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We study the dependence of the ground state energy on an applied Aharonov-Bohm fluxF for the Luttinger
model with large momentum scattering. Employing the method of finite size bosonization, we show that for
systems with a spin gap but with gapless charge degrees of freedom, the ground state energy has an exact
period ofhc/2e, i.e.,half a flux quantum, in the limit of large system sizeL. Finite size corrections are found
to vanish exponentially inL. This behavior is contrasted to that of the spin gapless case, for both even and odd
particle number. Generalizations to finite temperature are also discussed.
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I. INTRODUCTION

Models of interacting electrons in one spatial dimension
are very valuable for the understanding of strongly correlated
systems. This is because there exist theoretical methods en-
abling us to determine their physical properties reliably. In-
deed, by combining perturbative renormalization group,1

bosonization, and Bethe ansatz techniques, a wealth of inter-
esting phases in one dimension has been discovered.

While some properties of these phases are unique in one
dimension, others have their higher dimensional analogs. For
example the independent gapless spin and charge excitations
and the vanishing quasiparticle weight of theLuttinger
liquid2 are unique in one-dimensions1Dd. However, the fact
that it has a finite charge compressibility and Drude weight is
analogous to a normal metal in higher dimensions. As an-
other example, like systems in higher dimensions, a Mott
insulating state is realized at half-filling for repulsive inter-
actions. However, the fact that antiferromagnetic long range
order is absent and that spin 1/2 excitation exists in the
half-filled Mott state are special features of 1D.

Furthermore, in one dimension there exists a phase, the
Luther-Emery liquid,3 which exhibits a spin gap and no
charge gap. In addition, as in theLuttinger liquid, the DC
electric conductivity is infinite. The above characteristics
suggest that theLuther-Emery liquidis a 1D analog of a
superconductor. However, until very recently an important
question remained unanswered: “Do electrons pair in the
Luther-Emery liquid?”

We remark at this point that it is necessary to carefully
distinguish the concepts ofpairing andcoherencefor inter-
acting fermions in dimensions lower than 3. Whilecoherence
implies the breaking of a continuous symmetry and is thus
severely restricted in lower dimensions, the concept ofpair-
ing is by itself not subject to such limitations: Electrons may
still choose to form pairs, even though the latter do not show
phase coherence at large distances. The question posed above
can therefore not be answered satisfactorily by calculating a
pairing susceptibility which depends on phase coherence. In-
stead, the best way to answer this question is to determine
whether the magnetic flux period ishc/e or hc/2e.4,5 How-
ever, since the spin and charge degrees of freedom are mani-
festly separate in the effective theory describing theLuther-

Emery liquid, and the vector potential enters only in the
charge action, it is difficult to see why the flux period for a
Luttinger liquid and aLuther-Emery liquidshould be differ-
ent.

In a recent paper we addressed these issues in the one-
dimensionalt-J-J8-model in the limit of vanishing exchange
couplings.6 Fortunately, both a spin gapless phase as well as
a spin gapful phase appear in this limit.7 In Ref. 6 we have
demonstrated that while the flux period isF0;hc/e in the
former,8 it indeed becomeshc/2e in the latter. In particular
we have shown that as a function of the Aharonov-Bohm
flux, the ground state energy of a spin gapped ring is periodic
with period hc/2e. Due to one dimensionality the energy
barrier between adjacent minima is proportional to the in-
verse circumferenceL of the ring. For definiteness, we there-
fore define the function

EsFd = lim
L→`

LsE0sFd − E0s0dd, s1d

where E0sFd is the ground state energy of the system as
function of flux.

Despite the above progress, the question “do allLuther-
Emery liquidsexhibit anhc/2e flux period, and hence elec-
tron pairing?” remains to be answered. In this paper, we
show that the answer to the above question is indeed affir-
mative. Technically we start from the Luttinger Hamiltonian
with the g1 channel scattering.1 We bosonize this model us-
ing the constructive formalism9,10 which provides rigorous
operator identities on the Hilbert space of the finite size sys-
tem. We show that due to a set of constraints on the total
charge/spin number/current operators,2,11 the state of the spin
sector impacts the charge sector through a twisting of the
boundary condition. As a result, when the spin sector is
gapped by the large momentum transfer two body scattering,
the charge channel flux period becomeshc/2e.

In the literature, the fact that there exist constraints on the
total charge/current operators in bosonization has been em-
ployed by Loss12 for spinless fermion systems to study par-
ticle number parity effects. Regarding spinful fermions, Ref.
13 used a method similar to ours to determine the flux period
for the Hubbard model. However, the author concluded that
the flux period is alwayshc/2e regardless of whether a spin

PHYSICAL REVIEW B 71, 045113s2005d

1098-0121/2005/71s4d/045113s12d/$23.00 ©2005 The American Physical Society045113-1



gap exists, which we believe to be in error. Furthermore, a
common reasoning encountered in the literature is to at-
tribute the hc/2e flux period to the dominance of singlet
superconductingsSSd correlations at long distance and low
energy, rather than to the appearance of a spin gap. It has,
however, been noted that states with dominant charge density
wave sCDWd correlations may also feature this anomalous
flux periodssee, e.g., Refs. 6, 14, and 15d. Here we argue that
this is just the case when there is a spin gap. In this case, it is
natural to interpret the state as being formed by Cooper pairs.
The degree of coherence of these pairs will determine if the
state is more appropriately thought of as CDW-like or SS-
like on not too large length scales. In this picture, one natu-
rally expects the flux period to be one-half of a flux quantum.
In the following, we will show that regardless of the corre-
lation functions in the charge sector, the existence of a spin
gap alone indeed causes thehc/2e flux period in systems
with even particle number.

The structure of this paper is as follows: In Sec. II we
present the Luttinger model with large momentum scattering
and state the selection rules between charge and current
quantum numbers that characterize its Hilbert space. In Sec.
III we briefly review the formalism of constructive bosoniza-
tion and introduce some notation. In Sec. IV we complete the
proof that the flux period will behc/2e in the presence of a
spin gap, and contrast this behavior with that expected in the
spin gapless case for even and odd particle number. We will
also comment on finite temperature effects here. Our conclu-
sions are summarized in Sec. V. Appendix A discusses the
finite size refermionization of the spin part of the Hamil-
tonian, supplementing our line of arguments given in the
bulk of this paper. Appendix A is devoted to the use of con-
jugate phase variables in the construction of Klein factors.

II. THE MODEL AND THE SELECTION RULES

The Tomonaga-Luttinger Hamiltonian describes a gas
consisting of right and left moving chiral fermions, each suf-
fering small-momentum transfer scattering in a one-
dimensional system of sizeL,

HTL = H0 + H2 + H4, s2d

H0 = o
r,k,s

srvFk − md:crks
† crks:, s3d

H2 =
1

L
o

q,s,s8

sg2ids,s8 + g2'ds,−s8dr+,ssqdr−,s8s− qd, s4d

H4 =
1

2L
o

r,q,s,s8

sg4ids,s8 + g4'ds,−s8d:rr,ssqdrr,s8s− qd: . s5d

Herek=2pn/L denotes the allowed momenta under periodic
boundary condition, the fermion operatorcrks annihilates a
right sr = +d or left sr =−d moving fermion with momentumk
and spins ssee Fig. 1d, m=vFp /L, and

:O: ; O − kOl0. s6d

In the above,k¯l0 denotes the expectation value taken in the
vacuum state defined as the ground state of Eq.s3d. The
density operators appearing in Eqs.s2d–s5d are defined as

rr,ssqd ; o
k

:cr,k+q,s
† cr,k,s: . s7d

The q=0 component of these operators,

Nr,s ; rr,ss0d s8d

measures the extra number ofsr ,sd-type fermions added on
top of the vacuum. All four integersNr,s are conserved by
HTL. These quantum numbers play an important role in the
rest of the paper. Their importance in the bosonization pro-
cedure has been stressed by Heidenreichet al.9 and
Haldane.10

Out of the four operatorsNr,s we can form the following
linearly independent number and current operators:

Nr = o
r,s

Nr,s, Jr = o
r,s

rNr,s,

Ns = o
r,s

sNr,s, Js = o
r,s

rsNr,s, s9d

where the indicesr ands stand for charge and spin, respec-
tively. It will be important in the following to note that in any
one-band model with single particle states symmetrically oc-
cupied betweenkf =2pNr,s/L and −kf, the total particle num-
ber is actually given by

N = 2 +o
r,s

Nr,s = 2 +Nr. s10d

The reason for this is that the states atk=0, which consist of
four degenerate states in the Luttinger model rather than 2,
have not been included in the definition of theNr,s ssee
Fig. 1d.

FIG. 1. Right- and left-moving branches of the Luttinger model.
The crosses denote the allowed momentak=2pn/L for periodic
boundary conditions. The dark shaded region represents the occu-
pied momentum states in the “vacuum”Nr,s=0. The vacuum chemi-
cal potential lies between the last occupied and first unoccupied
states as indicated by the horizontal line. The light shaded region
corresponds to a different filling. The Fermi momentum corre-
sponding to the latter is given bykf =2pNr,s/L.
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There are important relations between the integer quan-
tum numbers defined in Eq.s9d. For example,N,Nr,s ,Jr,s
are either all odd or all even. In addition, the average ofNr

andJr has the same even-odd parity as the average ofNs and
Js, while they both have opposite even-odd parity as the
average ofN and Jr. These constraints are summarized by
the following “selection rules:”11

s− 1dN = s− 1dNr = s− 1dJr = s− 1dNs = s− 1dJs, s11ad

− s− 1dsN+Jrd/2 = s− 1dsNr+Jrd/2 = s− 1dsNs+Jsd/2, s11bd

which follow from the definitions Eq.s9d and the fact that
theNr,s are integer. For most of the paper, we shall primarily
concentrate on the case whereN is even. While selection rule
Eq. s11ad then requires the same of all the other quantum
numbers, it is the selection rule Eq.s11bd that imposes a
coupling between the spin and charge quantum numbers
which ultimately determines the value of the flux period.

The Tomonaga-Luttinger Hamiltonian Eq.s2d is exactly
solvable.9,10,16The solution describes a system with gapless
spin and charge excitations. A spin gap may be opened by the
addition of the following large-momentum transfer scattering
term:3

H = HTL + H1, s12d

H1 = H1,i + H1,' = −
1

L
o

k,k8,q,s,s8

sg1idss8 + g1'd−ss8d

3 :c+,k8+q,s8
† c+,k,s::c−,k−q,s

† c−,k8,s8: . s13d

When the number of particles is incommensurate with the
number of lattice sites, Eq.s12d is the generic Hamiltonian
including the most relevant two-body scattering terms. The
inclusion of H1 destroys the exact solubility of the model,
and at the same time it destroys the conservation ofJs. How-
ever sinceH1 changesJs in multiples of 4, the parity
s−1dJs/2 remains conserved. As a result the selection rules
Eq. s11ad, Eq. s11bd remain valid even in the presence ofH1.

III. BOSONIZATION

Under suitable choices of parameters, Eq.s12d can de-
scribe a translationally invariant system of spin-1/2 fermions
with a spin gap but no charge gap, i.e., aLuther-Emery liq-
uid. In the rest of the paper we study the dependence of the
ground state energy of such a model as a function of an
applied Aharonov-Bohm flux. Technically we employ the
constructive bosonization method9,10 extensively reviewed in
Refs. 17 and 18. In the following we shall just summarize the
main bosonization rules.

Due to the following commutation relation between the
density operators:

frr,ss− rkd,rr8,s8sr8k8dg =
kL

2p
drr8dss8dk,k8, s14d

we define boson creation operators for each momentumq
Þ0 and each spins,

bs
†sqd =Î 2p

uquLo
r

Qsrqdrr,ssqd,

fbssqd,bs8
† sq8dg = ds,s8dq,q8, fbssqd,bs8sq8dg = 0, s15d

whereQsxd is the Heaviside step function. The bosonization
of the local fermion operators

cr,ssxd =
1
ÎL

o
k

eikxcr,sskd s16d

then proceeds by means of the introduction of a non-
Hermitian bosonic field,

wr,ssxd = −
prx

L
Nr,s + i o

qÞ0
Î 2p

Luqu
Qsrqdeiqx−rqa/2bssqd,

s17d

in terms of which the fermion creation operators can be
written9,10,17as

cr,s
† sxd =

1
ÎL

Ar,se
iwr,s

† sxdeiwr,ssxdeiw̄r,s, s18d

where the factor

Ar,s = ei
p
2

sros8N−r,s8+sos8Nr,s8d, s19d

is introduced to ensure the proper anticommutation relations
between the fermion operatorss18d carrying differentr and
s. It commutes with all the spatially dependent fields in Eq.
s18d. A positive infinitesimala was introduced in Eq.s17d to
ensure the convergence of commutators between operators.
The operatorw̄r,s is conjugate toNr,s,

fw̄r,s,Nr,sg = i . s20d

Note that the validity of Eq.s20d formally requiresNr,s to
have a continuous spectrumssee Appendix Bd. This is clearly
not the case in the physical Hilbert spaceHphyswe have been
working in so far. We find it convenient, however, to intro-
duce a larger Hilbert spaceH, where theNr,s operators have
a continuous spectrum. This construction is analogous to the
embedding of a discrete lattice into a continuous space, and
is reviewed in Appendix B. To ensure that the Hamiltonian,
as well as physical observables, do not lead out ofHphys, the
operatorsw̄r,s may only enter through integer powers of the
unitary operators expsiw̄r,sd, which raise theNr,s by 1. We
shall have occasion though, e.g., in Appendix A, to work in a
larger subspace ofH defined below. Formally, it is most
convenient to define operators that are valid everywhere in
H. The anticommuting operatorsAr,s expsiw̄r,sd are also
known asKlein factorsin the literature.

It is customary to further define local Hermitian fields
each associated with the spinssd or chargesrd degrees of
freedom,
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fr,ssxd =
1

4o
r

rswr,↑sxd ± wr,↓sxd + h.c.d + f̄r,s,

f̄r,s =
1

4o
r

rsw̄r,↑ ± w̄r,↓d, s21d

as well as their “dual” fields,

ur,ssxd =
1

4o
r

swr,↑sxd ± wr,↓sxd + h.c.d + ūr,s,

ūr,s =
1

4o
r

sw̄r,↑ ± w̄r,↓d. s22d

Written in terms of the spin and charge boson operators,

br,ssqd =
1
Î2

sb↑sqd ± b↓sqdd, s23d

the above local fields readsn=r ,sd,

fnsxd = f̄n −
p

2

Nnx

L
−

i

2 o
qÞ0

sgnsqdÎ p

Luqu

3 e−iqx−uqua/2sbn
†sqd + bns− qdd, s24d

unsxd = ūn −
p

2

Jnx

L
−

i

2 o
qÞ0

Î p

Luqu

3e−iqx−uqua/2sbn
†sqd − bns− qdd. s25d

From Eqs.s24d and s25d it is evident thatNn andJn are the

winding numbers offn and un, respectively, andf̄n and ūn

are the spatial averages offn and un. It is simple to check

that f̄n and ūn are the conjugate operators ofJn and Nn,
respectively, i.e.,

ff̄n,Jng = i, fūn,Nng = i . s26d

Note that although the commutation relationss26d are analo-

gous to Eq.s20d, the operatorseif̄n and ei ūn lead out of the
physical subspace. This is so since withinHphys, the quantum
numbersNn, Jn cannot be raised or lowered by 1 indepen-
dently, but are subjected to the selection rules Eq.s11d.
Within this space, only powers ofe4if̄n and e4i ūn are
allowed.19 However, within the larger spaceH introduced

above, the operatorseif̄n and ei ūn are nonetheless well de-
fined objects. It is convenient to introduce a space of “frac-
tional” excitations,Hfrac, generated by acting onHphys with

all possible combinations ofeif̄n, ei ūn. Within Hfrac, the quan-
tum numbersNn, Jn are independent integers. We must bear
in mind, though, that all physically acceptable states live in
Hphys.

The inclusion of the zero modesf̄n and ūn in Eqs. s24d
and s25d ensures the proper commutation relations of these
fields when the system sizeL is finite,

ffnsxd,un8sx8dg = i
p

4
dn,n8 sgnsx − x8d. s27d

Equations27d suggests that the conjugate operator offnsxd is
proportional to]xunsxd, i.e.,

Pnsxd = −
2

p
]xunsxd,

ffnsxd,Pn8sx8dg = idn,n8dsx − x8d. s28d

Similarly the conjugate operator ofunsxd is proportional to
]xfnsxd, i.e.,

nsxd = −
2

p
]xfnsxd, s29d

funsxd,n8sx8dg = idn,n8dsx − x8d. s30d

The physical spin or charge density is given by Eq.s29d, and
in the absence of an applied flux, the physicalsspin or
charged current density is given by

jnsxd = KnvnPnsxd = −
2

p
Knvn]xunsxd, s31d

which follows from the bosonized Hamiltonian given below.
In the above expressions

vn =ÎSvF +
g4n

p
D2

− Sg2n

p
D2

,

Kn =ÎpvF − g2n + g4n

pvF + g2n + g4n

,

g2r,s =
g2i ± g2' − g1i

2
,

g4r,s =
g4i ± g4'

2
. s32d

SincePr is just the density of right moving fermions minus
the density of left moving fermions, it is appropriate to in-
terpret the coefficientKrvr;vF

* in Eq. s31d as the renormal-
ized Fermi velocity of the system.

In terms offnsxd andunsxd the bosonization identity Eq.
s18d reads

cr,s
† sxd =

1
ÎL

Ar,s:e
isursxd+rfrsxd+ssussxd+rfssxddd: . s33d

Here, :s d: denotes boson normal ordering: all powers of the
fields wr,s

† are to be moved to the left of powers of the fields
wr,s, whereas positive powers of the operator expsiw̄r,sd are to
appear on the very right, and negative powers of the same
operator are to appear on the very left of the expression.

By means of Eq.s33d the selection rules Eq.s11d become
equivalent to the requirement

cr,ssxd = cr,ssx + Ld ∀ r,s. s34d

This clearly illustrates the topological origin of these rules.
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We may now write the Hamiltonian Eq.s12d entirely in
terms of the bosonic fields introduced above. The Tomonaga-
Luttinger part of the Hamiltonian, including the large mo-
mentum scattering term with parallel spin, takes the follow-
ing quadratic form:

HTL + H1,i = o
n

vnHo
qÞ0

uqub̃n
†sqdb̃nsqd +

p

4L
sNn

2 /Kn + Jn
2KndJ

s35d

=o
n

vn

p
E dx:HKns]xunsxdd2 +

1

Kn

s]xfnsxdd2J: , s36d

where the operatorsb̃nsqd are related to those in Eq.s23d by
a Bogoliubov transformation. The large momentum-transfer
scattering with antiparallel spin term becomes3

H1,' = –
2g1'

L2 E dx:coss4fssxdd: . s37d

Note that the coefficient of 4 in the argument of the cosine
assures that the operator does not go out of the physical
subspace, as explained above.

The weak coupling renormalization group flow of the sys-
tem Eq.s12d is well known.1,20 For Ks,1, the operatorH1,'
is relevant and a spin gap will be opened. This is the case we
will focus on in the following. For spin SUs2d invariant sys-
temsgii=gi';gi. In that caseKs,1 requiresg1,0, as dis-
cussed by Luther and Emery.3

IV. THE FLUX PERIOD

A. The spin gapped case

By virtue of Eqs.s36d ands37d, the model Eq.s12d takes
the form

H = HTL + H1 ; Hr + Hs, s38d

whereHr andHs act exclusively on charge and spin degrees
of freedom, respectively. The eigenstates are thus direct
products of charge states and spin states

ucl ^ usl, s39d

and the ground state energy is the sum of spin and charge
energies,

E0 = E0
c + E0

s. s40d

WhenH1 causes a spin gap to open up, the spin sector of the
model Eq.s12d is described by a gapped sine-Gordon field
theory.

In the following we shall focus on theNs=0 sector, which
is where the gapped spin ground state lies. In this sectorH1,'
is relevant, and one may interpret the cosine term in Eq.s37d
as a steep potential experienced byfssxd. In the limit of
infinite system size where true symmetry breaking is pos-
sible, one may think offssxd as being locked to one of the

minima of the cosine potential. When this happensf̄s, the
spatial average offnsxd, will take ac-number value equal to

the respective minimum value offs. At first, let us neglect
the selection rules Eq.s1d. That is, we start by looking at the
problem in the spaceHfrac introduced in Sec. III, where in
particularJs is an independent integer valued quantum num-
ber. Then we may regard the conjugate variablef̄s as an
angular variable with period 2p. This notion becomes pre-
cise if we identifyf̄s with its “lattice version” discussed in
Appendix B, which we shall do for the present purpose.21

Within f0,2pd there are four inequivalent minima of the co-
sine term in Eq.s37d, and the corresponding ground states in
the spin sector can be labeled as

u0l, up/2l, upl, u3p/2l, s41d

where

f̄sufl = fufl. s42d

As discussed earlier, the operator

ĥ ; s− 1dJs /2 ; exps− ipJs/2d s43d

commutes withHs, hence its eigenvalues can be used to
classify the spin ground states. Unfortunately the states given
in Eq. s41d are not eigenstates ofĥ. Following Appendix B,
it is easy to show that

f̄sĥufl = Sf +
p

2
Dĥufl, s44d

where the eigenvalue on the right-hand side is to be under-
stood modulo 2p. We may hence choose the global phases in
Eq. s41d such that

uzp/2l = ĥzu0l. s45d

It is thus easy to form linear combinations

uhl = o
z=0

3

h−zĥzu0l s46d

such that

ĥuhl = huhl. s47d

We are now in a position to enforce the selection ruless11d.
Given Ns=0, the selection rule Eq.s11ad requiresJs to be
even. As a result onlyh= ±1 are allowed. We label these two
states by

u + l, u− l. s48d

Thus actually, the ground state is only twofold degenerate.
This degeneracy becomes further lifted in the case of a finite
system sizeL, to be discussed next.

For finite L, the notion that the fieldfs is locked to a
classical value is no longer valid. In fact for finiteL, evenf̄s

is subjected to quantum fluctuations. This is explicit in Eq.
s35d, where the variable conjugate tof̄s, namelyJs, enters
the Hamiltonian whenL is finite. Thus the spin ground state
can no longer be thought of as one of the “locked” spin states
given by Eq.s41d. On the other hand, sinceh remains a good
quantum number, the states in Eq.s48d are still well defined
as the respective ground states in theh=± sectors of the spin
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Hilbert space. We note that the spin states in Eq.s48d thus
defined are not strictly degenerate for finiteL. It is important
to observe, however, that the difference in energy between
these two states vanishes exponentially in the system sizeL.
One way to see this is the well known fact that the gapped
sine-Gordon field theory is the low energy effective theory of
a dimerized spin-1/2 chain.22 Here, theu± l are, respectively,
the symmetric and antisymmetric combination of the two
dimer patterns. Since the two dimer patterns differ by a mac-
roscopic number of degrees of freedom, the tunnel splitting
between these two states should vanish exponentially with
the system size. A slightly more direct way to see the above
is offered by the well-known mapping between the gapped
sine-Gordon theory and the massive Thirring model.3,23 We
will elaborate on this point in Appendix A. The advantage of
this method is that at the special Luther-Emery point, it al-
lows us to study the effect of a finite temperature.

For the purpose of this paper we may ignore the above
exponentially small energy difference between the states, Eq.
s48d. This is because such a tiny difference will drop out of
the limit taken in Eq.s1d. In this sense we may still speak of
a degeneracy in the spin sector of the model, and regard the
spin contributionE0

s in Eq. s40d as essentially independent of
h in the spin gapped case.

Naively the spin degeneracy discussed above seems to
suggest that the ground state of the full Hamiltonian Eq.s38d
is degenerate. However this is not so, and the reason for this
is the selection rule Eq.s11bd. To demonstrate that let us
assume the total particle number to beN=4m+2, whereas
Ns=0. According to the selection rule Eq.s11bd the spin
statesu6l may not be combined with the same charge state.
The spin stateu2l may only be combined with a charge state
whose current quantum numberJr is an odd multiple of 2
and hence nonzero. The presence of a nonzero current will
cost an energy of ordervF

* /L as is evident from Eq.s35d. The
stateu1l, on the other hand, may be combined with a charge
state of zero current, which minimizes the charge energy. As
a result there is an energy splitting,1/L between the lowest
energy state in theh=+ andh=− sectors. We note that an
analogous result was discussed by Haldane11 for the case of
a vanishing spin gap and a finite charge gap at commensurate
band fillings. In contrast, here we are interested in the effect
of an applied Aharonov-BohmsABd flux, which is of interest
only when the charge sector is gapless.

The coupling to a vector potentialAsxd is determined by
gauge invariance and can be worked out from the minimal
coupling requirement. We only consider the constant vector
potentialAsxd=F /L corresponding to anAB flux. The cor-
rect coupling to F then follows from the formal
replacement:4

cr,s
† sxd → e−is2p/LdsF/F0dxcr,s

† sxd s49d

in the Hamiltonian, where a charge −e is assumed. Here, the
boundary conditions of the fieldcr,s

† sxd remain the same,
while the right-hand side of Eq.s49d will in general satisfy
different boundary conditions. By Eq.s33d, this is equivalent
to the following replacement in the Hamiltonian Eq.s36d and
the current Eq.s31d:

ursxd → ursxd −
2p

L

F

F0
x s50d

or, by Eq.s25d, simply

Jr → Jr + 4
F

F0
. s51d

Note that we did not attempt to introduce the gauge flux prior
to bosonization. This is due to the fact that the fermionic
field theorys2d suffers from the well-known chiral anomaly.
The latter renders the global current of the model ambiguous
in the presence of a generalAB flux, unless gauge invariance
is manifestly enforced. Through the “Lenz rule”
I =−c]E0sFd /]F fKohn, Ref. 5, see also Eq.s54dg, this am-
biguity also enters the ground state energy dependence on
flux. To deal with this problem will in any case require the
use of gauge invariance, and this is most conveniently
achieved in the final, bosonic language. It would be interest-
ing to obtain Eqs.s50d and s51d via a more “microscopic”
route, i.e., via bosonization of a microscopicslatticed Hamil-
tonian with flux; this is subject to current investigations. We
stress again, however, that Eq.s50d is uniquely determined
by the minimal coupling principle.

From Eqs.s35d and s51d the energy versus flux function
EsFd in Eq. s1d is given by

EsFd = min
Jr=. . .−2,0,2,. . .

p

4
vrKrSJr + 4

F

F0
D2

. s52d

Here, all multiples of 2 are allowed values forJr by selection
rule Eq. s11ad. This leads to the various branches shown in
Fig. 2. The alternating labels ofh=± reflect the fact that the
spin state must be adjusted according to selection rule Eq.
s11bd wheneverJr is changed by 2. In the presence of a spin
gap, however, this doesnot affect the energy in the limit of
Eq. s1d, as discussed above. As a consequence, Eq.s52d has
an exact period equal to one-half of a flux quantum, shown
by the lower envelope in Fig. 2sad. We note that these find-
ings are in complete agreement with those obtained in Ref. 6
for the t-J-J8 model. The amplitude of the ground state en-
ergy modulations is apparently given by

DE =
p

4L
Krvr =

p

4L
vF

* , s53d

where vF
* is the renormalized Fermi velocity introduced

above. The corresponding modulations of the charge current
for a given quantum numberJr are given by

Īr = − e
1

L
E

0

L

dx jrsxd =
2e

Lp
vF

*E
0

L

dxS]xunsxd −
2p

L

F

F0
D

= −
evF

*

L
SJr + 4

F

F0
D = − c

]

]F
EsFd/L. s54d

The current is thus diamagnetic for −F0/2,F,F0/2 and
is given by a sawtooth curve in general which one obtains by
taking the derivative of the envelope in Fig. 2sad. The ampli-
tude of the current is given byDI =evF

* /L, which is the same
as that of spinless particles,12 although the flux period is
halved. Note that this observation is consistent with the no-
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tion that the charge of the carriers is effectively doubled.

B. The spin gapless case

To establish the fact that thehc/2e flux period is due to
the presence of a spin gap, it is prudent to demonstrate the
change of flux period when the spin gap collapses. First, let
us assumeN=4m+2 as before. Our discussion from the pre-
ceding sections generalizes most easily to the case of a van-
ishing spin gap, if we also assume isotropy in the spin sector:
In this case, SUs2d invariance requires the parameterKs to
be unity at the Luttinger liquid fixed point. We will comment
on the general nonisotropic case below.

For gapless spins, the operatorH1,' in Eq. s38d is irrel-
evant, and we may expect to get qualitatively correct results
by omitting it. With this simplification, the spin sector be-
comes analogous to the charge sector, and in particularJs

can be regarded as a good quantum number. Theh=+ spin
ground stateu1l then hasJs=0, whereas the stateu2l lives
in a degenerate doublet space withJs= ±2. This then raises
the corresponding spin energy of theu2l state by a term of
order vs /L, as shown explicitly in Eq.s35d. As a conse-
quence, theh=− branches are shifted upward with respect to
the h=+ branchesfFig. 2sbdg which destroys thehc/2e pe-
riodicity of EsFd.

The spin current carryingh=− states maysbut need notd
be shifted up in energy so much thatF=hc/2e ceases to be
a metastable minimum ofEsFd. This is just the case for a
noninteracting system. In the case where the uplifting of the
h=− state is not as large,F=hc/2e persists to be a meta-
stable minimum in the energy versus flux curve. The differ-
ence between the ground state energy atF=0 and F
=hc/2e is thus given by

uE0sF0/2d − E0s0du =
p

L
minsvs,Krvrdsisotropic spind.

s55d

Interestingly, Eq.s55d provides information about the Lut-
tinger parameters of thespin sector. It has long been known
that for a Luttinger liquid, the Luttinger parameters can be
determined from the ground state properties.2 This technique
is often applied to infer the charge Luttinger parameters, e.g.,

by calculating the ground state energy as a function of par-
ticle density and magnetic flux.24 Equations55d shows that
the same technique may be used to infer spin Luttinger pa-
rameters, provided thatvs,Krvr holds. In SUs2d invariant
systems, the spinon-velocityvs may thus be obtained. Note
that in this case, theJs= ±2, Ns=0 states corresponding to
the h=− branches in Fig. 2sbd are degenerate with states
havingJs=0, Ns= ±2, which carry no spin current but have
a net azimuthal spin projectionSz= ±1. This degeneracy fol-
lows from Eq.s35d with Ks=1. The latter states, however,
will generally be lower in energy for spin gapless systems
without SUs2d invariance. This follows because one hasKs

.1 in this case, sinceKs,1 would always lead to a spin
gap. We thus predict that the branches corresponding to the
metastable minima in Fig. 2sbd, if present, will have a net
spin, rather than a net spin current, in models without SUs2d
invariance. In this case,vs in Eq. s55d is to be replaced by
vs /Ks.25

When N=4m, all the patterns in Fig. 2 are shifted hori-
zontally byhc/2e. In this case the global minima in Fig. 2sbd
are located at odd multiples ofhc/2e. Hence the function
EsFd can distinguish the casesN=4m and N=4m+2 in the
case of gapless spins, but not in the case of gapped spins.
The same result had also been observed for thet-J-J8
model.6

We now turn to the case of odd particle numberN=2m
+1. In this case the selection rules Eq.s11ad requires bothNs

and Js to be odd, reflecting the fact that there must be a
dangling spin.sOf course, with a dangling spin the system
cannot have a spin gap.d Now the quantum numberh
=exps−ipJs /2d may take the values ±i. The two correspond-
ing subsets of the spin state space are related by the trans-
formationJs→−Js, which leaves the Hamiltonian invariant.
As a consequence, the spin ground statesuh= ± il are exactly
degenerate, and an exacthc/2e periodicity is obtained for
the Hamiltonian s12d at any system size, regardless of
whetherH1 is relevant or not. Also, sinceJr is now odd as
well, the pattern shown in Fig. 2sad will be shifted horizon-
tally by hc/4e. Hence the global minima ofEsFd will be
located at odd multiples ofhc/4e in this case.

C. Discussion of the results atT=0

The results presented in the preceding section are exact
for the Hamiltonian Eq.s12d, which is believed to be the low

FIG. 2. Energy branches as function of flux for even total particle numberN, with and without spin gap.EsFd is given by the lower
envelope. The alternating labelh=± describes the spin state corresponding to each branch, whereN=4m+2 is assumed.sad Spin gapped
case. The flux period isF0/2. sbd No spin gap. TheF0/2 flux periodicity is destroyed by a relative shift between theh=+ and h=−
branches.
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energy effective theory for all one-dimensional systems with
gapless, linearly dispersing charge degrees of freedom.26

These results may thus be expected to be representative for
this entire universality class. To rigorously justify this point,
the effects of higher order, less relevant operators should be
included into the model studied above. We will not carry out
such a detailed analysis here. Rather, we will point out some
expected modifications due to less relevant operators, and
argue for the robustness of the basic results derived above by
comparing them to special examples of microscopic models,
where the features ofEsFd are known analytically or numeri-
cally.

The flux period of the repulsive Hubbard model was stud-
ied in Ref. 27. These results agree well with our findings for
the spin gapless case. In particular, for odd particle numberN
the global minima ofEsFd are at odd multiples ofhc/4e, and
the flux period ishc/2e. While it may seem surprising that
the flux period does not distinguish the spin gapless, odd
particle number case from the spin gapped casesexcept for
the position of the minimad, the microscopic origin of the
hc/2e period is of a rather different nature in the two cases.
A more subtle effect may demonstrate this: If one calculates
the EsFd of free electrons for oddN, one indeed finds that
hc/2e is the flux period. However one also finds that there
exist corrections to thehc/2e period at order 1/L in EsFd.
These corrections are due to the band curvature neglected in
the Hamiltonian Eq.s12d. Similar corrections toEsFd also
exist at oddN for the t-J-J8 model. They can be calculated
using the method discussed in Ref. 6.28 Such corrections in
powers of 1/L, however, were not found in thet-J-J8 model
for the spin gapped case, where only exponentially small
corrections were observed. We thus argue that corrections to
the hc/2e flux period generally scale as 1/L in the oddN
case, while they are exponentially small in the spin gapped
case. The behavior in the latter case can be attributed to the
fact that the spin gap generally causes an exponentially small
sensitivity to boundary conditions in the spin sector. This
point will be further clarified in Appendix A.

The analysis in the preceding section predicts the ground
state to be unique on the branches ofEsFd which contain the
global minima. We expect this to be obeyed by general
Hamiltonians. However, the fourfold degeneracy which we
found between theNs=0, Js= ±2 andNs= ±2, Js=0 states
on the metastable branches in the isotropic, evenN, gapless
spin case is an artifact of our restriction to the Luttinger
Hamiltonian Eq.s2d. Rather, the true eigenstates are given by
a triplet and a singlet to be formed from these four states,
giving rise to a small splitting. However, except for this ef-
fect, the implied degeneracies at the crossings between the
branches remain valid: Although the conservation ofJr is
approximate once higher order operators are allowed, a
change ofJr by 2 implies a change of momentum by 2kf.
Hence the states at a branch crossing will not be mixed, and
the cusps inEsFd will remain sharp for general models.29

Finite size studies of the Hubbard model30 show that the
patterns displayed in Fig. 2 indeed emerge very clearly in
numerical simulations carried out at moderate system size,
both for the spin gappedsattractived and gaplesssrepulsived
case.

We thus conclude that all systems which can be charac-
terized as Luther-Emery liquids have thehc/2e flux period.
In particular, deviations from the patterns in Fig. 2 such as
the appearance of additional minima at higher fractions of a
flux quantum must be attributed to finite size effects. Such
additional minima atF0/n are known to occur in the large
U-limit of the Hubbard model,31 or the small J-limit of
t-J-type models,32 for fixed system size. The criterion for
such finite size effects to disappear is that the amplitude of
the oscillationsDE,1/L from Eq.s53d is small compared to
any other energy scale of the system. In the above cases, the
relevant competing scale isJ, t2/U. The associated cross-
over is clearly observed in Ref. 32, where thet-Jz model is
studied: Fort /L&Jz, the model displays the spin gapped
behavior shown in Fig. 2sad. This is a consequence of the
Ising spin gap of this model. The similar crossover for the
repulsive Hubbard model is shown in Ref. 27, where the
pattern of Fig. 2sbd emergesswith the necessary shift forN
=4md. We note that the appearance of local minima sepa-
rated by one-half of a flux quantum from the global minima
in the repulsive Hubbard model is sometimes interpreted as a
sign of pairing.30 We stress, however, that this casedoes not
meet the criterion of aF0/2 flux period as we define it, since
a small splitting of ordert2/U remains between the two types
of minima ofEsFd, which does not vanish as the system size
is taken to infinity.

D. Nonzero temperatures

Finally, we briefly comment on the expected generaliza-
tion of our findings to finite temperature. The behavior stated
below can be verified straightforwardly at the special solv-
able Luther-Emery point of the model Eq.s12d ssee Appen-
dix Ad. For T.0, we consider the modulations of the free
energyFsT,Fd as a function of flux. The particle number is
held fixed, i.e., the averages are taken in the canonical en-
semble.sIf the particle number were allowed to fluctuate, the
even/odd effects discussed above would considerably
weaken the sensitivity to flux.d

Under these conditions, the observations made above for
the ground state energy will carry over to the free energy as
long asT,DE=Os1/Ld. However, the limit of Eq.s1d is not
to be taken here, because the amplitude of the free energy
modulations is proportional to exps−constT/DEd rather than
DE whenT.DE. In the spin gapped, even particle number
case it remains true that terms violating thehc/2e periodicity
are suppressed by a factor,exps−constDsL /vsd, whereDs

is the spin gap. Comparing the two exponential factors, these
hc/2e violating terms will be negligible untilT is of the
order of the spin gap. At this temperature, the amplitude of
EsFd is already exponentially suppressed, provided that the
system is large enough such thatDE!Ds is satisfied. This
again shows that thehc/2e period will be obeyed as long as
DE is the smallest energy scalesother than temperatured of
the system.

We note that the cusps between the branches in Fig. 2 will
be smoothened by thermal fluctuations, giving rise to a finite
negative curvature and paramagnetic12 effects.

V. CONCLUSIONS

In this paper, we demonstrated that the ground state en-
ergy of Luther-Emery liquids will generally exhibit anhc/2e
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flux period. While this statement holds in a strict sense in the
limit of large system size, finite size deviations are expected
to be exponentially suppressed in the system size. This result
had been anticipated in an earlier work on a particular mi-
croscopic realization of the Luther-Emery liquid, the
t-J-J8-model.6 Here, we generalized the result of Ref. 6 by
showing that thehc/2e flux period is implied by the widely
accepted low energy effective theory describing such a
phase. As a result, we clarify why the state of the spin sector
impacts upon the flux period when it is commonly believed
that in one dimension spin and charge decouple at low ener-
gies. An important aspect of our findings is that in systems
with even particle numberN, the hc/2e period is triggered
by the spin gapsi.e., pairingd alone and is independent of
whether the superconducting pair-pair correlations are the
dominant long-distance/time correlation function. This may
be of particular value for the correct interpretation of numeri-
cal work. In addition, we have also discussed the expected
finite temperature generalization of our findings.

In Ref. 6 we stressed the SUs2d invariance of the model
discussed there. This requirement has been relaxed in the
present discussion, where we did not enforce SUs2d invari-
ance. Instead, only the weaker requirement of a conservedz
component of the spinSz=Ns /2 was found necessary. In the
anisotropic case, we must also require that the spin gapped
ground state hasSz=0 ssee Ref. 26d, which should be auto-
matic in the isotropic case.

Our findings underline the intuitive notion that every spin
gapped system with linearly dispersing charge modes should
share some features of a superconductor.
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APPENDIX A: REFERMIONIZATION OF THE SPIN
HAMILTONIAN FOR FINITE SYSTEM

It is well known that the sine-Gordon model

Hs =
vs

p
E dx:HKss]xussxdd2

+
1

Ks

s]xfssxdd2J: –
2g1'

L2 E dx:coss4fssxdd: ,

sA1d

can be mapped onto the massive Thirring model.3,23 This
mapping permits a rather direct demonstration of the expo-
nentially small energy difference between theh=+ and h
=− states discussed in Sec. IV A. In addition, whenKs

=1/2, i.e., at the Luther-Emery point, the massive Thirring
model reduces to a massive free fermion Hamiltonian which
allows the exact calculation of various physical quantities. In
particular finite temperature results can be obtained at the
Luther-Emery point easily.

In the notation established in Sec. III, the mapping onto
the massive Thirring model can be performed by the intro-
duction of the following spinless fermion operators:

c̃r
†sxd =

eisp/Ldrx

ÎL
Ãr:e

is2rfssxd+ussxdd: , sA2d

where

Ãr = eisp/2ds1
2

rNs−1
4

Jsd .

Here, the symbol : : denotes a normal ordering convention
analogous to that defined in Sec. III, but wherewr,s is re-
placed by the field

w̃rsxd =
1

4o
s

ss3wr,ssxd − w−r,s
† sxdd,

w̄̃r =
1

4o
s

ss3w̄r,s − w̄−r,sd = 2rf̄s + ūs. sA3d

It is interesting to note that the operatorsc̃rsxd, in terms of
which the spin Hamiltonian Eq.sA1d is best analyzed, lead
out of the physical Hilbert spaceHphys: Apart from affecting
the spin current quantum numberJs, they also change the
total number of net excited spins,Ns, by 1. In the physical
Hilbert space, such a change must always go along with a
change of charge quantum numbers, which are not affected

by c̃rsxd. It is quite natural that the action of a single “frac-

tionalized” operator such asc̃rsxd will lead out of the space
of physical states. At this point the larger spaceHfrac dis-
cussed in Sec. III becomes indispensable, as it allows us to

define operators such asc̃rsxd in the first place. It is clear,
however, that these operators enter the Hamiltonian only in
appropriate pairs, which leave the physical subspace invari-
ant.

Using standard methods reviewed in Ref. 17, it is straight-
forward to show that the field defined in Eq.sA2d satisfies
the required anticommutation relations. The additional factor
expsiprx /Ld in Eq. sA2d will be commented on below. For
now we note that it gives rise to the following boundary
conditions for the spinless fermion fields:

c̃rsx + Ld = eipsNs+Js/2−1dc̃rsxd. sA4d

As is relevant to Sec. IV, in the following we will concen-
trate on the caseNs=0 andJs even. EquationsA4d then tells
us that the sectorh=− is represented by fermions obeying
periodic boundary conditions, and theh=+ sector by fermi-
ons obeying antiperiodic boundary conditions. Note that
without the additional twist in Eq.sA2d, it would have been
vice versa.

Using the methods discussed in Ref. 17, one may now
show the equivalence of Eq.sA1d and

Hmtm= o
r
E

0

L

dxs− irvd:c̃r
†sxd]xc̃rsxd:

+ o
r
E

0

L

dx msidr:c̃r
†sxdc̃−rsxd:

+ go
r
E

0

L

dx:c̃r
†sxdc̃rsxdc̃−r

† :sxdc̃−rsxd:
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; Hs + const, sA5d

where33

v =
vs

4
S 1

Ks

+ 4KsD ,

g =
pvs

4
S 1

Ks

− 4KsD , sA6d

m=
ug1'u
2pa

.

Here, the symbol : : is asdefined in Eq.s6d, but the vacuum
state is now theNs=Js=0 state that is annihilated by the
field Eq. sA3d.

WhenKs,1 the sine-Gordon model is massive, and the
physics of Eq.sA5d is given by massive spinless fermions. In
particular, the fermionic interactiong vanishes forKs=1/2,
and the Hamiltonian Eq.sA5d becomes that of a massive free
fermion model. This is the special point identified by Luther
and Emery.3 At the Luther-Emery point the fermion disper-
sion relation iseskd=Îsvkd2+m2. In a range ofKs values
around 1/2, theg-term only gives rise to quantitative correc-
tions.

We now return to the factor expsiprx /Ld in Eq. sA2d for
the boundary conditions Eq.sA4dg and show that with this
factor for the boundary condition specified in Eq.sA4dg the
boson and fermion theories are consistent. To illustrate that
we compare the ground state degeneracies in the noninteract-
ing massless case for the bosonic and fermionic theories, i.e.,
we let Ks=1/2 andg1'=0, which results inm=g=0.

In the absence ofg1' both Ns andJs are good quantum
numbers. Let us denote the ground state in theNs ,Js sector
by uNs ,Jsl. From Eq.s35d we recall thatu0, 0l is the nonde-
generate global ground state of the spin sector, whereas the
statesu0, 2l, u0,−2l form a degenerate doublet. That this also
holds in the fermionic representations of the model is just
achieved by the boundary conditions Eq.sA4d ssee Fig. 3d.
Note that since the fermions Eq.sA2d arederivedin terms of
bosons, the fermion occupancies claimed below Fig. 3 fol-
low by derivation, not by definition. In fact one may easily
evaluate

kNs,Jsuc̃r
†skdc̃rskduNs,Jsl, sA7d

where

c̃r
†skd ;

1
ÎL
E

0

L

dx eikxc̃r
†sxd,

k =
2p

L
n +

p

L
sNs + Js/2 − 1d sA8d

by plugging in Eq.sA2d, and verify that the occupancies
identified for the various states in Fig. 3 are correct.34

The spin sector of the model is now represented in terms
of fermions satisfying a conventional boundary condition
given by Eq.sA4d. The difference between the ground state
energy forh=+ and h=− thus becomes the change in the

fermion ground state energy induced by a change of the
boundary condition, or equivalently the modulation of the
fermion ground state energy caused by anAB flux. When the
sine-Gordon model is massive, the fermions form an insulat-
ing state. Then, the sensitivity of their ground state energy to
the boundary condition will vanish exponentially with the
system size, as is well known from the general arguments
given by Kohn5 and Thouless.35 The greatest advantage of
the refermionization occurs at the Luther-Emery point. For in
that case, a nontrivial interacting bosonic theory is mapped
onto a free fermion theory. In particular, at the Luther-Emery
point g=0 one obtains from a direct calculation that the en-
ergy difference between the ground states forh=+ andh=
− vanishes asmexps−mL/vd, as we claimed earlier.

APPENDIX B: NUMBER AND PHASE VARIABLES FOR
CONTINUUM AND LATTICE HILBERT SPACES

The Hilbert space of the Luttinger Hamiltonian Eq.s2d,
denoted as the “physical” Hilbert spaceHphys in the bulk of
the paper, can be decomposed as

Hphys= ^
r,s

Hl
Nr,s ^ Hbr,s sB1d

Here, the spacesHbr,s contain all the degrees of freedom
associated with the bosonic excitation spectrum, whereas
Hl

Nr,s contains the degrees of freedom of the operatorNr,s.
The subscript “l”stands for “lattice” and reminds us of the
discrete nature ofNr,s in the physical Hilbert space: The Hil-
bert space basis ofHl

Nr,s is given by a set of nondegenerate
eigenstates ofNr,s, whose spectrum consists of all integer
numbers.

FIG. 3. Ground state of the fermion Hamiltonian Eq.sA5d for
g=0. The linear branches indicate the massless case where bothNs

and Js are good quantum numbers. Crosses indicate allowed mo-
menta in theh=+ sector, boxes those in theh=− sector. The en-
circled areas indicate the occupied states on each branch for the
ground states in theNs=0, Js=0 sectorscrossesd, as well as the
Ns=0, Js= +2 sectorsboxesd. The latter state is degenerate with the
Ns=0, Js=−2 ground state, where thek=0 mode is occupied on the
r =− branch instead. For nonzero mass andNs=0, a gap opens up
and the upper band remains empty while the lower band is com-
pletely filled, where the allowed momenta depend onh as shown.
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In the process of bosonization, however, we introduce
new linear combinationsNn, Jn of the Nr,s fEq. s9dg. The
spectrum of these new operators is likewise integer, yet not
all possible combinations of integer eigenvalues are physi-
cally allowed. This “residual coupling” is not evident from
commutation relations, since the operatorsNn, Jn all com-
mute as theNr,s do. Hence, once we bosonize an enlarged
Hilbert space becomes more natural, where the eigenvalues
of the operatorsNn, Jn are independent. This is the Hilbert
spaceHfrac of “fractional” excitations. The physical subspace
Hphys is then characterized by the fact that the selection rules
Eq. s11d are satisfied. It is clear that inHfrac, the spectrum of
theNr,s must also contain certain fractional values. Formally,
we find it convenient to introduce an even larger Hilbert
spaceH, where the spectrum of theNr,s is continuous. The
benefit of this is that the conjugate phasew̄r,s of these opera-
tors then becomes meaningful. This, in turn, allows us to
construct unitary “ladder operators” which change the eigen-
value of theNr,s by arbitrary amounts. This formalism is of
particular advantage in Appendix A, where fractionalized
spin fermion operators are constructed. Below we present
some fine details of this embedding ofHphys into the larger
spaceH.

For this purpose let us consider a single operatorN̂ and its
conjugate variableŵ such that

fŵ,N̂g = i sB2d

holds. An analogy to the quantum mechanics of a point par-

ticle moving in one dimension is obtained if we identifyN̂
; x̂ and ŵ;−p̂, where x̂ and p̂ are the coordinate and the
momentum of the particle. In this context, it is familiar how

to construct a Hilbert spaceHN such thatN̂ and ŵ are well
defined on a dense set, Eq.sB2d is satisfied and the spectrum

of N̂ is unbounded: It is the Hilbert space of square inte-
grable functions of the variableN. From the commutation

relation Eq.sB2d, it is clear that the spectrum of bothN̂ and
ŵ must be continuous and unbounded. In particular, we can
construct shift operators expsiŵad satisfying

fN̂,eiŵag = aeiŵa, sB3d

which shift the value ofN̂ by an arbitrary amounta.
We note that, as is familiar from the point particle anal-

ogy, the “position” and “momentum” eigenketsuNl and uwl
are not strictly contained in the Hilbert spaceHN of “proper”
vectors, but are “generalized” states in the usual sense. Here,
we will not attempt to introduce a different notation for
proper and generalized states, nor for the proper Hilbert
space and its extension containing generalized states. We re-
fer the reader to Ref. 36 and references therein for details,
and simply note that the ketsuNl and ufl satisfy

kN8uNl = dsN8 − Nd, kw8uwl = 2pdsw8 − wd,

uwl =E dN e−iwNuNl, uNl =
1

2p
E dw eiwNuwl. sB4d

Suppose now that a physical problem is defined on a sub-
spaceHl

N, which is given by the discrete “lattice” repre-
sented by the eigenketsuNl for integerN. Since these kets
from a countable Hilbert space basis inHl

N, it is natural and
convenient to introduce a new scalar product onHl

N via

lkN8uNll = dN8,N. sB5d

This differs from the scalar product inHN only by an infinite
multiplicative factor. In the above,uNll denotes the same vec-
tor asuNl, but endowed with a different scalar product. Equa-
tion sB5d means that theuNl for integerN become a complete
orthogonal set ofproper vectors withinHl

N. Within Hl
N, one

may now define a “crystal momentum” operatorŵl, whose
eigenkets are defined to be

uwll = o
NPZ

e−iwNuNll . sB6d

One observes that these eigenkets are periodic inw with
period 2p, hence for definiteness the eigenvalues must be
restricted to lie within the “Brillouin zone”s−p ,pg, where

lkw8uwll = 2pdsw8 − wd, w8,w P s− p,pg sB7d

holds. If we now denote the restriction ofN̂ to Hl
N by N̂l, we

find that the commutatorfŵl ,N̂lg is not quite analogous to
Eq. sB2d. This has been examined in detail by
Schönhammer.37,38 However, for the applications we have in
mind here, this difference never matters. This is so since all
physical observables, including the Hamiltonian, depend on
ŵl only via integer powers of expsiŵld, and since the equa-
tions

eiŵuNl = uN + 1l, eiŵluNll = uN + 1ll sB8d

hold. Hence expsiŵld and expsiŵd act identicallyon Hl
N, and

we may express all observables in terms ofeither of these
operators. By means of Eq.sB6d, the ketsuwll PHl

N are iden-
tified with the following kets inHN:

uwll ; o
NPZ

e−iwNuNl = o
nPZ

uw + 2pnl. sB9d

Note that the norm of the right-hand side with the scalar
product in HN formally computes tò 3ds0d, which by
comparison with Eq.sB7d is larger by an infinite multiplica-
tive constant thanlkw uwll. Recall that the same relation also
holds forkNuNl and lkNuNll by definition of the scalar prod-
uct in Hl

N. EquationsB9d makes it clear that the ketsuwll
PHl

N are not to be identified with the ketsuwlPHN. The
latter are not periodic inw, and cannot be constructed solely
from ketsuNl with integerN. However,

kw + 2pnuNl = lkwuNll ∀ n P Z sB10d

holds. Thus whenever it is clear from the context that we are
working in Hl

N, we may drop all labels “l,” keeping the pe-
riodicity of the statesuwlPHl

N in mind.
We can now define the Hilbert spaceH introduced in the

main part of the paper as
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H = ^
r,s

HNr,s ^ Hbr,s. sB11d

The advantage of embeddingHphys into the spaceH is that
now the spaceHfrac, satisfying Hphys,Hfrac,H, can be

generated easily through the action of the operators expsi ūnd,
expsif̄nd on Hphys. The bookkeeping is greatly simplified by
the simple commutation relation ofw̄r,s and Nr,s, Eq. s20d,
valid on H. We finally note thatHfrac can be written as a
product analogous to Eq.sB1d, involving a space containing
bosonic degrees of freedom and four discrete “lattice” spaces

containing the degrees of freedom of the quantum numbers
Nn, Jn. All the above therefore holds in an analogous way for
Hfrac, and in particular lattice versions of the phase operators

f̄n, ūn can be constructed if desired.
In Ref. 38, it has been noted that the use of the canonical

commutation relations Eqs.s20d andsB2d in constructing the
Klein factors does indeed yield correct results in bosoniza-
tion, even though these relations cannot be rigorously justi-
fied for operators that are restricted to a discrete space. We
believe that the embedding procedure discussed here pro-
vides a proper explanation for this observation.
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