgS, HgSe, and
HgTe. All values in eV. Experimental results for HgS from Ref. 29
and for HgSe and HgTe from Ref. 32.Do=G8−G7 is the spin-orbit
splitting at VBM. Negative values ofDo for HgS mean that theG7

state is above theG8 state.

LDA GW G8W8 GWG G8W8G Expt.

HgS

Eg −0.62 0.06 0.13 0.12 0.28 −0.11

Do −0.12 −0.12 −0.13 −0.13 −0.13

Ēd
−6.74 −7.03 −7.32 −7.41 −7.64

HgSe

Eg −1.23 −0.60 −0.50 −0.50 −0.40 −0.20

Do 0.23 0.23 0.23 0.23 0.23 0.45

Ēd
−6.95 −7.31 −7.54 −7.66 −7.86 −8.09

HgTe

Eg −1.17 −0.57 −0.48 −0.55 −0.45 −0.30

Do 0.80 0.80 0.80 0.80 0.80 1.08

Ēd
−7.38 −7.79 −8.02 −8.16 −8.39 −8.58

ELECTRONIC STRUCTURE OF IIB-VI… PHYSICAL REVIEW B 71, 045207s2005d

045207-5



IV. BEYOND THE PERTURBATIVE GW-RPA THEORY

In this section possible extensions of theGW theory or its
technical ansatz will be shortly discussed. As suggested in
previous sections, at the core of the successful theory of the
electronic structure of IIB-VI compounds stays the correct
description of thesp-d interaction and the semicored states.
However, in theGW-RPA theory, applied perturbatively on
top of the zeroth-order, LDA Kohn-Sham Hamiltonian, the
quasiparticle shifts of semicored states are moderate and are
not sufficient to bring a satisfactory agreement with experi-
ment. This observation is consistent with all previousGW
results for materials containing semicore electrons and it has
been debated on the way out of this difficulty.10,13,17

It is clear that in a perturbative application of theGW
method, as is the case of this and almost all otherGW cal-
culations, the unphysically large LDA hybridization of
cation-semicored and anionp states cannot be removed.
Therefore, it seems that some decoupling of theGW and
LDA methods is necessary, which would result in a partial
p-d dehybridyzation. This decoupling could be realized in
several ways. One possibility would be to use as the starting
point for theGW calculation, not the LDA band structure,
but another one, in which cationd and anionp states do not
mix so much. Although there are some schemes, in particu-
lar, the self-interaction correctionsSICd scheme,30,31 which
seem to describe rather well the semicore states, a marriage
of two approaches might face formal difficulties and has not
been realized so far. Other possibilities of decouplingGW
from the LDA offer, e.g.,sid calculation of off-diagonal ele-
ments of the self-energy,sii d going towards the self-
consistency of theGW method, orsiii d inclusion of vertex
corrections. We will briefly discuss in the following these
three possibilities.

A. Off-diagonal self-energy

The results presented in Tables I–III have been obtained
solving the Dyson equation within the diagonal approxima-

tion. In this approximation, the self-energy, Green’s func-
tions, and exchange-correlation Kohn-Sham potentialVxc are
projected onto the LDA wave function of each state of inter-
est ffkn in Eq. s2dg. The off-diagonal matrix elements are
neglected. It is clear, however, that states of the same sym-
metry can have nonzero matrix elements. For example, off-
diagonal matrix elements of theG15 symmetry, represented in
both the VBM and semicored states, might lead to thep-d
dehybridization. In order to verify this hypothesis and check
the validity of the diagonal approximation we have done the
off-diagonal GW calculation for HgSe. Mercury chalco-
genides are the best cases to study this question, because of
the largest among all IIB-VI materials spatial extension of
semicore orbitals.

We have calculated the off-diagonal elements of theGW
self-energy of HgSe for the 20 lowest eigenstates at theG
point. In the “off-diagonal” case, the quasiparticle wave
functions are symmetry-allowed linear combinations of LDA
wave functions in the basis,

ckn
QP = o

m

am
n ckm

LDA, s5d

and the quasiparticle energyEQP is obtained solving the ma-
trix equations20320 in our cased

o
m

fsEQP − Ekn
LDAddnm+ kfkn

LDAuSsEQPd − Vxc
LDAufkm

LDAlgam
n = 0.

s6d

Figure 1 shows the energy dependence of the most impor-
tant matrix elements ofSsEQPd−Vxc

LDA which might contrib-
ute to thep-d dehybridyzation. The energy zero is at the
LDA value of the VBM level. Thepp, dd, and pd matrix
elements are diagonal and mixed matrix elements, respec-
tively, of theG15 symmetry present both at the VBM and the
Hg 5d levels. The quasiparticle shifts of the VBM and the
G15 component of the Hg 5d shell are determined by the

FIG. 1. Diagonal and off-diagonal matrix ele-
ments of(SsEd−Vxc)i j for G15 symmetry at the
semicored and the valence-band maximum in the
GW-RPA in HgSe.
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values ofS−Vxc
LDA at aroundE=−0.4 eV andE=−8 eV, re-

spectively. In order to visualize the effect of thep-d cou-
pling, the 20320 S−Vxc

LDA matrix can be reduced to a
232 matrix, where only the same partners of theG15 repre-
sentation present at the VBM and the semicoreG15

d level are
taken into account. In this case, the additional quasiparticle
shift d due to the off-diagonal elementssS−Vxc

LDAdpd is given
by

d =
2u„SsEQPd − Vxc

LDA
…pdu2

Ep
LDA + „SsEQPd − Vxc

LDA
…pp − Ed

LDA − „SsEQPd − Vxc
LDA

…dd

.

s7d

Because the denominator in Eq.s7d is of the order of
7–8 eV and(SsEQPd−Vxc

LDA)pd is smaller than 0.1 eV,d is of
the order of 1 meV. An exact diagonalization of the
20320 matrix fEq. s6dg for all states atG results in quasi-
particle energies that differ from the ones obtained within the
diagonal approximation no more than a few meV. This is
much less than the overall accuracy of the present implemen-
tation of theGW method. We conclude, therefore, that the
diagonal approximation works extremely well and nop-d
dehybridazation is obtained by going beyond it.

B. Towards self-consistency

The first step towards self-consistency could be updating
the eigenvalues when theGW self-energy is calculated. This
is a tedious approach mainly because of the recalculation of
the dynamical response. We have performed a numerical
shortcut at this point and have fitted the energy dependence
of quasiparticle shifts calculated at theG, X, andL points to
analytical functions, which were used then in the dynamical-
response and self-energy calculations. The column denoted
G8W8 in Tables IV–VI presents the results obtained within
one iteration step of updating eigenvalues inG andW. The
formula for self-energy is still the RPA one.

As can be seen, updating eigenvalues has a visible effect
on both the absolute energy gap and the position of semicore
d states. Both quantities agree now with experiment better.
This is true in particular for the energy gap. The shift of
semicore states, although as about twice as large as in the
standard RPA-GWcalculation, is still not sufficient to bring a
satisfactory agreement with experiment.

It should be noted, however, that this kind of updating
eigenvalues cannot replace the true self-consistency. On the
one hand, it results in an unphysical screening, which vio-
lates the sum rules. On the other hand, it ignores the dynami-
cal effects contained in the shape of the quasiparticle spec-
trum and the response. It is known, however, that these
dynamical effects play essential role. An exploratory calcu-
lation employing the renormalized quasiparticle spectrum in
the construction of the input Green’s function in Eq.s1d was
presented by Rohlfinget al.13 Although this approach turned
out to be successful for the semicore states, it was less so for
the valence states, giving too big energy gaps. Moreover, one
could expect that a renormalization of the screened Coulomb
interactionW in Eq. s1d, not done in Ref. 13, would then
deteriorate the agreement with experiment. The basic prob-

lem here seems to be caused by the RPA-type, renormalized
screening. Without including vertex corrections, such a
renormalized screening turns out to be unphysical. The very
large widening of the valence band, resulting from the self-
consistency of the GW approach, was demonstrated for the
homogeneous electron gas,33 potasium,34 silicon,34,18 and
germanium.18

We close these considerations recalling the often-stressed
statement of Mahan: that the self-energy diagrams and ver-
tex functions go together.35

C. TDLDA vertex corrections

A systematic evaluation of the vertex corrections is an
extremely difficult problem. Moreover, there are possible
various ways to include higher-order terms. In one approach,
for example, the starting point is given by the Hartree ap-
proximation. Successive iterations of the—so called—
Hedin’s equations4 give in the first iteration step theGW
formula for the self-energy and the lowest-order diagrams
beyond theGW formula in the next iterations. In calculations
for real materials such an approach is less practical, because
the electronic structure within the Hartree approximations is
by far not satisfactory. Therefore, a common approach is to
evaluate theGW formula for the self-energy with suchG and
W which are easily available and approximate the electronic
structure in possibly the “best” way. This leads in practice to
the non-self-consistentGW approach based on the LDAG
and RPA screening calculated from the LDAG’s. The vertex
corrections are defined as higher-order vertex diagrams in the
screened interactionW.

As noticed by Streitenberger,36 Hybertsen and Louie37 and
Del Sole, Reining, and Godby,38 one can start the iteration of
Hedin’s equations from the LDA Hamiltonian, taking as the
zeroth-order self-energy the exchange-correlation LDA po-
tential Vxc

LDA. After one iteration cycle the following expres-
sion for the self-energy is obtained:

S = iGWG = iGW̃, s8d

wheree−1 in W is not the RPA inverse dielectric function, but
one with exchange-correlation corrections included

e−1 = 1 +vcx0s1 − vcx0 − fxcx0d−1. s9d

Here vc is the Coulomb interaction,x0=−iGG is the
independent-particle polarizability, andfxc=dVxc/dn is the
time-dependent LDAsTDLDA d exchange-correlation kernel.
With the vertex functionG given by

G = s1 − fxcx0d−1, s10d

the productWG can be expressed asW̃= ẽ−1vc, with

ẽ = 1 −vcx0 − fxcx0. s11d

This result has a straightforward physical interpretation:
The created extra particle in the system is screened taking
account of the exchange-correlation effects, which are in-
cluded within the TDLDA theory. In the RPA theory these
effects in screening are neglected.

As in Ref. 38 we call this approach theGWG method. The
results for Zn, Cd, and Hg chalcogenides are presented in
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Table IV–VI, respectivelyscolumn denotedGWGd. A com-
parison with the standardGW-RPA calculationsscolumnGW
in Tables IV–VI shows that the effect of the TDLDA vertex
corrections on the energy gap ranges between 0.1 and 0.2 eV
for sulphur compounds and almost zero for tellurium com-
pounds. Thus, it is rather moderate, although it contributes to
the increase of the energy gap. The fact that sulphur com-
pounds show the largest effect can be understood in terms of
the localization properties of the valence bands. In the series
of anions S-Se-Te sulphur leads to the most localized states,
tellurium to the less. Because as is commonly accepted the
exchange-correlation effects in screening are particularly en-
hanced for localized states, we could expect that for the bind-
ing energies of semicored states the effect of theGWG ap-
proach is quite pronounced. This is indeed the case: These
states undergo an extra quasiparticle shift of the order of
0.4–0.6 eV.

In Tables IV–VI there are shown also results of the
TDLDA-vertex corrected self-energy calculations with the
updatedG and W scolumn denotedG8W8Gd. Because the
TDLDA fxc kernel that defines theG fEq. s10dg is not a
functional of the updatedG sit is strictly connected to the
LDA-Gd, the self-consistency of theGWG approach could be
easily questioned. Nevertheless, it is interesting to see how in
the case of IIB–VI compounds the self-consistency and ver-
tex corrections “go together,” even if both effects are only
approximatively included and not compatible with each
other. The results are encouraging. Both the energy gaps and
binding energies of the semicore states are now in still better
agreement with the experiment than with all previous ap-
proaches.

Summarizing, we have examined in this section possible
extensions to the standard, non-self-consistentGW-RPA ap-
proach. The neccessity of such extensions for IIB–VI com-
pounds comes from the fact that theGW-RPA methodsid
gives systematically about 0.3–0.6 eV too small energy gaps
andsii d underbinds the semicored states by about 0.8–2 eV.
It was shown that including off-diagonal elements of the
self-energy has only a negligible effect. A partial self-
consistency, based on updating quasiparticle energies inG
andW gives a pronounced effect on both the energy gaps and
the position of semicore states. The vertex corrections based
on the TDLDA approach contribute to similar downshifts of
the semicore states. The best results are obtained within the
combined approach, when the self-consistency and vertex
corrections are both included. It is important to note, how-
ever, that in all examined schemes the unphysically strong
hybridization of semicored and valencep states has not been
removed. A measure of this hybridization is the value of the
spin-orbit splitting at the VBM. As can be seen in Table VI
for HgSe and HgTe, theDo values remain practically un-
changed in all schemes and are about 0.2 eV smaller than in
the experiment. This is a direct consequence of using in all
cases the diagonal approximation for the self-energy, which
has been shown to work perfectly for the perturbative
GW-RPA case. One could expect, however, that the true self-
consistent GW theory should lead to the pd
dehybridization.39

V. GW CALCULATIONS USING CATION 2+
PSEUDOPOTENTIALS: ROLE OF CORE-CHARGE

CORRECTIONS

Ab initio pseudopotentials work most successfully for
those atoms and their compounds, for which the valence and
core electrons are spatially well separated. Moreover, the
biggest computational advantage of the pseudopotential tech-
nique is achieved when only the strictly outermost electronic
shell is dealt explicitly with and all other shells built the inert
atomic core. These conditions are clearly not fulfilled for
atoms of the group IIB. In the case of the Zn, Cd, and Hg
atoms there is a pronounced spatial overlap of the valence-
electron and the semicored-electron densities. Since the
LDA exchange-correlation functional is not linear in the den-
sity, one faces a fundamental difficulty in defining the Zn2+,
Cd2+, or Hg2+ pseudopotentials. Problems are partially
solved when the technique of Louie, Froyen, and Cohen of
the partial core-charge correction is applied.40 However,
even when the core charge is taken into account in the con-
struction of the pseudopotentials and the exchange-
correlation functional, the resulting LDA band structures of
IIB–VI compounds show systematic differences between the
all-electron calculations and the calculations based on the
Zn2+, Cd2+, and Hg2+ pseudopotentials. For example, the lat-
ter give 0.2–0.5 eV bigger absolute energy gapsssee Table
VII d. Apart from these fundamental problems use of Zn2+ or
Cd2+ pseudopotentials is still very popular, especially when
large supercells for surface or defect calculations must be
constructed. An interesting question arises, how rilable are
GW calculations when the strictly valence-shell pseudopo-
tentials and core-charge corrections in the underlying LDA
Hamiltonian are used? An example of such calculations are
the calculations of Zakharovet al.,16 in which the Zn 3d and
Cd 4d states had been kept in the core. As noted already,
these calculations produced quite satisfactory results for the
energy gaps. On the other hand, however, as was shown in
the Ref. 12, aGW calculation for CdS based on the Cd2+

pseudopotential gave an unusually large energy gap.

TABLE VII. LDA and GW absolute energy gaps atG for zinc-
blende Zn, Cd, and Hg chalcogenides obtained with the cation
20+ or 2+ pseudopotentials. Two results for the case of 2+ pseudo-
potentials correspond to two different schemes of treating the core
charge. The columnsGW-I-2+d corresponds to Eq.s14d and the
column sGW-II-2+ d to Eq. s17d. All values in eV. Spin-orbit split-
ting not included.

LDA-20+ GW-20+ LDA-2+ GW-I-2+ GW-II-2+

ZnS 1.84 3.41 2.18 4.27 3.36

ZnSe 1.02 2.37 1.19 3.17 2.17

ZnTe 1.04 2.27 1.18 3.09 2.00

CdS 0.82 2.13 1.22 3.86 2.37

CdSe 0.29 1.38 0.56 3.10 1.53

CdTe 0.49 1.51 0.70 3.19 1.57

HgS −0.65 0.03 −0.11 2.59 0.25

HgSe −1.14 −0.51 −0.79 1.90 −0.54

HgTe −0.90 −0.31 −0.62 2.12 −0.40
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Our own experience supports the results of Rohlfinget al.
and we obtain much too large energy gaps within the
GW-RPA when using the cations’ pseudopotentials of the
valency 2+. This is independently of whether the pseudopo-
tentials were constructed with or without the core-charge
corrections. In the usual approach, starting with the LDA
Hamiltonian

HLDA =
p2

2m
+ Vext+ Vhar + Vxcsrv + rcd s12d

and the many-body Hamiltonian of valence statessMB states
for many-bodyd,

HMB =
p2

2m
+ Vext+ Vhar + Sxc, s13d

one obtains the Dyson equation

G = GLDA + GLDAfSxc − Vxcsrv + rcdgG. s14d

G and GLDA mean the many-body and LDA Green’s func-
tions of valence electrons. The external, Hartree, and
exchange-correlations potentials are easily recognized.rv
and rc denote the valence and core-chargesin practice, the
partial or model core charged densities, respectively. The im-
portant fact is that in the Dyson equationfEq. s14dg there
appears a difference between the self-energy and exchange-
correlation potentialcorrected by the effects of the core
charge. We call this usual approach theGW-I scheme.

However, working with pseudopotentials constructued
with core-charge corrections in the exchange-correlation po-
tential puts the problem of the transferability of core correc-
tions into theGW calculations. In the starting LDA Hamil-
tonian fEq. s12dg such corrections are present; it seems
therefore reasonable to demand that they be present in the
many-body Hamiltonian of valence electrons as well. Here
we would like to propose a simple procedure of transfering
these core corrections into theGW scheme. We suggest that
in the simplest approach they could be included in the many-
body Hamiltonian in the same way as in the LDA Hamil-
tonian. As it turns out, such procedure gives results very
similar to theGW results obtained when core electrons are
dealt with explicitly.

Let us rewrite the LDA HamiltonianHLDA fEq. s12dg in
the following way:

HLDA =
p2

2m
+ Vext+ Vhar + fVxcsrv + rcd − Vxcsrvdg + Vxcsrvd.

s15d

If the quantity fVxcsrv+rcd−Vxcsrvdg is considered as the
“exchange-correlation” potential of the partial-core density,
it can be added to the many-body Hamiltonian of valence
states similarly as it is added in the Kohn-Sham-LDA equa-
tions:

HMB =
p2

2m
+ Vext+ Vhar + fVxcsrv + rcd − Vxcsrvdg + Sxc.

s16d

In this simple though approximative way the many-body
Hamiltonian of the system of valence electrons carries also a
built-in influence of core electrons in the similar way as the
LDA Hamiltonian. Now, it is clear that in the resulting
Dyson equation a differenceSxc−Vxcsrvd appears instead of
Sxc−Vxcsrv+rcd:

G = GLDA + GLDAfSxc − VxcsrvdgG. s17d

We call the approach based on Eqs.s15d–s17d the GW-II
scheme.

In the Table VII theG1c−G15v energy gaps are compared
as obtained from the LDA andGW-RPA approaches using
either 20+, or 2+ pseudopotentials of cations. The energy
gaps obtained within theGW-I scheme are about 1–2 eV
larger than experimental gaps and the ones obtained includ-
ing core electrons explicitly. This also agrees with the obser-
vation of the Ref. 12 for CdS. On the other hand, when core
corrections are included in the many-body Hamiltonian, as is
done in theGW-II scheme, theGW energy gaps turn out to
agree quite well with the calculations based on the cation’s
20+ pseudopotentials. These results suggest that when
strictly valence-electron pseudopotentials must be usedsof
the valency 2+ for the group II elementsd, one should use the
GW-II scheme rather than the normalGW-I scheme. This
conclusion should be general, not limited to the elements of
the group IIB.

VI. CONCLUSIONS

The results of a systematic study of the electronic struc-
ture of IIB–VI zinc-blende compounds within theGW ap-
proximation are presented. Tables I–VI show that the
GW-RPA applied perturbatively on top of the LDA Hamil-
tonian gives 0.3–0.6 eV too small energy gaps. This con-
trasts the usual good agreement of theGW results with ex-
periment for standard semiconductors. The binding energy of
the semicored states is 0.8–2.0 eV too small. For both quan-
tities, the Zn compounds show the biggest deviations from
experiment in absolute units, the Hg compounds the small-
est. This correlates well with the fact that in the series of
HguCduZn chalcogenides the localization of the semi-
cored shells grows and respectively grows the importance of
the short-range correlations not included in theGW theory.

Several extensions beyond the perturbative, RPA, and
non-self-consistent way of applying theGW method were
examined. It was shown on the example of HgSe that the
inclusion of the off-diagonal matrix elements of the self-
energy si.e., a nonperturbative, but still not self-consistent
GW approachd gives basically the same results as the diago-
nal approximation. Bigger changes in the right direction—
i.e., further opening of the energy gaps and increase of the
binding of semicored states—are obtained when the eigen-
values in the Green’s function and response are iteratively
updated. Such a procedure might be considered as a partial
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self-consistency, although the true self-consistency should
include also dynamical effects inG andW which might give
rise to different results. AGWG approach based on the
TDLDA corrections to screening results in a moderate in-
crease of the gap and a quite pronounced increase of the
binding energy of the semicored states. Finally, a hybrid
approach in which the TDLDA vertex corrections are in-
cluded and eigenvalues are updated gives the results most
close to experiment.

All calculations presented in this work have been done
using the frequency-dependent screening, consistently calcu-
lated from the LDA bands. In order to verify the accuracy of
the plasmon-pole approximation, which is most often applied
together with theGWapproach, we have parallelly presented
in Tables I–III the results of one of the plasmon-pole models.
It was shown that the application of the plasmon-pole model
gives rise to systematic deviations: First, the absolute energy
gaps and binding energies of semicored states are,0.1 eV
bigger. Second, the valence-band widths showopposite shifts
than are obtained from the full, v-dependent screening. In-
stead of a contraction of valence bands, the plasmon-pole
model produces an expansion.

In the last section the validity of the pseudopotential ap-
proach in which the semicored states are frozen in the core
was examined. It was shown that working with Zn2+, Cd2+,
or Hg2+ pseudopotentials results in much too large energy
gaps even if the core-charge corrections to the LDA
exchange-correlation potential are included. However, a sim-
plest ansatz of the LDA core corrections to the many-body
Hamiltonian of valence-only electrons gives rather good re-
sults for theGW electronic structuresTable VIId.

In the end it is worth noting that among some other meth-
ods of treating correlations better than LDA does, which
have found certain popularity in connection withab initio
calculations,41 the GW approach offers probably the best
possibilities for systematic improvements. For this reason,
we believe that further developement of the GW approach is
important for an increasingly better description of the elec-
tronic structure of solids.
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