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Collective excitations in solid state plasmas are a good candidate to measure correlation lengths of conduc-
tion electrons. The method of choice seems to be energy filtered electron holography in the transmission
electron microscop€lEM) since the interference fringes contain information on the partial coherence of those
electrons. Previous experiments showed surprisingly high coherence. We calculate the density-density corre-
lation function in the Al plasma excitation from the dynamic form factor and compare it to results based on
similar arguments. For the Al plasma excitation, we find a small extension ef003Lnm over which the
movement of charges is correlated. Using the density-matrix formalism, the coherence length of plasmon
scattered fast electrons in the TEM is calculated and found to agree with experiment. We show that the small
correlation length of conduction electrons does not contradict the coherence lengft® afm found for fast
probe electrons having excited a plasmon in Al. The difference of nearly two orders of magnitude can be traced
back to the long-range Coulomb interaction between probe and target electrons. Two unexpected predictions
ensue from the present approach: Inelastic holography experiments should show strongly increased contrast of
interference fringem vacugq i.e., outside the specimen, and contrast inversion of fringes in inelastic holograms
of very small particles.

DOI: 10.1103/PhysRevB.71.045130 PACS nun®er71.45.Gm, 34.80.Pa, 82.80.Pv

I. INTRODUCTION izing that the inelastic scattering cross section for fast elec-
trons is closely related to the mutual coherence of the scat-
coherent superpositions of electron wave functions. pla Tered electrons, we are then in a position to elaborate the
i perp ) » Play z?elationship betweep(r) and the mutual object transparency
dominant role for the modeling of energy-loss spe¢ea., introduced by Rose and co-workérsVe can then reanalyze
Refs. 1 and 2and in many quantum applications such as . oy ; . y
the inelastic interference experiments of Lichte and co-

Josephson junctions, quantum tunneling, spintronics, nm- : .
sized semiconductors, nanotubes, and molecules: see, e_Igorkers. We find that the large coherence length determined

Refs. 3 and 4. A famous example is the electron correlatior) Xperlmentally 'S precisely predlcteq by theory,' and t'hat this
is consistent with the small correlation length in solid state

in the interacting electron gas is a notorious problem with lasmas. We predict some peculiar properties of the mutual

many approximate solutions and unsatisfactory agreemeﬁtOherence function and propose new holographic experi-
with experiment. For a review, see, e.g., Ref. 5 and refer SNt as a test of the present predictions.
ences therein.

It is reasonable to assume that the movement of conduc-

tion electrons is correlated over a distance of the order of l. THE DENSITY CORRELATION FUNCTION

magnitude of the Thomas-Fermi screening length. On the The density correlationp(r) is defined in terms of the

other hand, the plasmon as a collective excitation is Oﬂe'aensity operaton(r)=3,8%7,-r) as the integral over the
visualized as an in-phase movement of virtually all Conduc'expectation value

tion electrons in the specimen, thus having infinite correla-
tion length. L ,

In this paper, we set out to describe correlation in solid p(r) :f dr'¢n(r)n(r +1")), (1)
state plasmas and its relationship to inelastic electron holog-
raphy by use of the density matrix. As an example, we takavhere the sum is over all particles.
Al metal. We first discuss the different existing approaches to  This definition can be extended to time-dependent corre-
a definition of the spatial extension of a plasma excitationlations as
Then we focus on the density-density correlatign), i.e.,
the conditional probability to find an electron a distance p(r,t) :fd3r’<n(r’,0)n(r +r',1)), (2)
away from another one. We then show hp) relates to

the dynamic form factoS(d,E), which in turn is accessible where we have assumed that the system is invariant under
by inelastic scattering experiments with fast electrons. Realtime translation operations. The frequency componeuf

The correlated movement of electrons in matter, as well a

in metals. The accurate calculation of the correlation energ
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qc _
Pe(X) =FT,[S(Q.E)]= | SQ,E)é¥dq
0

qc
=27 | S(Q,E)d™c¥qdqdp
0

qc
=2m|  (g&+9)J(gxqda. (5)
0

Results are shown for Al, compared to the three-
dimensional correlation function, in Fig. 1. The 3D correla-
tion function has its first zero at 0.25 nm and its first subsid-

FIG. 1. Density autocorrelation function of Al plasma excita- iary minimum at 0.35 nm with less than 20% probability.
tion. Full line: Eq.(4); dashed line: projection onto plane of obser-
vation, Eq.(5).

Ill. VARIOUS APPROACHES TO CORRELATION

this function is the density correlation functigr(r) of an ~According to strong screening in metals, both the correla-
excitation of energ\E=%w in the system tion length of conduction electrons and the extension of the
exchange-correlation hdlean be expected to be of the same
magnitude as the Thomas-Fermi screening lefgtme ang-
Pe(r) =FT{p(r,1)]. stroms.
This is consistent with the findings of Edf!! who de-
Here and in the following, we use the abbreviatR[f(x)]  fived an extension 0£0.2 nm for the plasmon in metals and
for the Fourier transform of a function with respect to the Semiconductors from the analysis of what he termed the plas-
variablex. mon wave function. The same order of magnitude is found
Applying the Wiener-Khinchin theorenpg(r) is the Fou- for the pair distribution function in a coherent superposition

fier transform of the dynamic form factésee, e.g., Ref.)7 of eleptron—hole excitation@.A classical argument suggests
S(Q,E) of the scatterer to define the extension of the plasmon as the product of the

lifetime and the group velocity. For Al, this was found to be
0.4 nm13 This last value seems to be in agreement with early
Pe(r) =FTo[S(Q,B)]. (3)  experiments on the spatial resolution in plasmon filtered
Experimentally, the inelastic electron scattering cross sec" ages:* v Lich KSra7
tion for cubic systems is isotropic and to a good approxima- Howgver, more recenty Lichte gnd co-wor re-
tion a Lorentzian in wave-number transfgmwith cutoff q,. port_eddlnterlference _ex}gler@ents with fESt ele(;:_trt_)ns har\]/lng
This is consistent with the dipole approximation for the dy—fexc't;3 a phasmon 'In .h (;ntlrary tol(t) € pr? |ct|ons,3(t) ey
namic form factorS(Q,E) « Q2 up to the cutoff wave num- ound a coherence gngt o ampst hm, later on nm
ber. from frlnge contrast in the |ne!ast|c hologram. . .
In the dipole approximation, the Fourier transform E2) ' This seems to be con_tradlcted by the uncertainty prin-
can be performed directly ' " ciple: the coherent extension of a plasmon scattered electron
' in the electron microscope is by definitiam(:h/\/(&TZ).
Since the angular scattering distribution is proportional to a
Lorentzian(g3+g?) ™ the variance of which is infinite, the
coherence length of the scattered electron comes odk as
=0.
0 4) In the following, we discuss the various approaches more
Qr ' precisely. We shall see that the intuitive argument based on
the angular scattering distribution is not far from reality.

Ac T
pe(r) =2m | Q*S(Q,E)dQ f dd sin()e Q" cod
de 0
=47 qCQ“—Sin(Qr)d
e

where we have used the fact that no wave-number transfer _
less than the characteristic transtgrek,E/2E, can occur. A. Mean free path of the excited plasmon

In the electron microscope, spatial information is only Chend® calculated what he called the localization dis-
available projected onto the image plane with coordinates tance of the excitation as the product of group velocity with
(which corresponds to the subspace in reciprocal space suthe relaxation time. The former was taken to be an average
tended by the diffraction planeWhen comparing predic- over the observable wave numbers, and the latter was ob-
tions with experimental results, one is rather interested in théained from the energy full width at half maximu@WHM)
z-projected correlation functiop=/p(r)dz This is the two-  of the plasmon peak. The result was 0.4 nm. In fact, what
dimensional Fourier transform with respect to the coordi-was computed was the mean free path of the plasmon. This
natesq in the diffraction plane—for definition see after Eq. need not be the correlation length, as becomes evident when
(9). In the dipole approximation with cutoff,, this i one thinks of solitons which travel over much longer dis-
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tances than their spatial extension. In Ref. 13, the puzzling TABLE I. Electron correlation in the Al plasma. The table lists
observation can be found that from the angular distributiorseveral parameters of the distribution functigmalues in nm as

of scattering, a localization distance of 23 nm can bedefined in the text. The holography experiment yielded 10% fringe
derived3® in disagreement with the experimentally observedcontrast at a shear of 10 nm.

spatial resolution of 0.4 nm. The situation is confusing since
three different quantities are compared there. Intuitively it isMethod HWHM  First zero  First minimum

Le(;tt t(:r::;:hheglware related to each other in some way, but it i%ncertainty principle 0
' pe(X)—Eq. (5) 0.13 0.20 0.30
pe(r)—Eq. (4) 0.16 0.25 0.36
B. Exchange hole Exchange hoRe 0.10 0.23 0.23
In the Hartree-Fock approximation fod electrons, the Pair distributiof 0.16 0.28 0.38
density correlation is Electron-hole distanée  0.14 0.35 0.46

(N-1) Mean free path 0.4

p(r)=&%r) + [1-9g(ker)] (6)  Holography 10

v

4Reference 9.
bReference 12.

9{— [ker codker)] + sin(kgr)}? ‘Reference 10.
- 2kr® : dReference 13.
F

®Reference 16.
g is a universal function of the dimensionless variakie,
wherekg is the Fermi wave number. This hole describes thethere will be a low chance to find a hole at the same distance.
tendency of fermions to avoid each other according to theThe result for smalk andr perpendicular t& is a universal
Pauli principle. When, additionally, the electrons are allowedfunction of the dimensionless paramekgr,
to interact, the Coulomb repulsion will increase the extension
of the hole® The size of this repulsion area around an elec- (Ker) = 2J,(ker) (8)
tron gives a clue to the correlation length of electrons in the e Ker
excited state. It turns out to be close to the screening lengt
for electrostatic perturbations, which in turn equals roughl
the average distance of electrons in the gas. For Al, this i
0.107 nm, and we find a FWHM of this hole of 0.1 nm and
the first zero is at 0.23 nm.

with the exchange hole

g(r) =

or r parallel tok, the extension of the wave function is
Qigger by a factor of roughly 2.2. Averaging over both val-
ues, the resulting FWHM is 0.14 nm, and the first zero is at
0.35 nm.

Several values for the extension of the plasma excitation
in Al metal are collected in Table I. It can be seen that the
C. Pair distribution function in correlated electron excitations various approaches yield very similar values for the correla-

In 1957, Ferrell and QuirlA explained the high energy of 10N length of electrons in metals.
the plasma excitation in a metal with the positional correla-
tion of electrons in the excited state. These correlations stem IV. INELASTIC ELECTRON SCATTERING
from coherent superpositions of excited single-electron states
with the same relative phase. The pair distribution function]c
of electrons in this excited state with wave vectoris
«cogk -x).1? Averaging over directions yields the density-

In the single scattering approximation, the dynamic form
actor S of a scattering medium relates to the double differ-
ential inelastic scattering cross section for fast electrofs as

density correlation function #o 4y k SQ,E) ©
© sin(kr) @ JEIQ  aik Q7
r=———.
P kr whereag=4msy#i?/mée is the Bohr radius, ang is a relativ-
istic factor. We used the three-dimensional vector in recipro-

For k we take the mean wave numbepf a plasma excita-
tion. Assuming that alfj values from O to the cutoff wave
number q. are equiprobable, we obtaik=3q9.,/4. The q

FWHM is 0.16 nm, the first zero at 0.28 nm. Q= (QE) -

ge=k-k, is the negative difference of radii of the Ewald

spheres before and after inelastic scattering. For small energy
An alternative approach to the correlation length startdossesE<E, we have approximatelge=-k,E/2E,. Equa-

from the plasmon wave functidi,defined as the probability tion (9) is valid in the first Born approximation for an inci-

amplitude of finding electron-hole pairs separatedbin a  dent plane wave, and for single scattering.

way, this is the opposite of Ferrell’s approach because, if the Experimentally, the angular scattering distribution is well

probability of finding two electrons at a distance is high, approximated by a Lorentzian behavior up to a cutoff angle

cal space,

D. Electron-hole distance
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6.. Therefore, the dynamic form factor in E€Q) must be  waves, which are superimposed subsequently. Later on, this

proportional toQ? up to \gZ+k362. This is the dipole ap- principle was also used by othefs?®

proximation which is often used for ionization eddes. In today'’s electron holography, the principle of wavefront
There is an intimate relationship between the double dif-splitting using the Mdllenstedt electron biprighis routinely

ferential scattering cross section E§) and the density ma- used. The biprism is a wavefront splitter, splitting each wave

trix pe(q,q’) of the probe electron after inelastic scattering (X) emerging from the object plane into two partial waves

with energy lossE in the diffraction plane: the former is which are subsequently superimposed in the detector plane

proportional to the diagonal element of the latter. with a relative displacemerisheay d. For an overview, see,
The propagation of the probe electron’s density matrix ine.g., Ref. 27.
a medium is described by the kinetic equattdiThe kernel We assume here and in the following that the lens system

of this integral equation is the mutual object transparéncy.is aberration-free. Assume that a single exit was(@) is
When Bragg scattering can be neglected and the specimendefined over the entire object plane. The biprism induces a
thinner than a mean free path for inelastic scattefimgich  relative shiftd between two partial images. Consequently, in
is roughly 100 nm—200 nm for 200 keV incident energy for the detector plane the wave function is a superposition of the
plasma excitations, and much higher for ionizafjothe two partial waves emerging at-d/2, and atx+d/2,

single inelastic scattering approximation appfiesid we ob-

tain P(X) = P(x - dI2)E > + y(x + d/2)e7 >, (12)
. (mém\?3Q,Q',E) wherek.=kpBe, is the carrier frequency of the interference
pE(q!q ): 2 2~12 (10) . . L .
eofiZk Q%Q fringes proportional to the superposition anglg duced

. , ] o by the biprism to the two partial waves. The unit veatgis
The quantity S(Q,Q’",E) on the right-hand side is the perpendicular to the axis of the biprisparallel tod).

mixed dynamic form factot? Equation(9) is a special case After squaring, one finds the interference pattern
of Eq. (10) for g=q’. Multiple plasmon scattering is thought

to be almost incoherent and would probably not affect the () =1(x —d/2) + 1 (x + d/2)
coherence length but rather the incoherent background in the . ik
diffraction plane. Even this will be a small effect since in all +2 Rdy(x - di2)y (x +di2)e]. (13

practical cases Fhe specimen can t.)e prepared thinner tha]’rﬁe last(interferencg term can be written alternatively as
100 nm, so multiple inelastic scattering can be neglected.

Equation(10) establishes a fundamental relationship be-2h| xp(xh—d/2)r¢/]/_f§xb+?/2)|coikcx+A¢(x,FJ)]. tHer_e,tﬁng "j’j
tween the coherence of a fast probe electron and the corrg1® Phase shift between waves emerging at poir an

lation function of the scatterer: The density mattir real x+d/2.
spacg of electrons scattered inelastically with energy l&ss
is the Fourier transform of Eq10), B. Partially coherent illumination
mé )\ 2 We assume that the object is illuminated by a monochro-
pe(X,X") = (ﬂ) FTq -q[Q2Q 2] % FTy _ ¢ matic, extended source. A point gfin the source contrib-
&0 utes intensityigrg and induces an additional phase shift
X[S(Q,Q',B)]. (11) € to the object exit wave, wherg depends on the ac-

tion taken between source and obj&tWhen we integrate
overr in the correspondingly changed EGJ3), the intensity
Serms remain unchanged since the phagesincel, and the

The convolution operator links localization and coherence
of the probe to localization and correlation of charges in th

scatterer. )

We note in passing that E¢L0) is the basis for calcula- interference term becomes
tion of channeling phenomena in inelastic scattefftd. 2 R (X - d/2) g x + d/2)e *e X (d) ]
Si il

Via Egs.(3) and(10), we have experimental access to the
correlation function, measuring the inelastic differential\yhere we have used the fact that the integral over the source
cross section. This is, however, problematic since the Fourigfjymination functioni(ry) is the spatial coherence
transform of the Coulomb interaction ¥ between probe
and scatterer acts as a low pass filter. Noise and multiple
scattering in the specimen will introduce considerable errors psdd) = f i(rg@rex+d=yrex=di2]lg2y (14)
at higherg. In order to bypass this obstacle, it has been
attempted to obtain information on the correlation of the el-

ementary excitations from holography experiméfits? In the far-field approximation, the Fresnel propagator appear-

ing in Eq.(14) degenerates to the Fourier transform operator,
and ,usc(d)=FTr~s[iS]. Usually, in electron microscopy the
source is assumed to be rotationally symmetric; henge

The first electron interferometer used amplitude splitting=usd{d) is real. More generally, the partial coherence func-
at crystals both for splitting and superimposing the electroriion should also include temporal coherence, which can usu-
waves?? A crystal can be considered an amplitude splitter inally be neglected since the energy spectrum is narrow. In this
that, by diffraction, the incoming wave is split up into partial case, we can write

A. Electron holography
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() =1(x—d/2) + [(x +d/2) + 2us{d) run through adjacent areas of the same object, hence offering
. the same inelastic interactions to the beam electrons. Indeed,
X |ih(x = dI2) ¢ (x + d/2)|cog kx + Agh(x,d) ]. interference fringes with sufficient contrast were found when
(15 selecting the Al-plasmon loss by the energy filfets In the
latter experiment, by means of the biprism voltage, the lat-

€ral di .
. . ral distancel (sheaj was made as large as 10 nm without
enceus, Both B and shead are proportional to the applied losing the contrast in electron noise. This means that the

biprism voltage with a proportionality factor given by the radius of a coherence patch in the outgoing wavefield is at

geometry of the setup. Spatial coherence of illumination Can.ost 10 nm wide.

be determined by measuring the contrast for different shear What is measured in this experiment is the mutual coher-

(|.e|.f, g::n%:rntigalﬂ\:\?a\t/)lep?jrrg \éﬂ:ﬁg@ throuah vacuum and thec"ce functiof’ of electrons in the exit plane of the specimen
P y 9 having suffered a plasmon loss.

other one through an object, the elast|9 mterac(wnh_out In analogy to the elastic case E@.3), one could argue

any energy transferin general results in a modulation of
) > . . tpat the hologram reads

amplitude and phase with respect to vacuum. The first partia

wave is then given asj,,.=1 and the second one as [(X) =1(x—d/2) + [(x + d/2) + 2us{d)

|1hopjl €. Assuming that the specimen occupies the positive . ik

half-space of the object planés edge passing througk XRe ge(x — d/2)ihe(x +di2)e*>]. (17

The two superimposed waves have a degree of spatial coh

=0, perpendicular tal), the interferogram Eq15) reads The essential question is whether the relative phase between
. the two partial interfering wavege of inelastically scattered
1(X) = 1 +1 (X + d/2) + 2u5d(d)|hopj(x + d/2) electrons at positions—d/2 andx+d/2 is fixed as in the
><|c05{kcx+Ac/>(x,d/2)], (16) elastic case, or arbitrary. If it is arbitrary, it would induce a

new kind of(inelastig incoherence. In this case, it would be
where the mean fringe contrast is still given by the degree ohecessary to average the interference term in (&@) in
coherence of illumination. Such interferograms give rise toorder to write
all sorts of applications in electron interferometry and holog-
I(x)=1(x=d/2) +1(x +d/2)

raphy; for a review, see Ref. 27.
* Apoud)) cogkex + Ad(x,d)]

C. Inelastic holography with an averaged mutual coherence function of the outgoing

. . electrons,
It has been showffl that the interference fringes produced

by superposition of waves inelastically scattered with energy (pou(d)) = e d){ie(x — d/2) ,p*E(x +d/2)).

loss SE with the vacuum reference wave disappear in the = ) . i ) )
record, when the recording time obeys It is difficult to imagine how the wave function after inelastic

scattering should enter this averaging process, and how the

7> h/SE. phase shifiA ¢(x,d) should be obtained.
Sincer is of the order of seconds, the limiting energy loss is oi'rbw\tCklce)izrtjégsgitcetlroizeslgngcsi;?:rtaf:kt‘iISnliviltr;ldgﬁcejrtheE)Wgak
about 10'° eV. In a way, the biprism is a perfect energy P ' . . gy 10ss
the probe electron is not in a pure state any longer. Rather, it

filter. is entangled with the specimen’s electrons. This means that it
If both waves have suffered the same energy loss, the 9 P L
an no longer be described by a wave function.

fringes would reappear only if phase coherence is given. Iy L ; . .
order to study phase coherence, it is therefore reasonable }ﬁa-[:;g Z?F\)/Sé tggill(;otrhgeiiiggls?tg rgﬁﬁg ‘;’;?;23 I:tg':s ggqﬁgy
bring two waves with the same energy loss from different ' Y

positions in the specimen to interference. Since elastic hoz M OVer the |nd|V||duaI e>§|thwEav1e2funct|0ns which contribute
lography detects phase relations between different points, FP a given energy loss, with E¢12),
can be anticipated that the same is true for inelastic hologra- - Sy — 2 _ 2
phy. Any nonarbitrary phase relation between waves emerg- le®) EJ" |¢'(X d/2) +§j" |l’b'(x +di2)
ing from different points of the scatterer could be detected. . ,
This would then be an elegant pathway to study the correla- +2 RE{E Y (x = di2) g (x + d/2)e*e* | (18)
tion in solid state excitations. Since it has been argued that i
ionization is a very localized process, one would not expect \wjith the substitutions
correlations between points at a larger distance than the
atomic scale. On the other hand, plasma excitations seem a _ x+x
good candidate for inelastic holography since they are col- x= 2
lective throughout the medium. The decisive criterion is then
whether the interaction processes preserve phase coherence
between the two waves.

Experimentally, the question was tackled in an electrorand the inelastic density matrix for probe electrons after en-

microscope equipped with an energy filter. Both waves werergy lossE,

d=x-x’,
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pe(X,X") = 2 () ('),
i

0.8
this can be written as -
1£(X) = pe(x,%) + pe(X’,X') + 2 Re pe(x,x)gkeX]. (19) : 0.4

The coherence of the incident wave field can be included
exactly as in Eq(15) for the elastic case, integrating over the 0.2
source area. Equatidi8) is then

_ o s 510 15 20 25 30
1£(X) = pe(X,X) + pe(X’,X") + 2ued d)Re pe(x, X" )], shear (am)

20
o (20 FIG. 2. Off-diagonal density-matrix elemefmhutual coherenge

For a pure state, Eq19) would simplify to Eg.(17). pR(0,d) of electrons emerging from the exit plane of an infinitely
Indeed, the difference is in the interference term which isextended homogeneous Al specimen, after excitation of a plasmon,
now an off-diagonal element of the density matrix, multi- as a function of holographic shear.
plied with the carrier frequency and the coherence of the
incident wave field. L (d)

Equation(20) is the fundamental equation. It is a natural max~ 'min _ Hout .
extension of the pure state description to an arbitrary number Imax* Imin~ Pe(0,0)

of (incoherently superposed wave functions, and is as such, complete analogy to potential scattering, we can then re-
well adapted to the case of inelastic scattering. late the fringe contrast to the mutual coherence function.
For isotropic scattering, the density matfix is real, SO Therefrom, the off-diagonal term of the density matrix of the
_ _ inelastically scattered electron can be easily obtained from a
|E(X) = pE(XlX) + pE(X’,X') + ZIU/SC(d)pE(XIX,)Cquc ' X) . ho|0gram_
(21) Predicting fringe contrast needs the calculation of

, . £(0,d). Quite generally, for an arrangement of scatterers
out\é]vgir?gr\]/vr;c\)/vey ][ieetljdef;r;e the mutual coherence function of th(é)vith spatial distributiong(r), the total density matrix is

(25

MoulX,X") = psdX = X") pe(X,X") (22) PE(X,X") :fg(r)pE(x—r,x’ -r)d?r.

(when we consider these quantities as matrices, this is the

“dot” product of the incident electron’s coherence and the  FOf @ homogeneous infinitely extended system, the total
inelastic density matrixand write Eq.(21) as density matrix can be found analytically by integrating the
' mixed dynamic form factor in the dipole approximation over
oy / . all independent scattering centers ratwith proper phase
le(X) = pe(X,X) + pe(X’,X") + 2poulX, X )COS(kc-X)-(zs) shifts, P ’ PoperP

The solid state plasma can be considered as homogeneousS(Q,Q’,E) = f Q-Q e r=Q-Q fq-q’).
and isotropic. In this case, the density matrix in Egl)
depends only on the differendd| of the two variablegthe (26)
main diagonal value, i.e., the density, is constaptx,x)

. - ; The corresponding density matrix is obtained as the Fourier
=pg(0,0)]. The mutual coherence function E@2) simpli- ponaing e

transform of Eq.(26),

fies to
Houl(d) = psd)pe(0,d) pE(XX") =FTq, g { §(§2’§f,2’ E)] ) f ) Q%90 d%q
and the measured intensity is dc :
1600 = 20(0,0) + 2uguldcodke-x). (24 ] fo (e hQ g 2

The amplitude of the fringes measures the off-diagonal elewith the Bessel function of first kind and zero ordigr The
ment of the inelastic density matrpg(0,d), which, in turn,  function pE(O,d) is shown in Figs. 2 and 3 for the Al plas-

is identical to the mutual object transparency for energy lossnon. It can be interpreted as the contrast of fringes as a
E, introduced by Ros& A good description of image forma- function of shead for perfectly coherent illuminatioff The

tion both for potential scattering and for inelastic interac-10% level is reached at a shear of 9.1 nm, and at 20 nm we
tions, based on the mutual coherence function and mutudind 0.026, both in good agreement with the interference ex-
object transparency, is the treatment of Mulgral3® The  periments of Lichte and co-worketsl’

fringe contrast in the inelastic hologram is given in terms of We can now compare the mutual coherence function with
the mutual object transparengy,,; as the correlation function in the Al plasmon, Ec). Figure 4
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FIG. 3. Same as in Fig. 2 on a logarithmic scale, compared with  F|G. 5. Intensity (dashedl and mutual coherencpl(x,x+d)

experimental valuet#) (Ref. 35. (#) outside of an Al specimen as a function of distance from the
border. The shear is 20 nm parallel to the edge of the specimen.

shows the first 2 nm together with the 2D correlation func-Both curves are normalized to intensity 1 at the edge. The mutual

tion. The mutual coherence function is smoothly decreasingeoherence is enlarged by a factor of 50.

it is so broad because of the long-range Coulomb interaction

between target charges and the probe electron. The faint In the following, we apply the outlined theory in two

wiggles at the first few nm are remnants of the strong oscilcases, using the inelastic density matrix for the calculation of

lations in the correlation function. (a) the inelastic mutual coherence outside an excited me-
dium, and(b) we predict reversal of the fringe contrast in the
V. PROPOSAL FOR EXPERIMENTS vicinity of a small isolated area of excitation. The first result

is unexpected and could be tested by holography. The second
The coherence function E7) can be approximated by result is even more surprising because it would show, di-
the truncated Bessel function, which we define in terms ofectly, a phase shift ofr in inelastic scattering*
the Bessel function of the second kind and zeroth-okgeas

. 1 A. Plasmon coherence in vacuum

L X< . B . . .

Kto(x) :{ q,c (28) The total density matrix for a distribution of scatterers
Ko(@ex)/In(qd/qe) - otherwise filling the half-space =(£>0,7) is

It has been showvfnthat the intensity of a pointlike scat- S
terer decays a{(qge x)? with distance from the excitation. pE(X,x") :J f g(r)pe(x—r,x" =r)dédn. (30
Since the coherence function decaysk&d, x), one might - J0

expect unusual behavior of the holographic fringe contrast, \umerical integration yields the intensity profile and the co-

herence function as shown in Fig. 5.
Pe(0.9) e ! (29) Note the decrease in the mutual coherence close to the
pe(0,00  Kp(ged) border of the specimen. This is a consequence of the nega-
tive contributions to the density matrix for distances that are
in the vicinity of localized excitations. Equati¢@9) predicts  small with respect to the shear.
increasing fringe contrast with increasing distance from the The fringe contrast Eq25) is shown in Fig. 6 as a func-
excitation. tion of distance from the edge. It is seen that the contrast
increases outside the scattering medium. This surprising be-
N havior can be attributed to the faster decrease of the intensity
AN (which behaves approximately B(:%) with respect to the co-
~. herence function. At the very edge of the specimen, the con-
S~ trast is 0.012, whereas in the mediufar from the edgg
_________ Eqg. (28) predicts 0.025. That means that we should see a
small dip in contrast when we approach the specimen’s bor-
/\ der from the inside.

SO O O

N O N D oy O

\./ B. Contrast reversal in small excited areas

Assume a pointlike scatterer. When we impose a sbear
by the biprism, we will see the source of inelastic scattering

FIG. 4. Dashed line: Off-diagonal density-matrix eleménu-  Overlapping with the shifted second image. Since the inten-
tual coherence pE(O,d) of electrons, compared with the two- Sity decreases smoothly outside the inelastic source and its
dimensional projection of the density correlation function of theimage, we will also detect the tails of the secdvittual)
scatterer, Eq(5) (full line), as a function of shear. source.

x (nm)
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FIG. 6. Predicted fringe contrast outside of the Al specimen for

a shear of 20 nm parallel to the edge of the specimen. FIG. 7. Area of negative contributions to the density matrix

pe(x,x+d) of a pointlike excitation for a shear of 20 nm. The point
In the dipole approximation, it is found that the density and its image are situated @,10 and at(0,—10)
matrix of the inelastically scattered electrons is
_ ) ) VI. CONCLUSIONS
pe(X,X") =v(X)v(X') e - €y + W(X)W(X'). (31 . _
) ) o ] ) We discussed several approaches to the correlation length
Here, &, is a unit vector in direction in the exit plane.  in solid state plasmas. Results derived from the plasmon cor-
The two functions in Eq(31) aré relation function and its two-dimensional projection onto the
o plane of observation are in good agreement with earlier es-
_ if —qu(qx)f(Q)dq (32)  timates.

27 ) Q& ' It was further shown that the small correlation length
in solid state plasmas does not contradict the coherence

GE [ Jo(qf(Q) length of almost 30 nm found in inelastic interference
= —J ———daq. (33)  experiments. The difference of nearly two orders of magni-
2mJo Q tude can be traced back to the long-range Coulomb interac-

tion between probe and target electrons. So it may happen
that two partial waves emerging from the specimen a dis-
tanced apart from each other have excited the same—very
localized—plasmon and thus are coherent over that large dis-
tance. Details of the electronic correlation in the scatterer are
found in the first few nm of the mutual coherence function.
Sophisticated experiments will be needed to reveal these de-
ails.

An unexpected prediction of the density-matrix approach

Note that the scalar product;-e,=cosp is negative
when the anglep between directiong,x’ is >/2.

Therefore the density matripe(x,Xx’) has negative con-
tributions, and we expect contrast inversion of the fringes
other words, there is a phase shiftbetween some partial
inelastically scattered wavesThe results for a shear of 20
nm are shown in Fig. 7, showing the area where the densi
matrix is negative(we set the positive parts to zero in the

figure so as to facilitate visualizatiprand in Fig. 8, showing is that inelastic holography experiments should show in-

the density matrix as a density plathite is negative, black creased contrast outside the specimen, and a phase shift of

positive and a simulation of the fringes. Contrast inversion - "~ . . !
. L 7_in inelastic holograms of very small particles. With the
can be observed in the semicircular area between the source

and its image. Note that both figures show only the righlpresently available combination of highly coherent field

half-plane since everything is symmetric with respect to theer.nltters and energy f_||ters in the transmission electror_l
, . : microscope, our predictions could probably be tested experi-
line connecting source and image.

The minimum contrast is-0.37: it is found at the mid- mentally. Applications would cover the direct detection of

point between the real and the virtual source. We propose
therefore such an experiment with a small circle or sphere of 10
a material with a well-defined plasmon, such as Al or Si. 5
Apart from the difficulty to prepare a specimen with an al-

most pointlike excitation source surrounded by vacuum, the 0
guestion is whether the intensity is high enough to detect the
effect and whether the strong intensity background from the
point sources does not hide the minute fringe amplitudes. A -10
simulation for an extended source is more tricky—we think

that the contrast inversion will still be visible, albeit with  FiG. 8. Predicted fringe contrast and holographic interference
smaller amplitudes and in a smaller region. We expect Visfringes showing a phase shift afin the area in between a pointlike
ibility of the contrast inversion when the diameter of the source of inelastic scattering and its image. The pointlike source is
excited region is well below the holographic shear. at (0 nm,~10 nm); the shear is 20 nm in the vertical direction.

10
5
0

—b —B

0 5 10 15 20 _100 5 10 15 20
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