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We present a detailed description of the recently proposed numerical renormalization group method for
models of quantum impurities coupled to a bosonic bath. Specifically, the method is applied to the spin-boson
model, both in the Ohmic and sub-Ohmic cases. We present various results for static as well as dynamic
guantities and discuss details of the numerical implementation, e.g., the discretization of a bosonic bath with
arbitrary continuous spectral density, the suitable choice of a finite basis in the bosonic Hilbert space, and
questions of convergence with respect to truncation parameters. The method is shown to provide high-accuracy
data over the whole range of model parameters and temperatures, which are in agreement with exact results
and other numerical data from the literature.
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l. INTRODUCTION A € P oy :

The Numerical Renormalization GroplIRG) is known H= 2 o 202+ 2 @i & * 2 2 N(@+a). (1)
as a powerful tool for the investigation of quantum impurity
problems, where a quantum system with a finite number offhis model naturally arises in the description of quantum
internal degrees of freedofthe impurity) couples to an in- dissipative system¥:1®> The dynamics of the two-state sys-
finite system of noninteracting fermions with a continuoustem, represented by the Pauli matriegs, is governed by
density of statesthe bath.1> The NRG combines numeri- the competition between the tunneling tetmand the fric-
cally exact diagonalization with the idea of the renormaliza-tion term xi(@+@T), The a; constitute a bath of harmonic
tion group, where progressively smaller energy scales argscillators responsible for the damping, characterized by the
treated in the course of the calculation. NRG calculations ar@ath spectral function
nonperturbative and—thanks to the logarithmic energy
discretization—are able to access arbitrarily small energies Jw) =72 NS - w). 2)
and temperatures. Besides providing thermodynamic quanti- i
ties like susceptibility, entropy, and magnetization, the NRG ) )
can be used to compute dynamic observables directly on tHelearly, most interesting are gapless specita) >0 for 0
real frequency axis. < w<wg, With o being a cutoff energy. In the infrared limit,

While the NRG was originally developed by Wilsofor  the energy dependence dfw) for o — 0 determines the sys-
the Kondo model, it was later applied to a variety of moretem’s behavior, where power laws are of particular impor-
complex impurity models with one or more fermionic baths,tance. Discarding high-energy details of the spectrum, the
being able to handle, e.g., two-channel and multi-impuritystandard parametrization is
physics®’ As a recent extension, impurity models with a
fermionic bath and a single bosonic mode have been treated, Jo) =27maw 0%, 0<o<w, s>-1. (3)
with the so-called Anderson-Holstein impurity model being _ o
the paradigmatic exampfelnteresting applications of the 1he cases=1 is known as Ohmic dissipatidfi,where the
NRG include its use within dynamical mean-field theoryspln—boson model has a delocalized and a localized zero-
(DMFT).21° There, the electronic self-energy of a lattice témperature phase, separated by a Kosterlitz-Thouless tran-
model of correlated electrons is approximated by a locapition (for the unbiased case af=0). In the delocalized
function in space, and the lattice model is mapped onto ®hase, realized at small dissipation strengththe ground
single-impurity model supplemented by a self-consistencystate is nondegenerate and representsaanped tunneling
condition. Using DMFT-NRG, the Mott transition of the particle. For largey, the dissipation leads to a localization of
Hubbard model has been investigated in detail, both at zerthe particle in one of the tweo, eigenstates, thus the ground
and finite temperatured:*? state is doubly degenerate.

The objective of this paper is an important extension of Bath spectra with exponenss>1 (s<1) are called super-
the NRG method, namely the application to quantum impu-Ohmic (sub-Ohmig: In the super-Ohmic case, the system is
rities coupled to a bosonic bath with a continuous spectrahlways delocalized with weak damping; the sub-Ohmic case
density(in contrast to the single boson mode in Ref.®e is more involved and will be discussed later. Besides simple
have recently given a short account on this developrhent; power-law spectra, more complicated bath properties can
the purpose here is a detailed description of this NRG appliarise in a number of situations, e.g., structured baths, consist-
cation. To be specific, most of our presentation will focus oning of an Ohmic part and modes sharply peaked at certain
the spin-boson model, with the Hamiltonian energies, have been considered recéfitly.
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The spin-boson model has found applications in a widescaling behavior. Finally, Sec. V is devoted to dynamical
variety of physical situation¥*'>mechanical friction, damp- quantities, where we focus on the symmetrized impurity spin
ing in electric circuits, decoherence of quantum oscillationsautocorrelation function. We close with a summary and dis-

in qubits’®2% impurity moments coupled to bulk magnetic cussion of applications and extensions of the bosonic NRG.
fluctuations?® and electron transfer in biological

molecules??23 Il. THE BOSONIC NRG
Considering this wealth of applications, numerical meth- , . ,
ods to reliably deal with the spin-boson and related models The bosonic NRG can be applied to a wide range of quan-
for all temperatures are highly desirable. In the past, quantdm impurity problems involving a bosonic bath with a con-
tum Monte-Carlo simulatior?$ have been used, which, how- tinuous(and in particular gaplesspectrum. The following
ever, cannot work at arbitrarily low temperature, and cannofliscussion of the technical details of this method concen-
easily extract dynamical information on the real frequencytrates on the spin-boson model, the first application of the
axis. Density-matrix renormalization techniques, as embosonic NRG: The general concepts are valid for the study
ployed in Ref. 25, circumvent this problem, but are not ableof other bosonic impurity models as well.
to resolve very small energy scales. In Ref. 26, the NRG with  The purpose of this section is twofold: we want to discuss
a fermionic bath has been used, exploiting the well-in detail the technical steps of the calculations in Ref. 13. In
established mapping of the Ohmic spin-boson model to aaddition, we introduce an alternative strategy to set up the
anisotropic Kondo model. Such a mapping is only valid forNRG procedure, the so-callestarNRG, in contrast to the
frequenciesn < w. (Which nevertheless encompasses most othainNRG used in Ref. 13. The use of the star-NRG is
the interesting physigsand, more seriously, is restricted to related to the choice of an optimized set of basis states. As
the Ohmic casé! will be discussed in Secs. Il F and Il D, the star-NRG allows
In a recent paper, we have presented a formulation of theyr an efficient construction of the NRG basis which solves

NRG directly for a bosonic bath, and applied it to the spin-the problem of the boson number divergence occurring in the
boson modet? While we could accurately reproduce known |gcalized phase for sub-Ohmic damping.

results for the Ohmic case, we also found that the sub-Ohmic | et us start with a form of the spin-boson model which is
model displays two phases as wéf agreement with Refs.  most convenient for the NRG procedure

28 and 29 which are separated by a nontrivial quantum
phase transition. Remarkably, this phase transition was not H=H +J
systematically investigated before. We have studied the prop- ~ Hloc
erties of the corresponding quantum critical points—in the

phase diagranisee Fig. 1 of Ref. 13those form a line, With H,.=—Ac,/2+€0,/2. In this modelg(e) characterizes
parametrized by the bath exponentvhich terminates in the the dispersion of a bosonic bath in a one-dimensional repre-
Kosterlitz-Thouless transition a&=1. Nears=1 we could sentation, with upper cutoff 1 for. The coupling between
make contact with analytical renormalization group resultsthe spin and the bosonic bath is given bi). These two
originally formulated by Kosterlitz in the context of an Ising energy-dependent functions are related to the spectral func-

1 1
deg(s)a;ra6+%z f deh(e)(a, +al)  (4)
0

0

model with long-range Ir}*s interaction3° tion J(w) via
The purpose of this paper ($) to present in detail the 1 de(x)
. . . . 8 X
|mplementat|o_r) of th_e bOSOﬂIC. NRG meth.od for the spin- ZI(x) = ——he(x)] (x e [0,w0]), (5)
boson model(ii) to discuss various strategies to set up the ™ dx

iteration scheme for the bosonic NR(@i ) to demonstrate its . . . _
feasibility by studying, in particular, the case of Ohmic wherez(x) is the inverse function o§(x), gle(x)]=x. For a

damping; and compare our data with a variety of results fronf!'VEN J(%), Eq. (5) doesnot determine _bothg andh '”depe."_“

the literature, andiv) to discuss possible future applications denjcly. Thgrefore, as §hov_vn later in Eq.LO)’ a specific

of the bosonic NRG. The physics of the sub-Ohmic spin-C0ice offiis used to simplify the calculations.

boson model is very rich due to the presence of a line of

boundary quantum critical points; a full account of the uni-

versal critical behavior, studied using analytical and numeri- The NRG procedure starts by dividing the interi@) 1]

cal methods, will be given in a forthcoming publicati®n.  into intervals[A™™Y A™"] (n=0,1,2,..., sedig. 1). The
The remainder of the paper is organized as follows: Inwidth of each interval is

Sec. Il we introduce the formulation of the NRG for bosonic d = A(1 - A ©6)

systems and highlight important differences which occur n '

compared to the fermionic NRG. In particular, the choice ofWithin each interval we introduce a complete set of ortho-

appropriate bosonic basis states, which are required to accaermal functions

rately describe certain strong-coupling fixed points, is dis-

A. Logarithmic discretization

cussed, with details given in Appendix A and B. Section Il ih onPe o A < g < AN
analyzes the NRG flow and the low-energy fixed points, the np(e) = Vdy, (7)
phase boundaries and issues of numerical convergence as 0 outside this interval

function of the discretization parameters. In Sec. IV we turn
to thermodynamic observables calculated using the bosonip=0,+1,+2,... andv,=2#/d,). The operatorag) appear-
NRG, such as entropy and specific heat, together with theiing in the Hamiltonian(4) can be represented in this basis
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FIG. 1. Logarithmic discretization of the bath spectral function
in intervals [A=™Y A™"] (n=0,1,2,..); typical values of the

NRG discretization parametet as used in the bosonic NRG are
A=15...3.0.

FIG. 2. (a) Structure of the spin-boson model corresponding to
Eq. (14) as used for the chain-NRG aith) to Eq.(11) as used for
the star-NRG; the boxes indicate the iterative diagonalization

a, = > Anpnp(€), (8) scheme for both cases.
np
* 2ma 2 —(st+ —n(s+
8= 2 anylng(2)- (9) 1= oy @l - ATEATE, (13)
np

The structure of this Hamiltonian is sketched in Fig)2
the impurity spin couples linearly to all the bosonic degrees
. s of freedoma,,, in a very similar way as in the original Hamil-
1 Ao 1‘]( d tonian (1). The bath spectral function for modgll) is dis-
A= A @t crete, consisting of peaks at energieg, with weighte 2.
Each bosonic degree of freedom of this star-Hamiltonian is a
(10) representative of the continuous spectrum of bosonic degrees
-+ AN Wi i i i i of freedom in the intervalgA~(™Y A",
for e e[A ,A™"]. With this choice, the impurity(the '
spin-operatoro,) couples to thep=0 component of the
bosonic operators,, and a,tp only (the same strategy has . _
been used in the case of a fermionic bath with nonconstant Starting from the mode(11), there are two possible ways
density of states, see Ref.)32 to set up a numerical renormalization group procedure. The
The next step is to write the Hamiltonig#) in the basis ~ first one (which we call chain-NRG in the followinguses
a,p anda; ; the p# 0 components of these operators are stillthe transformation of the star-Hamiltonid#l) to a semi-
present through their coupling to tipe=0 components in the infinite chain:
free bath term. The main approximation of the bosonic NRG %
. o ) L o
at th!s point is to drop this coupling, in close a_lnalqu to the He=Hype + @—Z(bo + b(‘g) +> [enb:r,bn + tn(blbnﬂ
fermionic case(see Refs. 1 and)2This approximation be- T 2 n=0
comes exact in the limid — 1. Nevertheless, a careful check t
of its validity is necessary and will be discussed in Sec. Il B. +bp.sbn)], (14)
With the p#0 components completely decoupled from with 7,=fdxJ(x). The spin now couples to the first site of
the Impurity, we drop thep=0 index in the operatoran,o  the bosonic chain onlysee Fig. 2a)] and the remaining
anday,-, and arrive at a Hamiltonian of the form part of the chain is characterized by on-site energjeand
o 0 hopping parametetts, in analogy to the fermionic NRG. The
- T 9z T i
He=Hie+ >, &atan+ —=>, ya(ay+al),  (11)  parameterse, and t, can be calculated numerically from
n=0 2 /

We then choose the functidiic) to be a constartt, in each
interval of the logarithmic discretization

h(e) =h,= l

A_(”+1)wc w

B. Chain-NRG versus star-NRG

N n=0 a given spectral functiodl(w), as discussed in detail in
with Appendix A.
Such a mapping from a star-Hamiltonian on a semi-
A—nw A—nw . . . . . . .
o c _ c infinite chain form is exact. It has been used in all applica-
&= fA'(”ﬂ) dxJ(x)x, yﬁ_fA_(m) AxJ(x).. tions of the fermionic NRG since the original work of
@c @c

Wilson! Its generalization to the bosonic NRG is straightfor-
(12) ward and has been employed in Ref. (8e also Ref. 33
The label Hy is introduced to distinguish this “star’- The structure.of .the Hamiltoniaf14) is sketcheq in _Fig.
Hamiltonian from the “chain’-Hamiltoniak, [see Eq(14)  2(&. The boxes indicate the NRG strategy used in this case:

later]. The &, and they, can be easily evaluated for a bath in the first step, a cluster containing the impurity plus the
spectral function of the form given in E3): first bath site is diagonalized. In each subsequent step, the
cluster is enlarged by one additional site and the new cluster
is diagonalized using the information obtained in the previ-

ous step.

S+11-A62
= S+1) oA,

"Ts+21-A
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The second possibilitywhich we call star-NRG in the H=lim A™NHy. (16)
following) is to use the Hamiltoniargll) directly for the N—o
iterative diagonalization. The general idea is sketched in FigT
2(b): again, the first step of the renormalization group proce-
dure involves the diagonalization of a cluster containing the

N N
impurity plus the first bath site. The following renormaliza- Hy :AN[Hl - aﬁa + &E (@ +a;§)]
S oC n n — n\“n ’
n=0 2\ n=0

he Hy for the star-Hamiltonian are given by

tion group steps, however, are completely different to the
chain-NRG as each new bosonic site does not couple to the

previously added site but to the impurity instead. 17
The suggestion to use such a star-NRG for the investigasn g for the chain-Hamiltonian by
tion of bosonic impurity models, such as the spin-boson
model, raises a couple of questions. N
(1) Does the star-NRG work at all? Hyc= AN[ Hioe + @ﬂz(bo +bl)+ > eblby,
(2) Is the star-NRG of any advantage as compared to the ' ™ 2 n=0
chain-NRG [apart from the simplification that we do not N-1
have to calculate the, andt,, of Eq. (14)]? A T
(3) Why has such a star-NRG not been used in the fermi- * go (b + b”+lb“)] ' (18)
onic case?

The answers to questions Nd4) and(2) will be given  In this notation, bottH, s andHy . correspond to a two-site
later. Let us first discuss question N@) in more detail. A Hamiltonian with only the first site of the star or chain
fermionic star-NRG for, say, the Kondo model would startcoupled to the spin.
from a Hamiltonian similar to Eq11). The important differ- Two successive Hamiltonians are related by the following
ence in the fermionic case is that the logarithmic discretizarenormalization group transformations:
tion has to be performed for both positive and negative fre-
guencies. As a consequence, there are two sets of bath _ . o,
operators in the star-Hamiltonian, one for positive and one Heps= AHys+ AN 1{§N+1all+1a’\‘+1+ z\TTyNﬂ(aN*l
for negative frequencies

+aL+1>}, (19
> & ot 2 & o (15)

o,n=0 o,n=0 and

Hys1c= AHp o+ AN €108, 1bnsr + tn(blbss + blia1bn) 1.
For a hybridization function close to particle-hole symmetry N+Le Ne R ?;]0)

we have& =~ &. This means that at each renormalization
group step one has to addo fermionic siteqthe alternative
to addff:}1+ first and thenff:}]_, or vice versa, suffers from
violating particle-hole symmetry, if presdntThe Hilbert
space therefore increases by a factor of 16 in each step. It
much more convenient to first map the star-Hamiltonian to

;:hz;\)m f(:jr(;n g'm""” t?] Eq(14). IT. th|t_s form, onlytone site has Hamiltonian and thes, andt,, in the chain-Hamiltonian are
0 be added In each renormaiization group step. falling off as A™, instead of thet,= A2 in the fermionic

Whether Sth a fermionic star-NRG is of any advgntage I%ase.(This implies that a bosonic NRG calculation with dis-
not clear. It might be useful for extreme asymmetric cases, i ation parametek and a particle-hole symmetric fermi-

but for the cases which are usually of interest the chain-NR nic one with A2 will have comparable energy resolution.

already works very well and is much easier to implement. N : - :
. . ote that, in the sub-Ohmic spin-boson case,yhare fall-
Coming back to the bosonic NRG, there does not seem tﬂ]g off slowerthan A™". Never?heless the factgﬁl‘” is the

be an a priori preference for enhgr star- or chain-NRG be'appropriate one for the low-energy spectra as shown in Sec.
cause the structure of the bosonic bath is extremely asym;

metric from the outsefrestricted to positive frequencies
only). To address the possible advantages of the star-NR
we first have to give more details of how the bosonic NRG i
implementedfor both star- and chain-NRG

The factorAN in Egs.(17) and (18) enables the direct com-
parison of the low-frequency spectra of subsequent Hamilto-
nians and, in particular, the discussion of fixed points as in
Sec. IIl. In contrast to the fermionic case, the factor\f$
dnstead of AN2 because the energieg, in the star-

The sequences of Hamiltoniak7) and (18) are solved
iterative diagonalization. In the first step, tHg are di-
Sagonalized in a basis formed by the product states of
o,-eigenstateso) and a suitable basis for the first bath site
(we will describe later what we mean with “suitable bakis”
C. Iterative diagonalization and choice of bosonic basis states e have to introduce a cutoNy, already for this basis, but
this is usually not a serious restriction as we can use fairly
The star-Hamiltonian H=H; (11) and the chain- large values ofN,,=~500 (in contrast to the much lower val-
HamiltonianH=H (14) can be written as a series of Hamil- ues ofN, for the following iterationg
toniansHy (N=0) equal toH in the limit N— o: Given the eigenstatds)y of Hy
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HaOn=En()in, r=1, ...Ng, 21 A

| .N| N . N(D[D s ( -) Hsz_E‘TX+Z &nnan- (24)
with Ng the dimension ofHy, we can construct a basis of n
Hyne 1 . o .

N1 From this structure, it is clear that tHg, eigenstates of

Ir;nes =N ® SN+ 1)), (22 aLJrlaN+l with lowest eigenvalues form the optimal basis
with |s(N+1_)> a suitable basis for the_ added site. In setting IS(N+ 1)) = {|nne)} (25)
up the basigs(N+1)) we are faced with two problems not _
present in the fermionic case: with
(1) The numerical approach restricts the number of basis "

states one can take into account to a maximum nurhier ags 1@+ M) =NNNs), N=0,1,..Np =1, (26)

~10-14. The validity of this approximation has to be
checked carefully.

(2) A criterion for a suitable selection dfl, basis states
out of the infinitely many states of the added site has to be

The reason is simply that here the many-particle energies are
given by the sum of the single-particle energigs
The situation is similar in the chain-NRG, where the

=0 limit reads
found.
A general criterion for an “optimal” basigor a givenN,) A %
can be formulated as following: find a setMf boson states He=- =0y + >, [eb!by+ to(blbns + bl b)), (27)
|s(N+1)) which give the best description of the lowest-lying n=0

many-particle states dfly,, (see also Ref. 34In a varia-

tional sense, this corresponds to finding stasdi+1)) .
: . . ; ith

which give the lowest many-particle energies for a whole set’

of energy levelgsee also Fig. 4 latgrThis is certainly not a + - - _

rigorous statement and we have not yet developed a general wePNsalMed) =) N =02, Np= 1. (28)

algorithm to setup such an optimal basis. Instead we seleqthe difference to the basis for the star-Hamiltonian is that

one of the two sets of basis states optimized for the twahe |ny,,) are not eigenstates of the full bosonic part in Eq.

stable fixed points of the spin-boson model: thg eigen-  (27). But in contrast to the case @f>0, the Hamiltonian

states ofbfj, ;b1 (Or afj,,an+1) With lowest eigenvalues as (27) conserves the total number of bosons; the many-particle

an optimal basis for the delocalized fixed poi§ec. 1D states with the lowest energies are then given by those states

and displaced oscillators as optimal basis for the localizegvhich are constructed from the single-particle states with the

Here we choose for the bag&N+1)) the stateg|ny, 1)}

fixed point(Sec. Il B. smallest boson numbers, independent of whether a diagonal
Before continuing let us point out that there are no sym-asis is chosen or not.
metries in the Hamiltoniansly s and Hy . (at least for the In our previous implementation of the bosonic NR@e

interesting case of finitee andA). This is in contrast to the used the basi€28). This is a suitable choice only if the
fermionic casé;” where we can use, for example, the total many-particle states df., with lowest energies are indeed
spin and particle number as quantum numbers to significonstructed from states with small boson number—in other
cantly reduce the size of the Hamiltonian matri¢esich  words, if the average values of the boson numbﬁh%bmﬁ
would be of size(4Ny)? in the absence of symmetrie€on-  are small. This is the case when the system is close to the
sequently, in the bosonic NRG for the spin-boson modebelocalized and the quantum critical fixed points. However,
there is onlyonematrix of size(N,Ns)? to be diagonalized in  the boson number diverges when the system flows to the
each renormalization group step. This results in a much simocalized fixed point fois<1 as discussed later.

pler structure of the NRG program, but limits the values of

Ns to 100-200. E. Optimal basis for the localized fixed point (displaced

oscillators)

D. Optimal basis for the delocalized fixed point Here we consider the spin-boson model with zero tunnel-
ing amplitude,A=0. In this case, oscillations betweé¢p
nd||) are absent and the system is in the localized phase
om the outset.

The Hamiltonian in the original formulatiofi) then takes

e form

Let us start from thex=0 limit of the spin-boson model in
which two-level system and bosonic degrees of freedom ar}@:l
completely decoupled; for finitd, the spin oscillations are '
undamped and the system is in the delocalized phase frow1
the outset.

The Hamiltonian in the original formulatiofl) then takes o
the form H=> wala+ EZE Ni(a +a). (29

1 1

A
H=- 2 %x * 2 0a3;. (23 For simplicity, the biag is set to zero. As the bath degrees of
' freedom now couple to a static spin, the Hamiltonian can be
For simplicity, the bias is set to zero. The star-Hamiltonian decomposed in two sectots$, for o,=+1 andH, for o,=
in the «=0 limit has the same structure -1:
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N N Coming back to the iterativeumericaldiagonalization of
Hi=X Hi, Hij=oala+ S@+a) (300 the star-Hamiltonian, it is now clear that a simple basis as in

: (25 can be far from the optimal choice. If we stay in the
(H, accordingly. In each sector, we now have independentoriginal basis constructed from the lowest eigenstates of

bosonic degrees of freedom which can be written as a,:an, we need more and more basis states to describe the
lowest eigenstates of the displaced oscillators.
Hii = wigj & (31) On the other hand, it is clear how to construct the optimal

basis for|s(N+1)) at least for theA=0 case. For the sectors
1/] we simply take oscillator states with displacements
+0n:+1/—6Ons1- AS We need a single basis for both sectors,
these states have to be orthogonalized first; this will be dis-
. . . ) cussed in more detail in Appendix B.

The quantities; can be viewed as an effectivdimension- The displaced oscillator states can also be used to diago-

les9 coupling between impurity and bath modeAppar-  pajize the chain-Hamiltoniafid) for A=0. For a given it-
ently, this transformation corresponds to a displacement ofotion numbeN the Hy, for the J-sector reads

the oscillatorsy; by the value ¥, for the -sector and 4, for

the |-sector. The displacements do not change the energies 1 [ ) N ) N1 )

;. This means that the whole many-particle spectrum of the Hyc = AN > —(bo+ b)) + 2 eblon+ > to(blibn
bosonic bath is identical to the one for the uncoupled bath m n=0 n=0

(dropping a constant tepnwith

_ N
a=a+6, 6=— (32

_Z—wi.

except for the additional twofold degeneracy corresponding

to the two sectorg and |. +b!,by) | (39)
Note that for the original spin-boson modé&) the w; and

A; are not specified independently, only the bath spectraj

function J(w) is given; therefore we cannot give explicit ex-

pressions for the), for Eq. (1). Hn =b, + 6,(N), (39)
The star-Hamiltonian Eq11) for A=0 (ande=0) takes a

form similar to Eq.(29). Again we have two sectors with ~ We again have a diagonal form

N

ntroducing displaced oscillators

<] 1 o0 o
He = 2 &alan+ — =2 y(an+a) (33 Hier = AN ebiby. (40
n=0 2\ Tn=0 n=0
(Hg, accordingly. Using the same reasoning as before, weThe displacements,(N) can be calculated numerically for
can now write any given set ofle,} and{t,}. For fixed N they show the
w0 same qualitative behavior as tlfg for the star-Hamiltonian
He = > &anan, (34 |6,(N)| o< ANA-92, (41)
n=0

It turns out, however, that the,(N) depend orboth nandN

with with significant deviations from the exponential form for
— YV close toN. This has important consequences for the use of
an=at b, 0= Nt (35 displaced oscillators as basis states in the chain-NRG. Let us
Y n

assume that we useddg(N) to construct the basis fdtly .
The values ofy, and ¢, are given in Eq(13) so we obtain  Adding the siteN+1 introduces a significant change in the
anocA“(l‘5>’2oc§§$‘1>’2_ (36) di;placement_ﬁN(N)—>_0N(N+1). One possible so_lution to
this problem is to anticipate the coupling to the dite 1 by
Written in terms of energw we therefore have adding a static displacement term, which is subtracted again
(s-1)12 in the next step. Such an approach gives correct results for
Bw) o %, (37 the chain-NRG when we set=0. We did not, however,
This result is rather interesting: for sub-Ohmic baths,1,  succeed in implementing the displaced oscillator idea for the
the shift 6, grows exponentially withn. However, in the general case dinite A in the chain-NRG. So fa_r, this strat-
super-Ohmic case the shift goes to zero in the low-energ§dy only works for the star-NRG as described in the follow-
limit (n—), and it is energy-independent for the Ohmic Ing subsection.
case. Technically, the coupling to the impurity can be viewed
as a relevantirrelevany perturbation of the discretized spin-
boson model fos<1 (s>1) and as a marginal perturbation
in the Ohmic case. Thus, in the Ohmic and super-Ohmic case In the preceding subsections we have described various
the effective couplingd(w) doesnot diverge asw— 0 even  options of how to setup the bosonic NRG. We have intro-
in the extreme localized case Af=0. Therefore, numerical duced both a star and a chain representation of the spin-
problems associated with a diverging effective coupling ardooson model and we discussed two possibilities for choosing
only expected in the sub-Ohmic case. a basis for the added site: eigenstates bﬁileﬂ (or

F. General strategy of the bosonic NRG
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FIG. 4. Dependence of the energies of the lowest eigenstates of
FIG. 3. Dependence of the expectation vahyg;=(b,,bn+1) Hy:1 ON the displacement used for constructing the basis for the
on the number of basis statblg for a chain-NRG calculation. The degree of freedom added in each iteration step. All levels shown
values of ny.1(Np) quickly saturate fora=0.05<a, and a here have their minimum at the same valtre¢* (indicated by the
=0.06113 whereas no saturation is observeddei0.1>a.. (Pa-  vertical ling which is the optimal value for setting up the basis. The
rameters are=0.6,N=20, A=2.0,Ns=60,A=0.01) parameters for this calculation a$=0.2,A=1.0, 2=0.25> «.

ﬁNélaNﬂ) as in Sec. Il D or displaced oscillators as in SeC'ing to the localized fixed point corresponding to the effective
' . ... A approaching zero, we have to use properly displaced os-
theNS(‘)’\é(;’\r']?CV\,ilaggohg\'ﬁcgjswzoéveggeag:ﬁ&r?rt?]zeZﬁfgng:illators as a basis. The increasemgf.;(N;) just means that
. Lo . we need more and more states in the undisplaced basis to
options described earlier?

: : . . . describe the lowest eigenstatesHyg;, ;.
As a starting point we choose the chain-NRG using eigen- In this case, the use of displaced oscillators as introduced

+ i im-
states ofby, by, (the basis denoted by,,)) as the sim in Sec. Il E is much more appropriate. Note, however, that

plest possible basis. This approach has been used for all tl?ﬁe shifts6,, Eq. (35) can only be defined from the outset for

2 1| £ we anlsipate that ths choice of the basis i reasor1eA =0 case. For any i, the system evolves according
able for "o the iterative Q|agon_al|zat|01_1. If the system turns out to
« all parameters in the super-Ohmic case flpw to the localized fixed point, we have to geﬁectlve

« the Ohmic case provided the couplings ﬁot t00 large displacements), to set up the basis. These displacements
and ’ have to be extracted numerically from the renormalization

« the sub-Ohmic case provided the system is close to thgroup calculation and are differeffor finite A) from the 6,

delocalized fixed point iven in Eq.(35).
On the other hand, it is clear that there will be problems Figure 4 describes the general strategy to determine the

when the system flows to the localized fixed point in theOptlmal values of the displacements. The low-energy spec-

. L . trum of Hy,4 is calculated for a whole set df values. Ac-
sub-Ohmic case. The situation in the crossover regions an(g N1 d ole set af

close to the quantum critical points needs to be checked nu_ording to the discussion in Sec. Il C, we identify the optimal
merically: it turns out that the critical fixed points for all 0 v as the one which gives the lowest eigenenergietsjn,

<s<1 can be reached using t ) basis This value is indicated by the vertical line in Fig. 4, which
|IQ +1. . - .
There is a simple criterion to decide when the bisis,) shows results for the sub-Ohmic case and parameters close to

is sufficient. Consider the expectation valugy Ny the localized fixed point. There is a plateau in the energy

. ) levels close to the optimal value which means that a slight
—/pt
=(by.1bysy) for the cluster after adding the sibe+1, calcu- o riation of the 6 affects the lowest energies only very

Ia;ed for a temperature of the order of t_he level spacing a\‘}veakly. Note thatE,(6)=E,(-6), therefore a maximum at
this NRG step. This quantity can be obtained numerically UPg=0. The corresponding figure for parameters close to the

~ i f
to values ofN,~14. If the lowest eigenvalues d..\bn+1  delocalized fixed pointnot shown heregives a minimum of
are a good choice for describing the lowest eigenstates Qhe many-particle levels ai=0. For further details of this
Hn+1o then ng,1(Np) should be small and rapidly saturate procedure, see Appendix B.

with increasingN,. If, on the other hand, we identify that * The gata of Fig. 4 are calculated using the star-NRG for-
nn+2(Np) does not saturate but increases WNR then we  myjation. Although a similar figure can be generated using
certainly have to abandon the bajig.,) and use a different  the chain-NRG, we are facing tfiso far unsolvegiproblem
“optimized” basis. o discussed in Sec. Il E: adding a site changes the optimal
This behavior is shown in Fig. 3 where we show resultsgisplacements for the previous iterations. For this reason, all
from the chain-NRG for a sub-Ohmic batfs=0.6), A e resuits in this paper using a basis of displaced oscillators

=0.01 and three values ef in the vicinity of the quantum  are calculated within a star-NRG representation.
phase transition. Far< «, anda=«, we indeed find a rapid

saturation ofny,1(Np) whereas no saturatioat least up to
Np=14) is observed for> a.

The behavior ofhy,1(Np) for > a. can be easily under- To conclude Sec. Il, let us briefly discuss the remaining
stood from the discussion of Sec. Il E: as the system is flowtechnical steps necessary to complete the iterative diagonal-

G. Diagonalization and truncation

045122-7



BULLA et al.

ization. For a given basis, we first set up the Hamiltonian

matrices

Hye1(rs,r's’) = naar s/ Hnsalr 38 e (42

For both chain and star formulation of the NRG, the matrices

can be written as a sum of three parts

Hyea(rs,r's’) = HG, + HE + HY,, (43)
with
HE(rs,178") = Apea(r;SIHNIE 18 ne1 = AEN(E) 81 s
(44)

for both chain and star formulation and
HiL drs,r'8) = AN noadr s slaliiane '3 I
= AN 18 (SIN+ D)fafganels' (N + 1)),
(45)

[with operatorsa replaced byb for H<NZ21 o

The third term takes the following form for the star-NRG

3 _ N+1 . .
HRLLa(rsr's) = AN+12\J’7_TN+1<r Slodan + al)|r 18 e

Y /
aW”;%mWMrMX@W+DbM1
\N T

+ali,4s' (N+12)),

and for the chain-NRG

(46)

H& . (rs,r's) = ANty o(rs siblibs + hiclr’ ;8 e
= ANy ((rBUIr (SN + 1)[oaqls' (N + 1))
(47)

All matrix elements of the form{s(N+1)|...|]s’(N+1)) can
be further simplified once the bag®N+1)) is given. Simi-
lar to the fermionic case, the matrix elemegit|bl|r’), ap-
pearing in the chain-NRG E@47) can be written in terms of
the unitary matrices necessary to diagonalize The matrix
elements(r|ar')y in Eq. (46), however, have to be calcu-
lated iteratively(The technical details are very similar to the
fermionic case, see Refs. 1 and 2

With Ng the dimension oHy andN, the number of basis
states in|s(N+1)), we then arrive at asingle (Ng-Np)
X (Ng-Np) matrix for Hy,4(rs,r’s’). This matrix can be di-

+h.c.
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FIG. 5. Flow diagrams calculated with the chain-NRG for the
parameters=1 (Ohmic casg w.=1, e=0, A=0.01, ande=0.6 in
(& anda=1.4 in(b). The NRG parameters aMz=100,N,=8, and
A=2.0.

eigenstates dfly,, are kept(for the fermionic case see Refs.
1 and 2. These states form the basi%., for the next step
and the iteration continues.

The calculation of correlation functions, such as the spin-
spin correlation functiorC(w) in Sec. V, requires the calcu-

lation of additional matrix elemen]@(r|A|r’)N. For more de-
tails see Sec. V.

Ill. FLOW AND FIXED POINTS

The iterative numerical diagonalization of the spin-boson
model as described in the previous section gives a sequence
of many-patrticle level&y(r) (r=1,...Ny). Due to the loga-
rithmic discretization, these energies fall off Bg(r) =A™
NRG flow diagrams can then be constructed by plotting
ANEL(r) versus iteration numben.

In this section we focus on those issues which can be
directly inferred from the NRG flow diagrams: the appear-
ance of fixed points, the crossover between different fixed
points at finite energy or temperature, and quantum phase
transitions between the fixed points. Sections Il A-IlI C
deal with the Ohmic spin-boson model; here we also address
the issue of convergence. In Sec. lll D we investigate those
features connected to the flow of energy levels which are

agonalized using standard routines. From this we obtain thpecific for the sub-Ohmic case.

unitary matricesy,4(rs,r) and the spectrum of eigenener-
gies En.4(r) so that

HyealDner = Enea(D[Dner, T=1,..Ng- N, (48)

In contrast to the fermionic case, no symmetries can be taken

into account to separate the matkx,,(rs,r’s’) into smaller
submatrices.

The dimension ofHy,; now has to be reduced from
Ns-Np to Ng to allow for a numerical calculation with com-
putation time growing only linearly wittN. This is achieved
with the usual truncation scheme where only the lowést

All results are calculated for cutoff energy.=1 and bias
€=0; we employ NRG parameter values d&f=1.8-3.2,
Npo=2100,Np=4-14,N;=30-120.

A. Fixed points

Let us first concentrate on results from the chain-NRG for
the Ohmic cases=1, and various values df and «.

Figure 5 shows two NRG flow diagrams far=0.01 and
two values for the couplingr=0.6 in Fig. %a) ande=1.4in
Fig. 5b). In these diagrams, the rescaled many-particle en-
ergies ANEy(r) are plotted versus the iteration numbsr
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with the ground state energy subtracted. Another difference 10.0
to the fermionic casé¢apart from the different prefactox™
instead ofAN?) is the absence of an even-odd effect: in the 80 [ rso
fermionic case, the many-particle spectrum usually oscillates
between two sets of energy levélo that it is more appro- o 60—
priate to speak of a limit cycle than of a fixed poirlotting o r=24
the many-particle spectrum either for even or for odd itera- < 407 1o
tion numbers only then gives the flow diagrams as shown in, r
for example, Refs. 1 and 2. 20 v
In our bosonic NRG calculations, we can follow the flow \ . . .
typically up to N=60 (corresponding toT=~102° for A 005 4 6 8 10 12
=2.0), then we observe an unphysical runaway which is due N,

to the accumulation of numerical errors in the course of the ] ] )
iteration. As the runaway scale depends on the numerical F'C- 6. Comparison between the fixed-point spectra for the de-
precision used in the program code, it can be shifted to lowelPc@ized fixed point calculated with the chain-NR@ircles for
. various values ol and the fixed point spectra constructed from
temperatures if needed. the single-particle levelss. in Ea. (50 id I p lect
The flow diagrams of Fig. 5 show the existence of two € single-particle levela, in Eq. (50) (so '_ ines for a selection
. . L . . . of statesEy(r). The parameters args=1, A=1.0, anda<a.. The
different fixed points: the delocalized fixed point for small -~ parameters ab,=100, andA =2.0
[see Fig. a), N>20] and the localized fixed point for large s ' o
a [see Fig. B), N>6]. These two fixed points are stable N1 N
and the quantum phase transition between them is discussed t T N N —
later. > enbibn+ 2 ta(bibnes + biiby) = 2 wibib,.  (50)
If the value ofA is small enougHas in Fig. %a)] the n=0 n=0 n=0
system is close to the localized fixed point in an intermediate Figure 6 shows a comparison between the fixed point
range[4<N<8 in Fig. 5a)] even for« values below the spectra for the delocalized fixed point calculated with the
critical coupling «. This has direct consequences for ther-chain-NRG(circles and the fixed-point spectra constructed
modynamic properties in the corresponding temperaturérom the single particle levels, in Eq. (50) (solid lines.
range(see, for example, Fig. J4However, the vicinity to  The NRG data are calculated for differévi. The agreement
the localized fixed point does not imply localization in the is very good for the first few excitations already fdg~6,
sense that a system initially prepared with the impurity spinwhile a larger value of, is required to correctly reproduce
in one specified direction remains in this spin state undethe excitations at higher energies.
time evolution. For any finite temperature, thermal excita- While the delocalized fixed point is reached fesmaller
tions destroy localizatiosee Ref. 1) than a criticale(A), the system is in the localized phase for
In Fig. 5(@), we also observe a crossover from the local-all a>a(A). The localized phase is characterized by a
ized to the delocalized fixed point which takes placeNat (renormalized tunneling amplituded, =0 and a twofold de-
~10-20. The corresponding crossover scate(which—in  generate ground state. In the language of (ferturbative
the Ohmic case—is equivalent to the renormalized tunnetenormalization groufd-33the localized phase corresponds to
splitting A, up to a prefactdr will be discussed in Sec. lll C. 3 line of fixed points, parametrized by. Interestingly, the
The flow diagram of Fig. &) is similar to the one ob- fixed-point value ofr doesnotinfluence the eigenenergies of
tained in Ref. 26Fig. 1 in Ref. 26, where the mapping of the many-body fixed-point Hamiltonian, but only its eigen-
the spin-boson model to the anisotropic Kondo model wastates, see the discussion in Sec. Il. Thus, the NRG level
employed. The structure of the many-particle levels, howspectrum in the entire localized phasedentical to the one
ever, cannot be directly compared as they reflect the type Gbr the delocalized fixed point, apart from an additional two-
bath used in the NRG approadhosonic in our case, fermi- fold degeneracy of all many-particle levels. This feature can
onic in Ref. 26. be clearly seen in Fig. §Of course, the approach to the
The spectrum of the delocalized fixed pofiffg. 5@ for  |ocalized fixed point depends on the particular valuexpf
N>20] is identical to the spectrum of a spin-boson modelconsequently the NRG flow on intermediate scales will be
with zero coupling between spin and bosgas-0). The Hy different for differenta> a,(A).]
for the chain-NRG then take the form

N EN: N Nz_:l + t B. Critical coupling and convergence
Hne =AY Hige brb,+ 2, th(bibner + bribn) |- A -
Ne toe n=0 Enn™n n=0 n{Pnnea + Bpgo) The results shown in Fig. 5 indicate the well-known tran-

(49) sition between the localized and delocalized fixed points at a
critical a(A).***5 Due to the Kosterlitz-Thouless nature of

In this Hamiltonian, impurity and bath degrees of freedomthis transition, the fixed point at=a.(A) is nota new fixed

are completely decoupled and can be diagonalized sep@oint, but belongs to the localized phase instead.

rately. The spectrum of the impurity pait,,c.=—Aoc,/2) is On approaching the transition from the delocalized side,
nondegenerate. The bath part is that of a free chain of bosonge find, as expected, that the crossover scale vanisi&s as
with N+ 1 sites which can be diagonalized exactly InT* «1/(a.— ), see Fig. 11 later. We use this dependence
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FIG. 8. Dependence of the extrapolated vaiyeA — 1) on the

1.8 parameten for the Ohmic case=1. The crosses are the numerical
16l data and the solid line is a linear fit which gives(A)=0.99
’ +0.53\. The NRG parameters afg=100 andN,=38.

14}

% order of 0.02 which is due to the various extrapolations just
121 D described. The solid line in Fig. 8 shows a linear fit to the
1o b g:gn::;gf”N':_s;s ] n'umerica_l data which gives (A)=0.99+0.54. This is con-

—ON,=80, N,=10 sistent with the RG resuli.=1+O(A/ wy).*
0'81 0 15 2.0 25 3.0
N C. Scaling

We expect to observe scaling behavior in all physical
properties for fixed\ and a— «a,(A) and for fixeda and A
— 0. Such a scaling can already be identified on the level of

for both (a) and(b)]; () A dependence of, for two values ofA, the flow of the many-particle energies. An example is shown

and various NRG parametexg andNg. The dashed lines are linear in Fig. 9 for .flxeda=0..6 and various values df. In this way
fits to theN,=8 andN,=100 data in the range 1s8A <3. we can easily determine the crossover s@éléor the cross-

over from the localized to the delocalized fixed paititere
is only a single low-energy scale

FIG. 7. Dependence of the critical coupling. on the NRG
parameterd\g, Ny, andA for the Ohmic case(a) dependence oNg
for fixed N,=10; (b) dependence o, for fixed Ng=100[A=2.0

to determine the value of from numerically calculated
data forT* («) via a nonlinear fit[Note that on the localized T* =const.x A™V, (52)

side of the transition a low-energy scale only shows up in the - . .
flow towards the fixed point, i.e., in corrections to the fixed-Where we defin&i* as the value oN where the first excited

point values of observables: thus the criticalA) is easier ~State reaches the vall,=0.3. Note that a change of this
obtained via extrapolation from trelocalizedside] _(arbltrar)a valge can be absorbed in a change of the prefactor
As already discussed in Ref. {See Fig. 2 in Ref. 13the " Eq. (51); '_[hls reflects the fact that a temperatsealecan
value of o also depends on the NRG parameté&rs\,, and only be defln_ed up to a constant prefactor anyway. .
N. Figures Ta)—7(c) show the characteristic dependence for . In the fggllng regime, the dependenceddbn « andA is
the Ohmic cases=1, and two values of in Fig. 7(c). Keep- ~ 9'VEN by
ing A fixed, we observe a rapid convergence @f with T* o« AUaca) (52)
increasing\s [Fig. 7(a)] andNy, [Fig. 7(b)]. Note that we did
not observe a transition to the delocalized phaseNfpe4, ~ As shown in Figs. 10 and 11, the NRG results are in agree-
even for very large values af. As expected from the itera- ment with Eq.(52).
tive diagonalization scheme, the valuesNafand Ny, neces-
sary for convergence increase with decreasifsee Fig.
7(c)]. The converged data far,(A) show a linearA depen-
dence in the range 18A <3, with a deviation of about
15% atA =2 from the extrapolated — 1 value.
We find that the slope ia.(A) is independent oA which
is connected to the fact that the logarithmic discretization

systematically underestimates the spectral weight contained 0z | / ;oo iﬂgj
in J(w) (for a discussion of this point in the fermionic case, ' ST it
see Eq(5.42 in Ref. 2; for the soft-gap Anderson model see 0.0 Kool oo? ‘
Fig. 4 in Ref. 36. 0 20 \ 40 60
The extrapolated values.(A,A — 1) for the Ohmic case
are summarized in Fig. 8. In the limit of small, the NRG FIG. 9. Scaling of the flow of the many-particle levég(r) for

result is in good agreement with the well established valugixed «=0.6,s=1, and various values af. The NRG parameters
a(s=1,A—0)=1. We estimate the error ia. to be of the  areNs=100,N,=8, andA=2.0.
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FIG. 10. Dependence of the crossover temperatiren A for N

s=1 and fixed values of. The exponents ifM* «AX are x=1.55
for =0.4,x=2.15 for «=0.6, andx=3.49 for «=0.8. The NRG
parameters arbl;=100,N,=8, andA =2.0.

FIG. 12. (Color online Flow diagram of the lowest lying many-
particle energies calculated with the star-NRG for the sub-Ohmic
case(s=0.8,A=0.1), using displaced oscillators as optimized basis.
The critical value isa;=0.40294. The NRG parameters drg
=80, N,=8, andA=2.0.

D. Flow for sub-Ohmic baths

As already mentioned in Sec. Il F, the chain-NRG with a
basis of undisplaced oscillators as in E2g) is sufficient for  fold degeneracy of all levels of the localized fixed point. This
the Ohmic and super-Ohmic case. Let us now turn to thés evident from Fig. 12levels for a> a, and a< a, con-
sub-Ohmic case where we expect problems with the chainverge to the same spectriimnd also follows from the dis-
NRG when the system is flowing to the localized fixed point.cussion of Sec. Il E. However, the proper description of the
Figure 12 shows a typical flow diagram of the many-particlelocalized fixed point can only be achieved using an opti-
energies, calculated with the star-NRG fex0.8 and a mized basis with displacements calculated as discussed in
couple of a values close to the quantum critical poinf  Sec. Il F and Appendix B. Using a basis of undisplaced os-
=0.40294. cillators (#=0) leads to an incorrect level structure. This can

In contrast to the Ohmic case, the transition in the subbe seen in the upper right-hand panel of Fig. 3 in Ref. 13
Ohmic case is characterized bynawfixed point, the quan- (s=0.6, a> a,) where the basi&8) was used. The resulting
tum critical fixed point, with a level structure which is dif- fixed point levels are therefore not the same as the one for
ferent from both the localized and the delocalized fixeda < a, in the upper left-hand panel of Fig. 3 in Ref. 13.
points. For anyw # o, there is a finite crossover scalé for As mentioned in Sec. Il F, we did not yet succeed to
the crossover to the localized fixed politr o> «;) and to  implement the concept of displaced oscillators in the chain-
the delocalized fixed poinffor «<ac). The crossover scale NRG, so the proper description of the localized fixed point
can be defined in a similar way as in Sec. Il C. A furtherfor s<1 is presently only possible with the star-NRG. For-
analysis of the dependence®f on |a—«| gives the critical  tunately, the problems of the chain-NRG only show up when
exponents. Theis dependence has been shown already irthe flow is approaching the localized fixed point. We can
Fig. 5a) of Ref. 13. A detailed investigation of the critical therefore safely extract all the critical properties such as criti-
properties of the sub-Ohmic spin-boson model will appeakal exponents from the chain-NRG, as has been done in Ref.
elsewhere. 13.

Here we focus on the level structure of the localized and On the other hand, the use of a basis of displaced oscilla-
delocalized fixed point in Fig. 12. Both fixed points have tors within the star-NRG solves the problem of the boson-
exactly the same level structure apart from an additional twonumber divergencésee Sec. Il F This is illustrated in Fig.

13 where the dependence of the expectation vaiye

* 10

1.0

3.0

4.0
1 o~e1)

5.0

FIG. 11. Dependence of the crossover temperafdren « for

s=1 and fixed values ok [data forA=10"2 andA=10"* same as in

Fig. 4(b) of Ref. 13. The values for the critical coupling aie.
=1.162 forA=107?, a,=1.150 forA=1073, and a,=1.147 forA
=10“ The NRG parameters aiy=100,N,=8, andA=2.0.

=(b/by) is shown for three values af («=0.2< a;, a=a,
=0.214 887 85, and=0.4> a) and two values oN,. For

all values ofa we observe a rapid convergence witf,
similar to the convergence shown far<a, and a=a; in
Fig. 3. The difference here is that the data converge Wjth
also for a> «, which cannot be achieved by using the basis
(25), see Fig. 3. Furthermore, the expectation vatyedi-
verges exponentially witN for > o, as expected from the
discussion in Sec. Il E. A diverging boson number itself is
therefore not a problem for the bosonic NRG, provided a
proper optimized basis is chosen.

Finally, a few words on the limitations of the star-NRG.
Whereas the localized fixed point is described correctly, the
star-NRG seems to fail in other respects: the low-energy flow
to the delocalized fixed point appears incorrect, and critical
exponents of the quantum phase transition deviate from the
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10 , - ' IF
--- a=02,N;=6 F=-TInZandS=-—. (54)
1 oo Z:g.z,NN;zm JT
10" | o—a=a, N=10 ) . I .
AN (We setkzg=1.) The impurity contribution to the entropy is
2 0
& 10 Smp:S_SOv (55
107" whereSis the entropy _of the_ full system ar®®) the entropy
of the system without impurity.
1072 , ‘ , Before we discuss the full temperature dependence of
0 10 20 30 40 Smp(T), let us focus on the value &, at the localized and
N delocalized fixed pointsS,,;, and Sy, p. It is well known

that Sy, =In 2 and Sy, =023 but it might not be obvi-
ous that these values can be directly extracted from the
many-particle spectra at the fixed points.

In Sec. Il A we already showed that the fixed point spec-
trum of the delocalized fixed point is the same as the one of
a free bosonic chain, which is nothing else but the system
without impurity. This implies that for the delocalized fixed

FIG. 13. Dependence of the expectation vaiNe<bLbN> on the
iteration numbeN for s=0.8, A=0.01, =0.2<a, (squarey «
=a.=0.214 887 85diamond$, and «=0.4> a, (circley, and two
different values of\,, calculated with the star-NRG.

chain-NRG resultsand from analytically known valugswe

do not yet fully understand this problem, but it might be oint
connected to truncation errors which affect the star-NRG in EE)

completely different way as the chain-NR@he idea is that Ei=E o+ AE, (56)

the truncation somehow affects the character of the impurity ) . )
operator to which the added bosonic site couples in eachith Ei (Eio) the many-particle energies of the system with

step) The precise characterization of this problem and its(Without) impurity andAE a constant shift independent iof
possible solution are left for future studies. It is clear that this equation cannot hold fall levels, it is

only valid for energies sufficiently below the crossover scale
to the fixed point.

IV. THERMODYNAMIC QUANTITIES Equation(56) directly leads to the proof o§,,p=0: we
haveZp=exd -BAE]Z,, and from thisFy=Fy+AE. The en-

In this section, we describe how thermodynamic quanti-ergy shift drops out in the derivative so thg§=S, and the
ties can be extracted from the flow of many-particle levelsmpurity contribution to the entropy at the delocalized fixed
En(r) which are calculated with the bosonic NRG. Startingpoint is given bySm,,»=0.
from the Ey(r) there is no differencéfrom a technical point In a similar way one can easily prove ttg,,; =In 2: in
of view) between the fermionic and the bosonic césethe  this case we have
fermionic case see, for example, Refs. 2 ang Bleverthe-
less, for completeness we include a brief discussion of the Z = 22 €5, E;=E o+ AE, (57)
technical details here. We show results for the impurity con- :

tribution to the entropy and the specific heat in the Ohmicyjith the factor of 2 due to the additional double degeneracy
casefusing the chain-NRG with basi@8)]. The Ohmic case  of gl many-particle levels at the localized fixed point. This
has been studied in detail in Refs. 26 andf8® earlier work gives Z, =2 exij-BAE]Z,, and from thisF =-TIn2+F,

on thermodynamic properties see Refs. 14, 40, and e | A and S =In2+S,, corresponding tS,,,. =In 2. From
agreement with the results from Refs. 26 and 39 is excellenyis giscussion it follows tha,,, =In 2 andpS 5=0 inde-
which again confirms the reliability of the bosonic NRG for nengent of the exponestin thgpépectral funcTi%rj(w).

the investigation of quantum impurity models involving a For any finiteA and a, the valuesS,,,, =In 2 andS
bosonic bath. A few comments on thermodynamic properties_L0 are strictly valid oniy in the |imiq[1'|E:0, Note trTnga

in the sub-Ohmic case are given at the end of this section. o o1 gefinition of these zero-point entropies requires the
. Con§|der the.spectrum Of. many-particle energieef & correct order of limits: the thermodynamic limit has to be
discretized version of the spin-boson moftet necessarily 5y en pefore the limit T— 0. With the order of the limits
the di_scretized Hamiltoniang11) _and (14). _used in_ the reversed, the zero-point entropy would be equal tdrwith
bosorjgc(:H[\IFs)G. The grand canonical partition functiod, dgy the degeneracy of the ground state. Although this happens
=Tre P, reduces to to give the same values fd,,. and Sy,p in the case
studied here, this equivalence is not generally va(ichis
can be seen, for example, in the NRG calculations for the
single-impurity Anderson modelwhere the degeneracy of
the ground state oscillates between 1 for even and 4 for odd
iterations when the system approaches the fixed point of a
as the chemical potential is set to zergwe are interested in - screened spin, which h&,,=0. Also, any non-trivial quan-
gapless spectral functiod$w) ]. Free energy and entropy8  tum critical fixed point is expected to have a residual entropy
are then given by which is not Indy with integerd,.)

Z= E e P& (53)
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The impurity contribution to the entropy is close to a fixed 08

point value also when the system is close to this fixed point o—o A=10"

in an intermediate range of the flow diagram. From Fig) 5 06 g:}g*

we can therefore immediately see that the temperature de- a—t 4=107

pendence ofS,,(T) contains a crossover from a high- EEOA | v a=t0

temperature valu§,,~ Sm, =In 2 to the low-temperature 2

value Sy,p(T— 0)=S,p=0; provided the flow is to the de- 02}

localized fixed point. The detailed behavior &f,,(T) in the )

crossover region requires a numerical calculation as de- 0.0 lguaaeafpseifanstiasstoran? L

scribed later. 10 10 10 10" 107 10
In the bosonic NRG, we do not have access to the full T

spectrum of many-particle energi&s as used in Eq(53). FIG. 14. Temperature dependence of the impurity contribution

Instead, the iterative procedure results in a sequence @ the entropySy,(T), for «=1/3,s=1 (Ohmic casg and various
many-particle energieBy(r) with iteration numbeN andr values ofA.

=1,...Ns. According to the discussion in Refs. 1 and 2, each .
of the sets of many-particle energies is assumed to be a go&§ve a crossover from the high-temperature vafig,

description of the system for a certain temperaffjevith - 2 10 the low-temperature valu§,,=0 at a crossover
scaleT*, which is the same as the one introduced in Sec.
Tn=XoA™N, (58)  1lIC. The crossover scale decreases with decreading

greement with Eq(52). Note the similarity of Fig. 14 to
ig. 9 for the scaling of the energy levels, a similarity which
is simply due to the relation betwe&,,(T) and the flow of
the many-particle levels.

As briefly mentioned in Sec. Il A, the vicinity to the
Zy= >, e BNy, (59) localized fixed point for early iteratiorjsvhich results in the

r high-temperature valu§,,(T) =~In 2] does not imply local-

ization. The value 05,,,(T) for high temperatures is due to
the fact that for temperatureB> A both states of the two-
state system contribute equally to the thermodynamics. Note
also the similarity toS,,(T) in the Kondo model: there the
high-temperature phase is that of a local moment with both
spin T and | configurations contributing to the entrofg
This is the information we have available for the numericaltemperature dependence&f,(T) as in Fig. 14 might there-
calculation of thermodynamic properties. fore appear more natural in the Kondo model but, of course,

One possibility to proceed is to calculate the free energyt is also valid herg
Fn=-TnIn Zy for each iteration step, and from this the en-  The scaling behavior d,,(T) for fixed «=1/3 andvari-
tropy S=-dF/dT via a discrete differentiation. This proce- ousA is obvious and is shown in Fig. (& together with the
dure has been shown to give good results in the fermionigcaling curves for=1/5, 1/4, and 1/2. Thagreement with
case(see, for example, Ref. 42t requires, however, a pre- the exact results from the Bethe Ansatz calculations in Ref.
cise calculation of the difference of the ground state energiegg s very goodsee Fig. 7a) in Ref. 39, in particular for the
between subsequent steps; this appears to introduce somedependence of the scaling curves.
errors in the calculations within the bosonic NR@ gen- The temperature dependence of the specific [@ag(T),
eral, the bosonic NRG is less accurate in the calculation ofs ¢alculated ViaCimp(T)/ T=Smp(T)/JT. Here we cannot
thermodynamic properties as compared to the fermionigyig the discrete differentiation &(T). The scaling of
NRG because we cannot keep as many states as in the feg;np(-r) implies a scaling ofCiy,(T)/T as shown in Fig.

mionic case. 15(b). This figure is also very similar to previous calculations

Therefore, we use an alternative approach in which th‘fsee Fig. 2 in Ref. 26 from the NRG via mapping to the
entropy Sy at iteration stepN for the temperaturdy is cal-  apisotropic Kondo model and Fig(lj in Ref. 39 using the

culated via Bethe Ansat}, and we find the same characteristic features
_Ey here: a linear specific he@tx T for low temperatures, a peak
S=7 +inZy. (61)  in C/T at T=T* for small dissipationa<0.3 in contrast to
N the monotonous decrease Gf T for large dissipationa
This approach avoids the discrete differentiation, and does-0.3, and a characteristic crossing point of all €T scal-
not require the knowledge of the ground state energies.  ing curves.

Let us now discuss the results for entropy and specific Similar to the NRG calculations in Ref. 26, the thermo-
heat calculated with the bosonic NRG using the method justiynamic quantities can only be calculated on a discrete mesh
described. Figure 14 shows the temperature dependence of temperatures given by E@58). This strongly limits the
the impurity contribution to the entropy§,,(T), for @  resolution of the peak i€/ T for << 0.3, in contrast to the
=1/3,s=1 (Ohmic casg and various values ak. We ob-  Bethe Ansatz calculations of Ref. 39.

with x a dimensionless constant of the order of 1, choselﬁ
such thatTy lies within the spectrunty(r).

For each iteration step, the partition function is calcu-
lated for the temperaturéy:

In addition, the internal energy at iteration stiipfor the
temperaturely is calculated as

1
En= Z—E En(r)e BNy, (60)
N r
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08 ‘ ' ' ‘ ' plotted for various values & This behavior is in agreement
Sl with the calculations of Ref. 40, whef&T) « T° was found

for the slightly asymmetriqe+# 0) sub-Ohmic spin-boson

model.(While the finitee turns the quantum phase transition

into a smooth crossover, it does not influence the qualitative

low-energy behavior in the delocalized phase.

The data in Fig. 16 are calculated with the chain-NRG.
The results from the star-NRG look similgthey give, in
particular the correct valu§,,(T— 0)=In 2 if the flow is to
the localized phade We observe, however, a low-
temperature behavior f&,,(T) which is differentfrom the
correct form,Spm(T) = T*. As briefly mentioned in Sec. Ill D,
the reason for this failure of the star-NRG is presently not
clear but probably due to truncation errors.

Despite these deficiencies, the bosonic NRG is a reliable
tool for the calculation of thermodynamic properties in a

FIG. 15. (a) Scaling curves of the impurity contribution to the Wide range of parameters and the comparison with well-
entropy,Smp(T), for s=1 (Ohmic casg and various values af; (b) established results is very promising. Thermodynamic prop-
Scaling curves of the impurity contribution to the specific heat,€rties in the quantum critical region will be discussed in a
Cimp(T)/(T/T*), for the same parameters as(@. separate publication.

3

10

The physics in the sub-Ohmic case is much richer, due to V. DYNAMIC QUANTITIES
the appearance of a line of quantum critical poidt$his is ) ) o )
reflected in the behavior of the entropy and the specific heat. The calculation of dynamic properties is straightforward
For the results 0B,,(T) and Ciy(T) close to the quantum within the bospmc l\_lRG ar)d pro_ceeds in a very similar way
critical points we refer to a subsequent publication. Here wéfrom a technical point of viewas in the fermionic case. The
focus on the flow to the delocalized phase. typical problems such as the combination of information
Figure 16 shows the temperature dependence of the infrom different iteration steps and the broadening of the dis-
purity contribution to the entropyGmy(T), in the sub-Ohmic crete spectra have been discussed already in the literature
cases=0.8, for various values of below the critical value ~(S€€: focrj ﬁxample, Refs. 43-46 and) khd need not be
a,~0.125. Fora close toa, we observe a two stage quench- "ePeated here.
ing of the entropy of the free momefthe quantum critical
point has a nontrivial zero-point entropy @&(T—0) A. Dynamical spin correlations
~0.6 fors=0.8). As expected, the temperature scale for the One important dvhamic quantity of interest in the spin-
crossover to the delocalized fixed point increases with th%oson mogel i the)é oS ig corre)I/ation functispin auto?
distance from the critical point. The low-temperature behav-Correlation functioh pin-sp p
ior of Sy,p(T) for a<ac is given by Sy,(T) « T° which can

be seen more clearly in the inset of Fig. 16 whgg/(T) is 1 (.
e C(w) = —J e“'C(t)dt, (62
27)
0.8
with C(t):§<[oz(t),ag+>. We only consideequilibrium cor-
06 | relation functions, in general for finite temperatures, but the
focus here is o =0 so that the expectation val{e.) has to
€ o4l | be taken with respect to the ground state.
mg ’ 0=0.114 For a discrete Hamiltonian, the spin-spin correlation func-
0=0.116 tion atT=0 can be written as
0.2 - 0=0.118 |
——— 0=0.120 1
— a=0122 Clw) ==, [(0|am|Pow+ - €), w>0, (63)
0L : 107 %

with C(w)=C(-w). Note that with the earlier definition of

FIG. 16. Temperature dependence of the impurity contributionc(t)' the quantityC(w) is purely real and related to the
to the entropySmp(T), in the sub-Ohmic case for various values of imaginary part of the spin-suscepibility(w) via Cl«w)

_1 -
a and s=0.8 (main panel and various values o (inse). The =3mIm x(w)| [see also Eq(3.96 in Ref. 14.
coupling @ is below e so that the flow is to the delocalized phase ~ Due to the truncation in the course of the iterative diago-

for all parameters in this figure. Lines with symbols in the inset arenalization, we cannot calculat(w) gimultanepus]y for all
data from the bosonic NRG and solid lines are fits assuming &nergy scales. Instead, the correlation function is calculated
power-law, Sp(T) = T, for each cluster of lengtiN (which gives information on
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FIG. 17. Spin-spin correlation functioB(w) calculated for the
Ohmic cases=1,A=0.01, and various values af< ¢, close to the
transition. For small frequencie€(w) « w, whereas for higher fre-

quencies we observe a divergen@w) = w1, with logarithmic
corrections.

energy scales of the order AfN) and this information has to
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4x10*
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FIG. 18. Spin-spin correlation functio®w)=2C(w)/ v’ at the
Toulouse poinu:% for the Ohmic cass=1 and various values of
A. The inset shows the scaling of these curl@)/S(0) plotted
versusw/ A,] together with the exact resulthick dashed ling

2C(w)

w&

Slw) = , (68)

be added up properly. Finally, the discrete spectrum has to be

broadened which results in continuous curves @Ggt) as
shown, for example, in Fig. 17.

whered is the exponent fitted t€(w) in the small frequency
regime.

These technical issues are dealt with using the approach In Fig. 17,C(w) is shown for the Ohmic case and a set of
described in Ref. 12; to broaden the spectra, we use a Gauss-values close to the criticak.. The spin-spin correlation

ian on a logarithmic scalesee Eq(8) in Ref. 12 with broad-
ening parameteip=0.7.
We also define the correlation functi®w) as

2C(w)
Sw)=—7%". (64)
w
The static spin-susceptibility is defined as
Ko
X= ZT, (0, =(0{0|0). (65)
€
It is related toC(w) via
“C
x=4 J ﬁdw, (66)
0 w
and, using Eq(63), can be written in the form
0|o,|ny|?
= o [OdnP -
n €~ €

Here, we calculate the susceptibility according to &Y).

function shows the expected power-law behavig(ip) o« w,
in the low-frequency regime<T*. In the limit of a— «,
C(w) shows a divergence fas>T*, C(w)> ™!, with loga-
rithmic corrections.

In Fig. 18,S(w) is plotted at the Toulouse poifﬁF%) of
the Ohmic spin-boson model for several value\oft this
point, the Ohmic spin-boson model is exactly solvable, as
discussed in Ref. 15. In the inset of Fig. 18, all the curves are
rescaled onto one curve with a renormalized tunneling am-
plitude A,. Here,A, is defined as

Arnrg=" (69)

wherey, is the exact susceptibility ant, , the exact renor-
malized tunneling amplitude at the Toulouse poin;
=mA2/2 and xeA, (=8/7. The quantityxyre iS the suscep-
tibility calculated from the NRG, Eq67). The comparison

of the result from the bosonic NRG with the exact rescaled

The bosonic NRG allows the calculation of dynamic
properties in a wide range of frequencies so that the func-
tional dependence @ on the frequency [such as a power- 10 s 20 25 30 35
law C(w)  »°] can be easily extracted. However, the expo- A
nent of the calculatedC(w) has a deviation from the
expected valus (for the flow to the delocalized fixed point
of about 2%. To extract the correct prefactorQifw) (which
we use to compare with the exact results at the Toulous
point and to check the Shiba relatjprwe need to redefine
the quantityS(w) as

FIG. 19. NRG results fognrg Calculated at the Toulouse point
a=% for the Ohmic cases=1 and various values o\ and A
écircles: A=0.0125, squaresA=0.025, diamonds:A=0.05, tri-
angles: A=0.1). Dashed lines show the exact valueg
=16/(m?A?) and thin solid lines are fits to the numerical results.
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4 T T T % 2
— a=0.1,4=0.01 2a<—> =50). (71
~~~~~~~~~ a=0.1, A=0.001 2
3t --- am0.1, A=0.0001
—— a=0.3, 4=0.01 .
= T =03, 00001 Table | shows the results from the bosonic NRG for the
Q2 T o0, a001 1 Ohmic case and various values®@findA. The parameted
= o -yl is the exponent defined in E¢68). We find that the Shiba
1 relation is fulfilled within an error of about 10%.
——
0 I —r— i
00 05 10 15 20 25 30 B. Order parameter

/A, In the localized phase, which corresponds to the ordered
_ o ] ~ phase of the Ir? Ising model, it is straightforward to define
FIG. 20. S%allng spectra for the spin-spin cor'relatlon functiongy order parametem, corresponding to the magnetization of
S(w)=2C(w)/ o for various values ofx in the Ohmic case=1. the Ising model. In the language of the spin-boson model, it
corresponds to the static, i.e=0, part of the spin autocor-
S(w)/S(0) shows good agreemefgee the inset of Fig. 38  relation function; in the language of the anisotropic Kondo
The exact result is given By model this just measures the prefactor of the Curie part of the
local susceptibility, i.e., the unscreened fraction of the impu-
rity moment. The Kosterlitz-Thouless nature of the transition
S(w) 1 In(1+4x% 2 arctari2x) implies ajump of the order parameter at the phase transition.
S0) = 8(1 +x9) X2 + X ., (70 We extract this order parameter from théw) contribu-
tion to C(w). The identification of such & peak in the spec-
trum of C(w) requires some extra care. The spectrum calcu-
with X=w/A, ¢ lated with the NRG consists af peaks only, which have to

The NRG results foryygg deviate significantly from the ~be broadened suitably to give spectra as shown, for example,
exact valuey,=16/(72A?). However, as shown in Fig. 19, in Fig. 17. Therefore, one has to decide whethérgeak in-
this deviation is entirely due to discretization effects and thene spectrum belongs to the continuum or whether it survives
extrapolationA — 1 shows almost perfect agreement with the@S @46 peak in the thermodynamic limte. The procedure is
exact result. Note that the exact value fr has been ob- illustrated in E|g. 21. Let us first note that the matrix element
tained for asoft cutoff in the bath spectral functior(w) (0jo/0)[* vanishes for all parameters of Fig. 21. We there-
=2maw exp-wl w,). To allow for a comparison, the loga- fore plot the matrix elemerj{0|o-|1)|? in Fig. 21(b) together
rithmic discretization has to be performed for the same softvith the energyE(1) in Fig. 21(a). We observe that foe
cutoff (we introduce a high-energy hard cutoff @& 15w,). > @ the energyE(1) vanishedfasterthan A™ with increas-

The scaling behavior o(w)/S(0) for fixed a and differ-  ing iteration numberN, whereas the matrix element ap-
ent values ofA is shown in Fig. 20. For this we need to proaches a constarip|o;1)|?— const= 1. In the thermody-
identify an energy scal@* as in Sec. Ill C. There are, as namic limit, this gives the5 peak atw=0, with the weight
usual, various possibilities to define the energy scale: thgiven by the matrix elemeri0|o,|1)|? which corresponds to
position of the peak irC(w), w,, the quantity 14, and the the order parametem. On the other hand, for< e« the
T* as defined in Eq.(51). Obviously, we haveT* xw,  energyE(l) is proportional toA™N, and the corresponding
«1/x>A,, and we choos@,=8/(my) for the energy scale peak is therefore interpreted as being part of the continuum.
in Fig. 20. The scaling curves shown in Fig. 20 are in good These arguments result in an order parameier) which
agreement with the ones calculated in Ref. 47; in particularis zero fora< a, and jumps to a finite value for= a.. In
we find that the coherent peak 8lw) disappears whenris  the sub-Ohmic case, the order parameter shows power-law
larger thana* =0.3. behavior near the quantum phase transition, which will be

In our notation, the Shiba relation reétls discussed in detail elsewhere. As an aside, we note that the

TABLE |. Results from the bosonic NRG for the Shiba relation in the Ohmic case for various values of

a andA.

s @ A ) 2a(x12)? S(0) % error
1.0 0.02 0.005 1.018 0.20410* 0.221x 10* 9.9%
1.0 0.1 0.01 1.018 0.60810" 0.631x 10* 4.6%
1.0 0.4 0.01 1.018 0.29410" 0.308x 107 4.9%
1.0 0.5 0.025 1.018 0.15410° 0.163%x 107 5.8%
1.0 0.7 0.03 1.019 0.37610° 0.416x 10° 10.6%
1.0 0.9 0.1 1.018 0.17210% 0.192x 1010 11.6%
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states is sufficient, and all fixed points are properly captured
in the NRG. Most of the results in this paper were obtained
with this basis choice using the chain-NRG method; we have
given a detailed account on convergence issues with respect
to truncation and discretization parameters. In the sub-Ohmic
case, the boson numbers diverge in the localized regime in
the low-energy limit, and a different basis choice is needed.
We have described suitable basis states using displaced har-
monic oscillators, which solve the problem for the star-NRG.
Open numerical issues include a reliable implementation of
the displaced-oscillator basis for the chain-NRG, a more ac-
curate calculation of dynamic quantities, as well as the nu-
merical stability for very long iterations, i.e., very small en-
ergy scales.

The bosonic NRG can be easily generalized to impurities
with multiple bosonic baths or both fermionic and bosonic
baths. This is the subject of current work and will allow the

FIG. 21. (@) Energy of the first excited staf(1) versus itera- Study of large classes of impurity models, e.g., so-called
tion number fors=1.0,A=0.01, and various values of (b) matrix ~ BOse Kondé' and Bose-Fermi Kondo model3These mod-
element(0|a,|1)|2 vs iteration number for the same parameters as€lS are known to display intermediate-coupling fixed points
in (a). associated with universal local-moment fluctuations. The
Bose-Fermi Kondo model arises in the context of extended
&ynamical mean-field theoryfEDMFT),® where a lattice
model is mapped onto an impurity model with a fermionic
bath (representing conduction electrorend a bosonic bath
(representing bulk spin fluctuationsThe quantum phase
transition appearing in the Bose-Fermi Kondo model has
been proposed to describe local quantum critical behavior in

In this paper we have discussed a generalization of WilEDMFT, which may be relevant to the physics of certain
son’s NRG technique to quantum impurity problems with aheavy-fermion quantum phase transitions. However, a full
bosonic bath. Focussing on the application to the spin-bosonumerical solution of the EDMFT equations B0 has not
model, we have shown that this method provides reliabldeen presented to date, due to the lack of suitable impurity
results for both static and dynamic quantities in the wholesolvers. A version of the bosonic NRG may help to overcome
range of model parameters and temperatures. For the casetbfs difficulty.

Ohmic damping, we have compared our data to existing re- Other applications of the bosonic NRG can likely be
sults in the literature and found good agreement. The bosoniound in the rapidly developing field of ultracold bosonic
NRG is able to reproduce the expected scaling behavior agases, where indeed various realizations of spin-boson phys-
function of temperature or frequency. For sub-Ohmic dampics have been proposéd.

ing, there is a line of continuous boundary quantum phase Further, the physics of decoherence of qubits naturally
transitions for all 6<s< 1, with exponents varying as func- leads to variants of the spin-boson model. Interestingly, the
tion of s; details of the associated quantum critical behaviordescription of 1f noise in electrical circuits leads to sub-
will be discussed in a forthcoming papésee also Refs. 13 Ohmic damping withs=0 (at least over a certain range of
and 3J. energies In this sub-Ohmic parameter regime, the bosonic

We have outlined several details of the numerical imple-NRG is one of the few methods which can give reliable
mentation of the bosonic NRG. Two general strategies wer@nswers, including, e.g., the existence of a quantum phase
discussed, termed chain-NRG and star-NRG: both use a s#ransition for 0<s<1—note that this transition does not ap-
guence of boson states with exponentially decreasing energgear in the popular noninteracting blip(NIBA)
scales, but in the chain-NRG the bath states form a chain argpproximationt®> Other modifications of standard spin-boson
the impurity couples to the first chain site only, whereas inphysics include the influence of localized modes which in-
the star-NRG the impurity is coupled to all bath sites whichteract with the qubit of interest—those modes can be repre-
are not connected to each other. The advantages and dissgbnted by a discrete spin system, leading to so-called central
vantages of both methods were discussed in detail, togethepin models.” Usually, such systems map onto spin-boson
with the important issue of the optimal choice of a basis setnodels with a spectral density consisting of a continuous
of bosonic states at each bath site. This problem is inhererfe.g., Ohmi¢ background and sharp peaks at certain
to the bosonic NRG, as the infinite Hilbert space has to bdrequencies?® these models can be easily studied using
truncated, and specific solutions have to be found for thé\NRG.
problem at hand. We have argued that in the Ohmic, super-
Ohmic, and sub-Ohmic cases of the spin-boson moebel
cept for the flow to the localized fixed point in the latter We thank M. Garst, T.-H. Gimm, H. Horner, E. Jeckel-
case the basis formed by the lowest boson number eigenmann, S. Kehrein, Th. Pruschke, A. Rosch, P. Wolfle, and W.

order parameter can also be extracted from the Curie part
the static local susceptibility(T).

VI. CONCLUSIONS
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exander von Humboldt foundatidiN.-H.T.). To obtain the recursion relations fef, andt,, we first put
APPENDIX A: CALCULATION OF THE PARAMETERS Eq (A4) into the left-hand side of EqAS) (for the annihi-
OF THE SEMI-INFINITE CHAIN lation operators only We then sort the resulting equation for

the operator®,,. Comparing the prefactors of the terms con-
In this appendix, we describe the orthogonal transformataining b,,, we obtain for the operatds,:

tion from the star-Hamiltoniafll) to the semi-infinite chain
form [the chain-Hamiltoniar§14)] and present equations re-
lating the parameters of the two Hamiltonians.

We start from the star-Hamiltoniaiil):

> &xdlUon = €ob) + tob], (A9)
n=0

and forb,, with m>0:

-
Ho=Hioe + 2 fangn+t — =2 m(@atay. (A1) °°
e Sl NP S &alUpn= exbh + bl o+ trabl ;. (A10)
n=0
Our goal is to transform it to a semi-infinite chain Eg4): _ _ _
The expression fog, can be obtained from taking the com-

7o O - mutator betweei, and Eq.(A9):
HC = HIOC + ;OEZ(bO + b(T)) + E [enb;bn + tn(babn+l ° -
n=0
€= £ U2 (A11)
+bhaby)]. (A2) 0T o

Here the main difference to the fermionic cdsech as the From Eq.(A9), we also obtain
Kondo model studied in Ref.)dis that the bosonic spectral
function J(w) is restricted to positive frequencies only. This
asymmetry ofJ(w) influences the structure of the semi-
infinite chain Hamiltoniar(additional on-site energies, ap-
pear in Eq(A2) which are not present for particle-hole sym- Which gives immediately
metry in the fermionic cage 1

In the following we define a real orthogonal transforma- U= t—(fn— €)Uon- (A13)
tion U: 0

tobl = 2 (&,— €0)Uond, (A12)
n=0

o The value ofty can be calculated by taking the commutator
b= > U,.a., (A3) with the corresponding adjoint operator on both sides of Eq.
=0 (A12). This results in

with UTU=UUT=1, U*=U, so that the inverse transforma- 1| ) L2
tion reads o= 7= > G- - (A14)
N0 | n=0
a,= 2 Upn b (A4) EquationgA6), (All), (A13), and(A14) initialize the recur-
e sion relations for the calculation &, t,,, andU,, These

) ) ) recursion relations can be obtained by starting with Eq.
Comparing the coupling terms between spin and bosons ifA10) and proceeding in a similar way as earlier.

Hs andH, gives The commutator bewedn, and Eq.(A10) gives
1 < -
bp= —2 e, (A5) n= > &UZ, (A15)
V 7on=0 n=0
so that From Eq.(A10) we also find
Ugn = 1. (A6) A ;
\“"7/0 tmbm+1 = E (é\Umn— €mUmn— tm—lum—ln)an- (A16)
n=0
&‘; t;?\f’g:'c commutation relatidho, by]=1 applied to Eq. From this equation, we obtain the expression Wy, 1,:

1
o we Umein= — L& — Umnn— tm=1Ym-1nl - Al7
o= E ’yzn = \](X)dX (A?) 1 tm[(g Gm) 1 1 ] ( )
n=0 0

The values ot,, can be calculated by taking the commutator

We are left with the equivalence of the free bosonic part inwith the corresponding adjoint operator on both sides of Eq.
Hs andH.: (A16). This results in

045122-18



NUMERICAL RENORMALIZATION GROUP FOR QUANTUM.. PHYSICAL REVIEW B 71, 045122(2005

1z lying eigenstates of are described with only a small num-

tn=| 2 [(&= eUmn~tmaUm*| - (AL8)  per of basis statgsThen we use this basis, denoted sl
n=0 +1)),, for the actual NRG iteration, and finally, we describe
Equations(A15), (A17), and (A18) complete the recursion a self-consistent procedure to determine the paranteter
relations for the calculation of the parameters of the chain Let us first discuss how to construct the optimized basis

Hamiltonian(14). _ ~ for H. Consider the following operators:
Despite the simple structure of the input spectral function, : .
J(w)=2maw® (s=0), we did not succeed in solving the re- H.y=a'az 6@’ +a). (B3)

cursion relations analyticallgthis is in fact possible for the Tpe eigenstates ofl,, are denoted afm),, (m=0,1,..).
particle-hole symmetric soft-gap Anderson model, where thgy,s optain - - o

hybridization function vanishes at the Fermi level &&v)
=Aq|w|", see Ref. 32; due to the particle-hole symmetry, the Ho oM.y = (M= 6)[M).p, (B4)

€, vanish and the recursion relations have a much simple d

structure. Therefore, the recursion relations have to be iter-

ated numerically, in a similar way as for the fermionic case. M), = ™ %@ 3| m), (B5)
Note that the derivation of the chain-Hamiltonian in the

asymmetricfermionic case, wheres, # 0, is very similar to ~ With [m) the eigenstates ai'a. The basis states should de-
the bosonic case described earlier. The only differences agcribe the ¥ and - displacements on an equal footing;
the structure of the coupling between impurity and the baththerefore we proceed with symmetrized eigenstdtes,
and the fact that all commutators have to be replaced bgonstructed in the following way:

anticommutators. For a recent application of the NRG to a _ _\m

fermionic model with an asymmetric hybridization function, IMhe = Corml M)y + (= 1"}

see Ref. 52. _ m
The resulting parameters of the chain-Hamiltonieyand Mo = Coml My~ (= )M
t,, both fall off as A™; in contrast to the fermionic case
wheret,= A2, For largen, the ratiot,/e, approaches an m=0.1 Ny 1 (B6)
s-dependent value. 2 ’

with normalization constantsy, . Note that here we have

to choose an even numbidg. The even and odd parity states

are orthogonal to each othefn|m),=0, whereas states with

the same parity are not necessarily orthogonal. An orthogo-
In this appendix, we present details of how we implementhalization procedure for both even and odd parity states then

the optimal basis for the bosons in the star-NRG to overcomgives the final set of basis states

the problem of the boson number divergence when the flow

APPENDIX B: OPTIMAL BOSONIC BASIS IN THE
STAR-NRG

is to the localized fixed pointsee the discussions in Secs. 0)o=[0)e
Il E and Il D).
In each step of the star-NRG, a bosonic degree of freedom |T> =Coi{|De <6|1) |a> !
e e, e e el e

is added to the Hamiltonian. The renormalization group

transformation is given by Eq19): — — -
|2>e = Ce,2{|2>e - e<1|2>e| 1>e - e<0|2>e|o>e}

g
Hne1s= AHyst AN”{ §N+1aL+1aN+l + _2\5277 ne1(@nea - (B7)

+ with normalization constantSy, ,. The same orthogonaliza-
o) |- (B1) tion is performed for the odd parity states. In this way, we
obtain Ny, orthogonal states, characterized by the parameter
The problem discussed in Sec. Il E is that upon approachg, which form the basigs(N+1)), for the diagonalization of
ing the localized fixed point in the sub-Ohmic case, the disHNﬂ’S;
placementd, for the bosonic siteN increase exponentially . o
with N, see Eq.36). The displacements can be taken into [S(N+ 1))y ={|0)e|Der .- 4|0V |L)g, ..} (B8)
account by constructing an appropriate bgsisl+1)) for
the added bosonic degree of freedom.
To construct this basis, we start with a simplified Hamil-
tonian of the form AN+ 1)|an,q + al, s’ (N + 1)), (B9)

The calculation of the matrix elemenky.;«(rs,r's’) [see
Egs.(43)—(46)] involves matrix elements of the form

H=a'a+ bo,(a' +a), (B2) To evaluate these matrix elemepasnd the scalar products in
) . Eq. (B7)] we have to express the states,, in terms of the
and proceed as follows: in the first step, we set up an Opt'eigenstate@) of aL+1aN+l- This can be performed using the
mized basis forH (optimized in the sense that the lowest following recursion relations fo(n|m),:
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—_—

cussed in Sec. Il F. For the actual numerical calculation it

6 Vn
(nm+1),= ’,—Tl<n|m>(,+ "—+1<n = 1jm,, turns out that the following self-consistent scheme is much
vm vm more efficient. B
N For the ground stathg) of H (B2) the expectation value

(n|0y,= (‘r) o127 (gla'alg) is equal to#?. We use this relation to determine the

vn! 6 used for the NRG calculation

0= \/N+1<g|aL+laN+1|g>N+1! (B11)
"
1/26% (B].O)

(Ojmyy= ﬁe where |g)y.1 is the ground state offy.;s which has been

obtained from diagonalizing the matriky., ((rs,r’s’) using

(and for(n|m)_, by replacingé by —6). The summation over the basis|s(N+1)), characterized by the parametér In
n in the calculation of matrix elements and scalar productother words, Eq(B11) defines a self-consistent scheme to
has to be performed numerically which limits the number ofcalculated for each NRG step.
stategn) to some finite, although very large, valugvalues The converged valué* gives the optimal basis for add-
up toL~10" can be used To construct an optimized basis ing the siteN+1 in the NRG iteration. It corresponds to the
for the displacements, L should be large enoudat least of  value #* which characterizes the minimum of the energy
the order of¢?) to include a sufficient number of states in  levels in Fig. 4. The energy levels calculated in this way
the calculation. show a much weaker dependence gy which leads, for

For the special case &=0, the paramete# for the con-  example, to the rapid convergencemfwith increasingNy
struction of the basi$s(N+1)), is exactly known(see Sec. as shown in Fig. 13.
Il E). This is different in the general case of finilewhere After the diagonalization ofi.; s with the optimized ba-
we have to find a scheme to determine the optimal vatue  sis|s(N+1)),, we can continue the NRG iteration by adding
The general strategy to find this optimal value has been dighe siteN+2.
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