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The Luther-Emery liquid: Spin gap and anomalous flux period
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We study the dependence of the ground state energy on an applied Aharonov-Boldnfdluthe Luttinger
model with large momentum scattering. Employing the method of finite size bosonization, we show that for
systems with a spin gap but with gapless charge degrees of freedom, the ground state energy has an exact
period ofhc/2e, i.e., half a flux quantum, in the limit of large system sikeFinite size corrections are found
to vanish exponentially i. This behavior is contrasted to that of the spin gapless case, for both even and odd
particle number. Generalizations to finite temperature are also discussed.
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I. INTRODUCTION Emery liquid and the vector potential enters only in the

Models of interacting electrons in one spatial dimensionCharge action, it is difficult to see why the flux period for a
are very valuable for the understanding of strongly correlated-uttinger liquidand aLuther-Emery liquidshould be differ-
systems. This is because there exist theoretical methods ef0t.
abling us to determine their physical properties reliably. In- In a recent paper we addressed these issues in the one-
deed, by combining perturbative renormalization gréup, dimensionat-J-J’-model in the limit of vanishing exchange
bosonization, and Bethe ansatz techniques, a wealth of integouplings® Fortunately, both a spin gapless phase as well as
esting phases in one dimension has been discovered. a spin gapful phase appear in this lirfhim Ref. 6 we have

While some properties of these phases are unique in ongemonstrated that while the flux perioddg=hc/e in the
dimension, others have their higher dimensional analogs. Fdermer?8 it indeed becomehc/2e in the latter. In particular
example the independent gapless spin and charge excitatiowg have shown that as a function of the Aharonov-Bohm
and the vanishing quasiparticle weight of theittinger  flux, the ground state energy of a spin gapped ring is periodic
liquid? are unique in one-dimensiddD). However, the fact with period hc/2e. Due to one dimensionality the energy
that it has a finite charge compressibility and Drude weight iarrier between adjacent minima is proportional to the in-
analogous to a normal metal in higher dimensions. As anverse circumferenck of the ring. For definiteness, we there-
other example, like systems in higher dimensions, a Motfore define the function
insulating state is realized at half-filling for repulsive inter-

actions. However, the fact that antiferromagnetic long range &)= L'Tl) L(Eo(®P) ~ Eo(0)), (1)
order is absent and that spin 1/2 excitation exists in the
half-filled Mott state are special features of 1D. where Eo(®) is the ground state energy of the system as

Furthermore, in one dimension there exists a phase, thieinction of flux.
Luther-Emery liqui¢? which exhibits a spin gap and no Despite the above progress, the question “doLather-
charge gap. In addition, as in thaittinger liquid the DC  Emery liquidsexhibit anhc/2e flux period, and hence elec-
electric conductivity is infinite. The above characteristicstron pairing?” remains to be answered. In this paper, we
suggest that thé.uther-Emery liquidis a 1D analog of a show that the answer to the above question is indeed affir-
superconductor. However, until very recently an importantmative. Technically we start from the Luttinger Hamiltonian
question remained unanswered: “Do electrons pair in thevith the g; channel scatteringWe bosonize this model us-
Luther-Emery liqui@” ing the constructive formalisti® which provides rigorous

We remark at this point that it is necessary to carefullyoperator identities on the Hilbert space of the finite size sys-
distinguish the concepts @fairing and coherenceor inter-  tem. We show that due to a set of constraints on the total
acting fermions in dimensions lower than 3. Wileherence  charge/spin number/current operatbtsthe state of the spin
implies the breaking of a continuous symmetry and is thusector impacts the charge sector through a twisting of the
severely restricted in lower dimensions, the concepiaif- boundary condition. As a result, when the spin sector is
ing is by itself not subject to such limitations: Electrons may gapped by the large momentum transfer two body scattering,
still choose to form pairs, even though the latter do not showhe charge channel flux period becontes 2e.
phase coherence at large distances. The question posed abovdn the literature, the fact that there exist constraints on the
can therefore not be answered satisfactorily by calculating &tal charge/current operators in bosonization has been em-
pairing susceptibility which depends on phase coherence. Iployed by Los¥? for spinless fermion systems to study par-
stead, the best way to answer this question is to determinticle number parity effects. Regarding spinful fermions, Ref.
whether the magnetic flux period /e or hc/2e*° How- 13 used a method similar to ours to determine the flux period
ever, since the spin and charge degrees of freedom are marfior the Hubbard model. However, the author concluded that
festly separate in the effective theory describing lthiéher-  the flux period is alway$ic/ 2e regardless of whether a spin
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gap exists, which we believe to be in error. Furthermore, a N_y N_t NN
common reasoning encountered in the literature is to at- N an
tribute the hc/2e flux period to the dominance of singlet

superconductindSS correlations at long distance and low \X’Xk f
energy, rather than to the appearance of a spin gap. It has, ; ;
however, been noted that states with dominant charge density -k k

. . £ f
wave (CDW) correlations may also feature this anomalous

flux period(see, e.g., Refs. 6, 14, and)1blere we argue that

this is just the case when there is a spin gap. In this case, it is + —
natural to interpret the state as being formed by Cooper pairs.
The degree of coherence of these pairs will determine if the [~ ; Right- and left-moving branches of the Luttinger model
state is more appropriately thought of as CDW-like or SS'The cr.os.ses denote the allowed momekite27n/L for periodic .
like on not too large length scales. In this picture, one natu

< boundary conditions. The dark shaded region represents the occu-
rally expects the flux period to be one-half of a flux quantum.pied momentum states in the “vacuuf;s=0. The vacuum chemi-

In the following, we will show that regardless of the corre- ¢ potential lies between the last occupied and first unoccupied
lation functions in the charge sector, the existence of a Spigtates as indicated by the horizontal line. The light shaded region
gap alone indeed causes thiec/2e flux period in systems corresponds to a different filling. The Fermi momentum corre-
with even particle number. sponding to the latter is given bg=2mN, ¢/L.

The structure of this paper is as follows: In Sec. Il we

present the Luttinger model with large momentum scattering .0:=0-(0) ©6)
and state the selection rules between charge and current U 0

quantum numbers that characterize its Hilbert space. In Seg, the ahove- - -), denotes the expectation value taken in the
[l we briefly review the formalism of constructive bosoniza- vacuum state defined as the ground state of @y. The

tion and introduce some notation. In Sec. IV we complete th ; I .
proof that the flux period will béac/2e in the presence of a edensny operators appearing in EG#}(5) are defined as

spin gap, and contrast this behavior with that expected in the
spin gapless case for even and odd particle number. We will
also comment on finite temperature effects here. Our conclu-
sions are summarized in Sec. V. Appendix A discusses th&he q=0 component of these operators,

finite size refermionization of the spin part of the Hamil-

tonian, supplementing our line of arguments given in the Nrs= prs(0) (8)
bulk of this paper. Appendix A is devoted to the use of con-
jugate phase variables in the construction of Klein factors.

prs(Q) = 2 :C:,k+q,scr,k,s: . (7)
k

measures the extra number (of s)-type fermions added on
top of the vacuum. All four integersl,  are conserved by
Hy. . These quantum numbers play an important role in the
Il. THE MODEL AND THE SELECTION RULES rest of the paper. Their importance in the bosonization pro-

) o ) cedure has been stressed by Heidenregthal® and
The Tomonaga-Luttinger Hamiltonian describes a gagqg|danel®

consisting of right and left moving chiral fermions, each suf- oyt of the four operators!, ; we can form the following
fering small-momentum transfer scattering in & one-jinearly independent number and current operators:
dimensional system of size,

N,=> Ny J,=2 1N,
r,s

Hro =Hp+Hy+Hy, (2) rs
Ho= 2 (rogk = w):¢lCrks: 3) Ny=> SNg J,= 2 1SN, (9)
r.ks r,s r,s

where the indicep and o stand for charge and spin, respec-
_1 _ tively. It will be important in the following to note that in any
Ha= 1 2 (G210 + 921 %6-)ped@p-g (A (D) 5o hand model with single particle states symmetrically oc-
ass cupied betweel;=27N, ¢/L and ;, the total particle num-
ber is actually given by
1
Hy= oL > (941055 + a1 I5-):pr s Apr s (=) . (5) N=2+> N, =2+ N,. (10)

U
r,g,s,s rs

Herek=2mn/L denotes the allowed momenta under periodicThe reason for this is that the statekat0, which consist of
boundary condition, the fermion operatogs annihilates a  four degenerate states in the Luttinger model rather than 2,
right (r=+) or left (r=-) moving fermion with momenturk  have not been included in the definition of thg (see
and spins (see Fig. 1, u=vew/L, and Fig. 1.
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There are important relations between the integer quan- 2
tum numbers defined in Eq9). For exampleN,N,,,J, , bl(q) = WE O(ra)pr s(9),
are either all odd or all even. In addition, the averagépf ai-
andJ, has the same even-odd parity as the averagé,@nd
J,, while they both have opposite_ even-odd parity_ as the [bs(q),b;r,(q’)]:55,5/5%,, [by(q),bs(q')]=0, (15)
average ofN andJ,. These constraints are summarized by

A ; b1
the following “selection rules: where®(x) is the Heaviside step function. The bosonization

(-DN= (=N =(-1%=(-1No=(-1)%, (119  of the local fermion operators

_ (_ l)(N+Jp)/2 — (_ l)(Np+Jp)/2 — (_ 1)(NU+JU)/2, (llb) lﬁr S(X) — i_E eikXCr S(k) (16)

which follow from the definitions Eq(9) and the fact that VL
the N, ¢ are integer. For most of the paper, we shall primarilythen proceeds by means of the introduction of a non-
concentrate on the case whé&tés even. While selection rule Hermitian bosonic field
Eqg. (118 then requires the same of all the other quantum '
numbers, it is the selection rule E@L1b) that imposes a i 5
coupling between the spin and charge quantum numbers o, S(x)=—LNrs+iE l@(rq)éqx—rqalzbs(q)’
which ultimately determines the value of the flux period. ' L7 g% Liql

The Tomonaga-Luttinger Hamiltonian E) is exactly (17)
solvable?1%16 The solution describes a system with gapless

spin and charge excitations. A spin gap may be opened by thg terms of which the fermion creation operators can be
addition of the following large-momentum transfer scatteringyritten®-10.17 g

term?
1 . ) —
H=Hy +Hy, (12 ENE T S9N g (18)
1
Hi=Hy+Hy === X (Qydss + 011 se) where the factor
kk’,a,ss’
= E( SNy o tsZg/ Ny g7)
X 1€ 119 Crksi 1Ol g ks - (13) A s= €25 ), (19

When the number of particles is incommensurate with thds introduced to ensure the proper anticommutation relations
number of lattice sites, Eq12) is the generic Hamiltonian between the fermion operatof$8) carrying differentr and
including the most relevant two-body scattering terms. Thes. It commutes with all the spatially dependent fields in Eq.
inclusion of H; destroys the exact solubility of the model, (18). A positive infinitesimalae was introduced in Eq17) to

and at the same time it destroys the conservatioh,offow-  ensure the convergence of commutators between operators.
ever sinceH; changesJ, in multiples of 4, the parity The operatokp, ¢ is conjugate to\, g,

(-1)%2 remains conserved. As a result the selection rules

Eq. (118, Eq.(11b) remain valid even in the presencekdf. [@rsNr ] =i (20)

Note that the validity of Eq(20) formally requiresN; ¢ to
[1l. BOSONIZATION have a continuous spectruigee Appendix B This is clearly
) , not the case in the physical Hilbert spakg, s we have been
Under suitable choices of parameters, Etp) can de- \yorking in so far. We find it convenient, however, to intro-
scribe a translationally invariant system of spin-1/2 fermionsy ce a larger Hilbert space, where theN, . operators have
with a spin gap but no charge gap, i.eLather-Emery liq- 5 continuous spectrum. This construction is analogous to the
uid. In the rest of the paper we study the dependence of thgmpedding of a discrete lattice into a continuous space, and
ground state energy of such a model as a function of afs reviewed in Appendix B. To ensure that the Hamiltonian,
applied Aharonov-Bohm flux. Technically we employ the 55 well as physical observables, do not lead out(gf,s the
constructive bosonization methbtf extensively reviewed in operatorse, s may only enter through integer poweyrs of the

Refs. 17 and 18. In the following we shall just summarize theunitary operators expp, o), which raise theN, by 1. We

main bosonization rules. _ _ shall have occasion though, e.g., in Appendix A, to work in a
Dge to the following commutation relation between thelarger subspace oH defined below. Formally, it is most
density operators: convenient to define operators that are valid everywhere in

L H. The anticommuting operatoréy, sexplig, ) are also
[ors(= 1K), prr o (r'K' )] = == 81 Oss Sk » (14 known asKlein factorsin the literature.
2 . . - .
It is customary to further define local Hermitian fields
we define boson creation operators for each momergqum each associated with the spio) or charge(p) degrees of
# 0 and each spis, freedom,
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1 _
bpo(X) = ZE M@ () £ @ () +h.C) + &, 0,

— 1 _

¢p,0': ZE r(‘Pr,T * (Pr,l)l (21)
r

as well as their “dual” fields,
1 _
0p,(r(x) = ZE ((Pr,T(X) t (Pr,l(x) + hC) + ep,(r’
r

— lv —

0p,0': ZE (‘Pr,T * ‘Pr,l) . (22)
r

Written in terms of the spin and charge boson operators,

1
b,.(q) = E(bT(q) +b (), (23

the above local fields read=p, o),

o

N i
TEX_LS sgno) Udl

2L 25,
x &P (bl(g) + b,(- g)),

b,(X) = ¢, -

(24)

I X i

2L

Ei

2q#O L|Q|
xe P2(b](q) - b,(- g).

From Eqgs.(24) and(25) it is evident thatN, andJ, are the

winding numbers ofp, and 6,, respectively, andp, andgy
are the spatial averages @f, and 6,. It is simple to check
that ¢, and 6, are the conjugate operators df and N,,
respectively, i.e.,

0,x) = 6, -

(25)

[$,3,0=i, [6,N,]=i. (26)

Note that although the commutation relatid@§6) are analo-

gous to Eq.(20), the operatorg®» and €’ lead out of the
physical subspace. This is so since withig,,, the quantum
numbersN,, J, cannot be raised or lowered by 1 indepen-
dently, but are subjected to the selection rules Ed).

Within this space, only powers o&%¢ and e%?r are
allowed!® However, within the larger spack introduced
above, the operatord?» and €% are nonetheless well de-
fined objects. It is convenient to introduce a space of “frac
tional” excitations,Hy ., generated by acting of s with

all possible combinations @ ®v, € %. Within H;,,., the quan-
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[6,00.0,()]=15 8, SOx=X). (2D

Equation(27) suggests that the conjugate operatopgix) is
proportional tod,6,(x), i.e.,

IT,(x) = - %axay(x),

[d’v(x)!HV’(X’)] =i 51/,1/' 5()( - X’) .

Similarly the conjugate operator @ (x) is proportional to
(X)), i.e.,

(28)

2
vX) == —dx(x), (29)

[6,(x), 7" (x')] =18, , 8x=X). (30)

The physical spin or charge density is given by E9), and
in the absence of an applied flux, the physi¢apin or
charge current density is given by
2
i, =K, I1,(x) == —K,v,0,0,(x), (31
a

which follows from the bosonized Hamiltonian given below.
In the above expressions
J-(%)

v,= \/<vp+
K = [TUE ~ G2, + Qay
! TUE + 02, Oa,

941/
a

gZV
a

_ 921921 — 9y
gZp,u’ - 2 ’
J4%9
o = 4 . 4L (32)

Sincell,, is just the density of right moving fermions minus
the density of left moving fermions, it is appropriate to in-
terpret the coefficieril(pvpzv; in Eq. (31) as the renormal-
ized Fermi velocity of the system.

In terms of¢,(x) and 6,(x) the bosonization identity Eq.
(18) reads

¢;rs(x) = % A g (0,041 ¢, (X)+8(0,(0+1 ¢(X))). (33)
\!

Here, (): denotes boson normal ordering: all powers of the
fields (,DIS are to be moved to the left of powers of the fields
¢ s Whereas positive powers of the operator @xp;) are to
appear on the very right, and negative powers of the same

tum numbersN,, J, are independent integers. We must bearoperator are to appear on the very left of the expression.

in mind, though, that all physically acceptable states live in

thys _ _
The inclusion of the zero modes, and 6, in Egs. (24)

and (25) ensures the proper commutation relations of these

fields when the system sizeis finite,

04511

By means of Eq(33) the selection rules Eq11) become
equivalent to the requirement

lﬂr,s(x) = ¢r,s(X+ L) (34
This clearly illustrates the topological origin of these rules.

Or,s.
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We may now write the Hamiltonian E@12) entirely in  the respective minimum value @f,. At first, let us neglect
terms of the bosonic fields introduced above. The Tomonagahe selection rules Eq1). That is, we start by looking at the
Luttinger part of the Hamiltonian, including the large mo- problem in the spac@{s,. introduced in Sec. Ill, where in
mentum scattering term with parallel spin, takes the follow-particular], is an independent integer valued quantum num-
ing quadratic form: ber. Then we may regard the conjugate variableas an

o o angular variable with period2 This notion becomes pre-
He, +Hyy= 2 UV{ > lalbi(ab,(q) + I(Ni K, + J,Z,K,,)} cise if we identify ¢, with its “lattice version” discussed in
a0 Appendix B, which we shall do for the present purpése.
(35) Within [0, 277) there are four inequivalent minima of the co-
sine term in Eq(37), and the corresponding ground states in
the spin sector can be labeled as

|0y, |m/2), |m), |37/2), (41)

14

-3 J dx:{KV(ﬁxay(X))z‘Fi(ﬁx%(x))z}: . (39
y T KV

where the operatofs,(q) are related to those in E€3) by ~ Where

a Bogoliubov transformation. The large momentum-transfer Ty = 42
scattering with antiparallel spin term becorhes Pol )= 91 )- 42

5 As discussed earlier, the operator
g
Hy, = —ﬁ f dxcog4e,(X)): . (37) = (= 1) 2 = exp(= im,/2) (43)

Note that the coefficient of 4 in the argument of the cosinecommutes withH,, hence its eigenvalues can be used to
assures that the operator does not go out of the physic&fass'fy the spin grom_md states. ynfortuna_ltely the sta_tes given
subspace, as explained above. in Eg. (41) are not eigenstates af. Following Appendix B,

The weak coupling renormalization group flow of the sys-It IS €asy to show that
tem Eq.(12) is well known!2°ForK,< 1, the operatoH; , _ -
is relevant and a spin gap will be opened. This is the case we b7l P) = (¢ + E) ), (44)
will focus on in the following. For spin S(2) invariant sys-
temsg; =g;, =g;. In that caséK, <1 requiresy; <0, as dis-  where the eigenvalue on the right-hand side is to be under-
cussed by Luther and Emety. stood modulo z-. We may hence choose the global phases in
Eq. (41) such that

IV. THE FLUX PERIOD |zm/2) = 77|0). (45)
A. The spin gapped case It is thus easy to form linear combinations
By virtue of Egs.(36) and(37), the model Eq(12) takes 3
the form =2 77*710) (46)
z=0
H=Hp +Hy=H,+H,, 38
I (38) such that
whereH, andH,, act exclusively on charge and spin degrees .
of freedom, respectively. The eigenstates are thus direct ) =nln). (47
products of charge states and spin states We are now in a position to enforce the selection rls.
o) ® |9) (39) Given N,=0, the selection rule Eq113 requiresJ, to be

even. As a result only)=+1 are allowed. We label these two
and the ground state energy is the sum of spin and chargstates by
energies, o 1+, =), (48)
Bo=Eo*Eo. (40) Thus actually, the ground state is only twofold degenerate.
WhenH; causes a spin gap to open up, the spin sector of th&his degeneracy becomes further lifted in the case of a finite
model Eq.(12) is described by a gapped sine-Gordon fieldsystem sizd., to be discussed next.
theory. For finite L, the notion that the fieldp, is locked to a

In the following we shall focus on thi,=0 sector, which  classical value is no longer valid. In fact for finite evene,

is where the gapped spin ground state lies. In this sé¢€tor s subjected to quantum fluctuations. This is explicit in Eq.
is relevant, and one may int_erpret the cosine term in_(&‘é). (35), where the variable conjugate Eb namelyJ,, enters
as a steep potential experienced $y(x). In the limit of e Hamiltonian whert is finite. Thus the spin ground state
infinite system size where true symmetry breaking is poStan no longer be thought of as one of the “locked” spin states
sible, one may think ofp,(x) as being locked to one of the given by Eq.(41). On the other hand, sinegremains a good
minima of the cosine potential. When this happefs the  quantum number, the states in E48) are still well defined
spatial average od,(x), will take ac-number value equal to as the respective ground states in #ret+ sectors of the spin
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Hilbert space. We note that the spin states in @@) thus T

defined are not strictly degenerate for finitelt is important Op(X) — 6,(x) = L ok (50)
to observe, however, that the difference in energy between 0

these two states vanishes exponentially in the systemisize or, by Eq.(25), simply

One way to see this is the well known fact that the gapped o

sine-Gordon field theory is the low energy effective theory of J,—J,+4—. (52
a dimerized spin-1/2 chafit.Here, thel +) are, respectively, Do

the symmetric and antisymmetric combination of the twoNgte that we did not attempt to introduce the gauge flux prior

dimer patterns. Since the two dimer patterns differ by a mactg posonization. This is due to the fact that the fermionic

roscopic number of degrees of freedom, the tunnel splittingjeld theory(2) suffers from the well-known chiral anomaly.

between these two states should vanish exponentially withrhe |atter renders the global current of the model ambiguous

the system size. A slightly more direct way to see the abovén the presence of a generaB flux, unless gauge invariance

is offered by the well-known mapping between the gappeds manifestly enforced. Through the “Lenz rule”

sine-Gordon theory and the massive Thirring modélwe | =—cdEy(P)/ P [Kohn, Ref. 5, see also E¢54)], this am-

will elaborate on this point in Appendix A. The advantage Ofbiguity also enters the ground state energy dependence on

this method is that at the special Luther-Emery point, it al-fiyx To deal with this problem will in any case require the

lows us to study the effect of a finite temperature. use of gauge invariance, and this is most conveniently
For the purpose of this paper we may ignore the abovechieved in the final, bosonic language. It would be interest-

exponentially small energy difference between the states, E‘ihg to obtain Eqs(50) and (51) via a more “microscopic”

(48). This is because such a tiny difference will drop out of ote i e., via bosonization of a microscopiattice) Hamil-

the limit taken in Eq(1). In this sense we may still speak of tonian with flux; this is subject to current investigations. We

a degeneracy in the spin sector of the model, and regard thg,egg again, however, that E&O) is uniquely determined

spin contributionEg in Eq. (40) as essentially independent of by the minimal coupling principle.

7 in the spin gapped case. _ From Egs.(35) and(51) the energy versus flux function
Naively the spin degeneracy discussed above seems K®) in Eq. (1) is given by

suggest that the ground state of the full Hamiltonian B8) o2

is degenerate. However this is not so, and the reason for this _ . ™ &

is the selection rule Eq11b). To demonstrate that let us E(CD)—J = ”_‘é” oK (J”+4(I>0) ' (52

=
assume the total particle number to Nee4m+2, whereas _ .
P Here, all multiples of 2 are allowed values fiyby selection

N,=0. According to the selection rule Eql1b) the spin ; . .
states|=) may not be combined with the same charge staterule EQ. (113. This leads to the various branches shown in

The spin staté—) may only be combined with a charge state Fig. 2. The alternating .Iabels of==% rejlect the fact' that the
whose current quantum numba is an odd multiple of 2 spin state must b_e adjusted according to selection rule I_Eq.
and hence nonzero. The presence of a nonzero current wii-1P Whenever, is changed by 2. In the presence of a spin
cost an energy of order/L as is evident from Eq35). The gap, howevgr, this doasot affect the energy in the limit of
state|+), on the other hand, may be combined with a chargézq' (1), as d|_sc(;Jssed labove. Aﬁ‘ ﬁ cgnsgquence(@.haﬁ
state of zero current, which minimizes the charge energy. A n ehxatlzt perio e<|qua to one-haif of a flux r?uar;]tum,fs gwn
a result there is an energy splittingl /L between the lowest Y the lower envelope in Fig.(@. We note that these find-
energy state in they=+ and =— sectors. We note that an ings are in complete agreement with those obtained in Ref. 6

analogous result was discussed by Haldaf@ the case of for the -J-J" model. The amplitude of the ground state en-
a vanishing spin gap and a finite charge gap at commensurafédy modulations is apparently given by
band fillings. In contrast, here we are interested in the effect T T
of an applied Aharonov-BohitAB) flux, which is of interest AE= IKpUp = 4L (53)
only when the charge sector is gapless. X

The coupling to a vector potenti&l(x) is determined by where v. is the renormalized Fermi velocity introduced
gauge invariance and can be worked out from the minimagbove. The corresponding modulations of the charge current

coupling requirement. We only consider the constant vectofor a given quantum numbe, are given by

potential A(x)=®/L corresponding to aéB flux. The cor- _ 1(t 2% L 2m ®
rect coupling to @ then follows from the formal l,= —eEJ dx j,(x) = _UFJ dx(axey(x) - —a)
replacement: 0 L7 " Jo L @
. evy @ a
I (x) — e CTL@IoxyT () (49) =- —F<Jp + 4—) =—Cc—E&(D)/L. (54)
! ’ L CI)O ob

in the Hamiltonian, where a charge is assumed. Here, the The current is thus diamagnetic fobg/2<® <®d,/2 and
boundary conditions of the field) (x) remain the same, is given by a sawtooth curve in general which one obtains by
while the right-hand side of Eq49) will in general satisfy  taking the derivative of the envelope in FigaR The ampli-
different boundary conditions. By E¢33), this is equivalent tude of the current is given bl :ev;/L, which is the same

to the following replacement in the Hamiltonian E§6) and  as that of spinless particlé$,although the flux period is
the current Eq(31): halved. Note that this observation is consistent with the no-
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a)

£(@)

-05 0 05 /% -0.5 0 05 3/

FIG. 2. Energy branches as function of flux for even total particle nurhbevith and without spin gapg(®) is given by the lower
envelope. The alternating labekE+ describes the spin state corresponding to each branch, Wetm+2 is assumed@a) Spin gapped
case. The flux period i9y/2. (b) No spin gap. Theby/2 flux periodicity is destroyed by a relative shift between tjre+ and n=-
branches.

tion that the charge of the carriers is effectively doubled. by calculating the ground state energy as a function of par-
ticle density and magnetic fl&. Equation(55) shows that
the same technique may be used to infer spin Luttinger pa-
rameters, provided that, <K, holds. In SU2) invariant

To establish the fact that thec/ 2e flux period is due to  systems, the spinon-velocity, may thus be obtained. Note
the presence of a spin gap, it is prudent to demonstrate that in this case, thd,=+2, N,=0 states corresponding to
change of flux period when the spin gap collapses. First, lethe »=— branches in Fig. ®) are degenerate with states
us assumé=4m+2 as before. Our discussion from the pre- havingJ,=0, N,=£2, which carry no spin current but have
ceding sections generalizes most easily to the case of a vaa-net azimuthal spin projectid,= 1. This degeneracy fol-
ishing spin gap, if we also assume isotropy in the spin sectofows from Eq.(35 with K,=1. The latter states, however,
In this case, S(2) invariance requires the parametég to ~ Will generally be lower in energy for spin gapless systems
be unity at the Luttinger liquid fixed point. We will comment Without SU(2) invariance. This follows because one H&s
on the general nonisotropic case below. >1 in this case, sinc&,<1 would always lead to a spin

For gapless spins, the operatdy , in Eq. (38) is irrel- gap. We thus predict that the branches corresponding to the

evant, and we may expect to get qualitatively correct result@‘?taStaﬁle rﬂinima in Fig.(B), if present, (‘j’ViIH he_tvhe a net
by omitting it. With this simplification, the spin sector be- SPIN. rather |t and net spin Cé”egté i moces W'} 0“32%”
comes analogous to the charge sector, and in partidylar L”V/a}g'azf},ce- n this case, in Eq. (59 is to be replaced by
can be regarded as a good quantum number. 77#& spin SRS _ A . .
ground staté+) then hasJ, =0, whereas the stafe-) lives When N=4m, all the patterns in Fig. 2 are shifted hori

: . ) zontally byhc/2e. In this case the global minima in Fig(®)
in a degenerate doublet space wif=£2. This then raises are located at odd multiples dic/2e. Hence the function

the corresponding spin energy of the) state by a term of  o(q) can distinguish the caséé=4m andN=4m+2 in the
orderv,/L, as shown explicitly in Eq(35). As a conse- 556 of gapless spins, but not in the case of gapped spins.
quence, they=- branches are shifted upward with respect toThe same result had also been observed for ttdel’
the »=+ branchegFig. 2b)] which destroys théic/2e pe-  model®
riodicity of £(P). We now turn to the case of odd particle numibér2m

The spin current carrying=- states maybut need ndt  +1. In this case the selection rules Et{la requires bottN,,
be shifted up in energy so much tht=hc/2e ceases to be and J, to be odd, reflecting the fact that there must be a
a metastable minimum of(®). This is just the case for a dangling spin.(Of course, with a dangling spin the system
noninteracting system. In the case where the uplifting of thecannot have a spin ggpNow the quantum numbet
n»=— state is not as largeb=hc/2e persists to be a meta- =exp(—imJ,/2) may take the valuesi+The two correspond-
stable minimum in the energy versus flux curve. The differ-ing subsets of the spin state space are related by the trans-
ence between the ground state energydetO and &  formationJ,— —J,, which leaves the Hamiltonian invariant.

B. The spin gapless case

=hc/2e is thus given by As a consequence, the spin ground stétesti) are exactly
degenerate, and an exdut/2e periodicity is obtained for

IE4(®y/2) — Eo(0)] =Zmin(v K_p.)(isotropic spin the Hamiltonian (12) at any system size, regardless of
0 0 L Tz ' whetherH, is relevant or not. Also, sincé, is now odd as

(55) well, the pattern shown in Fig.(@ will be shifted horizon-
tally by hc/4e. Hence the global minima of(®) will be
Interestingly, Eq.(55) provides information about the Lut- |ocated at odd multiples dic/4e in this case.
tinger parameters of thgpin sector It has long been known
that for a Luttinger liquid, the Luttinger parameters can be C. Discussion of the results aff =0
determined from the ground state properfi@is technique The results presented in the preceding section are exact
is often applied to infer the charge Luttinger parameters, e.gfor the Hamiltonian Eq(12), which is believed to be the low
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energy effective theory for all one-dimensional systems with We thus conclude that all systems which can be charac-
gapless, linearly dispersing charge degrees of free§om.terized as Luther-Emery liquids have the/2e flux period.
These results may thus be expected to be representative flor particular, deviations from the patterns in Fig. 2 such as
this entire universality class. To rigorously justify this point, the appearance of additional minima at higher fractions of a
the effects of higher order, less relevant operators should bé#ux quantum must be attributed to finite size effects. Such
included into the model studied above. We will not carry outadditional minima atby/n are known to occur in the large
such a detailed analysis here. Rather, we will point out som&-limit of the Hubbard modet} or the small J-limit of
expected modifications due to less relevant operators, arid-type models? for fixed system size. The criterion for
argue for the robustness of the basic results derived above @g‘Ch finite size effects to disappear is that the amplitude of
comparing them to special examples of microscopic modeldne oscillationsAE~1/L from Eq.(53) is small compared to

where the features @f(®) are known analytically or numeri- &Ny other energy scale of the system. In the above cases, the
call relevant competing scale i&~t?/U. The associated cross-
Y- over is clearly observed in Ref. 32, where th& model is

The flux period of the repulsive Hubbard model was StUd'studied: Fort/L=4J, the model displays the spin gapped

ied in Ref. 27. These results agree well with our findings forbehavior shown inZ’Fig. @). This is a consequence of the
the spin gap!e_ss case. In particular, for O.dd particle nurhber Ising spin gap of this model. The similar crossover for the
the global minima of(®) are at odd multiples dfc/4e, and o isive Hubbard model is shown in Ref. 27, where the
the flux period ishc/2e. While it may seem surprising that pattern of Fig. 2b) emergegwith the necessary shift fax

the flux period does not distinguish the spin gapless, od&4m). We note that the appearance of local minima sepa-
particle number case from the spin gapped daseept for  rated by one-half of a flux quantum from the global minima
the position of the minima the microscopic origin of the in the repulsive Hubbard model is sometimes interpreted as a
hc/2e period is of a rather different nature in the two casessign of pairing®® We stress, however, that this casees not

A more subtle effect may demonstrate this: If one calculatesneet the criterion of &/2 flux period as we define it, since
the £(®) of free electrons for oddN, one indeed finds that a small splitting of ordet?/ U remains between the two types
hc/2e is the flux period. However one also finds that thereof minima of £(®), which does not vanish as the system size
exist corrections to théac/2e period at order 1L in £(®). is taken to infinity.

These corrections are due to the band curvature neglected in
the Hamiltonian Eq(12). Similar corrections ta€(d) also

exist at oddN for the t-J-J' model. They can be calculated __Finally, we briefly comment on the expected generaliza-
using the method discussed in Ref8&Such corrections in tion of our findings to finite temperature. The behavior stated

powers of 1L, however, were not found in theJ-J’ model below can be verified straightforwardly at the special solv-

for the spin gapped case, where only exponentially smaffiPlé Luther-Emery point of the model Ed.2) (see Appen-

corrections were observed. We thus argue that corrections g)'x A). For T=0, we consider the modulations of the free
the hc/2e flux period generally scale as I/ the oddN hnergyF(T,CI)) as a function of flux. The particle number is

hile th tiall Iin th ; eld fixed, i.e., the averages are taken in the canonical en-
case, while they are exponentially small in the spin gapped e (if the particle number were allowed to fluctuate, the

case. The behavior in the latter case can be attribqted to t%en/odd effects discussed above would considerably
fact that the spin gap generally causes an exponentially smallaaken the sensitivity to flux.
sensitivity to boundary conditions in the spin sector. This  ynpder these conditions, the observations made above for
point will be further clarified in Appendix A. the ground state energy will carry over to the free energy as
The analysis in the preceding section predicts the grounghng asT<AE=0(1/L). However, the limit of Eq(1) is not
state to be unique on the branches’6P) which contain the  to be taken here, because the amplitude of the free energy
global minima. We expect this to be obeyed by generamodulations is proportional to egpconstT/AE) rather than
Hamiltonians. However, the fourfold degeneracy which weAE whenT> AE. In the spin gapped, even particle number
found between th&,=0, J,=+2 andN,=+2, J,=0 states case it remains true that terms violating tie 2e periodicity
on the metastable branches in the isotropic, eNegapless are suppressed by a facterexp(-constA L/v,), whereA,
spin case is an artifact of our restriction to the Luttingeris the spin gap. Comparing the two exponential factors, these
Hamiltonian Eq(2). Rather, the true eigenstates are given byhc/2e violating terms will be negligible untilT is of the
a triplet and a singlet to be formed from these four statesprder of the spin gap. At this temperature, the amplitude of
giving rise to a small splitting. However, except for this ef- £(®) is already exponentially suppressed, provided that the
fect, the implied degeneracies at the crossings between ttsystem is large enough such theE <A is satisfied. This
branches remain valid: Although the conservationJpfis  again shows that thiec/ 2e period will be obeyed as long as
approximate once higher order operators are allowed, AE is the smallest energy scalether than temperaturef
change ofJ, by 2 implies a change of momentum b%;2  the system.
Hence the states at a branch crossing will not be mixed, and We note that the cusps between the branches in Fig. 2 will
the cusps inE(®) will remain sharp for general modet$.  be smoothened by thermal fluctuations, giving rise to a finite
Finite size studies of the Hubbard mo¥eshow that the negative curvature and paramagnetieffects.
patterns displayed in Fig. 2 indeed emerge very clearly in
numerical simulations carried out at moderate system size,
both for the spin gappethttractive and gaplessgrepulsive In this paper, we demonstrated that the ground state en-
case. ergy of Luther-Emery liquids will generally exhibit drc/2e

D. Nonzero temperatures

V. CONCLUSIONS
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flux period. While this statement holds in a strict sense in the e'<ﬂ/L X

limit of large system size, finite size deviations are expected lﬁr (x) =

to be exponentially suppressed in the system size. This result

had been anticipated in an earlier work on a particular miwhere

croscopic realization of the Luther-Emery liquid, the - 1.1
; 5 . — gw2(3m,-33,)

t-J-J’-model® Here, we generalized the result of Ref. 6 by A =¢ 2 V0 4%0),

showing that thenc/2e flux period is implied by the widely Here, the symbio: : denotes a normal ordering convention

accepted low energy effective theory describing such : : ) i
phase. As a result, we clarify why the state of the spin Sect(%malogous o that defined in Sec. Ill, but whesg is re

impacts upon the flux period when it is commonly behevedplaced by the field
that in one dimension spin and charge decouple at low ener- - 1 T
gies. An important aspect of our findings is that in systems @r(x) = 4_12 SBer s(X) = ¢ (X)),
with even particle numbeN, the hc/2e period is triggered S
by the spin gapli.e., pairing alone and is independent of
Whet_her the supercondu_cting pair-pair correl_ations are the a = EE S(3¢; 5= Pure) = 2r${7+;(r' (A3)
dominant long-distance/time correlation function. This may 475
be of particular value for the correct interpretation of numeri-
cal work. In addition, we have also discussed the expected Itis interesting to note that the operataigx), in terms of
finite temperature generalization of our findings. which the spin Hamiltonian EqAL) is best analyzed, lead

In Ref. 6 we stressed the $2) invariance of the model out of the physical Hilbert spack .5 Apart from affecting
discussed there. This requirement has been relaxed in tdbe spin current quantum numbay, they also change the
present discussion, where we did not enforcgBlihvari-  total number of net excited spinbl,, by 1. In the physical
ance. Instead, only the weaker requirement of a consezvedHilbert space, such a change must always go along with a
component of the spi§,=N,/2 was found necessary. In the cha}qnge of charge quantum numbers, which are not affected
anisotropic case, we must also require that the spin gappesy v (x). It is quite natural that the action of a single “frac-
ground state ha§,=0 (see Ref. 2§ which should be auto- tionalized” operator such a:ﬁr(x) will lead out of the space

matic in the isofropic case. of physical states. At this point the larger spakg,; dis-

Our findings un_der_llne the Intuitive notion that every Sp'n(a.lssed in Sec. lll becomes indispensable, as it allows us to
gapped system with linearly dispersing charge modes shoul

share some features of a superconductor. define operators such a&;(x) in the first place. It is clear,
however, that these operators enter the Hamiltonian only in

appropriate pairs, which leave the physical subspace invari-

A e|(2r¢(,(x)+0 (x)) (AZ)

ACKNOWLEDGMENT ant
This work has been supported by DOE Grant No. DE- Using standard methods reviewed in Ref. 17, it is straight-
ACO03-76SF00098. forward to show that the field defined in EA\2) satisfies
the required anticommutation relations. The additional factor
APPENDIX A: REFERMIONIZATION OF THE SPIN expizrrx/L) in Eq. (A2) will be commented on below. For
HAMILTONIAN FOR FINITE SYSTEM now we note that it gives rise to the following boundary

) ) conditions for the spinless fermion fields:
It is well known that the sine-Gordon model

Ur(x+ L) = @7NHI2Dg (), (A4)

UO'
H,= P f dX:{Ko(ﬁxeo(X))z As is relevant to Sec. IV, in the following we will concen-
trate on the casM,=0 andJ, even. EquatioriA4) then tells
1 . 2010 us that the secton=- is represented by fermions obeying
* K_(r(ﬁx(ﬁ“(x)) } L2 J dx.cos4e¢,(x)): . periodic boundary conditions, and the=+ sector by fermi-
(A1) ons obeying antiperiodic boundary conditions. Note that
without the additional twist in EqA2), it would have been
can be mapped onto the massive Thirring mddélThis  vice versa.
mapping permits a rather direct demonstration of the expo- Using the methods discussed in Ref. 17, one may now
nentially small energy difference between the+ and  show the equivalence of E¢A1) and
=- states discussed in Sec. IV A. In addition, whkp L
=1/2,i.e., at the Luther-Emery point, the massive Thirring Hmtmzzf dx(- irv):T//:r(x)ﬁxTﬂr(x):
model reduces to a massive free fermion Hamiltonian which r Jo
allows the exact calculation of various physical quantities. In L
particular finite temperature results can be obtained at the +2 f dx n{i)’:Tﬁf(x)Tﬁ_,(x):
Luther-Emery point easily.
In the notation established in Sec. lll, the mapping onto L
the massive Thirring model can be performed by the intro- +g> f dx?p?(x)?p,(x)?ﬂr:(x)?p_r(x):
duction of the following spinless fermion operators: r
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= H, + const, (A5)
3
wheré _ +
1
b= U—"(— ¥ 4KU> ,
4\K,
.l 1
=—2 —-4K,]|, A6
9=, (K” 0) (A6)
_ |91
m= 27ma’
+ —_
Here, the symba : is asdefined in Eq(6), but the vacuum
state is now theN,=J,=0 state that is annihilated by the

field Eq. (A3).
W_hen Ko<l the sw_ne-Gordon m_odel IS massive, _and the FIG. 3. Ground state of the fermion Hamiltonian E45) for
physlcs of Eq(AS) IS given by massive s_plnless fermions. In g=0. The linear branches indicate the massless case wher&lpoth
particular, the fermionic interactiog vanishes folK,=1/2, 53147  are good quantum numbers. Crosses indicate allowed mo-
and the Hamiltonian EqA5) becomes that of a massive free menta in they=+ sector, boxes those in thg=- sector. The en-
fermion model. This is the special point identified by Luther circled areas indicate the occupied states on each branch for the
and Emery? At the Luther-Emery point the fermion disper- ground states in th&l, =0, J,=0 sector(crosse} as well as the
sion relation iSE(k):V(Uk)2+m2. In a range ofK, values N,=0,J,=+2 sector(boxes. The latter state is degenerate with the
around 1/2, the-term only gives rise to quantitative correc- No=0,J,=-2 ground state, where the=0 mode is occupied on the
tions. r=- branch instead. For nonzero mass &hd0, a gap opens up
We now return to the factor exiprrx/L) in Eq. (A2) [or and the.upper band remains empty while the lower band is com-
the boundary conditions E4A4)] and show that with this pletely filled, where the allowed momenta dependspas shown.
factor [or the boundary condition specified in E@d\4)] the
boson and fermion theories are consistent. To illustrate thdermion ground state energy induced by a change of the
we compare the ground state degeneracies in the noninterattoundary condition, or equivalently the modulation of the
ing massless case for the bosonic and fermionic theories, i.ggrmion ground state energy caused byAdhflux. When the
we letK,=1/2 andg;, =0, which results irm=g=0. sine-Gordon model is massive, the fermions form an insulat-
In the absence af;, both N, andJ, are good quantum ing state. Then, the sensitivity of their ground state energy to
numbers. Let us denote the ground state inNbel, sector  the boundary condition will vanish exponentially with the
by |N,,J,). From Eq.(35) we recall that0, 0) is the nonde- system size, as is well known from the general arguments
generate global ground state of the spin sector, whereas tigiven by Kohi? and Thoules$® The greatest advantage of
stated0, 2), |0,-2) form a degenerate doublet. That this alsothe refermionization occurs at the Luther-Emery point. For in
holds in the fermionic representations of the model is justhat case, a nontrivial interacting bosonic theory is mapped
achieved by the boundary conditions EA4) (see Fig. 3 onto a free fermion theory. In particular, at the Luther-Emery
Note that since the fermions EGA2) arederivedin terms of ~ point g=0 one obtains from a direct calculation that the en-
bosons, the fermion occupancies claimed below Fig. 3 folergy difference between the ground states fer+ and »=
low by derivation, not by definition. In fact one may easily — vanishes asnexp(-mL/v), as we claimed earlier.

evaluate
APPENDIX B: NUMBER AND PHASE VARIABLES FOR

(N, J,TET (K8, (K)N,, J,.), (A7) CONTINUUM AND LATTICE HILBERT SPACES
where The Hilbert space of the Luttinger Hamiltonian E®),
1 (L B denoted as the “physical” Hilbert spag,sin the bulk of
“C‘;f(k) = —Ef dx ékxlp;r(x), the paper, can be decomposed as
VLJo
Hpnys= ® HVrs @ HPrs (B1)
2T w ' )
k= T E(N0'+‘]oj2 -1 (A8)  Here, the space$(s contain all the degrees of freedom

associated with the bosonic excitation spectrum, whereas
by plugging in Eqg.(A2), and verify that the occupancies H,vas contains the degrees of freedom of the oper&toy.
identified for the various states in Fig. 3 are corrct. The subscript I"stands for “lattice” and reminds us of the
The spin sector of the model is now represented in termsliscrete nature df, ¢ in the physical Hilbert space: The Hil-
of fermions satisfying a conventional boundary conditionbert space basis df(|Nf~S is given by a set of nondegenerate
given by Eq.(A4). The difference between the ground stateeigenstates oN, ;, whose spectrum consists of all integer
energy forn=+ and »=- thus becomes the change in the numbers.
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In the process of bosonization, however, we introduce Suppose now that a physical problem is defined on a sub-
new linear combinationdN,, J, of the N, 5 [Eq. (9)]. The space VY, which is given by the discrete “lattice” repre-
spectrum of these new operators is likewise integer, yet natented by the eigenkethl) for integerN. Since these kets
all possible combinations of integer eigenvalues are physifrom a countable Hilbert space basis?itﬁ“, it is natural and
cally allowed. This “residual coupling” is not evident from convenient to introduce a new scalar product’}dﬁ via
commutation relations, since the operatdts J, all com-
mute as theN, ; do. Hence, once we bosonize an enlarged (N'[NY = 8y N (B5)

Hilbert space becomes more natural, where the eigenvalues . | N o
of the operatord\,, J, are independent. This is the Hilbert |hiS differs from the scalar product ii™ only by an infinite

spaceH;,,. of “fractional” excitations. The physical subspace multiplicative factor. In th_e abov_éN), denotes the same vec-
Hpnysis then characterized by the fact that the selection ruleor as|N), but endowed with a different scalar product. Equa-
Eq. (11) are satisfied. It is clear that H, the spectrum of 10N (B5) means that thiN) for integerN become a complete
the N, s must also contain certain fractional values. Formally,0rthogonal set oproper vectors within,". Within 7", one
we find it convenient to introduce an even larger HilbertM&y now define a “crystal momentum” operaigy whose
spaceH, where the spectrum of thi, ¢ is continuous The eigenkets are defined to be

benefit of this is that the conjugate phage of these opera- B ioN

tors then becomes meaningful. This, in turn, allows us to lh = 2 e NN),. (B6)
construct unitary “ladder operators” which change the eigen- Ne7

value of theN, ; by arbitrary amounts. This formalism is of One observes that these eigenkets are periodig iwith
particular advantage in Appendix A, where fractionalizedperiod 2, hence for definiteness the eigenvalues must be

spin fermion operators are constructed. Below we presentstricted to lie within the “Brillouin zone(-r, 7], where
some fine details of this embedding &f,,s into the larger

spaceH. i K¢'leh=2m8(¢" — ), ¢ ¢ (-mm] (BY)
For this purpose let us consider a single operbtand its A N o
conjugate variablé such that holds. If we now denote the restriction Nfto H," by N;, we
find that the commutatofrg,,N,] is not quite analogous to
[&,N] =i (82) Eq. (B2. This has been examined in detail by

Schénhammet! 28 However, for the applications we have in

holds. An analogy to the quantum mechanics of a point parmind here, this difference never matters. This is so since all

ticle moving in one dimension is obtained if we identﬁy Ehysical _ob_servables, including t.rle Hamiltc_)nian, depend on
only via integer powers of expp,), and since the equa-

=% and ¢=-P, wherek and p are the coordinate and the ¢
momentum of the particle. In this context, it is familiar how 140NS

to construct a Hilbert spaCHN_such.th_atN and ¢ are well YNy =N+ 1), €Ny =|N+ 1) (B8)
defined on a dense set, H&2) is satisfied and the spectrum N N S N

of N is unbounded: It is the Hilbert space of square inte-10!d- Hence expg)) and exjie) act identicallyon 7¢, and
grable functions of the variablhl. From the commutation W€ May express all observables in termseaher of these

~ N ; ~
relation Eq.(B2), it is clear that the spectrum of bobhand operafors. By means of E(36), the ketdlp), € ;' are iden

A ; : tified with the following kets inH™:
¢ must be continuous and unbounded. In particular, we canI red wi wing InFt

construct shift operators efipa) satisfying oy = D e D | + 27n). (B9)
" . NeZ ne’?
ipal — oa
[N.e]=ae, (B3 Note that the norm of the right-hand side with the scalar
product in HN formally computes tow X §0), which by
comparison with Eq(B7) is larger by an infinite multiplica-
tive constant than(¢| ¢),. Recall that the same relation also

ogy, the “position” and “momentum” eigenkejts) and |¢) o
are not strictly contained in the Hilbert spat' of “proper” ~ Nolds for(N|N) and,(N|N), by definition of the scalar prod-

vectors, but are “generalized” states in the usual sense. Herd¢t In M. Equation(B9) makes it clear that the keis),
we will not attempt to introduce a different notation for €| arenot to be identified with the ketgp) e H". The
proper and generalized states, nor for the proper Hilberatter are not periodic i, and cannot be constructed solely
space and its extension containing generalized states. We r&om kets|N) with integerN. However,

fer the reader to Ref. 36 and references therein for details,

and simply note that the kethl) and|¢) satisfy (p+2mN)=(¢|N)  One?Z (B10)

which shift the value oN by an arbitrary amourd.
We note that, as is familiar from the point particle anal-

D ot N , holds. Thus whenever it is clear from the context that we are
(N'IN)=8(N"=N),  (¢'|¢) = 2md(¢" ~ ¢), working in /', we may drop all labelsl;” keeping the pe-
riodicity of the statege) e /' in mind.
1 We can now define the Hilbert spag¢éintroduced in the

|<p>:de e NNy, |N>:Efd¢ éNlg). (B4)  main part of the paper as
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H=HNs® Hbs, (B11)
r,s

The advantage of embeddirig,s into the spacé is that
now the spaceH,. satisfying HpnysC HyacCH, can be
generated easily through the action of the operatorsi éxp
expi¢,) on Hynys The bookkeeping is greatly simplified by
the simple commutation relation af, s and N, s, Eq. (20),
valid on H. We finally note thatH,. can be written as a
product analogous to E¢B1), involving a space containing

PHYSICAL REVIEW B71, 045113(2005

containing the degrees of freedom of the quantum numbers
N,, J,. All the above therefore holds in an analogous way for
Hiae @nd in particular lattice versions of the phase operators

¢,, 8, can be constructed if desired.

In Ref. 38, it has been noted that the use of the canonical
commutation relations Eq§20) and(B2) in constructing the
Klein factors does indeed vyield correct results in bosoniza-
tion, even though these relations cannot be rigorously justi-
fied for operators that are restricted to a discrete space. We
believe that the embedding procedure discussed here pro-

bosonic degrees of freedom and four discrete “lattice” spacegides a proper explanation for this observation.
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