PHYSICAL REVIEW B 71, 045207(2005

Electronic structure of Il B-VI semiconductors in the GW approximation

A. Fleszar and W. Hanke
Theoretische Physik I, Universitat Wirzburg, D-97074 Wirzburg, Germany
(Received 23 July 2004; revised manuscript received 27 October 2004; published 14 January 2005

A series ofGW calculations for zinc-blende Zn, Cd, and Hg chalcogeni®&sSe, and Teis presented. The
resulting quasiparticle gaps are 0.3—0.6 eV smaller than in experiment. The cation semicore states remain
similarly underbined as in previou8W calculations for I-VI materials. It is shown that application of the
plasmon-pole model for screening leads to systematic and qualitative errors: the band gaps result larger and the
occupied band widths undergo expansion, instead of contraction. Several steps, like including off-diagonal
matrix elements of the self-energy, updating eigenvalues in the Green’s function and screening, and using the
special vertex corrections, are examined. We also propose a scheme to treat core corrections in the case when
Zn?*, Ck*, or H?* pseudopotentials are used irGAV calculation.
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[. INTRODUCTION a very recenGW calculation for several materials by Kotani
The IIB-VI semiconductors are a special class of materi-and van Schilfgaardéit was claimed that the application of

als. The zinc-, cadmium-, and mercury chalcogenides show &€ GW method including all electrons, as opposed to
large spectrum of properties, making them good candidateRseudopotentials, leads to a systematic lowering of the cal-
for modern optoelectronic and spintronic applications. Fronfulated gaps, thus spoiling the usually good-quality results of
the theoretical standpoint they are very interesting and chathe GW-pseudopotential calculations. This finding seems to
lenging materials as well. Many of their special propertiesbe in accordance with the most recent all-electron seié
are largely determined by the interaction between the localeonsistentipplication of theGW scheme to Si and Ge by Ku
ized semicorel electrons with the valencep electrons. Due and Eguiluzt® These authors report on the opposite effect of
to this sp-d interaction theab initio description of 1B-VI core electrons and self-consistency on the band gap in Si and
compounds is more complex than for group-IV or -lll-V Ge and suggest the universality of this phenomenon.
semiconductors and in some sense less satisfactory. For ex- In this situation, in order to draw more general conclu-
ample, energy gaps between occupied and empty bands praions, it is important to work out a large database of results
vided by the local-density approximatio(LDA) of the  obtained with the same methodology and technicalities for
density-functional theofy(DFT) deviate much more from all 118-VI compounds. For this reason we present in this pa-
experiment than is usually the case. Similarly, the shallowper GW calculations for ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe,
semicored levels are strongly underbined within the LDA. HgS, HgSe, and HgTe in the zinc-blende modification. Our
LDA calculations for these materials have been available fogalculations are based on pseudopotentials. However, using
a long time, and the problems were recognized and analyze@n®®*, Cdf®*, and Hg°* pseudopotentials—i.e., explicitly in-
in detail by Wei and Zungéxlt is well known, however, that cluding the most important core electrons—namsly, and
the LDA band structure, as well as presumably any Kohnd electrons from then=3, n=4, andn=5 shells of Zn, Cd,
Sham band structure, need not correspond to physical, onamd Hg atoms, respectively—ensures being not far from the
particle excitations in the system, so the problems with thell-electron limit. The mixed-basis expansion for Bloch or-
LDA are in a sense understood. On the other hand, an intebitals is used without any shape approximation to the Kohn-
esting question is whether the description of electronic exciSham potential. The screened Coulomb interact(@) is
tations by theGW approximatiod were as successfull for calculated within the random phase approximati®PA)
11B-VI compounds as it turned out to be for standard semiwith an explicit » dependence. The results are compared
conductors. then with ones obtained using the plasmon-pdRP
Partially, an answer to this question is given by a fewapproximatiorf:® The role of the exchange-correlation con-
already existing calculations for®VI compounds: the cal- tribution to screening, as described by the time-dependent
culations of Aryasetwan and co-work&s! for ZnO, ZnS, LDA, is shortly discussed. The effect of the off-diagonal
and ZnSe, of Rohlfingt al1213for CdS and ZnS, of Rohlf- matrix elements of the self-energy is also examined. As
ing and Louié* for HgSe, and very recently, of Luet al!®>  usual, our calculations are not self-consistent inititeract-
for ZnS and ZnSe. Zakharost al!® have applied th&GW  ing Green’s function; however, the first step towards self-
approximation to the case of all zinc and cadmium chalcoconsistency is examined. It consists in updating the quasipar-
genides in their zinc-blende and wurtzite phases. In theiticle energies in the construction of the Green’s function and
calculation, however, the important for physics of these comyesponse.
pounds semicord states have not been explicitly considered  Our results show that with the exception gfHgS, the
and kept rigidly in the core. It is interesting to note that all GW energy gaps between conduction and valence states are
these calculations differ in the way ti@V approximation is  0.3—0.6 eV smaller than in experiment. Imposing a limited
applied and also differ in the obtained results. In addition, inself-consistency by updating the eigenvalues increases the
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gaps by 0.1-0.4 eV, thus leading to a rather good agreemenpproximated by a model function and the Green’s function
with experiment. Our results concerning the binding energyentering Eq.(1) was iteratively updated. The authors used
of semicore states agree with previous observatfohs!>17  zZn?* and Cd* pseudopotentials and the semicafestates
that the GW theory, although performing better than the were ignored in theiGW calculation. Since then, a few more
LDA, still underbinds theses states. When the plasmon-polegorous calculations for BVI compounds have appeared,
approximation is used instead of the full;dependent, RPA with an explicit account of the semicockestates. In particu-
screening, systematic trends are not@iGW energy gaps lar, Rohlfinget al? have shown for the case of cubic CdS
get larger,(ii) semicore states are more bound, #iiid oc-  that when the semicore Cdl4tates are treated as valence
cupied bandwidths undergo an opposite shift than is obtainestates in aGW calculation, it is mandatory to include also
with the full, frequency-dependent screening. more deep core states from the same4 shell. This is an

In the next section a short presentation of our implemenimportant and general conclusion concerning not only CdS
tation of theGW scheme is given together with some tech-and other I-VI materials, but valid for all cases where lo-
nicalities. In Sec. Il the results are presented and comparechlizedd orbitals must be treated explicitly.
with experiment. In Sec. IV the first steps towards self- Similarly to Rohlfinget al.,'? our implementation of the
consistency, vertex corrections, and the role of the off-GWscheme for I#-VI compounds is based on the cation 20+
diagonal matrix elements of self-energy are discussed. 16Zn°%*, C%* Hg?®") and anion 6+(S%*,Sé*, Teéf*) LDA
Sec. V the results of an approach usingZICf*, and H§*  pseudopotential® The zeroth-order, LDA band structure is
pseudopotentials are presented. obtained using the mixed-basis set composed of localized
gaussians o§, p, andd symmetry at cation sites and plane
waves with a cutoff of 30 Ry. We believe that such a basis
describes well both the localized core and semispe and

The band structure of a solid is the energy-d states as well as the highly excited conduction bands. This
guasimomentum dependence of one-particle excitations—is an important prerequisite of @W calculation because of
i.e., of electrons or holes created in the system—e.g., in ththe slow convergence of tHeW self-energy with respect to
inverse-photoemission or photoemission process. It is dehe contribution of highly excited statés?? The frequency-
scribed by poles of one-particle Green’s functions Fouriedependent RPA screened Coulomb interactidfw) is cal-
transformed to the energy-momentum domain. Green’s funceulated in Fourier space at the Monkhorst-Pad¢kmesh of
tions are obtained solving the Dyson equation, in which the32 points in the Brillouin zone. The Coulomb singularity is
electron-electron interaction is contained in two terms: thentegrated out using the Gygi-Baldereschi methbahe cal-
electrostatic, Hartree potential and the non-Hermitianculations follow our previous implementations of tBWV
energy-dependent, and spatially nonlocal operator, called trecheme’12526As usual, the Dyson equation is solved in the
self-energy. The complexity of obtaining theteracting diagonal approximation—i.e., projecting all relevant quanti-
Green’s functions—i.e., the Green’s functions when theties on the particular state of interegt, (k is the wave
electron-electron interaction is described more realisticallyector andn is the band index
than in the one-particle approximation—comes from the
complexity of caIcSIation of Sglf-energies. This is made man- EQP = B + (i 2 (EP) = Vi Y e 2
agable only using approximations. The most popular ap- EQP, ELDA and VDA are the quasiparticle energy, LDA

proximation apflied in theb initio framework is theGW  kohn-Sham energy, and LDA exchange-correlation potential
approximatior?:* In this scheme the self-energy is repre- respectively. Equatioii2) can be solved foE?P iteratively
sented by a product of the Green’s functi@nand the dy- LDA

call . o | X . or, for not large quasiparticle shif&RP-E.>", analytically,
namically screened interparticl§Coulomb interaction through the linearization of the self-energy arougg*:

IIl. GWAPPROXIMATION

W=e11/r:
S =iGW (1) EXP=EQM+ (2B - Vi b (3)
€' is the inverse, longitudinal, RPA, electronic, dielectric Z s the renormalization constant
func_tion of the system. o _ ~ d<¢kn|2(E||Zr?A)|¢>kn> -1
First applications of th&sW approximation to real solids Z={1- dE . (4)

date back to the works of Strinatit al,®> Hybertsen and
Louief and Godbyet al.” Since then, it has been applied to  The spin-orbit(SO) interaction is included perturbatively
many materials; the results are described in two recenafter the LDA self-consistency dBW self-energy has been
reviews®® In most cases the “standard” put forward by the obtained.

Hybertsen-Louie calculatiénwas followed—theGW ap- It was found out by Rohlfinget al!? for CdS that using
proximation is applied perturbatively on top of the zeroth-the Cd?* pseudopotential—i.e., explicitly including the Cd
order, LDA band structure, within the pseudopotential frame-4d states and keeping rigidly in core the Cd @nd Cd 4
work, using plane-wave expansion of Bloch functions andstates—significantly deteriorates the results. The underbound
interactions and modeling the energy dependence bby  in the LDA Cd 4 states get even less bound in t&av

the plasmon-pole approximatiéf.The work of Zakharowet  calculation. On the other hand, putting the whoke4 shell

al.’8 for zinc and cadmium chalcogenides is based on thef Cd into the core—i.e., working with C8 pseudopotential
same methodology, with the exception that the screening wa@nd following the “standard” of the Hybertsen and L&uie
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TABLE I. ZnS, ZnSe, and ZnTe in the zinc-blende structure: one-electron enéigie¥) at I', X, andL points.(LDA) Kohn-Sham-
LDA results,(GW) GW-RPA calculations with full, frequency-dependent screening, (@\W-PP GW-RPA using the plasmon-pole model
of screening. Spin-orbit interaction not included.

ZnS ZnSe ZnTe

LDA GW GWPP LDA GW GWPP LDA GW GWPP
e 1.84 3.41 3.50 1.02 2.37 2.46 1.04 2.27 2.39
I'is, 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Iiog -6.02 —-6.59 —6.68 -6.33 -6.98 -7.04 -6.82 -7.48 -7.46
Iisq -6.50 -7.01 -7.18 -6.69 -7.30 -7.42 -7.05 —-7.68 -7.70
Iy -13.08 -12.57 -13.32 -13.23 -12.90 —-13.66 -11.83 -11.52 -12.26
Xic 3.19 4.59 4.62 2.79 3.92 3.94 211 3.11 3.20
Xs, -2.25 —2.24 -2.42 -2.20 -2.20 -2.38 -2.20 -2.19 -2.35
Xap -4.69 -4.66 -4.91 -4.86 -4.79 -5.09 -5.11 -4.96 -5.27
X1y -11.79 -11.37 -12.02 -12.15 -11.89 -12.51 -10.63 -10.41 -10.97
Lic 3.06 4.71 4.80 2.31 3.68 3.76 1.61 2.72 2.82
L3, -0.88 -0.89 -0.94 -0.88 -0.88 -0.94 -0.91 -0.91 -0.97
L1, -5.39 -5.18 -5.66 -5.31 -5.12 -5.60 -5.27 -5.09 -5.50
Ly, -12.12 -11.68 -12.35 -12.43 -12.15 -12.80 -10.95 -10.71 -11.30
results for CdS—according to Rohlfirg al>—in an energy . RESULTS
gap unusually—about 1.2 eV—bigger than the experimental
gap. This is in contrast with the calculation of Zakhatv In Tables I-1ll the LDA-Kohn-Sham an@W energies of

al.,’® whose gap for zinc-blende CdS was only 0.3 eV biggera few states at th&, X, and L points are given for zinc-
than in experiment. Our results support the observation oblende Zn, Cd, and Hg chalcogenides respectively. Gii¢
Rohlfing et al1? We will address this point in Sec. V and will results are obtained with the frequency-dependent, RPA-type
also suggest that one should take a careful care of core deaereening of the electron-electron interacti@olumn de-
sity corrections in that case in order to get resonable resultsioted ‘GW’). For comparison, the results obtained with the
All calculations have been done using the experimentalplasmon-pole approximation based on the static limit of the
zinc-blende lattice constants, which are 10.214, 10.713, anscreening matrices are also presenemlumn ‘GW-PP”).27
11.504 a.u. for ZnS, ZnSe, and ZnTe; 11.017, 11.497, andhe results in Tables I|-lll are obtained using scalar-
12.245 a.u. for CdS, CdSe, and CdTe; and 11.057, 11.49Telativistic pseudopotentials—however, without including
and 12.210 a.u. for HgS, HgSe, and HgTe, respectively. the spin-orbit interaction. We present these results in order to

TABLE Il. Same as Table | for CdS, CdSe, and CdTe in the zinc-blende structure.

Cds CdSe CdTe
LDA GW GWPP LDA GW GWPP LDA GW GWPP

| 7S 0.82 2.13 2.23 0.29 1.38 1.48 0.49 151 1.64
I, 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Iiog -7.24 —-7.88 -7.95 -7.49 -8.21 -8.25 -7.92 -8.65 -8.62
Iigg =7.72 -8.29 -8.44 —-7.88 -8.53 -8.64 -8.19 —-8.88 -8.92
'y, -12.35 -11.84 -12.56 -12.60 -12.25 -12.97 -11.21 -10.91 -11.59
X1c 3.30 4.54 4.59 2.92 3.90 3.95 2.43 3.22 3.29
Xs, -1.95 -1.92 -2.08 -1.90 -1.89 -2.05 -1.90 -1.91 -2.05
Xap -4.11 -3.94 -4.22 -4.20 -4.07 -4.36 -4.42 -4.30 -4.57
X1y -11.76 -11.37 -11.97 -12.09 -11.86 -12.41 -10.67 -10.52 -11.04
Lic 2.70 4.13 4.25 2.11 3.27 3.39 1.59 2.57 2.70
Ls, -0.78 -0.78 -0.83 -0.77 -0.78 -0.83 -0.79 -0.81 -0.85
Ly, -4.57 -4.37 -4.76 -4.51 -4.37 -4.75 -4.53 -4.42 -4.76
L1y -11.90 -11.48 -12.11 -12.21 -11.95 -12.54 -10.79 —-10.60 -11.16
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TABLE Ill. Same as Table | for HgS, HgSe, and HgTe in the zinc-blende structure.

HgS HgSe HgTe

LDA GW GWPP LDA GW GWPP LDA GW GWPP
s 5.84 6.77 6.79 5.37 6.20 6.21 4.15 4.79 4.81
I'is, 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
I'ie -0.65 +0.03 +0.05 -1.14 -0.51 -0.49 -0.90 -0.31 -0.25
I'iog -6.20 -6.48 -6.46 -6.39 -6.82 -6.83 -6.77 -7.21 -7.19
Iigg -7.12 -7.29 -7.45 -7.14 -7.46 -7.62 -7.31 -7.68 -7.77
'y, -13.23 -12.76 -13.61 -13.42 -13.03 -13.82 -12.02 -11.71 -12.48
X1c 3.08 3.95 4.08 2.66 3.43 3.53 1.79 2.39 2.45
Xs, -2.37 -2.35 -2.58 -2.32 -2.30 -2.51 -2.29 -2.29 -2.50
Xa, -4.94 -4.88 -5.00 -5.13 -5.11 -5.26 -5.48 -5.46 -5.64
X1y -12.47 -12.15 -12.81 -12.76 -12.51 -13.10 -11.23 -11.07 -11.63
Lic 1.41 2.28 2.32 0.94 1.72 1.74 0.56 1.20 1.23
L3, -0.99 -1.01 -1.08 -0.98 -0.99 -1.07 -0.99 -1.01 -1.11
L1, -5.62 -5.49 -5.88 -5.58 -5.45 -5.81 -5.55 -5.48 -5.81
L1, -12.66 -12.30 -13.01 -12.93 -12.64 -13.29 -11.44 -11.24 -11.85

allow for a better comparison with other calculations, whichpounds deviate much more from experiment than is the case
are usually published without the account of the SO. Includfor IlI-V or the group-IV semiconductors. For example, the
ing the spin-orbit splitting enables a comparison with experi-LDA absolute energy gaps amount to only 10% or 13% of
ments. This is done in the Tables IV-VI in the column de-the experimental values for CdSe and CdTe, respectively. In
noted ‘GW.” The presented value of the binding energy of the case of mercury chalcogenides, the negative experimental
cations’ semicoral states(Ey) is the average value over all gaps of the order of —0.2 to —0.3 eV are exceeded several
spin components at thE point. For mercury chalcogenides times in the LDA theory(-1.23 eV and -1.17 eV for HgSe
the spin-orbit splitting at the valence-band maxim(iyg) is ~ and HgTe, respectively® Another characteristic result of the
also showr[A,=E(I'g)-E(I';)]. LDA approach is the strong underbinding of the catio_ns’
The LDA results presented in Tables IV=VI confirm the S€micored states. Both effects are related and were analized
well-known fact that the LDA energy gaps of4VI com-  in detail in the Ref. 2. In th&sW approach the energy gaps
are represented much better than in the LDA, as can be seen
TABLE IV. Absolute energy gagEg) and the average position jn Tables IV-VI. It should be noted, however, that the agree-
of semicored states afi” with respect to the VBME,) for zinc-  ment with experiment is less satisfactory than was the case in
blende ZnS, ZnSe, and ZnTe. Comparison of LDA and varleWé  other semiconductors, which do not possess semicore states.
calculations with experimental resul®ef. 32. Spin-orbit interac-  The binding energies of semicork states, although being
tion included perturbativelyGW corresponds t&GW-RPA type of  shifted towards experimental values, still deviate pro-
self-energy withG and W given by the LDA calculationG'W’  noyncely from experiment. The quasiparticle shift is highly
corresponds tGW-RPA with G andW recalculated by updating the ot sufficient for the semicore states and—as was shown
elger?vall_JesGV\lF denotes the results obtained with the LDA vertex previously by Rohlfinget al2—results mainly from the
function included Eqg. (8)]. G'W'T" corresponds to the LDA vertex

function and updated eigenvalues@GrandW in the same time. All TABLE V. Same as Table |V for zinc-blende CdS, CdSe, and
values in eV. CdTe. All values in eV. Experimental results from Ref. 32.

LDA GW GW GWI' G'WTr Expt. LDA GW GWwW GWI' G'WT Expt.
ZnS Cds
Ey 1.82 3.38 3.80 3.56 3.99 3.84 Eq 0.80 211 2.47 2.26 2.63 2.48
Ed -6.33 -6.87 -7.49 -7.41 -8.02 -8.97 Ed -755 -8.15 -856 -8.59 -8.99 -9.20
ZnSe Cdse
Ey 0.88 2.24 2.58 2.33 2.68 2.82 Ey 0.17 1.25 1.56 1.34 1.66 1.70
Eq -6.68 -7.31 -7.82 -7.86 -8.37 -9.37 Eq -7.85 -8.53 -8.98 -8.97 -9.40 -9.73
ZnTe CdTe
= 0.74 1.98 2.26 1.97 2.27 2.39 = 0.21 1.22 1.47 1.25 151 1.61
Ed -7.26 -7.90 -8.43 -8.50 -9.03 -9.80 Ed -8.37 -9.08 -952 -9.53 -9.96 -10.50
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TABLE VI. Same as Table IV for zinc-blende HgS, HgSe, and B-HgS is in the GW theory still “exotic”: it is positive,
HgTe. All values in eV. Experimental results for HgS from Ref. 29 amounts to 0.06 eV and is built by tHg andT'; levels as
and for HgSe and HgTe from Ref. 33,=I'g-I'; is the spin-orbit VBM and CBM, respectively.
splitting at VBM. Negative values ok, for HgS mean that th&’, The unusual energy-level sequence in both LDA a@w
state is above thEjg state. descriptions of3-HgS is an artifact of the overemphasized in
LDA sp-d hybridization, which is not romoved in the pertur-
LDA GW GW GWI G'WT  Expt batively appliedGWtheory. However, it seems to be also the
reason for the rather moderate successes oGthedescrip-

HgS tion of all other IB-VI compounds. A question arises
= -0.62  0.06 0.13 0.12 0.28 -0.11 then: what should be improved? Should one include also
A, -0.12 -0.12 -0.13 -0.13 -0.13 off-diagonal elements of the self-energy in order to decouple
E, 674 -7.03 -732 -7.41 -7.64 the p and d states? Or should one apply ti&W theory

self-consistently and/or with the account of physically im-
portant and computationally managable vertex corrections?
Eg, -1.23 -060 -050 -050 -0.40 -0.20 A short discussion of these points will be given in the next
A, 0.23 0.23 0.23 0.23 0.23 0.45 section.
E, -6.95 -7.31 -754 -7.66 -7.86 -8.09 At the end of this section we would like to comment on
the validity of the plasmon-pole approximation in tkanV
calculations. Using the plasmon-pole models for the fre-
B, -117 -057 -048 -0.55 -045 -0.30 guency dependence of screening makes the calculations sig-
A, 080 080 080 080 0.80 1.08  nificantly more efficient. This is for two reasons. First, one
Eq -738 -7.79 -802 -816 -839 -858 avoids time-consuming calculations of the dynamical-
response functions at a dense mesh of frequences. In the
plasmon-pole model it is sufficient to calculate response ma-
strong exchange interaction with core electrons in states witlrices at zero frequency only. Second, when the plasmon-pole
the same principal quantum number. model is used, the energy integration present in the formula
The case of the cubic HgS—so-callgdHgS—needs a for the GW self-energy is done analytically. It is therefore
comment. The natural stable form of HgS is a trigonal, cin-interesting to know whether the significant gain in the com-
nabar structure. The zinc-blende structure of HgS is stabiputational effort is shadowed or not by a loss of accuracy.
lized under a few percent admixture of transition metals;Tables |-l point out at a few clear trends.
which replace Hg ions in the lattice. The experimental result (i) The absolute energy gaps in t@A\-PP calculations
of —0.11 eV for the energy gap ¢i-HgS quoted in Table VI are always~0.1 eV bigger than in a fulGW calculation.
has been obtained for samples with 2% content of transitioThe difference grows for higher conduction bands.
metals (Fe, Co, Mn.2° The energy gafE, in Table VI is (i) The binding energy of semicord states is also
assigned to the energy difference between Ifheand I'g ~0.1 eV bigger in theGW-PP approximation.
states; therefore, it results as negative within LDA theory for  (iii) The most interesting fact, however, is that occupied
B-HgS and both other mercury chalcogenides. However, ivalencesp states undergo opposite quasiparticle shifts in the
the LDA, B-HgS is an open-gap insulator with an “exotic” full-GW- andGW-PP calculations. The fulbW shifts lead to
electronic structure: unlike the usual situation with g  a contraction of valence bands, whereas @&LPP shifts
state below thd’g one, the ordering of both states is re- lead to the expansion with respect to the LDA results. The
versed. In the LDAJI'g andI'; built the valence-band maxi- difference between both calculations is about 0.6—0.8 eV at
mum (VBM) and the conduction-band minimuf@BM), re-  the bottom of the valence band.
spectively. For this reason the spin-orbit splitting®HgS All these facts mean that the quasiparticle shifts of the
in Table VI is reported with the minus sigiA,=-0.12 eV} LDA energies are bigger when the PP model is applied than
and the “true” LDA absolute energy gap if-HgS is  with the full response functions. In addition, the difference
+0.12 eV. This change of the sign 4Af, is an extreme mani- between shifts calculated with two screening methods is par-
festation of the common to the LDA description of all ticularly large for the valence-band minimum. Since the qua-
11B-VI compounds decrease df, at the VBM. As analyzed siparticle shifts result from a competition between the wid-
by Wei and Zunget,it results from the unphysically strong ening efect of the pure exchange diagram and the opposite
(in the LDA) hybridization of the cations’ semicokkstates  efect of the correlation part of the self-energy and because
with anionsp orbitals. The results for HgSe and HgTe in the exchange part is the same for both screening models, the
Table VI show that the calculateti, is of ~0.2 eV smaller differences point to the fact that the correlation part of the
than the experimental value. In the casgBeaflgS the 0.2 eV self-energy is weaker with the PP model than without it. It is
reduction ofA, results in a change of its sign. In t@W  so, because the PP models put too big a spectral weight in the
theory thel'g level gets shifted upwards and the energy gapresponse to the plasmon type—i.e., higher-energy excitations
E, becomes slightly positive fg8-HgS (E;=0.06 e\J. How-  on the cost of the lower-energy, electron-hole excitations.
ever, because within the perturbative application of @&  Because the correlation part of the self-energy of the
theory LDA wave functions of zeroth order remain un- valence-band minimum is largely built up from the virtual
changed, the spin-orbit splitting, does not change essen- transitions to energetically close semicdrstates, this shift-
tially either. As a result, the true absolute energy gap ofng of spectral weight leads to dramatic consequences.
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IV. BEYOND THE PERTURBATIVE GW-RPA THEORY tion. In this approximation, the self-energy, Green’s func-

In this section possible extensions of @& theory orits ~ tons, and exchange-correlation Kohn-Sham poteijgbre

technical ansatz will be shortly discussed. As suggested iRroiected onto the LDA wave function of each state of inter-
previous sections, at the core of the successful theory of th@St[%wn In Eq. (2)]. The off-diagonal matrix elements are
electronic structure of VI compounds stays the correct Nedlected. It is clear, however, that states of the same sym-

description of thesp-d interaction and the semicotestates. Melry can have nonzero matrix elements. For example, off-
However, in theGW-RPA theory, applied perturbatively on diagonal matrix elements of tHg 5 symmetry, represented in

top of the zeroth-order, LDA Kohn-Sham Hamiltonian, the P°th the VBM and semicord states, might lead to the-d

quasiparticle shifts of semicorestates are moderate and are d€hybridization. In order to verify this hypothesis and check

not sufficient to bring a satisfactory agreement with experi-N€ validity of the diagonal approximation we have done the

ment. This observation is consistent with all previgggy ~ ©f-diagonal GW calculation for HgSe. Mercury chalco-
results for materials containing semicore electrons and it ha3€nides are the best cases to study this question, because of
been debated on the way out of this difficulfy317 the !argest among all #VvI materials spatial extension of

It is clear that in a perturbative application of ti@y ~ S€micore orbitals. _
method, as is the case of this and almost all ot cal- We have calculated the off-diagonal elements of @
culations, the unphysically large LDA hybridization of SElf-énergy of HgSe for the 20 lowest eigenstates atlthe
cation-semicored and anionp states cannot be removed. POInt. In the “off-diagonal” case, the quasiparticle wave
Therefore, it seems that some decoupling of @/ and functions are symmetry-allowed linear combinations of LDA
LDA methods is necessary, which would result in a partialave functions in the basis,
p-d dehybridyzation. This decoupling could be realized in QP_ 3 40 /LDA 5)
several ways. One possibility would be to use as the starting kn Em¥Piem
point for the GW calculation, not the LDA band structure,
but another one, in which catiahand anionp states do not and the quasiparticle ener@?F is obtained solving the ma-
mix so much. Although there are some schemes, in particirix equation(20x 20 in our casg
lar, the self-interaction correctiofSIC) scheme®31 which
seem to describe rather well the semicore states, a marriag®; [(EQ” - EL2A) 5, + (APAS(EP) - VEDA DA Ja = 0.
of two approaches might face formal difficulties and has not m

m

been realized so far. Other possibilities of decoupl®g/ (6)
from the LDA offer, e.g. (i) calculation of off-diagonal ele- _ _
ments of the self-energy(ii) going towards the self- Figure 1 shows the energy dependence of the most impor-

consistency of th&SW method, or(iii) inclusion of vertex tant matrix elements QI(EQ_P)—VECDA which might contrib-
corrections. We will briefly discuss in the following these ute to thep-d dehybridyzation. The energy zero is at the

three possibilities. LDA value of the VBM level. Thepp, dd, and pd matrix
elements are diagonal and mixed matrix elements, respec-
A. Off-diagonal self-energy tively, of theI';s symmetry present both at the VBM and the
The results presented in Tables I-l1ll have been obtainetflg 5d levels. The quasiparticle shifts of the VBM and the

solving the Dyson equation within the diagonal approxima-I';s component of the Hg & shell are determined by the
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values ofE—V;CDA at aroundE=-0.4 eV andE=-8 eV, re- lem here seems to be caused by the RPA-type, renormalized
spectively. In order to visualize the effect of tiped cou-  screening. Without including vertex corrections, such a
pling, the 20x 20 E—V)L(EA matrix can be reduced to a renormalized screening turns out to be unphysical. The very
2 X 2 matrix, where only the same partners of fhg repre-  large widening of the valence band, resulting from the self-
sentation present at the VBM and the semicﬁfglevel are consistency of the GW approach, was demonstrated for the
taken into account. In this case, the additional quasiparticléomogeneous electron g&spotasium?* silicon3418 and

shift § due to the off-diagonal element& -V 0%),4is given  germanium'?

by We close these considerations recalling the often-stressed
o DAL 12 statement of Mahan: that the self-energy diagrams and ver-
5= 2|(Z(E%®) = Vie pd tex functions go togethéf.
~ LDA QPy _\/LDA\ _ ~LDA _ QPy _ \/LDA,
ET+E(E ")~ Vie oo~ Eq (2(E®) = Vi Daa C. TDLDA vertex corrections

™ A systematic evaluation of the vertex corrections is an
Because the denominator in E€) is of the order of extremely difficult problem. Moreover, there are possible
7-8 eV and % (EQP) - Vi) e is smaller than 0.1 eVigis of  various ways to include higher-order terms. In one approach,
the order of 1 meV. An exact diagonalization of the for example, the starting point is given by the Hartree ap-
20% 20 matrix[Eq. (6)] for all states afl” results in quasi- proximation. Successive iterations of the—so called—
particle energies that differ from the ones obtained within theHedin’s equatiorfs give in the first iteration step th&w
diagonal approximation no more than a few meV. This isformula for the self-energy and the lowest-order diagrams
much less than the overall accuracy of the present implemerpeyond theGWformula in the next iterations. In calculations
tation of the GW method. We conclude, therefore, that the for real materials such an approach is less practical, because
diagonal approximation works extremely well and pal  the electronic structure within the Hartree approximations is
dehybridazation is obtained by going beyond it. by far not satisfactory. Therefore, a common approach is to
evaluate th&sWformula for the self-energy with such and
_ W which are easily available and approximate the electronic
B. Towards self-consistency structure in possibly the “best” way. This leads in practice to
The first step towards self-consistency could be updatinghe non-self-consisterBW approach based on the LD&
the eigenvalues when th&W self-energy is calculated. This and RPA screening calculated from the L¥s. The vertex
is a tedious approach mainly because of the recalculation ¢forrections are defined as higher-order vertex diagrams in the
the dynamical response. We have performed a numeric&creened interactiow.
shortcut at this point and have fitted the energy dependence As noticed by Streitenbergét Hybertsen and Loufé and
of quasiparticle shifts calculated at the X, andL points to ~ Del Sole, Reining, and God§,0ne can start the iteration of
analytical functions, which were used then in the dynamicalHedin's equations from the LDA Hamiltonian, taking as the
response and self-energy calculations. The column denoteteroth-order self-energy the exchange-correlation LDA po-
G’'W' in Tables IV-VI presents the results obtained within tential V)IZEA. After one iteration cycle the following expres-
one iteration step of updating eigenvaluesGrandW. The  sion for the self-energy is obtained:
formula for self-energy is still the RPA one. ) o~
As can be seen, updating eigenvalues has a visible effect 2 =iGWI =iGW, (8)

on both the absolute energy gap and the position of semicokgheree in Wis not the RPA inverse dielectric function, but

d states. Both quantities agree now with experiment betteyng yith exchange-correlation corrections included
This is true in particular for the energy gap. The shift of

semicore states, although as about twice as large as in the €1=1+vexo(1 ~vexo— fxexo) ™ 9
standard RPAGW calculation, is still not sufficient to bring a

satisfactory agreement with experiment. independent-particle polarizability, arfg.=6V,./don is the

M should be noted, however, that this k'nq of updatlngtime-dependent LDATDLDA) exchange-correlation kernel.
eigenvalues cannot replace the true self-consistency. On thg... o'\ artex functio” given by

one hand, it results in an unphysical screening, which vio-
lates the sum rules. On the other hand, it ignores the dynami- I'=(1-fxo) b (10
cal effects contained in the shape of the quasiparticle spec- ~

trum and the response. It is known, however, that theséhe productWI' can be expressed &§=¢ v, with
dynamical effects play essential role. An exploratory calcu- “=1- _f (11)
lation employing the renormalized quasiparticle spectrum in VeXo™ IxeXo-

the construction of the input Green’s function in Ef) was This result has a straightforward physical interpretation:
presented by Rohlfingt all3 Although this approach turned The created extra particle in the system is screened taking
out to be successful for the semicore states, it was less so faccount of the exchange-correlation effects, which are in-
the valence states, giving too big energy gaps. Moreover, onguded within the TDLDA theory. In the RPA theory these
could expect that a renormalization of the screened Coulombffects in screening are neglected.

interactionW in Eq. (1), not done in Ref. 13, would then As in Ref. 38 we call this approach ti&M" method. The
deteriorate the agreement with experiment. The basic prolresults for Zn, Cd, and Hg chalcogenides are presented in

Here v. is the Coulomb interactiony,=-iGG is the
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Table IV-VI, respectively(column denotedsWI"). A com- TABLE VII. LDA and GW absolute energy gaps Btfor zinc-
parison with the standait@W-RPA calculationgcolumnGW blende Zn, Cd, and Hg chalcogenides obtained with the cation
in Tables IV=VI shows that the effect of the TDLDA vertex 20+ or 2+ pseudopotentials. Two results for the case of 2+ pseudo-
corrections on the energy gap ranges between 0.1 and 0.2 dgtentials correspond to two different schemes of treating the core
for sulphur compounds and almost zero for tellurium com—Chf‘rge' g\‘ﬁ lf%“immGé\H'i” 'gﬁrrelsponFis t\c; EQ('.M) %ntd ﬂ:.‘te
pounds. Thus, it is rather moderate, although it contributes t§_ umn (GWAII-2+) to Eq. (17). All values in eV. Spin-orbit split-

fn not included.
the increase of the energy gap. The fact that sulphur com- g

pounds show the largest effect can be understood in terms of LDA-20+ GW-20+ LDA-2+ GW.I-2+ GW-II-2+
the localization properties of the valence bands. In the series
of anions S-Se-Te sulphur leads to the most localized statesZnS 1.84 3.41 2.18 4.27 3.36
tellurium to the less. Because as is commonly accepted th&nSe 1.02 2.37 1.19 3.17 2.17
exchange-correlation effects in screening are particularly enznTe 1.04 2.27 1.18 3.09 2.00
hanced for localized states, we could expect that for the bind-cgs 0.82 213 1.22 3.86 237
ing energies of semicoré states the effect of theWI™ ap-  gse 0.29 1.38 056 310 1.53
proach is quite pronounced. This is indeed the case: Thesg o 0.49 151 0.70 3.19 157
étiteg ElSJr;c\J/ergo an extra quasiparticle shift of the order ongS 065 0.03 _011 259 0.25
In Tables IV-VI there are shown also results of the 9°¢  ~114 051 -0.79 1.90 ~0.54
TDLDA-vertex corrected self-energy calculations with the H97¢ ~ —0°0 ~ -031 ~ -0.62 212 ~0.40
updatedG and W (column denotedG’W'T"). Because the
TDLDA f,. kernel that defines th& [Eq. (10)] is not a V. GW CALCULATIONS USING CATION 2+
functional of the updateds (it is strictly connected to the PSEUDOPOTENTIALS: ROLE OF CORE-CHARGE

LDA-G), the self-consistency of tt@WI" approach could be CORRECTIONS

easily questioned. Nevertheless, it isinteres_ting to see howin ap initio pseudopotentials work most successfully for
the case of fi—VI compounds the self-consistency and ver-those atoms and their compounds, for which the valence and
tex corrections “go together,” even if both effects are onlycore electrons are spatially well separated. Moreover, the
approximatively included and not compatible with eachpiggest computational advantage of the pseudopotential tech-
other. The results are encouraging. Both the energy gaps amgue is achieved when only the strictly outermost electronic
binding energies of the semicore states are now in still betteshell is dealt explicitly with and all other shells built the inert
agreement with the experiment than with all previous ap-atomic core. These conditions are clearly not fulfilled for
proaches. atoms of the group ® In the case of the Zn, Cd, and Hg
Summarizing, we have examined in this section possiblatoms there is a pronounced spatial overlap of the valence-
extensions to the standard, non-self-consis@WtRPA ap-  electron and the semicoré-electron densities. Since the
proach. The neccessity of such extensions f8~WI com-  LDA exchange-correlation functional is not linear in the den-
pounds comes from the fact that ti&A-RPA method(i) sity, one faces a fundamental difficulty in defining the?Zn
gives systematically about 0.3—0.6 eV too small energy gap€d?*, or Hg?* pseudopotentials. Problems are partially
and(ii) underbinds the semicorkstates by about 0.8—2 eV. solved when the technique of Louie, Froyen, and Cohen of
It was shown that including off-diagonal elements of thethe partial core-charge correction is applf€dHowever,
self-energy has only a negligible effect. A partial self- even when the core charge is taken into account in the con-
consistency, based on updating quasiparticle energi€s in struction of the pseudopotentials and the exchange-
andW gives a pronounced effect on both the energy gaps andorrelation functional, the resulting LDA band structures of
the position of semicore states. The vertex corrections basdtP—VI compounds show systematic differences between the
on the TDLDA approach contribute to similar downshifts of all-electron calculations and the calculations based on the
the semicore states. The best results are obtained within tt#n?*, Cd?*, and Hg* pseudopotentials. For example, the lat-
combined approach, when the self-consistency and verteter give 0.2—0.5 eV bigger absolute energy gégee Table
corrections are both included. It is important to note, how-VIl). Apart from these fundamental problems use of*Zor
ever, that in all examined schemes the unphysically stron@* pseudopotentials is still very popular, especially when
hybridization of semicore and valence states has not been large supercells for surface or defect calculations must be
removed. A measure of this hybridization is the value of theconstructed. An interesting question arises, how rilable are
spin-orbit splitting at the VBM. As can be seen in Table VI GW calculations when the strictly valence-shell pseudopo-
for HgSe and HgTe, thé\, values remain practically un- tentials and core-charge corrections in the underlying LDA
changed in all schemes and are about 0.2 eV smaller than tdamiltonian are used? An example of such calculations are
the experiment. This is a direct consequence of using in alihe calculations of Zakharost al,'® in which the Zn @ and
cases the diagonal approximation for the self-energy, whiclCd 4d states had been kept in the core. As noted already,
has been shown to work perfectly for the perturbativethese calculations produced quite satisfactory results for the
GW:RPA case. One could expect, however, that the true selfenergy gaps. On the other hand, however, as was shown in
consistent GW theory should lead to the pd the Ref. 12, aGW calculation for CdS based on the €d
dehybridizatior?® pseudopotential gave an unusually large energy gap.
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Our own experience supports the results of Rohléngl. B 2
and we obtain much too large energy gaps within the H :E,I+Vext+vhar+[vxc(Pu+pc)_ch(pv)]+2xc-
GW-RPA when using the cations’ pseudopotentials of the

valency 2+. This is independently of whether the pseudopo- (16)

tentials were constructed with or without the core-chargqy, this simple though approximative way the many-body

corrections. In the usual approach, starting with the LDAyanmiltonian of the system of valence electrons carries also a

Hamiltonian built-in influence of core electrons in the similar way as the
LDA Hamiltonian. Now, it is clear that in the resulting

2 Dyson equation a differenc®,.~V,.(p,) appears instead of

p

LDA -
H ~om +Vext+ Vhar + Vaelpy + po) (12) Se= Vo pp+Po):
o G =G+ GHPA 3, — Vidlp,)]G. (17
and the many-body Hamiltonian of valence stdtd8 states
for many-body; We call the approach based on E@$5—(17) the GWI
scheme.
p? In the Table VII thel',.—T';5, energy gaps are compared
HMB = o + Vet Viar + 2o (13 as obtained from the LDA an@GW-RPA approaches using
m

either 20+, or 2+ pseudopotentials of cations. The energy
gaps obtained within th&W-l scheme are about 1-2 eV

one obtains the Dyson equation larger than experimental gaps and the ones obtained includ-
ing core electrons explicitly. This also agrees with the obser-
G=GPA+ GPAS, -V, (p, + po)]G. (14)  vation of the Ref. 12 for CdS. On the other hand, when core

corrections are included in the many-body Hamiltonian, as is
done in theGWAII scheme, theGW energy gaps turn out to
gree quite well with the calculations based on the cation’s
0+ pseudopotentials. These results suggest that when
strictly valence-electron pseudopotentials must be yséd
the valency 2+ for the group Il elemehtsne should use the
GWI scheme rather than the norm@&W-l scheme. This
onclusion should be general, not limited to the elements of
e group IP.

G and G-PA mean the many-body and LDA Green’s func-
tions of valence electrons. The external, Hartree, an
exchange-correlations potentials are easily recogniped.
and p. denote the valence and core-chatge practice, the
partial or model core chargeéensities, respectively. The im-
portant fact is that in the Dyson equatipEq. (14)] there
appears a difference between the self-energy and exchang[
correlation potentialcorrected by the effects of the core
charge We call this usual approach tl@&\:l scheme.
However, working with pseudopotentials constructued
with core-charge corrections in the exchange-correlation po-
tential puts the problem of the transferability of core correc-  The results of a systematic study of the electronic struc-
tions into theGW calculations. In the starting LDA Hamil- tyre of 1B~V zinc-blende compounds within theW ap-
tonian [Eq. (12)] such corrections are present; it seemsproximation are presented. Tables I-VI show that the
therefore reasonable to demand that they be present in th®\W.RPA applied perturbatively on top of the LDA Hamil-
many-body Hamiltonian of valence electrons as well. Herggpnian gives 0.3—0.6 eV too small energy gaps. This con-
we would like to propose a simple procedure of transferingrasts the usual good agreement of B results with ex-
these core corrections into tl&V scheme. We suggest that periment for standard semiconductors. The binding energy of
in the simplest approach they could be included in the manythe semicore states is 0.8—2.0 eV too small. For both quan-
body Hamiltonian in the same way as in the LDA Hamil- tities, the Zn compounds show the biggest deviations from

tonian. As it turns out, such procedure gives results vergxperiment in absolute units, the Hg compounds the small-
similar to theGW results obtained when core electrons areest. This correlates well with the fact that in the series of

VI. CONCLUSIONS

dealt with explicitly. Hg—Cd—Zn chalcogenides the localization of the semi-
Let us rewrite the LDA HamiltoniarH'®* [Eq. (12] in  cored shells grows and respectively grows the importance of
the following way: the short-range correlations not included in G theory.
Several extensions beyond the perturbative, RPA, and
DA _ p? non-self-consistent way of applying teW method were
HER= o+ Vet Vhar + [Vielpo + po) = Vipo) 1+ Vidlpy). - examined. It was shown on the example of HgSe that the

inclusion of the off-diagonal matrix elements of the self-

(15 energy (i.e., a nonperturbative, but still not self-consistent

GW approach gives basically the same results as the diago-

If the quantity [V,(p,+pc) —Vydp,)] is considered as the nal approximation. Bigger changes in the right direction—
“exchange-correlation” potential of the partial-core density,i.e., further opening of the energy gaps and increase of the

it can be added to the many-body Hamiltonian of valencebinding of semicoral states—are obtained when the eigen-
states similarly as it is added in the Kohn-Sham-LDA equa-values in the Green’s function and response are iteratively
tions: updated. Such a procedure might be considered as a partial
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self-consistency, although the true self-consistency should In the last section the validity of the pseudopotential ap-
include also dynamical effects i@ andW which might give  proach in which the semicomk states are frozen in the core
rise to different results. AGWI' approach based on the was examined. It was shown that working with?ZnCcf*,
TDLDA corrections to screening results in a moderate in-0r Hg** pseudopotentials results in much too large energy
crease of the gap and a quite pronounced increase of tHgaps even if the core-charge corrections to the LDA
binding energy of the semicore states. Finally, a hybrid €xchange-correlation potential are included. However, a sim-
approach in which the TDLDA vertex corrections are in- plest ansatz of the LDA core corrections to the many-body

cluded and eigenvalues are updated gives the results mddgmiltonian of valence-only electrons gives rather good re-
close to experiment. sults for theGW electronic structuréTable VII).
All calculations presented in this work have been done !N the end itis worth noting that among some other meth-

using the frequency-dependent screening, consistently calc gseoffotrﬁgt'ggrt;%rre'()at'Olgf.t be_;t]tecro';]hnzzr::t_laaA %‘;’esn'.t‘.’(\;hmh
lated from the LDA bands. In order to verify the accuracy of Ve tou 1 In popularity 1 lon Wi init

o o -~ calculations!! the GW approach offers probably the best
the plasmon-pole approximation, which is most often appllecﬁ

. ossibilities for systematic improvements. For this reason,
together with thd5Wapproach, we have parallelly presentedwe believe that further developement of the GW approach is

:?\;Vrgglgﬁ;;\::: :Eztrﬁf’eugs oll;cc;r:%gfotfh tehgIalsgt;z]n(;ﬁ?lilren?nd:(ﬁ'lmportant for an increasingly better description of the elec-
bp P b ronic structure of solids.

gives rise to systematic deviations: First, the absolute energy
gaps and binding energies of semicadrstates are~0.1 eV

bigger. Second, the valence-band widths slopposite shifts ACKNOWLEDGMENTS
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