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Collective excitations in solid state plasmas are a good candidate to measure correlation lengths of conduc-
tion electrons. The method of choice seems to be energy filtered electron holography in the transmission
electron microscopesTEMd since the interference fringes contain information on the partial coherence of those
electrons. Previous experiments showed surprisingly high coherence. We calculate the density-density corre-
lation function in the Al plasma excitation from the dynamic form factor and compare it to results based on
similar arguments. For the Al plasma excitation, we find a small extension of 0.120.3 nm over which the
movement of charges is correlated. Using the density-matrix formalism, the coherence length of plasmon
scattered fast electrons in the TEM is calculated and found to agree with experiment. We show that the small
correlation length of conduction electrons does not contradict the coherence length of.10 nm found for fast
probe electrons having excited a plasmon in Al. The difference of nearly two orders of magnitude can be traced
back to the long-range Coulomb interaction between probe and target electrons. Two unexpected predictions
ensue from the present approach: Inelastic holography experiments should show strongly increased contrast of
interference fringesin vacuo, i.e., outside the specimen, and contrast inversion of fringes in inelastic holograms
of very small particles.

DOI: 10.1103/PhysRevB.71.045130 PACS numberssd: 71.45.Gm, 34.80.Pa, 82.80.Pv

I. INTRODUCTION

The correlated movement of electrons in matter, as well as
coherent superpositions of electron wave functions, play a
dominant role for the modeling of energy-loss spectrase.g.,
Refs. 1 and 2d and in many quantum applications such as
Josephson junctions, quantum tunneling, spintronics, nm-
sized semiconductors, nanotubes, and molecules; see, e.g.,
Refs. 3 and 4. A famous example is the electron correlation
in metals. The accurate calculation of the correlation energy
in the interacting electron gas is a notorious problem with
many approximate solutions and unsatisfactory agreement
with experiment. For a review, see, e.g., Ref. 5 and refer-
ences therein.

It is reasonable to assume that the movement of conduc-
tion electrons is correlated over a distance of the order of
magnitude of the Thomas-Fermi screening length. On the
other hand, the plasmon as a collective excitation is often
visualized as an in-phase movement of virtually all conduc-
tion electrons in the specimen, thus having infinite correla-
tion length.

In this paper, we set out to describe correlation in solid
state plasmas and its relationship to inelastic electron holog-
raphy by use of the density matrix. As an example, we take
Al metal. We first discuss the different existing approaches to
a definition of the spatial extension of a plasma excitation.
Then we focus on the density-density correlationpsr d, i.e.,
the conditional probability to find an electron a distancer
away from another one. We then show howpsr d relates to

the dynamic form factorSsQW ,Ed, which in turn is accessible
by inelastic scattering experiments with fast electrons. Real-

izing that the inelastic scattering cross section for fast elec-
trons is closely related to the mutual coherence of the scat-
tered electrons, we are then in a position to elaborate the
relationship betweenpsr d and the mutual object transparency
introduced by Rose and co-workers.6 We can then reanalyze
the inelastic interference experiments of Lichte and co-
workers. We find that the large coherence length determined
experimentally is precisely predicted by theory, and that this
is consistent with the small correlation length in solid state
plasmas. We predict some peculiar properties of the mutual
coherence function and propose new holographic experi-
ments as a test of the present predictions.

II. THE DENSITY CORRELATION FUNCTION

The density correlationpsr d is defined in terms of the
density operatornsr d=oid

3sr̂ i −r d as the integral over the
expectation value

psr d =E d3r8knsr 8dnsr + r 8dl, s1d

where the sum is over all particles.
This definition can be extended to time-dependent corre-

lations as

psr ,td =E d3r8knsr 8,0dnsr + r 8,tdl, s2d

where we have assumed that the system is invariant under
time translation operations. The frequency componentv of
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this function is the density correlation functionpEsr d of an
excitation of energyE="v in the system

pEsr d = FTtfpsr ,tdg.

Here and in the following, we use the abbreviationFTxffsxdg
for the Fourier transform of a function with respect to the
variablex.

Applying the Wiener-Khinchin theorem,pEsr d is the Fou-
rier transform of the dynamic form factorssee, e.g., Ref. 7d
SsQ ,Ed of the scatterer

pEsr d = FTQfSsQ,Edg. s3d

Experimentally, the inelastic electron scattering cross sec-
tion for cubic systems is isotropic and to a good approxima-
tion a Lorentzian in wave-number transferq with cutoff qc.
This is consistent with the dipole approximation for the dy-
namic form factorSsQ ,Ed~Q2 up to the cutoff wave num-
ber.

In the dipole approximation, the Fourier transform Eq.s3d
can be performed directly,

pEsrd = 2pE
qe

qc

Q2SsQ,EddQE
0

p

dq sinsqdeiQr cossqd

= 4pE
qe

qc

Q4sinsQrd
Qr

dQ, s4d

where we have used the fact that no wave-number transfer
less than the characteristic transferqe=k0E/2E0 can occur.

In the electron microscope, spatial information is only
available projected onto the image plane with coordinatesx
swhich corresponds to the subspace in reciprocal space sub-
tended by the diffraction planed. When comparing predic-
tions with experimental results, one is rather interested in the
z-projected correlation functionp=epsr ddz. This is the two-
dimensional Fourier transform with respect to the coordi-
natesq in the diffraction plane—for definition see after Eq.
s9d. In the dipole approximation with cutoffqc, this is8

pEsxd = FTqfSsQ,Edg =E
0

qc

SsQ,Edeiq·xd2q

= 2pE
0

qc

SsQ,Edeiqx cosswdqdqdw

= 2pE
0

qc

sqe
2 + q2dJ0sqxdqdq. s5d

Results are shown for Al, compared to the three-
dimensional correlation function, in Fig. 1. The 3D correla-
tion function has its first zero at 0.25 nm and its first subsid-
iary minimum at 0.35 nm with less than 20% probability.

III. VARIOUS APPROACHES TO CORRELATION

According to strong screening in metals, both the correla-
tion length of conduction electrons and the extension of the
exchange-correlation hole9 can be expected to be of the same
magnitude as the Thomas-Fermi screening lengthssome ang-
stromsd.

This is consistent with the findings of Egri,10,11 who de-
rived an extension of<0.2 nm for the plasmon in metals and
semiconductors from the analysis of what he termed the plas-
mon wave function. The same order of magnitude is found
for the pair distribution function in a coherent superposition
of electron-hole excitations.12 A classical argument suggests
to define the extension of the plasmon as the product of the
lifetime and the group velocity. For Al, this was found to be
0.4 nm.13 This last value seems to be in agreement with early
experiments on the spatial resolution in plasmon filtered
images.14

However, more recently Lichte and co-workers15–17 re-
ported interference experiments with fast electrons having
excited a plasmon in Al. Contrary to the predictions, they
found a coherence length of almost 10 nm, later on 30 nm
from fringe contrast in the inelastic hologram.

This seems to be contradicted by the uncertainty prin-
ciple: the coherent extension of a plasmon scattered electron
in the electron microscope is by definitiondx=" /Îkdq2l.
Since the angular scattering distribution is proportional to a
Lorentziansqe

2+q2d−1 the variance of which is infinite, the
coherence length of the scattered electron comes out asdx
=0.

In the following, we discuss the various approaches more
precisely. We shall see that the intuitive argument based on
the angular scattering distribution is not far from reality.

A. Mean free path of the excited plasmon

Cheng13 calculated what he called the localization dis-
tance of the excitation as the product of group velocity with
the relaxation time. The former was taken to be an average
over the observable wave numbers, and the latter was ob-
tained from the energy full width at half maximumsFWHMd
of the plasmon peak. The result was 0.4 nm. In fact, what
was computed was the mean free path of the plasmon. This
need not be the correlation length, as becomes evident when
one thinks of solitons which travel over much longer dis-

FIG. 1. Density autocorrelation function of Al plasma excita-
tion. Full line: Eq.s4d; dashed line: projection onto plane of obser-
vation, Eq.s5d.
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tances than their spatial extension. In Ref. 13, the puzzling
observation can be found that from the angular distribution
of scattering, a localization distance of 23 nm can be
derived,38 in disagreement with the experimentally observed
spatial resolution of 0.4 nm. The situation is confusing since
three different quantities are compared there. Intuitively it is
felt that they are related to each other in some way, but it is
not clear how.

B. Exchange hole

In the Hartree-Fock approximation forN electrons, the
density correlation is

psr d = d3sr d +
sN − 1d

v
f1 − gskFrdg s6d

with the exchange hole9

gsrd = −
9h− fkFr cosskFrdg + sinskFrdj2

2kFr6 .

g is a universal function of the dimensionless variablekFr,
wherekF is the Fermi wave number. This hole describes the
tendency of fermions to avoid each other according to the
Pauli principle. When, additionally, the electrons are allowed
to interact, the Coulomb repulsion will increase the extension
of the hole.9 The size of this repulsion area around an elec-
tron gives a clue to the correlation length of electrons in the
excited state. It turns out to be close to the screening length
for electrostatic perturbations, which in turn equals roughly
the average distance of electrons in the gas. For Al, this is
0.107 nm, and we find a FWHM of this hole of 0.1 nm and
the first zero is at 0.23 nm.

C. Pair distribution function in correlated electron excitations

In 1957, Ferrell and Quinn12 explained the high energy of
the plasma excitation in a metal with the positional correla-
tion of electrons in the excited state. These correlations stem
from coherent superpositions of excited single-electron states
with the same relative phase. The pair distribution function
of electrons in this excited state with wave vectork is
~cossk ·xd.12 Averaging over directions yields the density-
density correlation function

psrd =
sinskrd

kr
. s7d

For k we take the mean wave numberk of a plasma excita-
tion. Assuming that allq values from 0 to the cutoff wave
number qc are equiprobable, we obtaink=3qc/4. The
FWHM is 0.16 nm, the first zero at 0.28 nm.

D. Electron-hole distance

An alternative approach to the correlation length starts
from the plasmon wave function,10 defined as the probability
amplitude of finding electron-hole pairs separated byr . In a
way, this is the opposite of Ferrell’s approach because, if the
probability of finding two electrons at a distance is high,

there will be a low chance to find a hole at the same distance.
The result for smallk andr perpendicular tok is a universal
function of the dimensionless parameterkFr,

wskFrd =
2J1skFrd

kFr
. s8d

For r parallel to k, the extension of the wave function is
bigger by a factor of roughly 2.2. Averaging over both val-
ues, the resulting FWHM is 0.14 nm, and the first zero is at
0.35 nm.

Several values for the extension of the plasma excitation
in Al metal are collected in Table I. It can be seen that the
various approaches yield very similar values for the correla-
tion length of electrons in metals.

IV. INELASTIC ELECTRON SCATTERING

In the single scattering approximation, the dynamic form
factor S of a scattering medium relates to the double differ-
ential inelastic scattering cross section for fast electrons as7

]2s

] E ] V
=

4g2

a0
2

k

k0

SsQ,Ed
Q4 , s9d

wherea0=4p«0"2/me2 is the Bohr radius, andg is a relativ-
istic factor. We used the three-dimensional vector in recipro-
cal space,

Q = S q

QE
D .

qE=k−k0 is the negative difference of radii of the Ewald
spheres before and after inelastic scattering. For small energy
lossesE!E0 we have approximatelyqE=−k0E/2E0. Equa-
tion s9d is valid in the first Born approximation for an inci-
dent plane wave, and for single scattering.

Experimentally, the angular scattering distribution is well
approximated by a Lorentzian behavior up to a cutoff angle

TABLE I. Electron correlation in the Al plasma. The table lists
several parameters of the distribution functionssvalues in nmd as
defined in the text. The holography experiment yielded 10% fringe
contrast at a shear of 10 nm.

Method HWHM First zero First minimum

Uncertainty principle 0

pEsxd—Eq. s5d 0.13 0.20 0.30

pEsrd—Eq. s4d 0.16 0.25 0.36

Exchange holea 0.10 0.23 0.23

Pair distributionb 0.16 0.28 0.38

Electron-hole distancec 0.14 0.35 0.46

Mean free pathd 0.4

Holographye 10

aReference 9.
bReference 12.
cReference 10.
dReference 13.
eReference 16.
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uc. Therefore, the dynamic form factor in Eq.s9d must be
proportional toQ2 up to ÎqE

2 +k0
2uc

2. This is the dipole ap-
proximation which is often used for ionization edges.8

There is an intimate relationship between the double dif-
ferential scattering cross section Eq.s9d and the density ma-
trix rEsq ,q8d of the probe electron after inelastic scattering
with energy lossE in the diffraction plane: the former is
proportional to the diagonal element of the latter.

The propagation of the probe electron’s density matrix in
a medium is described by the kinetic equation.18 The kernel
of this integral equation is the mutual object transparency.6

When Bragg scattering can be neglected and the specimen is
thinner than a mean free path for inelastic scatteringswhich
is roughly 100 nm–200 nm for 200 keV incident energy for
plasma excitations, and much higher for ionizationd, the
single inelastic scattering approximation applies,8 and we ob-
tain

rEsq,q8d = Sme2p

«0"2k
D2SsQ,Q8,Ed

Q2Q82 . s10d

The quantitySsQ ,Q8 ,Ed on the right-hand side is the
mixed dynamic form factor.19 Equations9d is a special case
of Eq. s10d for q=q8. Multiple plasmon scattering is thought
to be almost incoherent and would probably not affect the
coherence length but rather the incoherent background in the
diffraction plane. Even this will be a small effect since in all
practical cases the specimen can be prepared thinner than
100 nm, so multiple inelastic scattering can be neglected.

Equations10d establishes a fundamental relationship be-
tween the coherence of a fast probe electron and the corre-
lation function of the scatterer: The density matrixsin real
spaced of electrons scattered inelastically with energy lossE
is the Fourier transform of Eq.s10d,

rEsx,x8d = Sme2p

«0"2k
D2

FTq, − q8fQ
−2Q8−2g p FTq, − q8

3fSsQ,Q8,Edg . s11d

The convolution operatorp links localization and coherence
of the probe to localization and correlation of charges in the
scatterer.

We note in passing that Eq.s10d is the basis for calcula-
tion of channeling phenomena in inelastic scattering.20,21

Via Eqs.s3d ands10d, we have experimental access to the
correlation function, measuring the inelastic differential
cross section. This is, however, problematic since the Fourier
transform of the Coulomb interaction 1/q4 between probe
and scatterer acts as a low pass filter. Noise and multiple
scattering in the specimen will introduce considerable errors
at higher q. In order to bypass this obstacle, it has been
attempted to obtain information on the correlation of the el-
ementary excitations from holography experiments.15–17

A. Electron holography

The first electron interferometer used amplitude splitting
at crystals both for splitting and superimposing the electron
waves.22 A crystal can be considered an amplitude splitter in
that, by diffraction, the incoming wave is split up into partial

waves, which are superimposed subsequently. Later on, this
principle was also used by others.23–25

In today’s electron holography, the principle of wavefront
splitting using the Möllenstedt electron biprism26 is routinely
used. The biprism is a wavefront splitter, splitting each wave
csxWd emerging from the object plane into two partial waves
which are subsequently superimposed in the detector plane
with a relative displacementssheard d. For an overview, see,
e.g., Ref. 27.

We assume here and in the following that the lens system
is aberration-free. Assume that a single exit wavecsxWd is
defined over the entire object plane. The biprism induces a
relative shiftd between two partial images. Consequently, in
the detector plane the wave function is a superposition of the
two partial waves emerging atx−d /2, and atx+d /2,

csxd = csx − d/2deikc/2x + csx + d/2de−ikc/2x, s12d

wherekc=kbed is the carrier frequency of the interference
fringes proportional to the superposition angle ±b induced
by the biprism to the two partial waves. The unit vectored is
perpendicular to the axis of the biprismsparallel todd.

After squaring, one finds the interference pattern

Isxd = Isx − d/2d + Isx + d/2d

+ 2 Refcsx − d/2dc*sx + d/2deikc·xg. s13d

The lastsinterferenced term can be written alternatively as
2ucsx−d /2dc*sx+d /2d ucosfkcx+Dfsx ,ddg. Here, Df is
the phase shift between waves emerging at pointsx−d /2 and
x+d /2.

B. Partially coherent illumination

We assume that the object is illuminated by a monochro-
matic, extended source. A point atr s in the source contrib-
utes intensityissr sd and induces an additional phase shift
eigsr s,xd to the object exit wave, whereg depends on the ac-
tion taken between source and object.39 When we integrate
over r in the correspondingly changed Eq.s13d, the intensity
terms remain unchanged since the phasesg cancel, and the
interference term becomes

2 Refc*sx − d/2dcsx + d/2de−ikc·xmscsddg,

where we have used the fact that the integral over the source
illumination functionissr sd is the spatial coherence

mscsdd =E issr sdeifgsr s,x+d/2d−gsr s,x−d/2dgd2rs. s14d

In the far-field approximation, the Fresnel propagator appear-
ing in Eq.s14d degenerates to the Fourier transform operator,
and mscsdd=FTrWs

fisg. Usually, in electron microscopy the
source is assumed to be rotationally symmetric; hencemsc
=mscsdd is real. More generally, the partial coherence func-
tion should also include temporal coherence, which can usu-
ally be neglected since the energy spectrum is narrow. In this
case, we can write
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I sxd = Isx − d/2d + Isx + d/2d + 2mscsdd

3ucsx − d/2dc*sx + d/2ducosfkcx + Dfsx,ddg .

s15d

The two superimposed waves have a degree of spatial coher-
encemsc. Both b and sheard are proportional to the applied
biprism voltage with a proportionality factor given by the
geometry of the setup. Spatial coherence of illumination can
be determined by measuring the contrast for different shear
si.e., changing the biprism voltaged.28

If one partial wave runs entirely through vacuum and the
other one through an object, the elastic interactionswithout
any energy transferd in general results in a modulation of
amplitude and phase with respect to vacuum. The first partial
wave is then given ascvac=1 and the second one as
ucobjueiDf. Assuming that the specimen occupies the positive
half-space of the object planesits edge passing throughxW

=0, perpendicular todWd, the interferogram Eq.s15d reads

Isxd = 1 + Iobjsx + d/2d + 2mscsdWducobjsx + d/2d

3ucosfkcx + Dfsx,d/2dg , s16d

where the mean fringe contrast is still given by the degree of
coherence of illumination. Such interferograms give rise to
all sorts of applications in electron interferometry and holog-
raphy; for a review, see Ref. 27.

C. Inelastic holography

It has been shown29 that the interference fringes produced
by superposition of waves inelastically scattered with energy
loss dE with the vacuum reference wave disappear in the
record, when the recording time obeys

t . h/dE.

Sincet is of the order of seconds, the limiting energy loss is
about 10−15 eV. In a way, the biprism is a perfect energy
filter.

If both waves have suffered the same energy loss, the
fringes would reappear only if phase coherence is given. In
order to study phase coherence, it is therefore reasonable to
bring two waves with the same energy loss from different
positions in the specimen to interference. Since elastic ho-
lography detects phase relations between different points, it
can be anticipated that the same is true for inelastic hologra-
phy. Any nonarbitrary phase relation between waves emerg-
ing from different points of the scatterer could be detected.
This would then be an elegant pathway to study the correla-
tion in solid state excitations. Since it has been argued that
ionization is a very localized process, one would not expect
correlations between points at a larger distance than the
atomic scale. On the other hand, plasma excitations seem a
good candidate for inelastic holography since they are col-
lective throughout the medium. The decisive criterion is then
whether the interaction processes preserve phase coherence
between the two waves.

Experimentally, the question was tackled in an electron
microscope equipped with an energy filter. Both waves were

run through adjacent areas of the same object, hence offering
the same inelastic interactions to the beam electrons. Indeed,
interference fringes with sufficient contrast were found when
selecting the Al-plasmon loss by the energy filter.15,16 In the
latter experiment, by means of the biprism voltage, the lat-
eral distanced ssheard was made as large as 10 nm without
losing the contrast in electron noise. This means that the
radius of a coherence patch in the outgoing wavefield is at
least 10 nm wide.

What is measured in this experiment is the mutual coher-
ence function30 of electrons in the exit plane of the specimen
having suffered a plasmon loss.

In analogy to the elastic case Eq.s13d, one could argue
that the hologram reads

Isxd = Isx − d/2d + Isx + d/2d + 2mscsdd

3RefcEsx − d/2dcE
* sx + d/2deikc·xg. s17d

The essential question is whether the relative phase between
the two partial interfering wavescE of inelastically scattered
electrons at positionsx−d /2 andx+d /2 is fixed as in the
elastic case, or arbitrary. If it is arbitrary, it would induce a
new kind ofsinelasticd incoherence. In this case, it would be
necessary to average the interference term in Eq.s17d in
order to write

Isxd = Isx − d/2d + Isx + d/2d

+ 2kmoutsddl cosfkcx + Dfsx,ddg
with an averaged mutual coherence function of the outgoing
electrons,

kmoutsddl = mscsddkcEsx − d/2dcE
* sx + d/2dl.

It is difficult to imagine how the wave function after inelastic
scattering should enter this averaging process, and how the
phase shiftDfsx ,dd should be obtained.

A closer inspection shows that this is indeed the weak
point because, after inelastic interaction with energy lossE,
the probe electron is not in a pure state any longer. Rather, it
is entangled with the specimen’s electrons. This means that it
can no longer be described by a wave function.

The proper tool for describing mixed states is the density
matrix.40,31 We build the intensity of the mixed state as the
sum over the individual exit wave functions which contribute
to a given energy loss, with Eq.s12d,

IEsxd = o
j

uc jsx − d/2du2 + o
j

uc jsx + d/2du2

+ 2 ReFo
j

c jsx − d/2dc j
*sx + d/2deikc·xG . s18d

With the substitutions

x =
x + x8

2
,

d = x − x8,

and the inelastic density matrix for probe electrons after en-
ergy lossE,
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rEsx,x8d = o
j

c jsxdc j
*sx8d,

this can be written as

IEsxd = rEsx,xd + rEsx8,x8d + 2 RefrEsx,x8deikc·xg. s19d

The coherence of the incident wave field can be included
exactly as in Eq.s15d for the elastic case, integrating over the
source area. Equations18d is then

IEsxd = rEsx,xd + rEsx8,x8d + 2mscsddRefrEsx,x8deikc·xg.

s20d

For a pure state, Eq.s19d would simplify to Eq. s17d.
Indeed, the difference is in the interference term which is
now an off-diagonal element of the density matrix, multi-
plied with the carrier frequency and the coherence of the
incident wave field.

Equations20d is the fundamental equation. It is a natural
extension of the pure state description to an arbitrary number
of sincoherentlyd superposed wave functions, and is as such
well adapted to the case of inelastic scattering.

For isotropic scattering, the density matrixrE is real, so

IEsx−d = rEsx,xd + rEsx8,x8d + 2mscsddrEsx,x8dcosskc ·x−d.

s21d

We can now redefine the mutual coherence function of the
outgoing wave field as

moutsx,x8d = mscsx − x8drEsx,x8d s22d

swhen we consider these quantities as matrices, this is the
“dot” product of the incident electron’s coherence and the
inelastic density matrixd and write Eq.s21d as

IEsxd = rEsx,xd + rEsx8,x8d + 2moutsx,x8dcosskc ·x−d.

s23d

The solid state plasma can be considered as homogeneous
and isotropic. In this case, the density matrix in Eq.s21d
depends only on the differenceudu of the two variablesfthe
main diagonal value, i.e., the density, is constant,rEsx ,xd
=rEs0,0dg. The mutual coherence function Eq.s22d simpli-
fies to

moutsdd = mscsddrEs0,dd

and the measured intensity is

IEsxd = 2rEs0,0d + 2moutsddcosskc ·xd . s24d

The amplitude of the fringes measures the off-diagonal ele-
ment of the inelastic density matrixrEs0,dd, which, in turn,
is identical to the mutual object transparency for energy loss
E, introduced by Rose.32 A good description of image forma-
tion both for potential scattering and for inelastic interac-
tions, based on the mutual coherence function and mutual
object transparency, is the treatment of Mülleret al.33 The
fringe contrast in the inelastic hologram is given in terms of
the mutual object transparencymout as

Imax− Imin

Imax+ Imin
=

moutsdd
rEs0,0d

. s25d

In complete analogy to potential scattering, we can then re-
late the fringe contrast to the mutual coherence function.
Therefrom, the off-diagonal term of the density matrix of the
inelastically scattered electron can be easily obtained from a
hologram.

Predicting fringe contrast needs the calculation of
rEs0,dd. Quite generally, for an arrangement of scatterers
with spatial distributiongsr d, the total density matrix is

rE
t sx,x8d =E gsr drEsx − r ,x8 − r dd2r .

For a homogeneous infinitely extended system, the total
density matrix can be found analytically by integrating the
mixed dynamic form factor in the dipole approximation over
all independent scattering centers atr with proper phase
shifts,

ShsQ,Q8,Ed ~E Q ·Q8eisq−q8d·r d2r ~ Q ·Q8 d2sq − q8d.

s26d

The corresponding density matrix is obtained as the Fourier
transform of Eq.s26d,

rE
hsx,x8d = FTq, − q8FShsQ,Q8,Ed

Q2Q82 G =E
0

qc

Q−2eiq·sx−x8dd2q

=E
0

qc

qJ0squx − x8udQ−2dq s27d

with the Bessel function of first kind and zero orderJ0. The
function rE

hs0,dd is shown in Figs. 2 and 3 for the Al plas-
mon. It can be interpreted as the contrast of fringes as a
function of sheard for perfectly coherent illumination.34 The
10% level is reached at a shear of 9.1 nm, and at 20 nm we
find 0.026, both in good agreement with the interference ex-
periments of Lichte and co-workers.16,17

We can now compare the mutual coherence function with
the correlation function in the Al plasmon, Eq.s5d. Figure 4

FIG. 2. Off-diagonal density-matrix elementsmutual coherenced
rE

hs0,dd of electrons emerging from the exit plane of an infinitely
extended homogeneous Al specimen, after excitation of a plasmon,
as a function of holographic shear.
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shows the first 2 nm together with the 2D correlation func-
tion. The mutual coherence function is smoothly decreasing;
it is so broad because of the long-range Coulomb interaction
between target charges and the probe electron. The faint
wiggles at the first few nm are remnants of the strong oscil-
lations in the correlation function.

V. PROPOSAL FOR EXPERIMENTS

The coherence function Eq.s27d can be approximated by
the truncated Bessel function, which we define in terms of
the Bessel function of the second kind and zeroth-orderK0 as

K0
t sxd = H1, x , 1/qc

K0sqExd/lnsqc/qEd otherwise
s28d

It has been shown8 that the intensity of a pointlike scat-
terer decays asK0

t sqe xd2 with distance from the excitation.
Since the coherence function decays asK0

t sqe xd, one might
expect unusual behavior of the holographic fringe contrast,

rEs0,dd
rEs0,0d

~
1

K0
t sqe dd

s29d

in the vicinity of localized excitations. Equations29d predicts
increasing fringe contrast with increasing distance from the
excitation.

In the following, we apply the outlined theory in two
cases, using the inelastic density matrix for the calculation of
sad the inelastic mutual coherence outside an excited me-
dium, andsbd we predict reversal of the fringe contrast in the
vicinity of a small isolated area of excitation. The first result
is unexpected and could be tested by holography. The second
result is even more surprising because it would show, di-
rectly, a phase shift ofp in inelastic scattering.41

A. Plasmon coherence in vacuum

The total density matrix for a distribution of scatterers
filling the half-spacer =sj.0,hd is

rE
t sx,x8d =E

−`

` E
0

`

gsr drEsx − r ,x8 − r ddjdh. s30d

Numerical integration yields the intensity profile and the co-
herence function as shown in Fig. 5.

Note the decrease in the mutual coherence close to the
border of the specimen. This is a consequence of the nega-
tive contributions to the density matrix for distances that are
small with respect to the shear.

The fringe contrast Eq.s25d is shown in Fig. 6 as a func-
tion of distance from the edge. It is seen that the contrast
increases outside the scattering medium. This surprising be-
havior can be attributed to the faster decrease of the intensity
swhich behaves approximately asK0

2d with respect to the co-
herence function. At the very edge of the specimen, the con-
trast is 0.012, whereas in the mediumsfar from the edged,
Eq. s28d predicts 0.025. That means that we should see a
small dip in contrast when we approach the specimen’s bor-
der from the inside.

B. Contrast reversal in small excited areas

Assume a pointlike scatterer. When we impose a sheard
by the biprism, we will see the source of inelastic scattering
overlapping with the shifted second image. Since the inten-
sity decreases smoothly outside the inelastic source and its
image, we will also detect the tails of the secondsvirtuald
source.

FIG. 3. Same as in Fig. 2 on a logarithmic scale, compared with
experimental valuessld sRef. 35d.

FIG. 4. Dashed line: Off-diagonal density-matrix elementsmu-
tual coherenced rE

hs0,dd of electrons, compared with the two-
dimensional projection of the density correlation function of the
scatterer, Eq.s5d sfull lined, as a function of shear.

FIG. 5. Intensity sdashedd and mutual coherencerE
hsx ,x+dd

sld outside of an Al specimen as a function of distance from the
border. The shear is 20 nm parallel to the edge of the specimen.
Both curves are normalized to intensity 1 at the edge. The mutual
coherence is enlarged by a factor of 50.
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In the dipole approximation, it is found that the density
matrix of the inelastically scattered electrons is

rEsx,x8d = vsxdvsx8d ex ·ex8 + wsxdwsx8d. s31d

Here,ex is a unit vector in directionx in the exit plane.
The two functions in Eq.s31d are8

v =
1

2p
E

0

` qJ1sqxdfsQd
Q2 dq, s32d

w =
qE

2p
E

0

` J0sqxdfsQd
Q2 dq. s33d

Note that the scalar productex·ex8=cosf is negative
when the anglef between directionsx ,x8 is .p /2.

Therefore the density matrixrEsx ,x8d has negative con-
tributions, and we expect contrast inversion of the fringessin
other words, there is a phase shift ofp between some partial
inelastically scattered wavesd. The results for a shear of 20
nm are shown in Fig. 7, showing the area where the density
matrix is negativeswe set the positive parts to zero in the
figure so as to facilitate visualizationd, and in Fig. 8, showing
the density matrix as a density plotswhite is negative, black
positived and a simulation of the fringes. Contrast inversion
can be observed in the semicircular area between the source
and its image. Note that both figures show only the right
half-plane since everything is symmetric with respect to the
line connecting source and image.

The minimum contrast is20.37; it is found at the mid-
point between the real and the virtual source. We propose
therefore such an experiment with a small circle or sphere of
a material with a well-defined plasmon, such as Al or Si.
Apart from the difficulty to prepare a specimen with an al-
most pointlike excitation source surrounded by vacuum, the
question is whether the intensity is high enough to detect the
effect and whether the strong intensity background from the
point sources does not hide the minute fringe amplitudes. A
simulation for an extended source is more tricky—we think
that the contrast inversion will still be visible, albeit with
smaller amplitudes and in a smaller region. We expect vis-
ibility of the contrast inversion when the diameter of the
excited region is well below the holographic shear.

VI. CONCLUSIONS

We discussed several approaches to the correlation length
in solid state plasmas. Results derived from the plasmon cor-
relation function and its two-dimensional projection onto the
plane of observation are in good agreement with earlier es-
timates.

It was further shown that the small correlation length
in solid state plasmas does not contradict the coherence
length of almost 30 nm found in inelastic interference
experiments. The difference of nearly two orders of magni-
tude can be traced back to the long-range Coulomb interac-
tion between probe and target electrons. So it may happen
that two partial waves emerging from the specimen a dis-
tanced apart from each other have excited the same—very
localized—plasmon and thus are coherent over that large dis-
tance. Details of the electronic correlation in the scatterer are
found in the first few nm of the mutual coherence function.
Sophisticated experiments will be needed to reveal these de-
tails.

An unexpected prediction of the density-matrix approach
is that inelastic holography experiments should show in-
creased contrast outside the specimen, and a phase shift of
p in inelastic holograms of very small particles. With the
presently available combination of highly coherent field
emitters and energy filters in the transmission electron
microscope, our predictions could probably be tested experi-
mentally. Applications would cover the direct detection of

FIG. 6. Predicted fringe contrast outside of the Al specimen for
a shear of 20 nm parallel to the edge of the specimen. FIG. 7. Area of negative contributions to the density matrix

rEsx ,x+dd of a pointlike excitation for a shear of 20 nm. The point
and its image are situated ats0,10d and ats0,210d

FIG. 8. Predicted fringe contrast and holographic interference
fringes showing a phase shift ofp in the area in between a pointlike
source of inelastic scattering and its image. The pointlike source is
at s0 nm,210 nmd; the shear is 20 nm in the vertical direction.
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phase correlation in various excitations, including the phase
shifts induced by transition to final states whose
m-degeneracy is lifted in a magnetic field.

Note added in proof. The predicted increase of contrast in
vacuum was recently found in an experiment on small hy-
drogen bubbles.37 Further work is in progress.
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