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A comprehensive analysis of the coupling coefficients between plane waves in conventional dielectric media
and Bloch waves of photonic crystals with effective negative refractions is performed by the layer Korringa-
Kohn-Rostoker method. Employing the infinite layers refraction operator, semi-infinite size photonic crystals
are considered. Some special coupling properties are discussed. In particular, the strong angular dependence of
coupling coefficients is found even for an interface between airsn=1d and a photonic crystal with effective
refractive indexsneff=−1d. Thus, a negative refractive index defined by the radius of a circular equal-frequency
contour does not guarantee an isotropic behavior.
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I. INTRODUCTION

Recently the subject of negative refractions has inspired a
lot of interest in physics for their important potential appli-
cations. A well-known example is a negative index material
sNIM; also called a left-handed materiald, which exhibits a
negative refractive index due to the simultaneous negative
permeability and permittivity.1–8 It has been proposed that
subdiffraction-limited optical resolution can be achieved
with a perfect lens—a planar slab of a NIM.9 Another
equally important aspect of negative refraction is that under
certain conditions, photonic crystalssPhCsd can also refract
light with a negative refraction angle.10–18 It has been just
recently experimentally demonstrated at the microwave
wavelengths,19,20 and at the optical communication
wavelengths.21 The subwavelength resolution of an image
due to the negative refraction of PhCs has been demonstrated
experimentally.22

It was shown theoretically by Notomi11 that in a strongly
modulated photonic crystal, the contours of equal-frequency
surfacessEFS’sd in the vicinity of the photonic band gap
might become circular, which are similar to that of a conven-
tional isotropic dielectric material. Therefore, an effective
refractive index of the PhC for all angles can be defined as
that of the conventional material. It should be noted that the
optical property of a photonic crystal with effective negative
refractive indexneff=−1 is different from that of a negative
index material with refractive indexn=−1. For a NIM with
n=−1, light can go through an air-NIM interface without
reflection.9 One may observe a different behavior at an inter-
face between air and a photonic crystal withneff=−1. Thus, a
detailed theoretical study of light coupling between conven-
tional dielectric materials and photonic crystals is important
to estimate the validity of the physical model that a PhC with
an effective negative refractive index can be treated as an
isotropic NIM.

The scattering problems of the periodical structure have
been studied by many authors, and many numerical methods
have been applied to these problems in the optical field and
the quantum field alike, e.g., Refs. 23–27. In the present

paper, the versatile layer-KKRsKorringa-Kohn-Rostokerd
method17,28–32 is used to calculate the coupling coefficients
between plane waves in conventional dielectric media and
Bloch waves of photonic crystals with effective negative re-
fractions. The layer-KKR method is a rigorous method based
on the expansion of cylindrical harmonics for the two-
dimensional structuresor spherical harmonics for the three-
dimensionald, and thus is very suitable for cylindricalsor
sphericald inclusions. After introducing the scattering matri-
ces of the monolayer in a photonic crystal, it can obtain
eigenstatessi.e., photonic band structuresd of the PhC, or
compute the transmissions and reflections for the PhC slab.
The photonic crystals studied in the present paper all exhibit
negative refraction properties at the frequency range of inter-
ests. The influence of interface orientations and mode sym-
metries to the coupling efficiency is also addressed.

II. NUMERICAL METHOD

A schematic diagram of the structures studied in the
present paper is shown in Fig. 1. Assume a plane wave inci-
dent upon the semi-infinite photonic crystal with a wave vec-
tor k =skx,g0d perpendicular to the axes of the cylinders.
Each diffracted wave outside the grating, including the
propagating or evanescent components, can be expressed by
the plane wave with the wave vectorkp

±,

kp
± = sap, ± gpd,

ap = kx + 2pp/d, gp = Îkb
2 − ap

2, s1d

where the integerp denotes the diffraction orders,d is the
period in thex direction, andkb is the wave number in the
background dielectric media. Whengp is real sor purely
imaginaryd, the superscripts1 and2 denote the components
propagatingsor decreasingd along1y and2y directions, re-
spectively. Anduinc denotes the column vector composed of
the Fourier coefficients of the incident light. In the layer-
KKR method, the field amplitudes at thej th and s j +1dth
interfaces can be related by17
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Fu j+1
+

u j
− G = 3T̃++ R̃−+

R̃+− T̃−− 4F u j
+

u j+1
− G , s2d

whereu j
± is the column vector composed of the Fouier coef-

ficients of the forwards1d and backwards2d propagating

mode at thej th interface, andT̃ and R̃ represent the trans-
mission and reflection matrices characterizing the diffraction
properties of the gratingsbetween the two neighboring inter-
facesd to the incident plane wave with the wave vectork.

The scattering matricesT̃ and R̃ for a monolayer can be
directly calculated with a KKR method based on the expan-
sion of cylindrical harmonics.32

Using the above transmission and reflection matrices of

monolayer, the transmission matrixT̃N
++ and the reflection

matrix R̃N
−+ of N layers can also be obtained by a stable

recursive formulasbased on the scattering scheme in Ref.
32d. To solve a general case that there are two different back-
ground dielectric materials at two sides of the interface, a
scattering matrix of the homogenous plate29,30 can be added

to T̃N
++ andR̃N

−+. For the Bloch wave propagating through the
monolayer in PhC, the fields at each interface differ only by
a multiplicative phase shift. The eigenstatesfg+

T,g−
TgTd with

the eigenvaluem at each interface can be computed by the
transmission and reflection matrices of monolayerssee Ap-
pendix Ad. Following the treatment in Ref. 33, the important

reflection matrixR̃`
+− for the semi-infinite space with an in-

finite number of grating layers can also be deducedssee Ap-
pendix Bd.

For the semi-infinite PhC considered in Fig. 1, it can also
be treated as the composing of the frontN layers and the rear
semi-infinite layers. Considering that the dielectric material
outside PhC may be different from the background material
of PhC, the interface between the conventional dielectric ma-
terial and the PhC is chosen to be normal to all the inclusions

in the first layer. To obtain the coupling coefficient between
the plane wave in the conventional dielectric material and the
Bloch wave in the photonic crystal, one only needs to calcu-
late the field travelling through a few layers after the
dielectric-PhC interface, where the evanescent forward mode
has completely decayed, e.g., the field is a superposition of
the pure bulk guided mode. At theN+1 interfacesbetween
the frontN layers and the rear semi-infinity system, see Fig.
1d, one can apply Eq.s2d to obtain

uN+1
+ = T̃N

++uinc + R̃N
−+uN+1

− , s3ad

uN+1
− = R̃`

+−uN+1
+ . s3bd

In the above equation,uinc is the column vector composed of

the Fourier coefficients of the incident light, andR̃N
−+, T̃N

++

are the transmission and reflection matrices for the frontN
layers. For there is no backward wave in the semi-infinity
system,uN+1

− has only the contribution from theuN+1
+ in Eq.

s3bd. The field excited by the incident field at theNth inter-
face is then obtained by

FuN+1
+

uN+1
− G =F I

R̃`
+−GsI − R̃N

−+R̃`
+−d−1

T̃N
++uinc. s4d

And the reflectance can be easily obtained from

uref = R̃N
+−uinc + T̃N

−−uN+1
− , s5d

whereuref is the column vector composed of the Fouier co-
efficients of different reflection orders. Though reflected
waves with high diffraction ordersspd are possible, many of
them are evanescent waves. Here we only consider those
propagating reflected wavessi.e., whengp is reald.

The portion of each eigenstate in the excited field can be
expressed by the following formula:

hm =
kguul2

kguglkuuul
, s6d

whereg and u denote the column vector of the eigenstate
sfg+

T,g−
TgTd with the eigenvaluem and the excited field

sfuN+1
+ T,uN+1

− TgTd of the PhC, respectively. In the cases that
the incident wave can exit only one eigenstate, the portion of
the eigenstate within the excited field should be 100%, i.e.,
hm=1. It is shown that in our numerical examples, the cal-
culated resulthm is almost 100% with an error less than 10−6,
even though only 16 layers are used in the calculations.

After obtaining the field at thesN+1dth interface, where
N can be arbitrary as long asN is big enough so that evanes-
cent forward waves have decayed significantly after traveling
through theseN layersfi.e., the field at thesN+1dth interface
is simply a superposition of pure Bloch modesg, the time-
average energy fluxkSpcl along they-direction can be easily
calculated.33 The wave coupling coefficient between the di-
electric medium and the photonic crystal can be defined in
the following formula:

FIG. 1. The semi-infinite PhC structure consists of the frontN
layers and the rear semi-infinite layers.uN+1

± denotes the field am-
plitude at theN+1 interfacesbetween the frontN layers and the rear
semi-infinity systemd.
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c =
kSpcl
kSinl

, s7d

where kSpcl and kSinl represent the time-average power
fluxes along they direction of the excited field and the inci-
dent field, respectively.

III. COUPLING EFFICIENCY FOR PHOTONIC
CRYSTALS WITH NEGATIVE REFRACTION

We first consider a 2D photonic crystal with a triangular
lattice of air holes. As assumed in Ref. 11, the background
material is chosen as GaAssn=3.6d and the radius of the air
holes is 0.4a, where a is the lattice constant. It has been
shown that under the TM polarizationsonly the electric field
along thez directiond, the shape of the EFS is almost circular

at the second band for a frequency window betweenv
=0.29 and 0.34s2pc/ad, which is similar to that of a conven-
tional isotropic dielectric material. Thus an effective refrac-
tive index can be defined as that for the dielectric material.
On the other hand, the propagation direction of light beams
in any medium is given by the energy velocity vector. It has
been proved that in PhCs, as for homogeneous materials, the
energy velocity vector equals to the group velocity vector
vg.

34,35 By definition the group velocity vectorvg=¹kv is
always oriented perpendicular to the EFS in the direction
along which the frequencyv is increasing. For the second
band of the PhC, the group velocity vector is pointed inward
from the EFS, which means a negative refraction.11 There-
fore, an effective negative refractive index can be obtained,
in particular,neff=−1 at the frequencyv=0.31s2pc/ad.

It is known that there is no reflection at the interface be-
tween a negative index materialn=−1 and a conventional
dielectric materialn=1 sRef. 9d fsee Fig. 2sadg. In other
words, the coupling coefficient at any incident angle is al-
ways 100%. However, for the air-PhC interface with the pho-
tonic crystal ofneff=−1 fsee Fig. 2sbdg, results are quite dif-
ferent. Employing the layers-KKR method given in the
preceding section, the coupling coefficients are shown in Fig.
3 for two common interfaces,sa1d normal to theG−M direc-
tion, andsb1d normal to theG−K direction, respectively, at
the frequencyv=0.31s2pc/ad . Several significant features
can be seen in Fig. 3. First, the coupling coefficient is never
close to 100%. For the interface normal to theG-M direction,
the maximum coupling coefficient is only about 65%. The
coupling coefficient actually drops down to zero when the
incident angle increases. Second, the coupling coefficient at
the interface normal to theG-K direction is always less than
1%. For the normal incident, the coupling coefficient is zero,
that is, the normal incident plane wave cannot excite the
Bloch wave in the PhC. At larger angles the coupling coef-
ficient increases a little bit, reaches the first maximum at
about incident angle 30°si.e., along theG-M directiond, and

FIG. 2. Schematic diagram of light propagation:sad from air to
the negative index material withn=−1 sbd from the air to the PhC
with an effective refractive indexneff=−1.

FIG. 3. sColor onlined For air-PhC interfaces, the coupling coefficients at the different interfacesa1d normal to theG-M direction, and
sb1d normal to theG-K direction, at the frequencyv=0.31s2pc/ad. The reflection coefficients are plotted insa2d andsb2d for these two case,
respectively. The total line insa2d andsb2d denotes the sum of all propagation order reflectance. Herekx is thex component of the incident
wave vector andk0 is the wave number in the vacuum.
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the second maximum for the larger angle near 75°.
The reflection coefficients for each case can also be ob-

tained from Eq.s5d, and are plotted in Figs. 3sa2d and 3sb2d,
respectively. It is interesting to notice that, for both cases,
most of the reflection is from the zeroth order of light, and
the contribution from high-order light is negligible.

To illustrate the previous results, several simulations are
made by using a finite-difference time-domainsFDTDd
method.36 A Gaussian beam with the frequencyv
=0.31s2pc/ad is launched with a certain incident anglef
into the different PhC slabs, where the surface interfaces are
normal to theG-M direction s12 PhC layersd or the G-K
direction s20 PhC layersd. Figure 4 shows the stable field
distribution sEzd for the Gaussian beam with different inci-
dent anglessf=0° and 30°d. The transmission can be esti-
mated from the FDTD simulations by calculating the energy
flux along they direction. In the case of the surface interface
normal to theG-M direction, the transmission is 19.04% for
f=0° and 18.91% forf=30°. However, it is clear that the
beam is very difficult to propagate through the PhC slab with

the surface interface normal to theG-K direction. The trans-
mission is only 1.5310-6 for f=0° and 0.018% forf=30°.
These are in agreement with our previous calculations by the
layer-KKR method, though the values are different since
only a finite-size PhC slab is considered here.

The phenomena of the above highly angular dependence
on the coupling coefficient can be explained by the symme-
try mismatch between modes. On the high symmetric axes in
the Brillouin zone, the symmetry of the bulk Bloch modes
can be classified by the group theory.35,37 The group theory
tells that the eigenfunction is an irreducible representation of
the point group. Fork along theG-M direction or along the
G-K direction, modes have aC1h symmetry, which corre-
sponds to two different irreducible representations.35 It
means that the field can be classified as an even or odd sym-
metry with respect to the mirror plane along the wave vector.
By the plane-wave expansion approach, the field distribu-
tions of the bulk modes at the frequencyv=0.31s2pc/ad,
with the Bloch wave vectorsk in the G-M direction and the
G-K direction are shown in Fig. 5. It is clear that the bulk
mode has even symmetry for the Bloch wave vectorsk in the
G-M direction, and odd symmetry for the Bloch wave vec-
torsk in the G-K direction. Since the external plane wave at
normal incidence is of even symmetry, only the Bloch waves
with an even symmetry can be excited.16,37,38 Due to this
symmetry mismatch, the coupling coefficient at the interface
normal to theG-K direction is zero at the normal incidence
and always small at other near incident anglesfsee Fig.
3sb1dg. The maximal coupling coefficient obtained at nearly
630° incident angle can also be easily explained if we take
into account that the wave vector for this excited Bloch wave
is nearly at theG-M direction.

In Fig. 3sb1d, the coupling coefficient maximum at large
angless60°–90°, i.e.,Î3/2,kx/k0,1d is mainly due to the
influence of neighboring Brillouin zones. The equal-
frequency contours at the frequencyv=0.31s2pc/ad are
shown in Fig. 6. One can find that there is a regionsbetween
the dotted linesd, in which the transverse wave vector along
the interface direction crosses the equal-frequency contours
in the neighboring Brillouin zones. It is known that the par-
allel component of the wave vector should be conserved. For
Î3/2,kx/k0,1, the wave vector of the Bloch wave in the

FIG. 4. sColor onlined The stable fieldsEzd distribution of inci-
dent Gaussian beams at the frequencyv=0.31s2pc/ad. sad andsbd
are for the surface interfaces of the PhC slab normal to theG-M
direction, andscd andsdd are for the surface interfaces normal to the
G-K direction. The arrows indicate the incident angle,f=0° in sad
and scd andf=30° in sbd and sdd.

FIG. 5. sColor onlined The Ez

field distribution of the bulk
modes of the photonic crystal at
the frequency v=0.31s2pc/ad,
where sad corresponds to the
Bloch wave vectork at the G-M
direction, andsbd corresponds tok
at theG-K direction.
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PhC is allowed not only in the first Brillouin zonesk1d, but
also in the other Brillouin zonesse.g.,k2d. This accounts for
the coupling enhancement forÎ3/2,kx/k0,1.

For further insight on the coupling another example of a
triangular photonic crystal is studied. The photonic crystal
consists of the triangular lattice of air-holes with the radius
r =0.4a in the background materialn=3.24. The band struc-
ture for the TM mode and the equal-frequency surface have
been given in Ref. 12. For the TM mode at the frequency
photonic crystal is quite different from that between two con-
ventional isotropic materials. The distinction of the coupling
mainly arises from the characteristics of Bloch waves in the
photonic crystalse.g., the eigenstate symmetry and the excit-
ing of high-order Bloch modesd. It also means that the equal-
frequency surface can define the propagation direction in the
photonic crystal, but not guarantee that the optical property
of the photonic crystal can bev=0.325s2pc/ad, the resulted
effective refractive index isneff=−0.73.

The dielectric medium outside the PhC is the same as the
background material of the PhC. Figures 7sa1d and 7sb1d
show the calculated coupling coefficients against the incident
anglessolid lines, case Ad. Figure 7sa1d also gives the cou-
pling coefficients between two conventional isotropic dielec-
tric media with n=3.24 and n=0.73, calculated by the
Fresnel transmission formulassdashed-dotted lines, case Bd.
Similar as the previous example, the coupling coefficient is
quite different for two interfaces. For the interface normal to
the G−M direction, the coupling coefficient of the case A is
largely enhanced compared to that of case B. The maximum
coupling here is about 89%, while the value is only 60% for

the dielectric-dielectric coupling. The coupling coefficient
rapidly drops down when the incident angle increases. When
the incident angle is larger than 13°, the total internal reflec-
tion happens. The coupling coefficient is then zero. For even
larger incident angless49°d, the wave can then couple with
the high-order Bloch waves12 outside the first Brillouin zone,
though the maximal coupling coefficient is only about 20%.
On the other hand, the coupling coefficient at the interface
normal to theG−K direction fFig. 7sb1dg has a very strange
behavior. For small incident angles inside the first Brillouin
zone, the coupling coefficient is almost zero due to the mode
symmetry mismatch discussed above. At the larger incident
angles the coupling coefficient becomes much larger and also
obtains the maximal at about630° incident angle, due to the
incident wave vector being nearly along theG−M direction.
Figures 7sa2d and 7sb2d show the reflectance for the two
different cases. It can be seen that the contribution from high
order reflection is significant, owing to a large incident plane
wave vectork sthe material index here isn=3.24d.

IV. CONCLUSION

In conclusion, a comprehensive analysis of the coupling
coefficients between plane waves in conventional dielectric
media and the Bloch waves of photonic crystals with nega-
tive refractions are performed by the layer-KKR method. It is
found that the coupling coefficient is highly angular depen-
dent even for an interface between airsn=1d and a photonic
crystal with effective refractive indexsneff=−1d. Therefore,
even if the photonic crystal has an effective negative refrac-
tive index well defined from the equal frequency contours,
the coupling between the plane wave in the dielectric mate-
rial and the Bloch wave in the photonic crystal is quite dif-
ferent from that between two conventional isotropic materi-
als. The distinction of the coupling mainly arises from the
characteristics of Bloch waves in the photonic crystalse.g.
the eigenstate symmetry and the exciting of high-order Bloch
modesd. It also means that the equal-frequency surface can
define the propagation direction in the photonic crystal, but
not guarantee that the optical property of the photonic crystal
can be the same as that of a conventional dielectric material.
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APPENDIX A: THE EIGENSTATES OF
PHOTONIC CRYSTALS

To obtain the eigenstates, only a translation operator is
required to directly describe the relation of the field at the
two interfaces of monolayer, which can be derived from
above scattering matrices in Eq.s2d,

FIG. 6. The equal frequency surface plot for the frequencyv
=0.31s2pc/ad. The plane wavek is incident on the interface nor-
mal to theG-K direction. For the larger incident anglessi.e., the
wave vectork in the region of the dotted lined, the plane wave can
excite Bloch waves in PhC with the Bloch wave vectors,k1 andk2.
HereG is the reciprocal lattice vector.
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Fu j+1
+

u j+1
− G = TFu j

+

u j
−G , sA1d

where the monolayer translation operator is given by

T = 3T̃++ − R̃−+sT̃−−d−1R̃+− R̃−+sT̃−−d−1

− sT̃−−d−1R̃+− sT̃−−d−1 4 . sA2d

For the Bloch wave propagating through a monolayer in
PhC, the fields between layers differ only by a multiplicative
phase shift. Therefore, under the Bloch condition the follow-
ing eigenvalue equation between grating layers can be
formed:

TFg+

g−G = mFg+

g−G , sA3d

wherem is the phase shift and

Fg+

g−G
is the eigenvector of the Bloch state. The eigenvaluem and
the corresponding eigenvector can be obtained by the stan-
dard numerical techniques.

APPENDIX B: THE REFLECTION MATRIX R̃`
+−

FOR THE SEMI-INFINITE SPACE

The set of eigenvalues and eigenvectors can be grouped
into forward and backward propagating states.33 Since the
field of evanescent modes must decay in the propagation
direction, the other eigenvectors corresponding toumu
,1 sorumu.1d must be the forwardsor backwardd propagat-
ing waves. For Bloch waves in a lossless structure, the ei-
genvalues must haveumu=1. To classify the Bloch waves, the
group velocity of a Bloch mode in the PhC can be deter-
mined from the direction of the time-average energy flux

FIG. 7. sColor onlined The calculated coupling coefficientsssolid linesd and the reflection coefficients for interfaces between the dielectric
medium sn=3.24d and the photonic crystalsneff=−0.73d at the frequencyv=0.325s2pc/ad. The interfaces aresa1d normal to theG−M
direction, andsb1d normal to theG−K direction. The dashed-dotted lines are the coupling coefficients between two conventional isotropic
dielectric media withn=3.24 andn=0.73, respectively, calculated by the Fresnel transmission formulas. The reflection coefficients are
plotted insa2d andsb2d for these two cases, respectively. The total line insa2d andsb2d denotes the sum of all propagation order reflectance.
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through the unit cell, where the energy fluxkSpcl along the
y-direction can be obtained from the eigenvectors.33 If the
flux is positive, the Bloch wave is associated with the for-
ward propagation, and vice versa.

For a semi-infinite PhC, there is no rear surfacesi.e., the
interface between the PhC and another materiald to generate
the backward propagating modes. All the backward propa-
gating modes are thus generated by the forward propagating
modes of the PhC. Let us introduce the matrixG+, whose
columns comprise of the eigenvectorsg+ of the forward
modes. In a similar way the matrixG− can be obtained for
the backward modes. Thus any field at the interface between
the gratings can be rewritten as a linear combination of the
forward propagating modes,

Fu+

u−G = FG+

G−
Gc, sB1d

wherec is the expansion coefficients. Eliminating the coef-
ficientsc yields

u− = R̃`
+−u+,

where the reflection matrixR̃`
+− of the semi-infinite space, a

matrix operator connecting the backward propagating modes
and the forward propagating modes, can be given by

R̃`
+− = G−G+

−1. sB2d
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