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We present a detailed description of the recently proposed numerical renormalization group method for
models of quantum impurities coupled to a bosonic bath. Specifically, the method is applied to the spin-boson
model, both in the Ohmic and sub-Ohmic cases. We present various results for static as well as dynamic
quantities and discuss details of the numerical implementation, e.g., the discretization of a bosonic bath with
arbitrary continuous spectral density, the suitable choice of a finite basis in the bosonic Hilbert space, and
questions of convergence with respect to truncation parameters. The method is shown to provide high-accuracy
data over the whole range of model parameters and temperatures, which are in agreement with exact results
and other numerical data from the literature.
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I. INTRODUCTION

The Numerical Renormalization GroupsNRGd is known
as a powerful tool for the investigation of quantum impurity
problems, where a quantum system with a finite number of
internal degrees of freedomsthe impurityd couples to an in-
finite system of noninteracting fermions with a continuous
density of statessthe bathd.1–5 The NRG combines numeri-
cally exact diagonalization with the idea of the renormaliza-
tion group, where progressively smaller energy scales are
treated in the course of the calculation. NRG calculations are
nonperturbative and—thanks to the logarithmic energy
discretization—are able to access arbitrarily small energies
and temperatures. Besides providing thermodynamic quanti-
ties like susceptibility, entropy, and magnetization, the NRG
can be used to compute dynamic observables directly on the
real frequency axis.

While the NRG was originally developed by Wilson1 for
the Kondo model, it was later applied to a variety of more
complex impurity models with one or more fermionic baths,
being able to handle, e.g., two-channel and multi-impurity
physics.6,7 As a recent extension, impurity models with a
fermionic bath and a single bosonic mode have been treated,
with the so-called Anderson-Holstein impurity model being
the paradigmatic example.8 Interesting applications of the
NRG include its use within dynamical mean-field theory
sDMFTd.9,10 There, the electronic self-energy of a lattice
model of correlated electrons is approximated by a local
function in space, and the lattice model is mapped onto a
single-impurity model supplemented by a self-consistency
condition. Using DMFT-NRG, the Mott transition of the
Hubbard model has been investigated in detail, both at zero
and finite temperatures.11,12

The objective of this paper is an important extension of
the NRG method, namely the application to quantum impu-
rities coupled to a bosonic bath with a continuous spectral
densitysin contrast to the single boson mode in Ref. 8d. We
have recently given a short account on this development;13

the purpose here is a detailed description of this NRG appli-
cation. To be specific, most of our presentation will focus on
the spin-boson model, with the Hamiltonian

H = −
D

2
sx +

e

2
sz + o

i

viai
†ai +

sz

2 o
i

lisai + ai
†d. s1d

This model naturally arises in the description of quantum
dissipative systems:14,15 The dynamics of the two-state sys-
tem, represented by the Pauli matricessx,z, is governed by
the competition between the tunneling termD and the fric-
tion term lisai +ai

†d. The ai constitute a bath of harmonic
oscillators responsible for the damping, characterized by the
bath spectral function

Jsvd = po
i

li
2dsv − vid. s2d

Clearly, most interesting are gapless spectra,Jsvd.0 for 0
,v,vc, with vc being a cutoff energy. In the infrared limit,
the energy dependence ofJsvd for v→0 determines the sys-
tem’s behavior, where power laws are of particular impor-
tance. Discarding high-energy details of the spectrum, the
standard parametrization is

Jsvd = 2pavc
1−svs, 0 , v , vc, s. − 1. s3d

The cases=1 is known as Ohmic dissipation,14 where the
spin-boson model has a delocalized and a localized zero-
temperature phase, separated by a Kosterlitz-Thouless tran-
sition sfor the unbiased case ofe=0d. In the delocalized
phase, realized at small dissipation strengtha, the ground
state is nondegenerate and represents asdampedd tunneling
particle. For largea, the dissipation leads to a localization of
the particle in one of the twosz eigenstates, thus the ground
state is doubly degenerate.

Bath spectra with exponentss.1 ss,1d are called super-
Ohmic ssub-Ohmicd: In the super-Ohmic case, the system is
always delocalized with weak damping; the sub-Ohmic case
is more involved and will be discussed later. Besides simple
power-law spectra, more complicated bath properties can
arise in a number of situations, e.g., structured baths, consist-
ing of an Ohmic part and modes sharply peaked at certain
energies, have been considered recently.16,17
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The spin-boson model has found applications in a wide
variety of physical situations:14,15mechanical friction, damp-
ing in electric circuits, decoherence of quantum oscillations
in qubits,18–20 impurity moments coupled to bulk magnetic
fluctuations,21 and electron transfer in biological
molecules.22,23

Considering this wealth of applications, numerical meth-
ods to reliably deal with the spin-boson and related models
for all temperatures are highly desirable. In the past, quan-
tum Monte-Carlo simulations24 have been used, which, how-
ever, cannot work at arbitrarily low temperature, and cannot
easily extract dynamical information on the real frequency
axis. Density-matrix renormalization techniques, as em-
ployed in Ref. 25, circumvent this problem, but are not able
to resolve very small energy scales. In Ref. 26, the NRG with
a fermionic bath has been used, exploiting the well-
established mapping of the Ohmic spin-boson model to an
anisotropic Kondo model. Such a mapping is only valid for
frequenciesv!vc swhich nevertheless encompasses most of
the interesting physicsd, and, more seriously, is restricted to
the Ohmic case.27

In a recent paper, we have presented a formulation of the
NRG directly for a bosonic bath, and applied it to the spin-
boson model.13 While we could accurately reproduce known
results for the Ohmic case, we also found that the sub-Ohmic
model displays two phases as wellsin agreement with Refs.
28 and 29d which are separated by a nontrivial quantum
phase transition. Remarkably, this phase transition was not
systematically investigated before. We have studied the prop-
erties of the corresponding quantum critical points—in the
phase diagramssee Fig. 1 of Ref. 13d those form a line,
parametrized by the bath exponents, which terminates in the
Kosterlitz-Thouless transition ats=1. Nears=1 we could
make contact with analytical renormalization group results,
originally formulated by Kosterlitz in the context of an Ising
model with long-range 1/r1+s interaction.30

The purpose of this paper issid to present in detail the
implementation of the bosonic NRG method for the spin-
boson model,sii d to discuss various strategies to set up the
iteration scheme for the bosonic NRG,siii d to demonstrate its
feasibility by studying, in particular, the case of Ohmic
damping; and compare our data with a variety of results from
the literature, andsivd to discuss possible future applications
of the bosonic NRG. The physics of the sub-Ohmic spin-
boson model is very rich due to the presence of a line of
boundary quantum critical points; a full account of the uni-
versal critical behavior, studied using analytical and numeri-
cal methods, will be given in a forthcoming publication.31

The remainder of the paper is organized as follows: In
Sec. II we introduce the formulation of the NRG for bosonic
systems and highlight important differences which occur
compared to the fermionic NRG. In particular, the choice of
appropriate bosonic basis states, which are required to accu-
rately describe certain strong-coupling fixed points, is dis-
cussed, with details given in Appendix A and B. Section III
analyzes the NRG flow and the low-energy fixed points, the
phase boundaries and issues of numerical convergence as
function of the discretization parameters. In Sec. IV we turn
to thermodynamic observables calculated using the bosonic
NRG, such as entropy and specific heat, together with their

scaling behavior. Finally, Sec. V is devoted to dynamical
quantities, where we focus on the symmetrized impurity spin
autocorrelation function. We close with a summary and dis-
cussion of applications and extensions of the bosonic NRG.

II. THE BOSONIC NRG

The bosonic NRG can be applied to a wide range of quan-
tum impurity problems involving a bosonic bath with a con-
tinuoussand in particular gaplessd spectrum. The following
discussion of the technical details of this method concen-
trates on the spin-boson model, the first application of the
bosonic NRG.13 The general concepts are valid for the study
of other bosonic impurity models as well.

The purpose of this section is twofold: we want to discuss
in detail the technical steps of the calculations in Ref. 13. In
addition, we introduce an alternative strategy to set up the
NRG procedure, the so-calledstar-NRG, in contrast to the
chain-NRG used in Ref. 13. The use of the star-NRG is
related to the choice of an optimized set of basis states. As
will be discussed in Secs. II F and III D, the star-NRG allows
for an efficient construction of the NRG basis which solves
the problem of the boson number divergence occurring in the
localized phase for sub-Ohmic damping.

Let us start with a form of the spin-boson model which is
most convenient for the NRG procedure

H = Hloc +E
0

1

d«gs«da«
†a« +

sz

2
E

0

1

d«hs«dsa« + a«
†d s4d

with Hloc=−Dsx/2+esz/2. In this model,gs«d characterizes
the dispersion of a bosonic bath in a one-dimensional repre-
sentation, with upper cutoff 1 for«. The coupling between
the spin and the bosonic bath is given byhs«d. These two
energy-dependent functions are related to the spectral func-
tion Jsvd via

1

p
Jsxd =

d«sxd
dx

h2f«sxdg sx P f0,vcgd, s5d

where«sxd is the inverse function ofgsxd, gf«sxdg=x. For a
givenJsxd, Eq. s5d doesnot determine bothg andh indepen-
dently. Therefore, as shown later in Eq.s10d, a specific
choice ofh is used to simplify the calculations.

A. Logarithmic discretization

The NRG procedure starts by dividing the intervalf0, 1g
into intervalsfL−sn+1d ,L−ng sn=0,1,2, . . ., seeFig. 1d. The
width of each interval is

dn = L−ns1 − L−1d. s6d

Within each interval we introduce a complete set of ortho-
normal functions

cnps«d = 5 1
Îdn

eivnp« for L−sn+1d , « , L−n

0 outside this interval
6 s7d

sp=0, ±1, ±2, . . . andvn=2p /dnd. The operatorsa«
s†d appear-

ing in the Hamiltonians4d can be represented in this basis
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a« = o
np

anpcnps«d, s8d

a«
† = o

np

anp
† cnp

* s«d. s9d

We then choose the functionhs«d to be a constanthn in each
interval of the logarithmic discretization

hs«d = hn = F 1

L−n − L−sn+1dE
L−sn+1dvc

L−nvc 1

p
JsvddvG1/2

s10d

for «P fL−sn+1d ,L−ng. With this choice, the impuritysthe
spin-operatorszd couples to thep=0 component of the
bosonic operatorsanp and anp

† only sthe same strategy has
been used in the case of a fermionic bath with nonconstant
density of states, see Ref. 32d.

The next step is to write the Hamiltonians4d in the basis
anp andanp

† ; the pÞ0 components of these operators are still
present through their coupling to thep=0 components in the
free bath term. The main approximation of the bosonic NRG
at this point is to drop this coupling, in close analogy to the
fermionic casessee Refs. 1 and 2d. This approximation be-
comes exact in the limitL→1. Nevertheless, a careful check
of its validity is necessary and will be discussed in Sec. III B.

With the pÞ0 components completely decoupled from
the impurity, we drop thep=0 index in the operatorsanp=0
andanp=0

† and arrive at a Hamiltonian of the form

Hs = Hloc + o
n=0

`

jnan
†an +

sz

2Îp
o
n=0

`

gnsan + an
†d, s11d

with

jn = gn
−2E

L−sn+1dvc

L−nvc
dxJsxdx, gn

2 =E
L−sn+1dvc

L−nvc
dxJsxd.

s12d

The label Hs is introduced to distinguish this “star”-
Hamiltonian from the “chain”-HamiltonianHc fsee Eq.s14d
laterg. The jn and thegn can be easily evaluated for a bath
spectral function of the form given in Eq.s3d:

jn =
s+ 1

s+ 2

1 − L−ss+2d

1 − L−ss+1dvcL
−n,

gn
2 =

2pa

s+ 1
vc

2s1 − L−ss+1ddL−nss+1d. s13d

The structure of this Hamiltonian is sketched in Fig. 2sbd:
the impurity spin couples linearly to all the bosonic degrees
of freedoman, in a very similar way as in the original Hamil-
tonian s1d. The bath spectral function for models11d is dis-
crete, consisting ofd peaks at energiesjn with weight~gn

2.
Each bosonic degree of freedom of this star-Hamiltonian is a
representative of the continuous spectrum of bosonic degrees
of freedom in the intervalsfL−sn+1d ,L−ng.

B. Chain-NRG versus star-NRG

Starting from the models11d, there are two possible ways
to set up a numerical renormalization group procedure. The
first one swhich we call chain-NRG in the followingd uses
the transformation of the star-Hamiltonians11d to a semi-
infinite chain:

Hc = Hloc +Îh0

p

sz

2
sb0 + b0

†d + o
n=0

`

fenbn
†bn + tnsbn

†bn+1

+ bn+1
† bndg, s14d

with h0=edxJsxd. The spin now couples to the first site of
the bosonic chain onlyfsee Fig. 2sadg and the remaining
part of the chain is characterized by on-site energiesen and
hopping parameterstn, in analogy to the fermionic NRG. The
parametersen and tn can be calculated numerically from
a given spectral functionJsvd, as discussed in detail in
Appendix A.

Such a mapping from a star-Hamiltonian on a semi-
infinite chain form is exact. It has been used in all applica-
tions of the fermionic NRG since the original work of
Wilson.1 Its generalization to the bosonic NRG is straightfor-
ward and has been employed in Ref. 13ssee also Ref. 33d.

The structure of the Hamiltonians14d is sketched in Fig.
2sad. The boxes indicate the NRG strategy used in this case:
in the first step, a cluster containing the impurity plus the
first bath site is diagonalized. In each subsequent step, the
cluster is enlarged by one additional site and the new cluster
is diagonalized using the information obtained in the previ-
ous step.

FIG. 1. Logarithmic discretization of the bath spectral function
in intervals fL−sn+1d ,L−ng sn=0,1,2, . . .d; typical values of the
NRG discretization parameterL as used in the bosonic NRG are
L=1.5. . .3.0. FIG. 2. sad Structure of the spin-boson model corresponding to

Eq. s14d as used for the chain-NRG andsbd to Eq. s11d as used for
the star-NRG; the boxes indicate the iterative diagonalization
scheme for both cases.
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The second possibilityswhich we call star-NRG in the
followingd is to use the Hamiltonians11d directly for the
iterative diagonalization. The general idea is sketched in Fig.
2sbd: again, the first step of the renormalization group proce-
dure involves the diagonalization of a cluster containing the
impurity plus the first bath site. The following renormaliza-
tion group steps, however, are completely different to the
chain-NRG as each new bosonic site does not couple to the
previously added site but to the impurity instead.

The suggestion to use such a star-NRG for the investiga-
tion of bosonic impurity models, such as the spin-boson
model, raises a couple of questions.

s1d Does the star-NRG work at all?
s2d Is the star-NRG of any advantage as compared to the

chain-NRG fapart from the simplification that we do not
have to calculate theen and tn of Eq. s14dg?

s3d Why has such a star-NRG not been used in the fermi-
onic case?

The answers to questions Nos.s1d and s2d will be given
later. Let us first discuss question No.s3d in more detail. A
fermionic star-NRG for, say, the Kondo model would start
from a Hamiltonian similar to Eq.s11d. The important differ-
ence in the fermionic case is that the logarithmic discretiza-
tion has to be performed for both positive and negative fre-
quencies. As a consequence, there are two sets of bath
operators in the star-Hamiltonian, one for positive and one
for negative frequencies

o
s,n=0

`

jn
+fs,n+

† fs,n+ + o
s,n=0

`

jn
−fs,n−

† fs,n−. s15d

For a hybridization function close to particle-hole symmetry
we havejn

+<jn
−. This means that at each renormalization

group step one has to addtwo fermionic sitesfthe alternative
to add fs,n+

s†d first and thenfs,n−
s†d , or vice versa, suffers from

violating particle-hole symmetry, if presentg. The Hilbert
space therefore increases by a factor of 16 in each step. It is
much more convenient to first map the star-Hamiltonian to a
chain form similar to Eq.s14d. In this form, only one site has
to be added in each renormalization group step.

Whether such a fermionic star-NRG is of any advantage is
not clear. It might be useful for extreme asymmetric cases,
but for the cases which are usually of interest the chain-NRG
already works very well and is much easier to implement.

Coming back to the bosonic NRG, there does not seem to
be an a priori preference for either star- or chain-NRG be-
cause the structure of the bosonic bath is extremely asym-
metric from the outsetsrestricted to positive frequencies
onlyd. To address the possible advantages of the star-NRG,
we first have to give more details of how the bosonic NRG is
implementedsfor both star- and chain-NRGd.

C. Iterative diagonalization and choice of bosonic basis states

The star-Hamiltonian H=Hs s11d and the chain-
HamiltonianH=Hc s14d can be written as a series of Hamil-
toniansHN sNù0d equal toH in the limit N→`:

H = lim
N→`

L−NHN. s16d

The HN for the star-Hamiltonian are given by

HN,s = LNFHloc + o
n=0

N

jnan
†an +

sz

2Îp
o
n=0

N

gnsan + an
†dG ,

s17d

and for the chain-Hamiltonian by

HN,c = LNFHloc +Îh0

p

sz

2
sb0 + b0

†d + o
n=0

N

enbn
†bn

+ o
n=0

N−1

tnsbn
†bn+1 + bn+1

† bndG . s18d

In this notation, bothH0,s andH0,c correspond to a two-site
Hamiltonian with only the first site of the star or chain
coupled to the spin.

Two successive Hamiltonians are related by the following
renormalization group transformations:

HN+1,s = LHN,s + LN+1FjN+1aN+1
† aN+1 +

sz

2Îp
gN+1saN+1

+ aN+1
† dG , s19d

and

HN+1,c = LHN,c + LN+1feN+1bN+1
† bN+1 + tNsbN

†bN+1 + bN+1
† bNdg.

s20d

The factorLN in Eqs.s17d and s18d enables the direct com-
parison of the low-frequency spectra of subsequent Hamilto-
nians and, in particular, the discussion of fixed points as in
Sec. III. In contrast to the fermionic case, the factor isLN

instead of LN/2 because the energiesjn in the star-
Hamiltonian and theen and tn in the chain-Hamiltonian are
falling off as L−n, instead of thetn~L−n/2 in the fermionic
case.sThis implies that a bosonic NRG calculation with dis-
cretization parameterL and a particle-hole symmetric fermi-
onic one withL2 will have comparable energy resolution.d
Note that, in the sub-Ohmic spin-boson case, thegn are fall-
ing off slower than L−n. Nevertheless, the factorL−n is the
appropriate one for the low-energy spectra as shown in Sec.
II E.

The sequences of Hamiltonianss17d and s18d are solved
by iterative diagonalization. In the first step, theH0 are di-
agonalized in a basis formed by the product states of
sz-eigenstatesusl and a suitable basis for the first bath site
swe will describe later what we mean with “suitable basis”d.
We have to introduce a cutoffNb0 already for this basis, but
this is usually not a serious restriction as we can use fairly
large values ofNb0<500 sin contrast to the much lower val-
ues ofNb for the following iterationsd.

Given the eigenstatesurlN of HN
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HNurlN = ENsrdurlN, r = 1, . . .Ns, s21d

with Ns the dimension ofHN, we can construct a basis of
HN+1:

ur ;slN+1 = urlN ^ ussN + 1dl, s22d

with ussN+1dl a suitable basis for the added site. In setting
up the basisussN+1dl we are faced with two problems not
present in the fermionic case:

s1d The numerical approach restricts the number of basis
states one can take into account to a maximum numberNb
<10–14. The validity of this approximation has to be
checked carefully.

s2d A criterion for a suitable selection ofNb basis states
out of the infinitely many states of the added site has to be
found.

A general criterion for an “optimal” basissfor a givenNbd
can be formulated as following: find a set ofNb boson states
ussN+1dl which give the best description of the lowest-lying
many-particle states ofHN+1 ssee also Ref. 34d. In a varia-
tional sense, this corresponds to finding statesussN+1dl
which give the lowest many-particle energies for a whole set
of energy levelsssee also Fig. 4 laterd. This is certainly not a
rigorous statement and we have not yet developed a general
algorithm to setup such an optimal basis. Instead we select
one of the two sets of basis states optimized for the two
stable fixed points of the spin-boson model: theNb eigen-
states ofbN+1

† bN+1 sor aN+1
† aN+1d with lowest eigenvalues as

an optimal basis for the delocalized fixed pointsSec. II Dd
and displaced oscillators as optimal basis for the localized
fixed point sSec. II Ed.

Before continuing let us point out that there are no sym-
metries in the HamiltoniansHN,s and HN,c sat least for the
interesting case of finitea andDd. This is in contrast to the
fermionic case,1,2 where we can use, for example, the total
spin and particle number as quantum numbers to signifi-
cantly reduce the size of the Hamiltonian matricesfwhich
would be of sizes4Nsd2 in the absence of symmetriesg. Con-
sequently, in the bosonic NRG for the spin-boson model
there is onlyonematrix of sizesNbNsd2 to be diagonalized in
each renormalization group step. This results in a much sim-
pler structure of the NRG program, but limits the values of
Ns to 100–200.

D. Optimal basis for the delocalized fixed point

Let us start from thea=0 limit of the spin-boson model in
which two-level system and bosonic degrees of freedom are
completely decoupled; for finiteD, the spin oscillations are
undamped and the system is in the delocalized phase from
the outset.

The Hamiltonian in the original formulations1d then takes
the form

H = −
D

2
sx + o

i

viai
†ai . s23d

For simplicity, the biase is set to zero. The star-Hamiltonian
in the a=0 limit has the same structure

Hs = −
D

2
sx + o

n

jnan
†an. s24d

From this structure, it is clear that theNb eigenstates of
aN+1

† aN+1 with lowest eigenvalues form the optimal basis

ussN + 1dl = hunN+1lj, s25d

with

aN+1
† aN+1unN+1l = nunN+1l, n = 0,1, . . .Nb − 1. s26d

The reason is simply that here the many-particle energies are
given by the sum of the single-particle energiesjn.

The situation is similar in the chain-NRG, where thea
=0 limit reads

Hc = −
D

2
sx + o

n=0

`

fenbn
†bn + tnsbn

†bn+1 + bn+1
† bndg. s27d

Here we choose for the basisussN+1dl the stateshunN+1lj
with

bN+1
† bN+1unN+1l = nunN+1l, n = 0,1, . . .Nb − 1. s28d

The difference to the basis for the star-Hamiltonian is that
the unN+1l are not eigenstates of the full bosonic part in Eq.
s27d. But in contrast to the case ofa.0, the Hamiltonian
s27d conserves the total number of bosons; the many-particle
states with the lowest energies are then given by those states
which are constructed from the single-particle states with the
smallest boson numbers, independent of whether a diagonal
basis is chosen or not.

In our previous implementation of the bosonic NRG13 we
used the basiss28d. This is a suitable choice only if the
many-particle states ofHN+1 with lowest energies are indeed
constructed from states with small boson number—in other
words, if the average values of the boson numberskbN+1

† bN+1l
are small. This is the case when the system is close to the
delocalized and the quantum critical fixed points. However,
the boson number diverges when the system flows to the
localized fixed point fors,1 as discussed later.

E. Optimal basis for the localized fixed point (displaced
oscillators)

Here we consider the spin-boson model with zero tunnel-
ing amplitude,D=0. In this case, oscillations betweenu↑l
and u↓l are absent and the system is in the localized phase
from the outset.

The Hamiltonian in the original formulations1d then takes
the form

H = o
i

viai
†ai +

sz

2 o
i

lisai + ai
†d. s29d

For simplicity, the biase is set to zero. As the bath degrees of
freedom now couple to a static spin, the Hamiltonian can be
decomposed in two sectorsH↑ for sz= +1 andH↓ for sz=
−1:
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H↑ = o
i

Hi↑, Hi↑ = viai
†ai +

li

2
sai + ai

†d s30d

sH↓ accordinglyd. In each sector, we now have independent
bosonic degrees of freedom which can be written as

Hi↑ = viāi
†āi s31d

sdropping a constant termd with

āi = ai + ui, ui =
li

2vi
. s32d

The quantitiesui can be viewed as an effectivesdimension-
lessd coupling between impurity and bath modei. Appar-
ently, this transformation corresponds to a displacement of
the oscillatorsai by the value +ui for the↑-sector and −ui for
the ↓-sector. The displacements do not change the energies
vi. This means that the whole many-particle spectrum of the
bosonic bath is identical to the one for the uncoupled bath
except for the additional twofold degeneracy corresponding
to the two sectors↑ and↓.

Note that for the original spin-boson models1d thevi and
li are not specified independently, only the bath spectral
function Jsvd is given; therefore we cannot give explicit ex-
pressions for theui for Eq. s1d.

The star-Hamiltonian Eq.s11d for D=0 sande=0d takes a
form similar to Eq.s29d. Again we have two sectors with

Hs↑ = o
n=0

`

jnan
†an +

1

2Îp
o
n=0

`

gnsan + an
†d s33d

sHs↓ accordinglyd. Using the same reasoning as before, we
can now write

Hs↑ = o
n=0

`

jnān
†ān, s34d

with

ān = an + un, un =
gn

2Îpjn

. s35d

The values ofgn andjn are given in Eq.s13d so we obtain

un ~ Lns1−sd/2 ~ jn
ss−1d/2. s36d

Written in terms of energyv we therefore have

usvd ~ vss−1d/2. s37d

This result is rather interesting: for sub-Ohmic baths,s,1,
the shift un grows exponentially withn. However, in the
super-Ohmic case the shift goes to zero in the low-energy
limit sn→`d, and it is energy-independent for the Ohmic
case. Technically, the coupling to the impurity can be viewed
as a relevantsirrelevantd perturbation of the discretized spin-
boson model fors,1 ss.1d and as a marginal perturbation
in the Ohmic case. Thus, in the Ohmic and super-Ohmic case
the effective couplingusvd doesnot diverge asv→0 even
in the extreme localized case ofD=0. Therefore, numerical
problems associated with a diverging effective coupling are
only expected in the sub-Ohmic case.

Coming back to the iterativenumericaldiagonalization of
the star-Hamiltonian, it is now clear that a simple basis as in
s25d can be far from the optimal choice. If we stay in the
original basis constructed from the lowest eigenstates of
an

†an, we need more and more basis states to describe the
lowest eigenstates of the displaced oscillators.

On the other hand, it is clear how to construct the optimal
basis forussN+1dl at least for theD=0 case. For the sectors
↑ /↓ we simply take oscillator states with displacements
+uN+1/−uN+1. As we need a single basis for both sectors,
these states have to be orthogonalized first; this will be dis-
cussed in more detail in Appendix B.

The displaced oscillator states can also be used to diago-
nalize the chain-Hamiltonians14d for D=0. For a given it-
eration numberN, theHN,c for the ↑-sector reads

HN,c↑ = LNF1

2
Îh0

p
sb0 + b0

†d + o
n=0

N

enbn
†bn + o

n=0

N−1

tnsbn
†bn+1

+ bn+1
† bndG . s38d

Introducing displaced oscillators

b̄n = bn + unsNd, s39d

we again have a diagonal form

HN,c↑ = LNo
n=0

N

enb̄n
†b̄n. s40d

The displacementsunsNd can be calculated numerically for
any given set ofhenj and htnj. For fixed N they show the
same qualitative behavior as theun for the star-Hamiltonian

uunsNdu ~ Lns1−sd/2. s41d

It turns out, however, that theunsNd depend onboth nandN
with significant deviations from the exponential form forn
close toN. This has important consequences for the use of
displaced oscillators as basis states in the chain-NRG. Let us
assume that we used ±uNsNd to construct the basis forHN,c.
Adding the siteN+1 introduces a significant change in the
displacementuNsNd→uNsN+1d. One possible solution to
this problem is to anticipate the coupling to the siteN+1 by
adding a static displacement term, which is subtracted again
in the next step. Such an approach gives correct results for
the chain-NRG when we setD=0. We did not, however,
succeed in implementing the displaced oscillator idea for the
general case offinite D in the chain-NRG. So far, this strat-
egy only works for the star-NRG as described in the follow-
ing subsection.

F. General strategy of the bosonic NRG

In the preceding subsections we have described various
options of how to setup the bosonic NRG. We have intro-
duced both a star and a chain representation of the spin-
boson model and we discussed two possibilities for choosing
a basis for the added site: eigenstates ofbN+1

† bN+1 sor
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aN+1
† aN+1d as in Sec. II D or displaced oscillators as in Sec.

II E.
Now we want to discuss how we actually proceed with

the bosonic NRG: how do we decide between the different
options described earlier?

As a starting point we choose the chain-NRG using eigen-
states ofbN+1

† bN+1 sthe basis denoted byunN+1ld as the sim-
plest possible basis. This approach has been used for all the
results shown in Ref. 13. From the discussion in Secs. II D
and II E we anticipate that this choice of the basis is reason-
able for

• all parameters in the super-Ohmic case,
• the Ohmic case provided the couplinga is not too large,

and
• the sub-Ohmic case provided the system is close to the

delocalized fixed point.
On the other hand, it is clear that there will be problems

when the system flows to the localized fixed point in the
sub-Ohmic case. The situation in the crossover regions and
close to the quantum critical points needs to be checked nu-
merically: it turns out that the critical fixed points for all 0
,s,1 can be reached using theunN+1l basis.

There is a simple criterion to decide when the basisunN+1l
is sufficient. Consider the expectation valuenN+1sNbd
=kbN+1

† bN+1l for the cluster after adding the siteN+1, calcu-
lated for a temperature of the order of the level spacing at
this NRG step. This quantity can be obtained numerically up
to values ofNb<14. If the lowest eigenvalues ofbN+1

† bN+1
are a good choice for describing the lowest eigenstates of
HN+1, then nN+1sNbd should be small and rapidly saturate
with increasingNb. If, on the other hand, we identify that
nN+1sNbd does not saturate but increases withNb, then we
certainly have to abandon the basisunN+1l and use a different
“optimized” basis.

This behavior is shown in Fig. 3 where we show results
from the chain-NRG for a sub-Ohmic bathss=0.6d, D
=0.01 and three values ofa in the vicinity of the quantum
phase transition. Fora,ac anda=ac we indeed find a rapid
saturation ofnN+1sNbd whereas no saturationsat least up to
Nb=14d is observed fora.ac.

The behavior ofnN+1sNbd for a.ac can be easily under-
stood from the discussion of Sec. II E: as the system is flow-

ing to the localized fixed point corresponding to the effective
D approaching zero, we have to use properly displaced os-
cillators as a basis. The increase ofnN+1sNbd just means that
we need more and more states in the undisplaced basis to
describe the lowest eigenstates ofHN+1.

In this case, the use of displaced oscillators as introduced
in Sec. II E is much more appropriate. Note, however, that
the shiftsun Eq. s35d can only be defined from the outset for
theD=0 case. For any finiteD, the system evolves according
to the iterative diagonalization. If the system turns out to
flow to the localized fixed point, we have to useeffective
displacementsun to set up the basis. These displacements
have to be extracted numerically from the renormalization
group calculation and are differentsfor finite Dd from theun
given in Eq.s35d.

Figure 4 describes the general strategy to determine the
optimal values of the displacements. The low-energy spec-
trum of HN+1 is calculated for a whole set ofu values. Ac-
cording to the discussion in Sec. II C, we identify the optimal
u as the one which gives the lowest eigenenergies inHN+1.
This value is indicated by the vertical line in Fig. 4, which
shows results for the sub-Ohmic case and parameters close to
the localized fixed point. There is a plateau in the energy
levels close to the optimal value which means that a slight
variation of the u affects the lowest energies only very
weakly. Note thatEnsud=Ens−ud, therefore a maximum at
u=0. The corresponding figure for parameters close to the
delocalized fixed pointsnot shown hered gives a minimum of
the many-particle levels atu=0. For further details of this
procedure, see Appendix B.

The data of Fig. 4 are calculated using the star-NRG for-
mulation. Although a similar figure can be generated using
the chain-NRG, we are facing thesso far unsolvedd problem
discussed in Sec. II E: adding a site changes the optimal
displacements for the previous iterations. For this reason, all
the results in this paper using a basis of displaced oscillators
are calculated within a star-NRG representation.

G. Diagonalization and truncation

To conclude Sec. II, let us briefly discuss the remaining
technical steps necessary to complete the iterative diagonal-

FIG. 3. Dependence of the expectation valuenN+1=kbN+1
† bN+1l

on the number of basis statesNb for a chain-NRG calculation. The
values of nN+1sNbd quickly saturate fora=0.05,ac and ac

=0.06113 whereas no saturation is observed fora=0.1.ac. sPa-
rameters ares=0.6, N=20, L=2.0, Ns=60, D=0.01.d

FIG. 4. Dependence of the energies of the lowest eigenstates of
HN+1 on the displacementu used for constructing the basis for the
degree of freedom added in each iteration step. All levels shown
here have their minimum at the same valueu=u* sindicated by the
vertical lined which is the optimal value for setting up the basis. The
parameters for this calculation are:s=0.2, D=1.0, a=0.25.ac.
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ization. For a given basis, we first set up the Hamiltonian
matrices

HN+1srs,r8s8d = N+1kr ;suHN+1ur8;s8lN+1. s42d

For both chain and star formulation of the NRG, the matrices
can be written as a sum of three parts

HN+1srs,r8s8d = HN+1
s1d + HN+1

s2d + HN+1
s3d , s43d

with

HN+1
s1d srs,r8s8d = LN+1kr ;suHNur8;s8lN+1 = LENsrddrr8dss8,

s44d

for both chain and star formulation and

HN+1,s
s2d srs,r8s8d = LN+1jN+1 N+1kr ;suaN+1

† aN+1ur8;s8lN+1

= LN+1jN+1drr8kssN + 1duaN+1
† aN+1us8sN + 1dl,

s45d

fwith operatorsa replaced byb for HN+1,c
s2d g.

The third term takes the following form for the star-NRG

HN+1,s
s3d srs,r8s8d = LN+1gN+1

2Îp
N+1kr ;suszsaN+1 + aN+1

† dur8;s8lN+1

= LN+1gN+1

2Îp
Nkr uszur8lN 3 kssN + 1duaN+1

+ aN+1
† us8sN + 1dl, s46d

and for the chain-NRG

HN+1,c
s3d srs,r8s8d = LN+1tN N+1kr ;subN

†bN+1 + h.c.ur8;s8lN+1

= LN+1tN Nkr ubN
† ur8lNkssN + 1dubN+1us8sN + 1dl

+ h.c. s47d

All matrix elements of the formkssN+1du . . .us8sN+1dl can
be further simplified once the basisussN+1dl is given. Simi-
lar to the fermionic case, the matrix elementNkr ubN

† ur8lN ap-
pearing in the chain-NRG Eq.s47d can be written in terms of
the unitary matrices necessary to diagonalizeHN. The matrix
elementsNkr uszur8lN in Eq. s46d, however, have to be calcu-
lated iteratively.sThe technical details are very similar to the
fermionic case, see Refs. 1 and 2d.

With Ns the dimension ofHN andNb the number of basis
states in ussN+1dl, we then arrive at asingle sNs·Nbd
3 sNs·Nbd matrix for HN+1srs,r8s8d. This matrix can be di-
agonalized using standard routines. From this we obtain the
unitary matricesUN+1srs, r̄d and the spectrum of eigenener-
giesEN+1sr̄d so that

HN+1ur̄lN+1 = EN+1sr̄dur̄lN+1, r̄ = 1, . . .Ns ·Nb. s48d

In contrast to the fermionic case, no symmetries can be taken
into account to separate the matrixHN+1srs,r8s8d into smaller
submatrices.

The dimension ofHN+1 now has to be reduced from
Ns·Nb to Ns to allow for a numerical calculation with com-
putation time growing only linearly withN. This is achieved
with the usual truncation scheme where only the lowestNs

eigenstates ofHN+1 are keptsfor the fermionic case see Refs.
1 and 2d. These states form the basisurlN+1 for the next step
and the iteration continues.

The calculation of correlation functions, such as the spin-
spin correlation functionCsvd in Sec. V, requires the calcu-

lation of additional matrix elementsNkr uÂur8lN. For more de-
tails see Sec. V.

III. FLOW AND FIXED POINTS

The iterative numerical diagonalization of the spin-boson
model as described in the previous section gives a sequence
of many-particle levelsENsrd sr =1, . . .Nsd. Due to the loga-
rithmic discretization, these energies fall off asENsrd~L−N.
NRG flow diagrams can then be constructed by plotting
LNENsrd versus iteration numberN.

In this section we focus on those issues which can be
directly inferred from the NRG flow diagrams: the appear-
ance of fixed points, the crossover between different fixed
points at finite energy or temperature, and quantum phase
transitions between the fixed points. Sections III A–III C
deal with the Ohmic spin-boson model; here we also address
the issue of convergence. In Sec. III D we investigate those
features connected to the flow of energy levels which are
specific for the sub-Ohmic case.

All results are calculated for cutoff energyvc=1 and bias
e=0; we employ NRG parameter values ofL=1.8–3.2,
Nb0=100,Nb=4–14,Ns=30–120.

A. Fixed points

Let us first concentrate on results from the chain-NRG for
the Ohmic case,s=1, and various values ofD anda.

Figure 5 shows two NRG flow diagrams forD=0.01 and
two values for the coupling:a=0.6 in Fig. 5sad anda=1.4 in
Fig. 5sbd. In these diagrams, the rescaled many-particle en-
ergies LNENsrd are plotted versus the iteration numberN

FIG. 5. Flow diagrams calculated with the chain-NRG for the
parameterss=1 sOhmic cased, vc=1, e=0, D=0.01, anda=0.6 in
sad anda=1.4 in sbd. The NRG parameters areNs=100,Nb=8, and
L=2.0.
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with the ground state energy subtracted. Another difference
to the fermionic casesapart from the different prefactorLN

instead ofLN/2d is the absence of an even-odd effect: in the
fermionic case, the many-particle spectrum usually oscillates
between two sets of energy levelssso that it is more appro-
priate to speak of a limit cycle than of a fixed pointd. Plotting
the many-particle spectrum either for even or for odd itera-
tion numbers only then gives the flow diagrams as shown in,
for example, Refs. 1 and 2.

In our bosonic NRG calculations, we can follow the flow
typically up to N=60 scorresponding toT<10−20 for L
=2.0d, then we observe an unphysical runaway which is due
to the accumulation of numerical errors in the course of the
iteration. As the runaway scale depends on the numerical
precision used in the program code, it can be shifted to lower
temperatures if needed.

The flow diagrams of Fig. 5 show the existence of two
different fixed points: the delocalized fixed point for smalla
fsee Fig. 5sad, N.20g and the localized fixed point for large
a fsee Fig. 5sbd, N.6g. These two fixed points are stable
and the quantum phase transition between them is discussed
later.

If the value of D is small enoughfas in Fig. 5sadg the
system is close to the localized fixed point in an intermediate
rangef4,N,8 in Fig. 5sadg even fora values below the
critical couplingac. This has direct consequences for ther-
modynamic properties in the corresponding temperature
rangessee, for example, Fig. 14d. However, the vicinity to
the localized fixed point does not imply localization in the
sense that a system initially prepared with the impurity spin
in one specified direction remains in this spin state under
time evolution. For any finite temperature, thermal excita-
tions destroy localizationssee Ref. 14d.

In Fig. 5sad, we also observe a crossover from the local-
ized to the delocalized fixed point which takes place atN
<10–20. The corresponding crossover scale,T* swhich—in
the Ohmic case—is equivalent to the renormalized tunnel
splitting Dr up to a prefactord, will be discussed in Sec. III C.

The flow diagram of Fig. 5sad is similar to the one ob-
tained in Ref. 26sFig. 1 in Ref. 26d, where the mapping of
the spin-boson model to the anisotropic Kondo model was
employed. The structure of the many-particle levels, how-
ever, cannot be directly compared as they reflect the type of
bath used in the NRG approachsbosonic in our case, fermi-
onic in Ref. 26d.

The spectrum of the delocalized fixed pointfFig. 5sad for
N.20g is identical to the spectrum of a spin-boson model
with zero coupling between spin and bosonssa=0d. TheHN

for the chain-NRG then take the form

HN,c = LNFHloc + o
n=0

N

enbn
†bn + o

n=0

N−1

tnsbn
†bn+1 + bn+1

† bndG .

s49d

In this Hamiltonian, impurity and bath degrees of freedom
are completely decoupled and can be diagonalized sepa-
rately. The spectrum of the impurity partsHloc=−Dsx/2d is
nondegenerate. The bath part is that of a free chain of bosons
with N+1 sites which can be diagonalized exactly

o
n=0

N

enbn
†bn + o

n=0

N−1

tnsbn
†bn+1 + bn+1

† bnd = o
n=0

N

v̄nb̄n
†b̄n. s50d

Figure 6 shows a comparison between the fixed point
spectra for the delocalized fixed point calculated with the
chain-NRGscirclesd and the fixed-point spectra constructed
from the single particle levelsv̄n in Eq. s50d ssolid linesd.
The NRG data are calculated for differentNb. The agreement
is very good for the first few excitations already forNb<6,
while a larger value ofNb is required to correctly reproduce
the excitations at higher energies.

While the delocalized fixed point is reached fora smaller
than a criticalacsDd, the system is in the localized phase for
all a.acsDd. The localized phase is characterized by a
srenormalizedd tunneling amplitudeDr =0 and a twofold de-
generate ground state. In the language of thesperturbatived
renormalization group14,35the localized phase corresponds to
a line of fixed points, parametrized bya. Interestingly, the
fixed-point value ofa doesnot influence the eigenenergies of
the many-body fixed-point Hamiltonian, but only its eigen-
states, see the discussion in Sec. II. Thus, the NRG level
spectrum in the entire localized phase isidentical to the one
for the delocalized fixed point, apart from an additional two-
fold degeneracy of all many-particle levels. This feature can
be clearly seen in Fig. 5.fOf course, the approach to the
localized fixed point depends on the particular value ofa,
consequently the NRG flow on intermediate scales will be
different for differenta.acsDd.g

B. Critical coupling and convergence

The results shown in Fig. 5 indicate the well-known tran-
sition between the localized and delocalized fixed points at a
critical acsDd.14,15 Due to the Kosterlitz-Thouless nature of
this transition, the fixed point ata=acsDd is not a new fixed
point, but belongs to the localized phase instead.

On approaching the transition from the delocalized side,
we find, as expected, that the crossover scale vanishes as38

ln T* ~1/sac−ad, see Fig. 11 later. We use this dependence

FIG. 6. Comparison between the fixed-point spectra for the de-
localized fixed point calculated with the chain-NRGscirclesd for
various values ofNb and the fixed point spectra constructed from
the single-particle levelsv̄n in Eq. s50d ssolid linesd for a selection
of statesENsrd. The parameters ares=1, D=1.0, anda,ac. The
NRG parameters areNs=100, andL=2.0.
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to determine the value ofac from numerically calculated
data forT* sad via a nonlinear fit.fNote that on the localized
side of the transition a low-energy scale only shows up in the
flow towards the fixed point, i.e., in corrections to the fixed-
point values of observables; thus the criticalacsDd is easier
obtained via extrapolation from thedelocalizedside.g

As already discussed in Ref. 13ssee Fig. 2 in Ref. 13d, the
value ofac also depends on the NRG parametersL, Nb, and
Ns. Figures 7sad–7scd show the characteristic dependence for
the Ohmic case,s=1, and two values ofD in Fig. 7scd. Keep-
ing L fixed, we observe a rapid convergence ofac with
increasingNs fFig. 7sadg andNb fFig. 7sbdg. Note that we did
not observe a transition to the delocalized phase forNbø4,
even for very large values ofa. As expected from the itera-
tive diagonalization scheme, the values ofNs andNb neces-
sary for convergence increase with decreasingL fsee Fig.
7scdg. The converged data foracsLd show a linearL depen-
dence in the range 1.8,L,3, with a deviation of about
15% atL=2 from the extrapolatedL→1 value.

We find that the slope inacsLd is independent ofD which
is connected to the fact that the logarithmic discretization
systematically underestimates the spectral weight contained
in Jsvd sfor a discussion of this point in the fermionic case,
see Eq.s5.42d in Ref. 2; for the soft-gap Anderson model see
Fig. 4 in Ref. 36d.

The extrapolated valuesacsD ,L→1d for the Ohmic case
are summarized in Fig. 8. In the limit of smallD, the NRG
result is in good agreement with the well established value
acss=1,D→0d=1. We estimate the error inac to be of the

order of 0.02 which is due to the various extrapolations just
described. The solid line in Fig. 8 shows a linear fit to the
numerical data which givesacsDd=0.99+0.53D. This is con-
sistent with the RG resultac=1+OsD /vcd.14

C. Scaling

We expect to observe scaling behavior in all physical
properties for fixedD anda→acsDd and for fixeda andD
→0. Such a scaling can already be identified on the level of
the flow of the many-particle energies. An example is shown
in Fig. 9 for fixeda=0.6 and various values ofD. In this way
we can easily determine the crossover scaleT* for the cross-
over from the localized to the delocalized fixed pointsthere
is only a single low-energy scaled

T * = const.3 L−N* , s51d

where we defineN* as the value ofN where the first excited
state reaches the valueEN=0.3. Note that a change of this
sarbitraryd value can be absorbed in a change of the prefactor
in Eq. s51d; this reflects the fact that a temperaturescalecan
only be defined up to a constant prefactor anyway.

In the scaling regime, the dependence ofT* on a andD is
given by14,38

T * ~ D1/sac−ad. s52d

As shown in Figs. 10 and 11, the NRG results are in agree-
ment with Eq.s52d.

FIG. 7. Dependence of the critical couplingac on the NRG
parametersNs, Nb, andL for the Ohmic case;sad dependence onNs

for fixed Nb=10; sbd dependence onNb for fixed Ns=100 fL=2.0
for both sad and sbdg; scd L dependence ofac for two values ofD,
and various NRG parametersNb andNs. The dashed lines are linear
fits to theNb=8 andNs=100 data in the range 1.8øLø3.

FIG. 8. Dependence of the extrapolated valueacsL→1d on the
parameterD for the Ohmic cases=1. The crosses are the numerical
data and the solid line is a linear fit which givesacsDd=0.99
+0.53D. The NRG parameters areNs=100 andNb=8.

FIG. 9. Scaling of the flow of the many-particle levelsENsrd for
fixed a=0.6, s=1, and various values ofD. The NRG parameters
areNs=100,Nb=8, andL=2.0.
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D. Flow for sub-Ohmic baths

As already mentioned in Sec. II F, the chain-NRG with a
basis of undisplaced oscillators as in Eq.s28d is sufficient for
the Ohmic and super-Ohmic case. Let us now turn to the
sub-Ohmic case where we expect problems with the chain-
NRG when the system is flowing to the localized fixed point.
Figure 12 shows a typical flow diagram of the many-particle
energies, calculated with the star-NRG fors=0.8 and a
couple of a values close to the quantum critical pointac
=0.40294.

In contrast to the Ohmic case, the transition in the sub-
Ohmic case is characterized by anewfixed point, the quan-
tum critical fixed point, with a level structure which is dif-
ferent from both the localized and the delocalized fixed
points. For anyaÞac there is a finite crossover scaleT* for
the crossover to the localized fixed pointsfor a.acd and to
the delocalized fixed pointsfor a,acd. The crossover scale
can be defined in a similar way as in Sec. III C. A further
analysis of the dependence ofT* on ua−acu gives the critical
exponents. Theirs dependence has been shown already in
Fig. 5sad of Ref. 13. A detailed investigation of the critical
properties of the sub-Ohmic spin-boson model will appear
elsewhere.

Here we focus on the level structure of the localized and
delocalized fixed point in Fig. 12. Both fixed points have
exactly the same level structure apart from an additional two-

fold degeneracy of all levels of the localized fixed point. This
is evident from Fig. 12slevels for a.ac and a,ac con-
verge to the same spectrumd and also follows from the dis-
cussion of Sec. II E. However, the proper description of the
localized fixed point can only be achieved using an opti-
mized basis with displacements calculated as discussed in
Sec. II F and Appendix B. Using a basis of undisplaced os-
cillators su=0d leads to an incorrect level structure. This can
be seen in the upper right-hand panel of Fig. 3 in Ref. 13
ss=0.6,a.acd where the basiss28d was used. The resulting
fixed point levels are therefore not the same as the one for
a,ac in the upper left-hand panel of Fig. 3 in Ref. 13.

As mentioned in Sec. II F, we did not yet succeed to
implement the concept of displaced oscillators in the chain-
NRG, so the proper description of the localized fixed point
for s,1 is presently only possible with the star-NRG. For-
tunately, the problems of the chain-NRG only show up when
the flow is approaching the localized fixed point. We can
therefore safely extract all the critical properties such as criti-
cal exponents from the chain-NRG, as has been done in Ref.
13.

On the other hand, the use of a basis of displaced oscilla-
tors within the star-NRG solves the problem of the boson-
number divergencessee Sec. II Fd. This is illustrated in Fig.
13 where the dependence of the expectation valuenN
=kbN

†bNl is shown for three values ofa sa=0.2,ac, a=ac

=0.214 887 85, anda=0.4.acd and two values ofNb. For
all values of a we observe a rapid convergence withNb,
similar to the convergence shown fora,ac and a=ac in
Fig. 3. The difference here is that the data converge withNb
also fora.ac which cannot be achieved by using the basis
s25d, see Fig. 3. Furthermore, the expectation valuenN di-
verges exponentially withN for a.ac, as expected from the
discussion in Sec. II E. A diverging boson number itself is
therefore not a problem for the bosonic NRG, provided a
proper optimized basis is chosen.

Finally, a few words on the limitations of the star-NRG.
Whereas the localized fixed point is described correctly, the
star-NRG seems to fail in other respects: the low-energy flow
to the delocalized fixed point appears incorrect, and critical
exponents of the quantum phase transition deviate from the

FIG. 10. Dependence of the crossover temperatureT* on D for
s=1 and fixed values ofa. The exponents inT* ~Dx are x<1.55
for a=0.4, x<2.15 for a=0.6, andx<3.49 for a=0.8. The NRG
parameters areNs=100,Nb=8, andL=2.0.

FIG. 11. Dependence of the crossover temperatureT* on a for
s=1 and fixed values ofD fdata forD=10−3 andD=10−4 same as in
Fig. 4sbd of Ref. 13g. The values for the critical coupling areac

=1.162 for D=10−2, ac=1.150 for D=10−3, and ac=1.147 for D
=10−4. The NRG parameters areNs=100,Nb=8, andL=2.0.

FIG. 12. sColor onlined Flow diagram of the lowest lying many-
particle energies calculated with the star-NRG for the sub-Ohmic
casess=0.8,D=0.1d, using displaced oscillators as optimized basis.
The critical value isac=0.40294. The NRG parameters areNs

=80, Nb=8, andL=2.0.
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chain-NRG resultssand from analytically known valuesd. We
do not yet fully understand this problem, but it might be
connected to truncation errors which affect the star-NRG in a
completely different way as the chain-NRG.sThe idea is that
the truncation somehow affects the character of the impurity
operator to which the added bosonic site couples in each
step.d The precise characterization of this problem and its
possible solution are left for future studies.

IV. THERMODYNAMIC QUANTITIES

In this section, we describe how thermodynamic quanti-
ties can be extracted from the flow of many-particle levels
ENsrd which are calculated with the bosonic NRG. Starting
from theENsrd there is no differencesfrom a technical point
of viewd between the fermionic and the bosonic casesfor the
fermionic case see, for example, Refs. 2 and 37d. Neverthe-
less, for completeness we include a brief discussion of the
technical details here. We show results for the impurity con-
tribution to the entropy and the specific heat in the Ohmic
casefusing the chain-NRG with basiss28dg. The Ohmic case
has been studied in detail in Refs. 26 and 39sfor earlier work
on thermodynamic properties see Refs. 14, 40, and 41d. The
agreement with the results from Refs. 26 and 39 is excellent
which again confirms the reliability of the bosonic NRG for
the investigation of quantum impurity models involving a
bosonic bath. A few comments on thermodynamic properties
in the sub-Ohmic case are given at the end of this section.

Consider the spectrum of many-particle energiesEi of a
discretized version of the spin-boson modelfnot necessarily
the discretized Hamiltonianss11d and s14d used in the
bosonic NRGg. The grand canonical partition function,Z
=Tr e−bsH−mNd, reduces to

Z = o
i

e−bEi , s53d

as the chemical potentialm is set to zerofwe are interested in
gapless spectral functionsJsvdg. Free energyF and entropyS
are then given by

F = − T ln Z andS= −
]F

]T
. s54d

sWe setkB=1.d The impurity contribution to the entropy is

Simp = S− S0, s55d

whereS is the entropy of the full system andS0 the entropy
of the system without impurity.

Before we discuss the full temperature dependence of
SimpsTd, let us focus on the value ofSimp at the localized and
delocalized fixed points:Simp,L and Simp,D. It is well known
that Simp,L=ln 2 andSimp,D=0,26,39 but it might not be obvi-
ous that these values can be directly extracted from the
many-particle spectra at the fixed points.

In Sec. III A we already showed that the fixed point spec-
trum of the delocalized fixed point is the same as the one of
a free bosonic chain, which is nothing else but the system
without impurity. This implies that for the delocalized fixed
point

Ei = Ei,0 + DE, s56d

with Ei sEi,0d the many-particle energies of the system with
swithoutd impurity andDE a constant shift independent ofi.
It is clear that this equation cannot hold forall levels, it is
only valid for energies sufficiently below the crossover scale
to the fixed point.

Equations56d directly leads to the proof ofSimp,D=0: we
haveZD=expf−bDEgZ0, and from thisFD=F0+DE. The en-
ergy shift drops out in the derivative so thatSD=S0 and the
impurity contribution to the entropy at the delocalized fixed
point is given bySimp,D=0.

In a similar way one can easily prove thatSimp,L=ln 2: in
this case we have

ZL = 2o
i

e−bEi, Ei = Ei,0 + DE, s57d

with the factor of 2 due to the additional double degeneracy
of all many-particle levels at the localized fixed point. This
gives ZL=2 expf−bDEgZ0, and from this FL=−T ln 2+F0

+DE and SL=ln 2+S0, corresponding toSimp,L=ln 2. From
this discussion it follows thatSimp,L=ln 2 andSimp,D=0 inde-
pendent of the exponents in the spectral functionJsvd.

For any finiteD anda, the valuesSimp,L=ln 2 andSimp,D
=0 are strictly valid only in the limitT→0. Note that a
proper definition of these zero-point entropies requires the
correct order of limits: the thermodynamic limit has to be
taken before the limit T→0. With the order of the limits
reversed, the zero-point entropy would be equal to lndg, with
dg the degeneracy of the ground state. Although this happens
to give the same values forSimp,L and Simp,D in the case
studied here, this equivalence is not generally valid.sThis
can be seen, for example, in the NRG calculations for the
single-impurity Anderson model2 where the degeneracy of
the ground state oscillates between 1 for even and 4 for odd
iterations when the system approaches the fixed point of a
screened spin, which hasSimp=0. Also, any non-trivial quan-
tum critical fixed point is expected to have a residual entropy
which is not lndg with integerdg.d

FIG. 13. Dependence of the expectation valuenN=kbN
†bNl on the

iteration numberN for s=0.8, D=0.01, a=0.2,ac ssquaresd, a
=ac=0.214 887 85sdiamondsd, and a=0.4.ac scirclesd, and two
different values ofNb, calculated with the star-NRG.
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The impurity contribution to the entropy is close to a fixed
point value also when the system is close to this fixed point
in an intermediate range of the flow diagram. From Fig. 5sad
we can therefore immediately see that the temperature de-
pendence ofSimpsTd contains a crossover from a high-
temperature valueSimp<Simp,L=ln 2 to the low-temperature
valueSimpsT→0d=Simp,D=0; provided the flow is to the de-
localized fixed point. The detailed behavior ofSimpsTd in the
crossover region requires a numerical calculation as de-
scribed later.

In the bosonic NRG, we do not have access to the full
spectrum of many-particle energiesEi as used in Eq.s53d.
Instead, the iterative procedure results in a sequence of
many-particle energiesENsrd with iteration numberN and r
=1, . . .Ns. According to the discussion in Refs. 1 and 2, each
of the sets of many-particle energies is assumed to be a good
description of the system for a certain temperatureTN with

TN = xvcL
−N, s58d

with x a dimensionless constant of the order of 1, chosen
such thatTN lies within the spectrumENsrd.

For each iteration stepN, the partition function is calcu-
lated for the temperatureTN:

ZN = o
r

e−ENsrd/TN. s59d

In addition, the internal energy at iteration stepN for the
temperatureTN is calculated as

EN =
1

ZN
o

r

ENsrde−ENsrd/TN. s60d

This is the information we have available for the numerical
calculation of thermodynamic properties.

One possibility to proceed is to calculate the free energy
FN=−TN ln ZN for each iteration step, and from this the en-
tropy S=−]F /]T via a discrete differentiation. This proce-
dure has been shown to give good results in the fermionic
casessee, for example, Ref. 42d. It requires, however, a pre-
cise calculation of the difference of the ground state energies
between subsequent steps; this appears to introduce some
errors in the calculations within the bosonic NRG.sIn gen-
eral, the bosonic NRG is less accurate in the calculation of
thermodynamic properties as compared to the fermionic
NRG because we cannot keep as many states as in the fer-
mionic case.d

Therefore, we use an alternative approach in which the
entropySN at iteration stepN for the temperatureTN is cal-
culated via

SN =
EN

TN
+ ln ZN. s61d

This approach avoids the discrete differentiation, and does
not require the knowledge of the ground state energies.

Let us now discuss the results for entropy and specific
heat calculated with the bosonic NRG using the method just
described. Figure 14 shows the temperature dependence of
the impurity contribution to the entropy,SimpsTd, for a
=1/3, s=1 sOhmic cased, and various values ofD. We ob-

serve a crossover from the high-temperature valueSimp
= ln 2 to the low-temperature valueSimp=0 at a crossover
scaleT*, which is the same as the one introduced in Sec.
III C. The crossover scale decreases with decreasingD in
agreement with Eq.s52d. Note the similarity of Fig. 14 to
Fig. 9 for the scaling of the energy levels, a similarity which
is simply due to the relation betweenSimpsTd and the flow of
the many-particle levels.

As briefly mentioned in Sec. III A, the vicinity to the
localized fixed point for early iterationsfwhich results in the
high-temperature valueSimpsTd< ln 2g does not imply local-
ization. The value ofSimpsTd for high temperatures is due to
the fact that for temperaturesT@D both states of the two-
state system contribute equally to the thermodynamics. Note
also the similarity toSimpsTd in the Kondo model: there the
high-temperature phase is that of a local moment with both
spin ↑ and ↓ configurations contributing to the entropysa
temperature dependence ofSimpsTd as in Fig. 14 might there-
fore appear more natural in the Kondo model but, of course,
it is also valid hered.

The scaling behavior ofSimpsTd for fixed a=1/3 andvari-
ousD is obvious and is shown in Fig. 15sad together with the
scaling curves fora=1/5, 1/4, and 1/2. Theagreement with
the exact results from the Bethe Ansatz calculations in Ref.
39 is very goodfsee Fig. 7sad in Ref. 39g, in particular for the
a dependence of the scaling curves.

The temperature dependence of the specific heat,CimpsTd,
is calculated viaCimpsTd /T=]SimpsTd /]T. Here we cannot
avoid the discrete differentiation ofSimpsTd. The scaling of
SimpsTd implies a scaling ofCimpsTd /T as shown in Fig.
15sbd. This figure is also very similar to previous calculations
fsee Fig. 2 in Ref. 26 from the NRG via mapping to the
anisotropic Kondo model and Fig. 7sbd in Ref. 39 using the
Bethe Ansatzg, and we find the same characteristic features
here: a linear specific heatC~T for low temperatures, a peak
in C/T at T<T* for small dissipationa,0.3 in contrast to
the monotonous decrease ofC/T for large dissipationa
.0.3, and a characteristic crossing point of all theC/T scal-
ing curves.

Similar to the NRG calculations in Ref. 26, the thermo-
dynamic quantities can only be calculated on a discrete mesh
of temperatures given by Eq.s58d. This strongly limits the
resolution of the peak inC/T for a,0.3, in contrast to the
Bethe Ansatz calculations of Ref. 39.

FIG. 14. Temperature dependence of the impurity contribution
to the entropy,SimpsTd, for a=1/3, s=1 sOhmic cased, and various
values ofD.
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The physics in the sub-Ohmic case is much richer, due to
the appearance of a line of quantum critical points.13 This is
reflected in the behavior of the entropy and the specific heat.
For the results ofSimpsTd andCimpsTd close to the quantum
critical points we refer to a subsequent publication. Here we
focus on the flow to the delocalized phase.

Figure 16 shows the temperature dependence of the im-
purity contribution to the entropy,SimpsTd, in the sub-Ohmic
case,s=0.8, for various values ofa below the critical value
ac<0.125. Fora close toac we observe a two stage quench-
ing of the entropy of the free momentsthe quantum critical
point has a nontrivial zero-point entropy ofSqcpsT→0d
<0.6 for s=0.8d. As expected, the temperature scale for the
crossover to the delocalized fixed point increases with the
distance from the critical point. The low-temperature behav-
ior of SimpsTd for a,ac is given bySimpsTd~Ts which can
be seen more clearly in the inset of Fig. 16 whereSimpsTd is

plotted for various values ofs. This behavior is in agreement
with the calculations of Ref. 40, whereCsTd~Ts was found
for the slightly asymmetricseÞ0d sub-Ohmic spin-boson
model.sWhile the finitee turns the quantum phase transition
into a smooth crossover, it does not influence the qualitative
low-energy behavior in the delocalized phase.d

The data in Fig. 16 are calculated with the chain-NRG.
The results from the star-NRG look similarfthey give, in
particular the correct valueSimpsT→0d=ln 2 if the flow is to
the localized phaseg. We observe, however, a low-
temperature behavior forSimpsTd which is different from the
correct form,SimpsTd~Ts. As briefly mentioned in Sec. III D,
the reason for this failure of the star-NRG is presently not
clear but probably due to truncation errors.

Despite these deficiencies, the bosonic NRG is a reliable
tool for the calculation of thermodynamic properties in a
wide range of parameters and the comparison with well-
established results is very promising. Thermodynamic prop-
erties in the quantum critical region will be discussed in a
separate publication.

V. DYNAMIC QUANTITIES

The calculation of dynamic properties is straightforward
within the bosonic NRG and proceeds in a very similar way
sfrom a technical point of viewd as in the fermionic case. The
typical problems such as the combination of information
from different iteration steps and the broadening of the dis-
crete spectra have been discussed already in the literature
ssee, for example, Refs. 43–46 and 12d and need not be
repeated here.

A. Dynamical spin correlations

One important dynamic quantity of interest in the spin-
boson model is the spin-spin correlation functionsspin auto-
correlation functiond

Csvd =
1

2p
E

−`

+`

eivtCstddt, s62d

with Cstd= 1
2kfszstd ,szg+l. We only considerequilibriumcor-

relation functions, in general for finite temperatures, but the
focus here is onT=0 so that the expectation valuek…l has to
be taken with respect to the ground state.

For a discrete Hamiltonian, the spin-spin correlation func-
tion at T=0 can be written as

Csvd =
1

2o
n

uk0uszunlu2dsv + e0 − end, v . 0, s63d

with Csvd=Cs−vd. Note that with the earlier definition of
Cstd, the quantityCsvd is purely real and related to the
imaginary part of the spin-susceptibilityxsvd via Csvd
= 1

2puIm xsvdu fsee also Eq.s3.96d in Ref. 14g.
Due to the truncation in the course of the iterative diago-

nalization, we cannot calculateCsvd simultaneously for all
energy scales. Instead, the correlation function is calculated
for each cluster of lengthN swhich gives information on

FIG. 15. sad Scaling curves of the impurity contribution to the
entropy,SimpsTd, for s=1 sOhmic cased, and various values ofa; sbd
Scaling curves of the impurity contribution to the specific heat,
CimpsTd / sT/T* d, for the same parameters as insad.

FIG. 16. Temperature dependence of the impurity contribution
to the entropy,SimpsTd, in the sub-Ohmic case for various values of
a and s=0.8 smain paneld and various values ofs sinsetd. The
couplinga is belowac so that the flow is to the delocalized phase
for all parameters in this figure. Lines with symbols in the inset are
data from the bosonic NRG and solid lines are fits assuming a
power-law,SimpsTd~Ts.
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energy scales of the order ofL−Nd and this information has to
be added up properly. Finally, the discrete spectrum has to be
broadened which results in continuous curves forCsvd as
shown, for example, in Fig. 17.

These technical issues are dealt with using the approach
described in Ref. 12; to broaden the spectra, we use a Gauss-
ian on a logarithmic scalefsee Eq.s8d in Ref. 12g with broad-
ening parameterb=0.7.

We also define the correlation functionSsvd as

Ssvd =
2Csvd

vs . s64d

The static spin-susceptibilityx is defined as

x = 2
]kszl

]e
, kszl = k0uszu0l. s65d

It is related toCsvd via

x = 4E
0

` Csvd
v

dv, s66d

and, using Eq.s63d, can be written in the form

x = 2o
n

uk0uszunlu2

en − e0
. s67d

Here, we calculate the susceptibility according to Eq.s67d.
The bosonic NRG allows the calculation of dynamic

properties in a wide range of frequencies so that the func-
tional dependence ofC on the frequencyv fsuch as a power-
law Csvd~vsg can be easily extracted. However, the expo-
nent of the calculatedCsvd has a deviation from the
expected values sfor the flow to the delocalized fixed pointd
of about 2%. To extract the correct prefactor ofCsvd swhich
we use to compare with the exact results at the Toulouse
point and to check the Shiba relationd, we need to redefine
the quantitySsvd as

Ssvd =
2Csvd

vd , s68d

whered is the exponent fitted toCsvd in the small frequency
regime.

In Fig. 17,Csvd is shown for the Ohmic case and a set of
a values close to the criticalac. The spin-spin correlation
function shows the expected power-law behavior,Csvd~v,
in the low-frequency regimev,T*. In the limit of a→ac,
Csvd shows a divergence forv.T*, Csvd~v−1, with loga-
rithmic corrections.

In Fig. 18,Ssvd is plotted at the Toulouse pointsa= 1
2

d of
the Ohmic spin-boson model for several values ofD. At this
point, the Ohmic spin-boson model is exactly solvable, as
discussed in Ref. 15. In the inset of Fig. 18, all the curves are
rescaled onto one curve with a renormalized tunneling am-
plitude Dr. Here,Dr is defined as

Dr,NRG=
xeDr,e

xNRG
, s69d

wherexe is the exact susceptibility andDr,e the exact renor-
malized tunneling amplitude at the Toulouse point:Dr,e
=pD2/2 andxeDr,e=8/p. The quantityxNRG is the suscep-
tibility calculated from the NRG, Eq.s67d. The comparison
of the result from the bosonic NRG with the exact rescaled

FIG. 18. Spin-spin correlation functionSsvd=2Csvd /vd at the
Toulouse pointa= 1

2 for the Ohmic cases=1 and various values of
D. The inset shows the scaling of these curvesfSsvd /Ss0d plotted
versusv /Drg together with the exact resultsthick dashed lined.

FIG. 19. NRG results forxNRG calculated at the Toulouse point
a= 1

2 for the Ohmic cases=1 and various values ofL and D
scircles: D=0.0125, squares:D=0.025, diamonds:D=0.05, tri-
angles: D=0.1d. Dashed lines show the exact valuesxe

=16/sp2D2d and thin solid lines are fits to the numerical results.

FIG. 17. Spin-spin correlation functionCsvd calculated for the
Ohmic case,s=1, D=0.01, and various values ofa,ac close to the
transition. For small frequencies,Csvd~v, whereas for higher fre-
quencies we observe a divergence,Csvd~v−1, with logarithmic
corrections.
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Ssvd /Ss0d shows good agreementssee the inset of Fig. 18d.
The exact result is given by15

Ssvd
Ss0d

=
1

8s1 + x2dF lns1 + 4x2d
x2 +

2 arctans2xd
x

G , s70d

with x=v /Dr,e.
The NRG results forxNRG deviate significantly from the

exact valuexe=16/sp2D2d. However, as shown in Fig. 19,
this deviation is entirely due to discretization effects and the
extrapolationL→1 shows almost perfect agreement with the
exact result. Note that the exact value forxe has been ob-
tained for asoft cutoff in the bath spectral function,Jsvd
=2pav exps−v /vcd. To allow for a comparison, the loga-
rithmic discretization has to be performed for the same soft
cutoff swe introduce a high-energy hard cutoff atv=15vcd.

The scaling behavior ofSsvd /Ss0d for fixed a and differ-
ent values ofD is shown in Fig. 20. For this we need to
identify an energy scaleT* as in Sec. III C. There are, as
usual, various possibilities to define the energy scale: the
position of the peak inCsvd, vp, the quantity 1/x, and the
T* as defined in Eq.s51d. Obviously, we haveT* ~vp
~1/x~Dr, and we chooseDr =8/spxd for the energy scale
in Fig. 20. The scaling curves shown in Fig. 20 are in good
agreement with the ones calculated in Ref. 47; in particular,
we find that the coherent peak inSsvd disappears whena is
larger thana* <0.3.

In our notation, the Shiba relation reads41

2aSx

2
D2

= Ss0d. s71d

Table I shows the results from the bosonic NRG for the
Ohmic case and various values ofa andD. The parameterd
is the exponent defined in Eq.s68d. We find that the Shiba
relation is fulfilled within an error of about 10%.

B. Order parameter

In the localized phase, which corresponds to the ordered
phase of the 1/r2 Ising model, it is straightforward to define
an order parameter,m, corresponding to the magnetization of
the Ising model. In the language of the spin-boson model, it
corresponds to the static, i.e.,v=0, part of the spin autocor-
relation function; in the language of the anisotropic Kondo
model this just measures the prefactor of the Curie part of the
local susceptibility, i.e., the unscreened fraction of the impu-
rity moment. The Kosterlitz-Thouless nature of the transition
implies ajumpof the order parameter at the phase transition.

We extract this order parameter from thedsvd contribu-
tion to Csvd. The identification of such ad peak in the spec-
trum of Csvd requires some extra care. The spectrum calcu-
lated with the NRG consists ofd peaks only, which have to
be broadened suitably to give spectra as shown, for example,
in Fig. 17. Therefore, one has to decide whether ad peak in
the spectrum belongs to the continuum or whether it survives
as ad peak in the thermodynamic limit.48 The procedure is
illustrated in Fig. 21. Let us first note that the matrix element
uk0uszu0lu2 vanishes for all parameters of Fig. 21. We there-
fore plot the matrix elementuk0uszu1lu2 in Fig. 21sbd together
with the energyEs1d in Fig. 21sad. We observe that fora
.ac the energyEs1d vanishesfaster thanL−N with increas-
ing iteration numberN, whereas the matrix element ap-
proaches a constant,uk0uszu1lu2→const<1. In the thermody-
namic limit, this gives thed peak atv=0, with the weight
given by the matrix elementuk0uszu1lu2 which corresponds to
the order parameterm. On the other hand, fora,ac the
energyEs1d is proportional toL−N, and the correspondingd
peak is therefore interpreted as being part of the continuum.

These arguments result in an order parametermsad which
is zero fora,ac and jumps to a finite value foraùac. In
the sub-Ohmic case, the order parameter shows power-law
behavior near the quantum phase transition, which will be
discussed in detail elsewhere. As an aside, we note that the

FIG. 20. Scaling spectra for the spin-spin correlation function
Ssvd=2Csvd /vd for various values ofa in the Ohmic cases=1.

TABLE I. Results from the bosonic NRG for the Shiba relation in the Ohmic case for various values of
a andD.

s a D d 2asx /2d2 Ss0d % error

1.0 0.02 0.005 1.018 0.2013104 0.2213104 9.9%

1.0 0.1 0.01 1.018 0.6033104 0.6313104 4.6%

1.0 0.4 0.01 1.018 0.2943107 0.3083107 4.9%

1.0 0.5 0.025 1.018 0.1543107 0.1633107 5.8%

1.0 0.7 0.03 1.019 0.3763109 0.4163109 10.6%

1.0 0.9 0.1 1.018 0.17231010 0.19231010 11.6%
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order parameter can also be extracted from the Curie part of
the static local susceptibilityxsTd.

VI. CONCLUSIONS

In this paper we have discussed a generalization of Wil-
son’s NRG technique to quantum impurity problems with a
bosonic bath. Focussing on the application to the spin-boson
model, we have shown that this method provides reliable
results for both static and dynamic quantities in the whole
range of model parameters and temperatures. For the case of
Ohmic damping, we have compared our data to existing re-
sults in the literature and found good agreement. The bosonic
NRG is able to reproduce the expected scaling behavior as
function of temperature or frequency. For sub-Ohmic damp-
ing, there is a line of continuous boundary quantum phase
transitions for all 0,s,1, with exponents varying as func-
tion of s; details of the associated quantum critical behavior
will be discussed in a forthcoming paperssee also Refs. 13
and 31d.

We have outlined several details of the numerical imple-
mentation of the bosonic NRG. Two general strategies were
discussed, termed chain-NRG and star-NRG: both use a se-
quence of boson states with exponentially decreasing energy
scales, but in the chain-NRG the bath states form a chain and
the impurity couples to the first chain site only, whereas in
the star-NRG the impurity is coupled to all bath sites which
are not connected to each other. The advantages and disad-
vantages of both methods were discussed in detail, together
with the important issue of the optimal choice of a basis set
of bosonic states at each bath site. This problem is inherent
to the bosonic NRG, as the infinite Hilbert space has to be
truncated, and specific solutions have to be found for the
problem at hand. We have argued that in the Ohmic, super-
Ohmic, and sub-Ohmic cases of the spin-boson modelsex-
cept for the flow to the localized fixed point in the latter
cased the basis formed by the lowest boson number eigen-

states is sufficient, and all fixed points are properly captured
in the NRG. Most of the results in this paper were obtained
with this basis choice using the chain-NRG method; we have
given a detailed account on convergence issues with respect
to truncation and discretization parameters. In the sub-Ohmic
case, the boson numbers diverge in the localized regime in
the low-energy limit, and a different basis choice is needed.
We have described suitable basis states using displaced har-
monic oscillators, which solve the problem for the star-NRG.
Open numerical issues include a reliable implementation of
the displaced-oscillator basis for the chain-NRG, a more ac-
curate calculation of dynamic quantities, as well as the nu-
merical stability for very long iterations, i.e., very small en-
ergy scales.

The bosonic NRG can be easily generalized to impurities
with multiple bosonic baths or both fermionic and bosonic
baths. This is the subject of current work and will allow the
study of large classes of impurity models, e.g., so-called
Bose Kondo21 and Bose-Fermi Kondo models.49 These mod-
els are known to display intermediate-coupling fixed points
associated with universal local-moment fluctuations. The
Bose-Fermi Kondo model arises in the context of extended
dynamical mean-field theorysEDMFTd,50 where a lattice
model is mapped onto an impurity model with a fermionic
bath srepresenting conduction electronsd and a bosonic bath
srepresenting bulk spin fluctuationsd. The quantum phase
transition appearing in the Bose-Fermi Kondo model has
been proposed to describe local quantum critical behavior in
EDMFT, which may be relevant to the physics of certain
heavy-fermion quantum phase transitions. However, a full
numerical solution of the EDMFT equations atT=0 has not
been presented to date, due to the lack of suitable impurity
solvers. A version of the bosonic NRG may help to overcome
this difficulty.

Other applications of the bosonic NRG can likely be
found in the rapidly developing field of ultracold bosonic
gases, where indeed various realizations of spin-boson phys-
ics have been proposed.51

Further, the physics of decoherence of qubits naturally
leads to variants of the spin-boson model. Interestingly, the
description of 1/f noise in electrical circuits leads to sub-
Ohmic damping withs=0 sat least over a certain range of
energiesd. In this sub-Ohmic parameter regime, the bosonic
NRG is one of the few methods which can give reliable
answers, including, e.g., the existence of a quantum phase
transition for 0,s,1—note that this transition does not ap-
pear in the popular noninteracting blipsNIBA d
approximation.15 Other modifications of standard spin-boson
physics include the influence of localized modes which in-
teract with the qubit of interest—those modes can be repre-
sented by a discrete spin system, leading to so-called central
spin models.17 Usually, such systems map onto spin-boson
models with a spectral density consisting of a continuous
se.g., Ohmicd background and sharp peaks at certain
frequencies;16 these models can be easily studied using
NRG.
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APPENDIX A: CALCULATION OF THE PARAMETERS
OF THE SEMI-INFINITE CHAIN

In this appendix, we describe the orthogonal transforma-
tion from the star-Hamiltonians11d to the semi-infinite chain
form fthe chain-Hamiltonians14dg and present equations re-
lating the parameters of the two Hamiltonians.

We start from the star-Hamiltonians11d:

Hs = Hloc + o
n=0

`

jnan
†an +

sz

2Îp
o
n=0

`

gnsan + an
†d. sA1d

Our goal is to transform it to a semi-infinite chain Eq.s14d:

Hc = Hloc +Îh0

p

sz

2
sb0 + b0

†d + o
n=0

`

fenbn
†bn + tnsbn

†bn+1

+ bn+1
† bndg. sA2d

Here the main difference to the fermionic casessuch as the
Kondo model studied in Ref. 1d is that the bosonic spectral
function Jsvd is restricted to positive frequencies only. This
asymmetry ofJsvd influences the structure of the semi-
infinite chain Hamiltoniansadditional on-site energiesen ap-
pear in Eq.sA2d which are not present for particle-hole sym-
metry in the fermionic cased.

In the following we define a real orthogonal transforma-
tion U:

bn = o
m=0

`

Unmam, sA3d

with UTU=UUT=1, U* = U, so that the inverse transforma-
tion reads

an = o
m=0

`

Umnbm. sA4d

Comparing the coupling terms between spin and bosons in
Hs andHc gives

b0 =
1

Îh0
o
n=0

`

gnan, sA5d

so that

U0n =
gn

Îh0

. sA6d

The bosonic commutation relationfb0,b0
†g=1 applied to Eq.

sA5d gives

h0 = o
n=0

`

gn
2 =E

0

vc

Jsxddx. sA7d

We are left with the equivalence of the free bosonic part in
Hs andHc:

o
n=0

`

jnan
†an = o

n=0

`

fenbn
†bn + tnsbn

†bn+1 + bn+1
† bndg. sA8d

To obtain the recursion relations foren and tn, we first put
Eq. sA4d into the left-hand side of Eq.sA8d sfor the annihi-
lation operators onlyd. We then sort the resulting equation for
the operatorsbm. Comparing the prefactors of the terms con-
taining bm we obtain for the operatorb0:

o
n=0

`

jnan
†U0n = e0b0

† + t0b1
†, sA9d

and forbm with m.0:

o
n=0

`

jnan
†Umn= embm

† + tmbm+1
† + tm−1bm−1

† . sA10d

The expression fore0 can be obtained from taking the com-
mutator betweenb0 and Eq.sA9d:

e0 = o
n=0

`

jnU0n
2 . sA11d

From Eq.sA9d, we also obtain

t0b1
† = o

n=0

`

sjn − e0dU0nan
†, sA12d

which gives immediately

U1n =
1

t0
sjn − e0dU0n. sA13d

The value oft0 can be calculated by taking the commutator
with the corresponding adjoint operator on both sides of Eq.
sA12d. This results in

t0 =
1

Îh0
Fo

n=0

`

sjn − e0d2gn
2G1/2

. sA14d

EquationssA6d, sA11d, sA13d, andsA14d initialize the recur-
sion relations for the calculation ofem, tm, andUmn. These
recursion relations can be obtained by starting with Eq.
sA10d and proceeding in a similar way as earlier.

The commutator beweenbm and Eq.sA10d gives

em = o
n=0

`

jnUmn
2 . sA15d

From Eq.sA10d we also find

tmbm+1
† = o

n=0

`

sjnUmn− emUmn− tm−1Um−1ndan
†. sA16d

From this equation, we obtain the expression forUm+1n:

Um+1n =
1

tm
fsjn − emdUmn− tm−1Um−1ng. sA17d

The values oftm can be calculated by taking the commutator
with the corresponding adjoint operator on both sides of Eq.
sA16d. This results in
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tm = Fo
n=0

`

fsjn − emdUmn− tm−1Um−1ng2G1/2

. sA18d

EquationssA15d, sA17d, and sA18d complete the recursion
relations for the calculation of the parameters of the chain
Hamiltonians14d.

Despite the simple structure of the input spectral function,
Jsvd=2pavs ssù0d, we did not succeed in solving the re-
cursion relations analyticallysthis is in fact possible for the
particle-hole symmetric soft-gap Anderson model, where the
hybridization function vanishes at the Fermi level asDsvd
=D0uvur, see Ref. 32; due to the particle-hole symmetry, the
en vanish and the recursion relations have a much simpler
structured. Therefore, the recursion relations have to be iter-
ated numerically, in a similar way as for the fermionic case.
Note that the derivation of the chain-Hamiltonian in the
asymmetricfermionic case, whereenÞ0, is very similar to
the bosonic case described earlier. The only differences are
the structure of the coupling between impurity and the bath,
and the fact that all commutators have to be replaced by
anticommutators. For a recent application of the NRG to a
fermionic model with an asymmetric hybridization function,
see Ref. 52.

The resulting parameters of the chain-Hamiltonian,en and
tn, both fall off as L−n; in contrast to the fermionic case
where tn~L−n/2. For largen, the ratio tn/en approaches an
s-dependent value.

APPENDIX B: OPTIMAL BOSONIC BASIS IN THE
STAR-NRG

In this appendix, we present details of how we implement
the optimal basis for the bosons in the star-NRG to overcome
the problem of the boson number divergence when the flow
is to the localized fixed pointssee the discussions in Secs.
II E and III Dd.

In each step of the star-NRG, a bosonic degree of freedom
is added to the Hamiltonian. The renormalization group
transformation is given by Eq.s19d:

HN+1,s = LHN,s + LN+1FjN+1aN+1
† aN+1 +

sz

2Îp
gN+1saN+1

+ aN+1
† dG . sB1d

The problem discussed in Sec. II E is that upon approach-
ing the localized fixed point in the sub-Ohmic case, the dis-
placementsuN for the bosonic siteN increase exponentially
with N, see Eq.s36d. The displacements can be taken into
account by constructing an appropriate basisussN+1dl for
the added bosonic degree of freedom.

To construct this basis, we start with a simplified Hamil-
tonian of the form

H̄ = a†a + uszsa† + ad, sB2d

and proceed as follows: in the first step, we set up an opti-

mized basis forH̄ soptimized in the sense that the lowest

lying eigenstates ofH̄ are described with only a small num-
ber of basis statesd. Then we use this basis, denoted asussN
+1dlu, for the actual NRG iteration, and finally, we describe
a self-consistent procedure to determine the parameteru.

Let us first discuss how to construct the optimized basis

for H̄. Consider the following operators:

H±u = a†a ± usa† + ad. sB3d

The eigenstates ofH±u are denoted asuml±u sm=0,1, . . .d.
We obtain

H±uuml±u = sm− u2duml±u, sB4d

and

uml±u = e7usa†−aduml, sB5d

with uml the eigenstates ofa†a. The basis states should de-
scribe the +u and −u displacements on an equal footing;
therefore we proceed with symmetrized eigenstatesumle/o
constructed in the following way:

umle = ce,mfumlu + s− 1dmuml−ug

umlo = co,mfumlu − s− 1dmuml−ug

m= 0,1, . . . ,
Nb

2
− 1, sB6d

with normalization constantsce/o,m. Note that here we have
to choose an even numberNb. The even and odd parity states
are orthogonal to each other,eknumlo=0, whereas states with
the same parity are not necessarily orthogonal. An orthogo-
nalization procedure for both even and odd parity states then
gives the final set of basis states

u0̄le = u0le

u1̄le = Ce,1hu1le − ek0̄u1leu0̄lej

u2̄le = Ce,2hu2le − ek1̄u2leu1̄le − ek0̄u2leu0̄lej

. . . , sB7d

with normalization constantsCe/o,m. The same orthogonaliza-
tion is performed for the odd parity states. In this way, we
obtain Nb orthogonal states, characterized by the parameter
u, which form the basisussN+1dlu for the diagonalization of
HN+1,s:

ussN + 1dlu = hu0̄le,u1̄le, . . . ,u0̄lo,u1̄lo, . . . j. sB8d

The calculation of the matrix elementsHN+1,ssrs,r8s8d fsee
Eqs.s43d–s46dg involves matrix elements of the form

ukssN + 1duaN+1 + aN+1
† us8sN + 1dlu. sB9d

To evaluate these matrix elementsfand the scalar products in
Eq. sB7dg we have to express the statesum̄le/o in terms of the
eigenstatesunl of aN+1

† aN+1. This can be performed using the
following recursion relations forknumlu:
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knum+ 1lu =
u

Îm+ 1
knumlu +

În
Îm+ 1

kn − 1umlu,

knu0lu =
s− udn

În!
e−1/2u2

,

k0umlu =
um

Îm!
e−1/2u2

sB10d

sand forknuml−u by replacingu by −ud. The summation over
n in the calculation of matrix elements and scalar products
has to be performed numerically which limits the number of
statesunl to some finite, although very large, valueL svalues
up to L<107 can be usedd. To construct an optimized basis
for the displacementsu, L should be large enoughsat least of
the order ofu2d to include a sufficient number of statesunl in
the calculation.

For the special case ofD=0, the parameteru for the con-
struction of the basisussN+1dlu is exactly knownssee Sec.
II Ed. This is different in the general case of finiteD where
we have to find a scheme to determine the optimal valueu*.
The general strategy to find this optimal value has been dis-

cussed in Sec. II F. For the actual numerical calculation it
turns out that the following self-consistent scheme is much
more efficient.

For the ground stateugl of H̄ sB2d the expectation value
kgua†augl is equal tou2. We use this relation to determine the
u used for the NRG calculation

u = ÎN+1kguaN+1
† aN+1uglN+1, sB11d

where uglN+1 is the ground state ofHN+1,s which has been
obtained from diagonalizing the matrixHN+1,ssrs,r8s8d using
the basisussN+1dlu characterized by the parameteru. In
other words, Eq.sB11d defines a self-consistent scheme to
calculateu for each NRG step.

The converged valueu* gives the optimal basis for add-
ing the siteN+1 in the NRG iteration. It corresponds to the
value u* which characterizes the minimum of the energy
levels in Fig. 4. The energy levels calculated in this way
show a much weaker dependence onNb which leads, for
example, to the rapid convergence ofnb with increasingNb
as shown in Fig. 13.

After the diagonalization ofHN+1,s with the optimized ba-
sis ussN+1dlu* , we can continue the NRG iteration by adding
the siteN+2.
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