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We show that quantum systems of extended objects naturally give rise to a large class of exotic phases—
namely topological phases. These phases occur when extended objects, called “string-nets,” become highly
fluctuating and condense. We construct a large class of exactly soluble 2D spin Hamiltonians whose ground
states are string-net condensed. Each ground state corresponds to a different parity invariant topological phase.
The models reveal the mathematical framework underlying topological phases: tensor category theory. One of
the Hamiltonians—a spin-1/2 system on the honeycomb lattice—is a simple theoretical realization of a uni-
versal fault tolerant quantum computer. The higher dimensional case also yields an interesting result: we find
that 3D string-net condensation naturally gives rise to both emergent gauge bosons and emergent fermions.
Thus, string-net condensation provides a mechanism for unifying gauge bosons and fermions in 3 and higher
dimensions.
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I. INTRODUCTION

For many years, it was thought that Landau’s theory of
symmetry breaking1 could describe essentially all phases and
phase transitions. It appeared that all continuous phase tran-
sitions were associated with a broken symmetry. However,
after the discovery of the fractional quantum HallsFQHd
effect, it was realized that FQH states contain a new type of
order—topological order—that is beyond the scope of Lan-
dau theorysfor a review, see Ref. 2d. Since then the study of
topological phases in condensed matter systems has been an
active area of research. Topological phases have been inves-
tigated in a variety of theoretical and experimental systems,
ranging from FQH systems,3–6 quantum dimer models,7–10

and quantum spin models,11–19 to quantum computers,20,21

and superconducting states.22,23 This work has revealed a
host of interesting theoretical phenomena and applications,
including fractionalization, anyonic quasiparticles, and fault
tolerant quantum computation. Yet, a general theory of topo-
logical phases is lacking.

One way to reveal the gaps in our understanding is to
compare with Landau’s theory of symmetry breaking phases.
Landau theory is based onsad the physical concepts of long
range order, symmetry breaking, and order parameters, and
sbd the mathematical framework of group theory. These tools
allow us to solve three important problems in the study of
ordered phases. First, they provide low energy effective theo-
ries for general ordered phases: Ginzburg-Landau field
theories.24 Second, they lead to a classification of symmetry-
breaking states. For example, we know that there are only
230 different crystal phases in three dimensions. Finally, they
allow us to determine the universal properties of the quasi-
particle excitationsse.g., whether they are gapped or gap-
lessd. In addition, Landau theory provides a physical picture
for the emergence of ordered phases—namely particle con-
densation.

Several components of Landau theory have been success-
fully reproduced in the theory of topological phases. For ex-
ample, the low energy behavior of topological phases is rela-
tively well understood on a formal level: topological phases

are gapped and are described by topological quantum field
theoriessTQFT’sd.25 The problem of physically characteriz-
ing topological phases has also been addressed. Reference 2
investigated the “topological order”sanalogous to long range
orderd that occurs in topological phases. The author showed
that topological order is characterized by robust ground state
degeneracy, nontrivial particle statistics, and gapless edge
excitations.3,13,26 These properties can be used to partially
classify topological phases. Finally, the quasiparticle excita-
tions of topological phases have been analyzed in particular
cases. Unlike the symmetry breaking case, the emergent par-
ticles in topologically orderedsor more generally, quantum
orderedd states includesdeconfinedd gauge bosons27,28 as
well as fermionssin three dimensionsd29,30 and anyonssin
two dimensionsd.31 Fermions and anyons can emerge as col-
lective excitations of purely bosonic models.

Yet, the theory of topological phases is still incomplete.
The theory lacks two important components: a physical pic-
ture sanalogous to particle condensationd that clarifies how
topological phases emerge from microscopic degrees of free-
dom, and a mathematical frameworksanalogous to group
theoryd for characterizing and classifying these phases.

In this paper, we address these two issues for a large class
of topological phases which we call “doubled” topological
phases. On a formal level, “doubled” topological phases are
phases that are described by a sum of two TQFT’s with op-
posite chiralities. Physically, they are characterized by parity
and time reversal invariance. Examples include all discrete
lattice gauge theories, and all doubled Chern-Simons theo-
ries. It is unclear to what extent our results generalize to
chiral topological phases—such as in the FQH effect.

We first address the problem of the physical picture for
doubled topological phases. We argue that in these phases,
local energetic constraints cause the microscopic degrees of
freedom to organize into effective extended objects called
“string-nets.” At low energies, the microscopic Hamiltonian
effectively describes the dynamics of these extended objects.
If the kinetic energy of the string-nets dominates the string-
net tension, the string-nets “condense.” large string-nets with
a typical size on the same order as the system size fill all of
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spacessee Fig. 1d. The result is a doubled topological phase.
Thus, just as traditional ordered phases arise via particle con-
densation, topological phases originate from “string-net con-
densation.”

This physical picture naturally leads to a solution to the
second problem—that of finding a mathematical framework
for classifying and characterizing doubled topological
phases. We show that each topological phase is associated
with a mathematical object known as a “tensor category.”32

Here, we think of a tensor category as a 6 index objectFlmn
ijk

which satisfies certain algebraic equationss9d. The math-
ematical object Flmn

ijk characterizes different topological
phases and determines the universal properties of the quasi-
particle excitationsse.g., statisticsd just as the symmetry
group does in Landau theory. We feel that the mathematical
framework of tensor categories, together with the physical
picture of string-net condensation provides a general theory
of sdoubledd topological phases.

Our approach has the additional advantage of providing
exactly soluble Hamiltonians and ground state wave func-
tions for each of these phases. These exactly soluble Hamil-
tonians are local bosonic modelssor spin modelsd. They re-
alize all discrete gauge theoriessin any dimensiond and all
doubled Chern-Simons theoriesfin s2+1d dimensionsg. One
of the Hamiltonians—a spin-1/2 model on the honeycomb
lattice—is a simple theoretical realization of a universal fault
tolerant quantum computer.33 The higher dimensional models
also yield an interesting result: we find thats3+1dD string-
net condensation naturally gives rise to both emerging gauge
bosons and emerging fermions. Thus, string-net condensa-
tion provides a mechanism for unifying gauge bosons and
fermions ins3+1d and higher dimensions.

We feel that this constructive approach is one of the most
important features of this paper. Indeed, in the mathematical
community it is well known that topological field theory,
tensor category theory and knot theory are all intimately
related.34–36 Thus it is not surprising that topological phases

are closely connected to tensor categories and string-nets.
The contribution of this paper is our demonstration that these
elegant mathematical relations have a concrete realization in
condensed matter systems.

The paper is organized as follows. In Sec. II and III, we
introduce the string-net picture, first in the case of decon-
fined gauge theories, and then in the general case. We argue
that all doubled topological phases are described by string-
net condensation.

The rest of the paper is devoted to developing a theory of
string-net condensation. In Sec. IV, we consider the case of
s2+1d dimensions. In parts A and B, we construct string-net
wave functions and Hamiltonians for eachs2+1dD string-net
condensed phase. Then, in part C, we use this mathematical
framework to calculate the universal properties of the quasi-
particle excitations in each phase. In Sec. V, we discuss the
generalization to 3 and higher dimensions. In the last section,
we present several examples of string-net condensed states—
including a spin-1/2 model theoretically capable of fault tol-
erant quantum computation. The main mathematical calcula-
tions can be found in the Appendix.

II. STRING-NETS AND GAUGE THEORIES

In this section, we introduce the string-net picture in the
context of gauge theory.27,37,38We point out that all decon-
fined gauge theories can be understood as string-net conden-
sates where the strings are essentially electric flux lines. We
hope that this result provides intuition forsand motivatesd the
string-net picture in the general case.

We begin with the simplest gauge theory—Z2 lattice
gauge theory.39 The Hamiltonian is

HZ2
= − Uo

i
si

x − to
p

p
edges ofp

sj
z, s1d

wheresx,y,z are the Pauli matrices, andI , i, p label the sites,
links, and plaquettes of the lattice. The Hilbert space is
formed by states satisfying

p
legs ofI

si
xuFl = uFl, s2d

for every siteI . For simplicity we will restrict our discussion
to trivalent lattices such as the honeycomb latticessee
Fig. 2d.

It is well known thatZ2 lattice gauge theory is dual to the
Ising model ins2+1d dimensions.40 What is less well known
is that there is a more general dual description ofZ2 gauge
theory that exists in any number of dimensions.41 To obtain
this dual picture, we view links withsx=−1 as being occu-
pied by a string and links withsx= +1 as being unoccupied.
The constraints2d then implies that only closed strings are
allowed in the Hilbert spacesFig. 2d.

In this way, Z2 gauge theory can be reformulated as a
closed string theory, and the Hamiltonian can be viewed as a
closed string Hamiltonian. The electric and magnetic energy
terms have a simple interpretation in this dual picture: the
“electric energy” −Uoisi

x is a string tension while the “mag-
netic energy” −toppedges ofpsj

z is a string kinetic energy. The

FIG. 1. A schematic phase diagram for the generic string-net
Hamiltonians3d. When t /U sthe ratio of the kinetic energy to the
string tensiond is small the system is in the normal phase. The
ground state is essentially the vacuum with a few small string-nets.
When t /U is large the string-nets condense and large fluctuating
string-nets fill all of space. We expect a phase transition between the
two states at somet /U of order unity. We have omitted string labels
and orientations for the sake of clarity.
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physical picture for the confining and deconfined phases is
also clear. The confining phase corresponds to a large electric
energy and hence a large string tensionU@ t. The ground
state is therefore the vacuum configuration with a few small
strings. The deconfined phase corresponds to a large mag-
netic energy and hence a large kinetic energy. The ground
state is thus a superposition of many large string configura-
tions. In other words, the deconfined phase ofZ2 gauge
theory is a quantum liquid of large strings—a “string con-
densate”fFig. 3sadg.

A similar, but more complicated, picture exists for other
deconfined gauge theories. The next layer of complexity is
revealed when we consider other Abelian theories, such as
Us1d gauge theory. As in the case ofZ2, Us1d lattice gauge
theory can be reformulated as a theory of electric flux lines.
However, unlikeZ2, there is more then one type of flux line.
The electric flux on a link can take any integral value inUs1d
lattice gauge theory. Therefore, the electric flux lines need to
be labeled with integers to indicate the amount of flux car-

ried by the line. In addition, the flux lines need to be oriented
to indicate the direction of the flux. The final point is that the
flux lines do not necessarily form closed loops. It is possible
for three flux linesE1, E2, E3 to meet at a point, as long as
Gauss’ law is obeyed:E1+E2+E3=0. Thus, the dual formu-
lation of Us1d gauge theory involves not strings, but more
general objects: networks of stringssor “string-nets”d. The
strings in a string-net are labeled, oriented, and obey branch-
ing rules, given by Gauss’ lawfFig. 3sbdg.

This “string-net” picture exists for general gauge theories.
In the general case, the stringsselectric flux linesd are labeled
by representations of the gauge group. The branching rules
sGauss’ lawd require that if three stringsE1, E2, E3 meet at a
point, then the product of the representationsE1 ^ E2 ^ E3
must contain the trivial representation.(For example, in the
case ofSUs2d, the strings are labeled by half-integersE
=1/2,1,3/2,…, and the branching rules are given by the
triangle inequality:hE1,E2,E3j are allowed to meet at a point
if and only if E1øE2+E3, E2øE3+E1, E3øE1+E2, and
E1+E2+E3 is an integerfFig. 3scdg).37 These string-nets pro-
vide a general dual formulation of gauge theory. As in the
case ofZ2, the deconfined phase of the gauge theory always
corresponds to highly fluctuating string-nets—a string-net
condensate.

III. GENERAL STRING-NET PICTURE

Given the large scope of gauge theory, it is natural to
wonder if string-nets can describe more general topological
phases. In this section we will discuss this more general
string-net picture.sActually, we will not discuss the most
general string-net picture. We will focus on a special case for
the sake of simplicity. See Appendix A for a discussion of
the most general pictured.

We begin with a more detailed definition of
“string-nets.”52,53 As the name suggests, string-nets are net-
works of strings. We will focus on trivalent networks where
each node or branch point is attached to exactly 3 strings.
The strings in a string-net are oriented and come in various
“types.” Only certain combinations of string types are al-
lowed to meet at a node or branch point. To specify a par-
ticular string-net model, one needs to provide the following
data.

s1d String types. The number of different string typesN.
For simplicity, we will label the different string types with
the integersi =1,… ,N.

s2d Branching rules. The set of all triplets of string-types
hhi , j ,kj…j that are allowed to meet at a point.sSee Fig. 4.d

s3d String orientations. The dual string typei* associated

FIG. 2. sColor onlined The constraint termplegs ofIsi
x and mag-

netic termpedges ofpsj
z in Z2 lattice gauge theory. In the dual picture,

we regard the links withsx=−1 as being occupied by a string, and
the links with sx= +1 as being unoccupied. The constraint term
then requires the strings to be closed—as shown on the right.

FIG. 3. Typical string-net configurations in the dual formulation
of sad Z2, sbd Us1d, andscd SUs2d gauge theory. In the case ofsad Z2

gauge theory, the string-net configurations consist of closedsnonin-
tersectingd loops. Insbd Us1d gauge theory, the string-nets are ori-
ented graphs with edges labeled by integers. The string-nets obey
the branching rulesE1+E2+E3=0 for any three edges meeting at a
point. In the case ofscd SUs2d gauge theory, the string-nets consist
of sunorientedd graphs with edges labeled by half-integers 1/2,1,
3/2,…. The branching rules are given by the triangle inequality:
hE1,E2,E3j are allowed to meet at a point if and only ifE1øE2

+E3, E2øE3+E1, E3øE1+E2, andE1+E2+E3 is an integer.

FIG. 4. The orientation convention for the branching rules.
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with each string typei. The duality must satisfysi*d* = i. The
type-i* string corresponds to the type-i string with the oppo-
site orientation. Ifi = i* , then the string is unoriented.sSee
Fig. 5.d

This data describes the detailed structure of the string-
nets. The Hilbert space of the string-net model is then de-
fined in the natural way. The states in the Hilbert space are
simply linear superpositions of different spatial configura-
tions of string-nets.

Once the Hilbert space has been specified, we can imag-
ine writing down a string-net Hamiltonian. The string-net
Hamiltonian can be any local operator which acts on quan-
tum string-net states. A typical Hamiltonian is a sum of po-
tential and kinetic energy pieces:

H = UHU + tHt. s3d

The kinetic energyHt gives dynamics to the string-nets,
while the potential energyHU is typically some kind of string
tension. WhenU@ t, the string tension dominates and we
expect the ground state to be the vacuum state with a few
small string-nets. On the other hand, whent@U, the kinetic
energy dominates, and we expect the ground state to consist
of many large fluctuating string-nets. We expect that there is
a quantum phase transition between the two states at some
t /U on the order of unity.sSee Fig. 1.d Because of the anal-
ogy with particle condensation, we say that the larget,
highly fluctuating string-net phase is “string-net condensed.”

This notion of string-net condensation provides a natural
physical mechanism for the emergence of topological phases
in real condensed matter systems. Local energetic constraints
can cause the microscopic degrees of freedom to organize
into effective extended objects or string-nets. If the kinetic
energy of these string-nets is large, then they can condense
giving rise to a topological phase. The type of topological
phase is determined by the structure of the string-nets, and
the form of string-net condensation.

But how general is this picture? In the previous section,
we pointed out that all deconfined gauge theories can be
viewed as string-net condensates. In fact, mathematical re-
sults suggest that the string-net picture is even more general.
In s2+1d dimensions, all so-called “doubled” topological
phases can be described by string-net condensationsprovided
that we generalize the string-net picture as in Appendix Ad.34

Physically, this means that the string-net picture can be ap-
plied to essentially all parity and time reversal invariant to-
pological phases ins2+1d dimensions. Examples include all
discrete gauge theories, and all doubled Chern-Simons theo-
ries. The situation for dimensiond.2 is less well under-
stood. However, we know that string-net condensation quite
generally describes all lattice gauge theories with or without
emergent Fermi statisticsssee Sec. Vd.

IV. STRING-NET CONDENSATION IN „2+1… DIMENSIONS

A. Fixed-point wave functions

In this section, we attempt to capture the universal fea-
tures of string-net condensed phases ins2+1d dimensions.

Our approach, inspired by Refs. 35–37 and 42–44, is based
on the string-net wave function. We construct a special
“fixed-point” wave function for each string-net condensed
phase. We believe that these “fixed-point” wave functions
capture the universal properties of the corresponding phases.
Each “fixed-point” wave function is associated with a six
index objectFlmn

ijk that satisfies certain algebraic equations
s9d. In this way, we derive a one-to-one correspondence be-
tween doubled topological phases and tensor categoriesFlmn

ijk .
We would like to mention that a related result on the classi-
fication of s2+1dD topological quantum field theories was
obtained independently in the mathematical community.34

Let us try to visualize the wave function of a string-net
condensed state. Though we have not defined string-net con-
densation rigorously, we expect that a string-net condensed
state is a superposition of many different string-net configu-
rations. Each string-net configuration has a size typically on
the same order as the system size. The large size of the
string-nets implies that a string-net condensed wave function
has a nontrivial long distance structure. It is this long dis-
tance structure that distinguishes the condensed state from
the “normal” state.

In general, we expect that the universal features of a
string-net condensed phase are contained in the long distance
character of the wave functions. Imagine comparing two dif-
ferent string-net condensed states that belong to the same
quantum phase. The two states will have different wave
functions. However, by the standard RG reasoning, we ex-
pect that the two wave functions will look the same at long
distances. That is, the two wave functions will only differ in
short distance details—like those shown in Fig. 6.

Continuing with this line of thought, we imagine perform-
ing an RG analysis on ground state functions. All the states
in a string-net condensed phase should flow to some special
“fixed-point” state. We expect that the wave function of this
state captures the universal long distance features of the
whole quantum phase.sSee Fig. 7.d

In the following, we will construct these special fixed-
point wave functions. SupposeF is some fixed-point wave
function. We know thatF is the ground state of some fixed-
point HamiltonianH. Based on our experience with gauge
theories, we expect thatH is a sum of string kinetic energy
terms with no string tension terms:

FIG. 5. i and i* label strings with opposite orientations.

FIG. 6. Three pairs of string-net configurations that differ only
in their short distance structure. We expect string-net wave func-
tions in the same quantum phase to only differ by these short dis-
tance details.
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H = tHt = to
i

Ht,i .

In particular,H is unfrustrated, and the ground state wave
function minimizes the expectation values of all the kinetic
energy termshHtij simultaneously. Minimizing the expecta-
tion value of an individual kinetic energy termHt,i is equiva-
lent to imposing a local constraint on the ground state wave
function, namelyHt,iuFl=EiuFl swhereEi is the smallest ei-
genvalue ofHt,id. We conclude thatthe wave functionF can
be specified uniquely by local constraint equations. The local
constraints are linear relations between several string-net am-
plitudes FsX1d, FsX2d, FsX3d…, where the configurations
X1, X2, X3… only differ by local transformations.

To derive these local constraints from first principles is
difficult, so we will use a more heuristic approach. We will
first guess the form of the local constraintssi.e., guess the
form of the fixed-point wave functiond. Then, in the next
section, we will construct the fixed-point Hamiltonian and
show that its ground state wave function does indeed satisfy
these local relations. Our ansatz is that the local constraints
can be put in the following graphical form:

s4d

s5d

s6d

s7d

Here, i, j , k etc. are arbitrary string types and the shaded
regions represent arbitrary string-net configurations. Thedi
are complex numbers. The 6 index symbolFkln

ijm is a complex

numerical constant that depends on 6 string typesi, j , m, k, l,
and n. If one or more of the branchingshi , j ,mj, hk, l ,m*j,
hi ,n, lj, h j ,k,n*j is illegal, the value of the symbolFkln

ijm is
unphysical. However, for simplicity, we will setFkln

ijm=0 in
this case.

The local ruless4d–s7d are written using a new notational
convention. According to this convention, the indicesi, j , k
etc., can take on the valuei =0 in addition to theN physical
string typesi =1,… ,N. We think of the i =0 string as the
“empty string” or “null string.” It represents empty space—
the vacuum. Thus we can convert labeled string-nets to our
old convention by simply erasing all thei =0 strings. The
branching rules and dualities associated withi =0 are defined
in the obvious way: 0* =0, andhi , j ,0j is allowed if and only
if i = j * . Our convention serves two purposes: it simplifies
notation feach equation in Eqs.s4d–s7d represents several
equations with the old conventiong, and it reveals the math-
ematical framework underlying string-net condensation.

We now briefly motivate these rules. The first rules4d
constrains the wave functionF to be topologically invariant.
It requires the quantum mechanical amplitude for a string-net
configuration to only depend on the topology of the configu-
ration: two configurations that can be continuously deformed
into one another must have the same amplitude. The motiva-
tion for this constraint is our expectation that topological
string-net phases have topologically invariant fixed-points.

The second rules5d is motivated by the fundamental prop-
erty of RG fixed-points: scale invariance. The wave function
F should look the same at all distance scales. Since a closed
string disappears at length scales larger than the string size,
the amplitude of an arbitrary string-net configuration with a
closed string should be proportional to the amplitude of the
string-net configuration alone.

The third rules6d is similar. Since a “bubble” is irrelevant
at long length scales, we expect

But if i Þ j , the configuration

is not allowed:

s8d

We conclude that the amplitude for the bubble configuration
vanishes wheni Þ j .

The last rule is less well-motivated. The main point is that
the first three rules are not complete: another constraint is
needed to specify the ground state wave function uniquely.
The last rules7d is the simplest local constraint with this
property. An alternative motivation for this rule is the fusion
algebra in conformal field theory.45

The local ruless4d–s7d uniquely specify the fixed-point
wave functionF. The universal features of the string-net
condensed state are captured by these rules. Equivalently,

FIG. 7. A schematic RG flow diagram for a string-net model
with 4 string-net condensed phasesa, b, c, andd. All the states in
each phase flow to fixed-points in the long distance limit. The cor-
responding fixed-point wave functionsFa, Fb, Fc, andFd capture
the universal long distance features of the associated quantum
phases. Our ansatz is that the fixed-point wave functionsF are
described by local constraints of the forms4d–s7d.
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they are captured by the six index objectFkln
ijm, and the num-

bersdi.
However, not every choice ofsFkln

ijm, did corresponds to a
string-net condensed phase. In fact, a generic choice ofsFkln

ijm,
did will lead to constraintss4d–s7d that are not self-consistent.
The onlysFkln

ijm, did that give rise to self-consistent rules and a
well-defined wave functionF are sup to a trivial rescalingd
those that satisfy

Fj* i*0
i jk =

vk

viv j
di jk ,

Fkln
ijm = Fjin

lkm*
= Flkn*

jim = Fk*nl
imj vmvn

v jvl
,

o
n=0

N

Fkp*n
mlq Fmns*

jip Flkr*
js*n = Fq*kr*

jip Fmls*
riq*

, s9d

wherevi =vi* =Îdi sandv0=1d. sSee Appendix B.d Here, we
have introduced a new objectdi jk defined by the branching
rules:

di jk = H1, if hi, j,kj is allowed,

0, otherwise.
s10d

There is a one-to-one correspondence betweens2+1dD
string-net condensed phases and solutions of Eq.s9d. These
solutions correspond to mathematical objects known as ten-
sor categories.32 Tensor category theory is the fundamental
mathematical framework for string-net condensation, just as
group theory is for particle condensation. We have just
shown that it gives a complete classification ofs2+1dD
string-net condensed phasessor equivalently doubled topo-
logical phasesd: each phase is associated with a different so-
lution to Eq. s9d. We will show later that it also provides a
convenient framework for deriving the physical properties of
quasiparticles.

It is highly nontrivial to find solutions of Eq.s9d. How-
ever, it turns out each groupG provides a solution. The so-
lution is obtained bysad letting the string-type indexi run
over the irreducible representations of the group,sbd letting
the numbersdi be the dimensions of the representations and
scd letting the 6 index objectFkln

ijm be the 6j symbol of the
group. The low energy effective theory of the corresponding
string-net condensed state turns out to be a deconfined gauge
theory with gauge groupG. Another class of solutions can be
obtained from 6j symbols of quantum groups. It turns out
that in these cases, the low energy effective theories of the
corresponding string-net condensed states are doubled
Chern-Simons gauge theories. These two classes of solutions
are not necessarily exhaustive: Eq.s9d may have solutions
other than gauge theories or Chern-Simons theories. Never-
theless, it is clear that gauge bosons and gauge groups
emerge from string-net condensation in a very natural way.

In fact, string-net condensation provides a new perspec-
tive on gauge theory. Traditionally, we think of gauge theo-
ries geometrically. The gauge fieldAm is analogous to an
affine connection, and the field strengthFmn is essentially a
curvature tensor. From this point of view, gauge theory de-

scribes the dynamics of certain geometric objectsse.g., fiber
bundlesd. The gauge group determines the structure of these
objects and is introduced by hand as part of the basic defi-
nition of the theory. In contrast, according to the string-net
condensation picture, the geometrical character of gauge
theory is not fundamental. Gauge theories are fundamentally
theories of extended objects. The gauge group and the geo-
metrical gauge structure emerge dynamically at low energies
and long distances. A string-net system “chooses” a particu-
lar gauge group, depending on the coupling constants in the
underlying Hamiltonian: these parameters determine a
string-net condensed phase which in turn determines a solu-
tion to Eq. s9d. The nature of this solution determines the
gauge group.

One advantage of this alternative picture is that it unifies
two seemingly unrelated phenomena: gauge interactions and
Fermi statistics. Indeed, as we will show in Sec. V, string-net
condensation naturally gives rise to both gauge interactions
and Fermi statisticsfor fractional statistics ins2+1dDg. In
addition, these structures always appear together.29

B. Fixed-point Hamiltonians

In this section, we construct exactly soluble lattice spin
Hamiltonians with the fixed-point wave functionsF as
ground states. These Hamiltonians provide an explicit real-
ization of alls2+1dD string-net condensates and therefore all
s2+1dD doubled topological phasessprovided that we gen-
eralize these models as discussed in Appendix Ad. We would
like to mention that a related result was obtained indepen-
dently by researchers in the quantum computation
community.46

For everysFkln
ijm, did satisfying the self-consistency condi-

tionss9d and the unitarity conditions15d, we can construct an
exactly soluble Hamiltonian. Let us first describe the Hilbert
space of the exactly soluble model. The model is a spin
system on as2Dd honeycomb lattice, with a spin located on
each link of the lattice. Each “spin” can be inN+1 different
states labeled byi =0,1… ,N. We assign each link an arbi-
trary orientation. When a spin is in statei, we think of the
link as being occupied by a type-i string oriented in the ap-
propriate direction. We think of the type-0 string or null
string as the vacuumsi.e., no string on the linkd.

The exactly soluble Hamiltonian for our model is given
by

H = − o
I

QI − o
p

Bp, Bp = o
s=0

N

asBp
s, s11d

where the sums run over verticesI and plaquettesp of the
honeycomb lattice. The coefficientsas satisfyas* =as

* but are
otherwise arbitrary.

Let us explain the terms in Eq.s11d. We think of the first
termQI as an electric charge operator. It measures the “elec-
tric charge” at siteI , and favors states with no charge. It acts
on the 3 spins adjacent to the siteI :

s12d
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where di jk is the branching rule symbols10d. Clearly, this
term constrains the strings to obey the branching rules de-
scribed bydi jk. With this constraint the low energy Hilbert
space is essentially the set of all allowed string-net configu-
rations on a honeycomb lattice.sSee Fig. 8.d

We think of the second termBp as a magnetic flux opera-
tor. It measures the “magnetic flux” though the plaquettep
sor more precisely, the cosine of the magnetic fluxd and fa-
vors states with no flux. This term provides dynamics for the
string-net configurations.

The magnetic flux operatorBp is a linear combination of
sN+1d termsBp

s, s=0,1,… ,N. EachBp
s is an operator that

acts on the 12 links that are adjacent to vertices of the hexa-
gon p. sSee Fig. 8.d Thus, theBp

s are essentiallysN+1d12

3 sN+1d12 matrices. However, the action ofBp
s does not

change the spin states on the 6 outer links ofp. Therefore the
Bp

s can be block diagonalized intosN+1d6 blocks, each of

dimensionsN+1d63 sN+1d6. Let Bp,ghijkl
s,g8h8i8 j8k8l8sabcdefd, with

a,b,c…=0,1,… ,N, denote the matrix elements of these
sN+1d6 matrices:

s13d

Then the operatorsBp
s are defined by

Bp,ghijkl
s,g8h8i8 j8k8l8sabcdefd

= Fs*g8l8*
al*g Fs*h8g8*

bg*h Fs* i8h8*
ch* i Fs* j8i8*

di* j Fs*k8 j8*
ej*k Fs* l8k8*

fk* l s14d

ssee Appendix C for a graphical representation ofBp
sd. One

can check that the Hamiltonians11d is Hermitian if F satis-
fies

Fk* l*n*
i* j*m*

= sFkln
ijmd* s15d

in addition to Eq.s9d. Our model is only applicable to topo-
logical phases satisfying this additional constraint. We be-
lieve that this is true much more generally: only topological
phases satisfying the unitarity conditions15d are physically
realizable.

The Hamiltonians11d has a number of interesting proper-
ties, provided thatsFkln

ijm, did satisfy the self-consistency con-
ditions s9d, as follows.

s1d The Bp
s and QI ’s all commute with each other. Thus

the Hamiltonians11d is exactly soluble.
s2d Depending on the choice of the coefficientsas, the

system can be inN+1 different quantum phases.
s3d The choiceas=ds/oi=0

N di
2 corresponds to a topological

phase with a smooth continuum limit. The ground state wave
function for this parameter choice is topologically invariant,
and obeys the local ruless4d–s7d. It is precisely the wave
function F, defined on a honeycomb lattice. Furthermore,
QI , Bp are projection operators in this case. Thus, the ground
state satisfiesQI =Bp=1 for all I , p, while the excited states
violate these constraints.

Thus, the Hamiltonians11d with the above choice ofas
provides an exactly soluble realization of the doubled topo-
logical phase described byFkln

ijm. We can obtain some intu-
ition for this by considering the case whereFkln

ijm is the 6j
symbol of some groupG. In this case, it turns out thatQI and
Bp are precisely the electric charge and magnetic flux opera-
tors in the standard lattice gauge theory with groupG. Thus,
Eq. s11d is the usual Hamiltonian of lattice gauge theory,
except with no electric field term. This is nothing more than
the well-known exactly soluble Hamiltonian of lattice gauge
theory.20,39 In this way, our construction can be viewed as a
natural generalization of lattice gauge theory.

In this paper, we will focus on the smooth topological
phase corresponding to the parameter choiceas=ds/oi=0

N di
2

ssee Appendix Cd. However, we would like to mention that
the otherN quantum phases also have nontrivial topological
sor quantumd order. However, in these phases, the ground
state wave function does not have a smooth continuum limit.
Thus these are new topological phases beyond those de-
scribed by continuum theories.

C. Quasiparticle excitations

In this section, we find the quasiparticle excitations of the
string-net Hamiltonians11d, and calculate their statistics
se.g., the twistsua and theS matrix sabd. We will only con-
sider the topological phase with smooth continuum limit.
That is, we will chooseas=ds/oi=0

N di
2 in our lattice model.

Recall that the ground state satisfiesQI =Bp=1 for all ver-
tices I , and all plaquettesp. The quasiparticle excitations
correspond to violations of these constraints for some local
collection of vertices and plaquettes. We are interested in the
topological propertiesse.g., statisticsd of these excitations.

We will focus on topologically nontrivial quasiparticles—
that is, particles with nontrivial statistics or mutual statistics.
By the analysis in Ref. 29, we know that these types of
particles are always created in pairs, and that their pair cre-

FIG. 8. sColor onlined A picture of the lattice spin models11d.
The electric charge operatorQI acts on the three spins adjacent to
the vertexI , while the magnetic energy operatorBp acts on the 12
spins adjacent to the hexagonal plaquettep. The termQI constrains
the string-nets to obey the branching rules, whileBp provides dy-
namics. A typical state satisfying the low-energy constraints is
shown on the right. The empty links have spins in thei =0 state.
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ation operator has a stringlike structure, with the newly cre-
ated particles appearing at the ends.sSee Fig. 9.d The posi-
tion of this string operator is unobservable in the string-net
condensed state—only the endpoints of the string are observ-
able. Thus the two ends of the string behave like independent
particles.

If the two endpoints of the string coincide so that the
string forms a loop, then the associated closed string operator
commutes with the Hamiltonian. This follows from the fact
that the string is truly unobservable; the action of an open
string operator on the ground state depends only on its end-
points.

Thus,each topologically nontrivial quasiparticle is asso-
ciated with a (closed) string operator that commutes with the
Hamiltonian. To find the quasiparticles, we need to find these
closed string operators.

An important class of string operators are what we will
call “simple” string operators. The defining property of
simple string operators is their action on the vacuum state. If
we apply a type-s simple string operatorWsPd to the vacuum
state, it creates a type-s string along the path of the string,P.
We already have some examples of these operators, namely
the magnetic flux operatorsBp

s. WhenBp
s acts on the vacuum

configurationu0l, it creates a type-s string along the bound-
ary of the plaquettep. Thus, we can think ofBp

s as a short
type-s simple string operator,Ws]pd.

We would like to construct simple string operatorsWsPd
for arbitrary pathsP= I 1,… ,I N on the honeycomb lattice.
Using the definition ofBp

s as a guide, we make the following
ansatz. The string operatorWsPd only changes the spin states
along the pathP. The matrix element of a general type-s
simple string operatorWsPd between an initial spin state
i1,…iN and final spin statei18 ,…iN8 is of the form

Wi1i2…iN

i18i28…iN8 se1e2…eNd = Sp
k=1

N

F
s* ik−18 ik8

*
ekik

* ik−1 DSp
k=1

N

vkD , s16d

wheree1,… ,eN are the spin states of theN “legs” of P ssee
Fig. 9d and

vk =5
vik

vs

vik8
vik

ik8, if P turns right, left atI k,I k+1,

vik
vs

vik8
vik

ik8, if P turns left, right atI k,I k+1,

1, otherwise.

s17d

Here,v j
i , v j

i are twoscomplexd two index objects that char-
acterize the stringW.

Note the similarity to the definition ofBp
s. The major dif-

ference is the additional factorpk=1
N vk. We conjecture that

uv i
jsvivs/v jdu=1 for a type-s string, sopk=1

N vk is simply a
phase factor that depends on the initial and final spin states
i1, i2,…iN, i18, i28 ,…iN8 . This phase vanishes for pathsP that
make only left or only right turns, such as plaquette bound-
aries]p. In that case, the definition ofWsPd coincides with
Bp

s.
A straightforward calculation shows that the operator

WsPd defined above commutes with the Hamiltonians11d if
v j

i ,v j
i satisfy

v j
mFkjm*

sl* i
v i

l v jvs

vm
= o

n=0

N

Fs*nl*
ji *k

vk
nFksm*

jl *n ,

v i
j = o

k=0

N

vi*
k Fi*sj*

is*k . s18d

The solutions to these equations give all the type-s simple
string operators.

For example, consider the case of Abelian gauge theory.
In this case, the solutions to Eq.s18d can be divided into
three classes. The first class is given bysÞ0, v i

jsvivs/v jd
=v i

jsvivs/v jd=1. These string operators create electric flux
lines and the associated quasiparticles are electric charges.
In more traditional nomenclature, these are known as
sWegner-dWilson loop operators.39,47The second class of so-
lutions is given bys=0, andv i

jsvivs/v jd=fv i
jsvivs/v jdg* Þ1.

These string operators create magnetic flux lines and the as-
sociated quasiparticles are magnetic fluxes. The third class
hassÞ0 andv i

jsvivs/v jd=fv i
jsvivs/v jdg* Þ1. These strings

create both electric and magnetic flux and the associated qua-
siparticles are electric charge/magnetic flux bound states.
This accounts for all the quasiparticles ins2+1dD Abelian
gauge theory. Therefore, all the string operators are simple in
this case.

However, this is not true for non-Abelian gauge theory or
other s2+1dD topological phases. To compute the quasipar-
ticle spectrum of these more general theories, we need to
generalize the expressions16d for WsPd to include string
operators that are not simple.

FIG. 9. sColor onlined Open and closed string operators for
the lattice spin models11d. Open string operators create quasi-
particles at the two ends, as shown on the left. Closed string
operators, as shown on the right, commute with the Hamiltonian.
The closed string operatorWsPd only acts non-trivially on the spins
along the pathP= I 1,I 2… sthick lined, but its action depends on the
spin states on the legssthin linesd. The matrix element between an

initial state i1,i2,… and a final statei18,i28,… is Wi1i2. . .
i18i28…se1e2…d

=sF
s* i18i28*
e2i2

* i1 F
s* i28i38*
e3i3

* i2 …d ·ssvi1
vs1

/vi18
dvi1

i18svi3
vs3

/vi38
dvi3

i38…d for a type-s

simple string and Wi1i2. . .
i18i28. . .se1e2. . .d=ohskjsFs2

* i18i28
*

e2i2
* i1 F

s3
* i28i38

*
e3i3

* i2 . . .d

·Trssvi1
vs1

/vi18
dVs1s2i1

i18 ds2s3
Idsvi3

vs3
/vi38

dVs3s4i3

i38 . . .d for a general
string.
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One way to guess the more general expression forWsPd is
to consider products of simple string operators. Clearly, if
W1sPd and W2sPd commute with the Hamiltonian, then
WsPd=W1sPd ·W2sPd also commutes with the Hamiltonian.
Thus, we can obtain other string operators by taking products
of simple string operators. In general, the resulting operators
are not simple. IfW1 andW2 are type-s1 and type-s2 simple
string operators, then the action of the product string on the
vacuum state is

WsPdu0l = W1sPdW2sPdu0l = W1sPdus2l = o
s

dss1s2
usl,

where usl denotes the string state with a type-s string along
the pathP and the vacuum everywhere else. If we take prod-
ucts of more than two simple string operators then the action
of the product string on the vacuum is of the formWsPdu0l
=osnsusl wherens are some non-negative integers.

We now generalize the expression forWsPd so that it
includes arbitrary products of simple strings. LetW be a
product of simple string operators, and letns be the non-
negative integers characterizing the action ofW on the
vacuum:WsPdu0l=osnsusl. Then, one can show that the ma-
trix elements ofWsPd are always of the form

Wi1i2…iN

i18i28…iN8 se1e2…eNd = o
hskj
Sp

k=1

N

F
sk
* ik−18 ik8

*
ekik

* ik−1 DTrSp
k=1

N

Vk
skD ,

s19d

where

Vk
sk =5

vik
vsk

vik8
Vsksk+1ik

ik8 , if P turns right,left atIk,Ik+1,

vik
vsk

vik8
Vsksk+1ik

ik8 , if P turns left,right atIk,Ik+1,

dsksk+1
Id, otherwise,

s20d

and Vstj
i ,Vstj

i are two 4 index objects that characterize
the string operatorW. For any quadruple of string types
i , j ,s,t, sVstj

i Vstj
i d are scomplexd rectangular matrices of di-

mensionns3nt. Note that type-s0 simple string operators
correspond to the special case wherens=ds0s. In this case, the
matricesVstj

i ,Vstj
i reduce to complex numbers, and we can

identify

Vstj
i = v j

idss0
dts0

, Vstj
i = v j

idss0
dts0

. s21d

As we mentioned above, products of simple string operators
are always of the forms19d. In fact, we believe thatall string
operatorsare of this form. Thus, we will use Eq.s19d as an
ansatz for general string operators ins2+1dD topological
phases. This ansatz is complicated algebraically, but like the
definition of Bp

s, it has a simple graphical interpretationssee
Appendix Dd.

A straightforward calculation shows that the closed string
WsPd commutes with the Hamiltonians11d if V andV sat-
isfy

o
s=0

N

Vrsj
m Fkjm*

sl* i
Vsti

l v jvs

vm
= o

n=0

N

Ft*nl*
ji *k

Vrtk
n Fkrm*

jl *n ,

Vsti
j = o

k=0

N

Vsti*
k Fi*sj*

it*k . s22d

The solutionssVm,Vmd to these equations give all the differ-
ent closed string operatorsWm. However, not all of these
solutions are really distinct. Notice that two solutions
sV1,V1d, sV2,V2d can be combined to form a new solution
sV8 ,V8d:

Vsti8 j = V1,sti
j

% V2,sti
j , Vsti8 j = V1,sti

j
% V2,sti

j . s23d

This is not surprising: the string operatorW8 corresponding
to sV8 ,V8d is simply the sum of the two operators corre-
sponding tosV1,2,V1,2d: W8=W1+W2.

Given this additivity property, it is natural to consider the
“irreducible” solutionssVa ,Vad that cannot be written as a
sum of two other solutions. Only the “irreducible” string
operatorsWa create quasiparticle pairs in the usual sense.
Reducible string operatorsW create superpositions of differ-
ent strings—which correspond to superpositions of different
quasiparticles.54

To analyze a topological phase, one only needs to find the
irreducible solutionssVa ,Vad to Eq.s22d. The numberM of
such solutions is always finite. In general, each solution cor-
responds to an irreducible representation of an algebraic ob-
ject. In the case of lattice gauge theory, there is one solution
for every irreducible representation of the quantum double
DsGd of the gauge groupG. Similarly, in the case of doubled
Chern-Simons theories there is one solution for each irreduc-
ible representation of a doubled quantum group.

The structure of these irreducible string operatorsWa de-
termines all the universal features of the topological phase.
The numberM of irreducible string operators is the number
of different kinds of quasiparticles. The fusion rulesWaWb

=og=1
M hab

g Wg determine how bound states of type-a and
type-b quasiparticles can be viewed as a superposition of
other types of quasiparticles.

The topological properties of the quasiparticles are also
easy to compute. As an example, we now derive two particu-
larly fundamental objects that characterize the spins and sta-
tistics of quasiparticles: theM twists ua and the M 3M
S-matrix,sab .13,25,35,48

The twistsua are defined to be statistical angles of the
type-a quasiparticles. By the spin-statistics theorem they are
closely connected to the quasiparticle spinssa: eiua=e2pisa.
We can calculateua by comparing the quantum mechanical
amplitude for the following two processes. In the first pro-
cess, we create a pair of quasiparticlesa ,a sfrom the ground
stated, exchange them, and then annihilate the pair. In the
second process, we create and then annihilate the pair with-
out any exchange. The ratio of the amplitudes for these two
processes is preciselyeiua.

The amplitude for each process is given by the expecta-
tion value of the closed string operatorWa for a particular
pathP:
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s24d

s25d

Here, uFl denotes the ground state of the Hamiltonian
s11d.

Let sVa ,Va ,nad be the irreducible solution corresponding
to the string operatorWa. The above two amplitudes can
be then be expressed in terms ofsVa ,Va ,nad ssee Appendix
Dd:

A1 = o
s

ds
2TrsVa,sss*

0 d, s26d

A2 = o
s

na,sds. s27d

Combining these results, we find that the twists are given by

eiua =
A1

A2
=

os
ds

2TrsVa,sss*
0 d

os
na,sds

. s28d

Just as the twistsua are related to the spin and statistics of
individual particle typesa, the elements of theS-matrix, sab

describe the mutual statistics of two particle typesa ,b. Con-
sider the following process: We create two pairs of quasipar-
ticles a, a, b, b, braid a aroundb, and then annihilate the
two pairs. The elementsab is defined to be the quantum
mechanical amplitudeA of this process, divided by a pro-
portionality factorD where D2=oasosna,sdsd2. The ampli-
tude A can be calculated from the expectation value of
Wa ,Wb for two “linked” pathsP:

s29d

ExpressingA in terms ofsVa ,Va ,nad, we find

sab =
A
D

=
1

D
o
i jk

TrsVa,ii j *
k dTrsVb,j ji *

k*
ddidj . s30d

V. STRING-NET CONDENSATION IN „3+1… AND HIGHER
DIMENSIONS

In this section, we generalize our results tos3+1d and
higher dimensions. We find that there is a one-to-one corre-
spondence betweens3+1d sand higherd dimensional string-
net condensates and mathematical objects known as “sym-
metric tensor categories.”32 The low energy effective theories
for these states are gauge theories coupled to bosonic or fer-
mionic charges.

Our approach is based on the exactly soluble lattice spin
Hamiltonians11d. In Sec. IV, we analyzed that model in the
case of the honeycomb lattice. However, the choice of lattice
was somewhat arbitrary: we could equally well have chosen
any trivalent lattice in two dimensions.

Trivalent lattices can also be constructed in three and
higher dimensions. For example, we can create a space-
filling trivalent lattice in three dimensions, by “splitting” the
sites of the cubic lattice.sSee Fig. 10.d Consider the spin
Hamiltonian s11d for this lattice, whereI runs over all the
vertices of the lattice, andp runs over all the “plaquettes”
sthat is, the closed loops that correspond to plaquettes in the
original cubic latticed.

This model is a natural candidate for string-net condensa-
tion in three dimensions. Unfortunately, it turns out that
the Hamiltonian s11d is not exactly soluble on this
lattice. The magnetic flux operatorsBp

s do not commute in
general.

This lack of commutativity originates from two differ-
ences between the plaquettes in the honeycomb lattice and in
higher dimensional trivalent lattices. The first difference is
that in the honeycomb lattice, neighboring plaquettes always
share precisely two vertices, while in higher dimensions the
boundary between plaquettes can contain three or more ver-
tices. sSee Fig. 11.d The existence of these interior vertices
has the following consequence. Imagine we choose orienta-
tion conventions for each vertex, so that we have a notion of
“left turns” and “right turns” for oriented paths on our lattice
ssuch an orientation convention can be obtained by project-
ing the 3D lattice onto a 2D plane—as in Fig. 11d. Then, no
matter how we assign these orientations, some plaquette
boundaries will always make both left and right turns. Thus,
we cannot regard the boundaries of the 3D plaquettes as
small closed strings the way we did in two dimensionsssince
small closed strings always make all left turns, or all right
turnsd. On the other hand, the magnetic flux operatorsBp

s

only commute if their boundaries are small closed strings. It
is this inconsistency between the algebraic definition ofBp

s

and the topology of the plaquettes that leads to the lack of
commutativity.

To resolve this problem, we need to define a Hamiltonian
using the general simple string operatorsWs]pd rather than
the small closed stringsBp

s. Supposesvsj
i ,vsj

i d, s=0,1…N
are type-s solutions of Eq.s18d. After picking some “left
turn,” “right turn” orientation convention at each vertex, we
can define the corresponding type-s simple string operators
WssPd as in Eq.s16d. Suppose, in addition, that we choose
svsj

i ,vsj
i d so that the string operators satisfyWr ·Ws

FIG. 10. sColor onlined A three-dimensional trivalent lattice,
obtained by splitting the sites of the cubic lattice. We replace
each vertex of the cubic lattice with 4 other vertices as shown
above.
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=otdrstWt fthis property ensures thatWss]pd are analogous to
Bp

sg. Then, a natural higher dimensional generalization of the
Hamiltonians11d is

H = − o
I

QI − o
p

Wp, Wp = o
s=0

N

asWss] pd. s31d

For a two dimensional lattice, the conditionss18d are suffi-
cient to guarantee that the closed stringsWss]pd commute
within the ground state subspace. The Hamiltonians31d is
then an exactly soluble realization of a doubled topological
phase. However, in higher dimensions, one additional con-
straint is necessary.

This constraint stems from the second, and perhaps more
fundamental, difference between 2D and higher dimensional
lattices. In two dimensions, two closed curves always inter-
sect an even number of times. For higher dimensional lat-
tices, this is not the case. Small closed curves, in particular
plaquette boundaries, cansin a sensed intersect exactly once.
sSee Fig. 11.d Because of this, the objectsv jk

i must satisfy
the additional relation:

v jk
i = vkj

i . s32d

One can show that if this additional constraint is satisfied,
then sad the higher dimensional Hamiltonians31d is exactly
soluble, andsbd the ground state wave functionF is defined
by local topological rules analogous to Eqs.s4d–s7d.
This means that Eq.s31d provides an exactly soluble
realization of topological phases ins3+1d and higher
dimensions.

Each exactly soluble Hamiltonian is associated with a so-
lution sFkln

ijm ,v jk
i ,v jk

i d of Eqs.s9d, s18d, ands32d. By analogy
with the two dimensional case, we conjecture that there is a
one-to-one correspondence between topological string-net
condensed phases ins3+1d or higher dimensions, and these
solutions. The solutionssFkln

ijm ,v jk
i ,v jk

i d correspond to a spe-
cial class of tensor categories—symmetric tensor
categories.32 Thus, just as tensor categories are the math-
ematical objects underlying string condensation ins2+1d di-
mensions, symmetric tensor categories are fundamental to
string condensation in higher dimensions.

There are relatively few solutions to Eqs.s9d, s18d, and
s32d. Physically, this is a consequence of the restrictions
on quasiparticle statistics in 3 or higher dimensions. Unlike
in two dimensions, higher dimensional quasiparticles
necessarily have trivial mutual statistics, and must be
either bosonic or fermionic. From a more mathematical
point of view, the scarcity of solutions is a result of the
symmetry conditions32d. Doubled topological phases, such
as Chern-Simons theories, typically fail to satisfy this
condition.

However, gauge theories do satisfy the symmetry condi-
tion s32d and therefore do correspond to higher dimensional
string-net condensates. Recall that the gauge theory solution
to Eq.s9d is obtained bysad letting the string-type indexi run
over the irreducible representations of the gauge group,sbd
letting the numbersdi be the dimensions of the representa-
tions, andscd letting the 6 index objectFkln

ijm be the 6j symbol
of the group. One can check that this also provides a solution
to Eqs.s18d and s32d, if we setv jk

i sv jvk/vid=−1 when j =k
and the invariant tensor ink^ k^ i* is antisymmetric in the
first two indices, andv jk

i sv jvk/vid=1 otherwise. This result is
to be expected, since the string-net picture of gauge theory
sSec. IId is valid in any number of dimensions. Thus, it is not
surprising that gauge theories can emerge from higher di-
mensional string-net condensation.

There is another class of higher dimensional string-net
condensed phases that is more interesting. The low energy
effective theories for these phases are variants of gauge theo-
ries. Mathematically, they are obtained by twisting the usual
gauge theory solution by

ṽ jk
i = v jk

i s− 1dPs jdPskd. s33d

HerePsid is some assignment of paritys“even” or “odd”d to
each representationi. The assignment must be self-consistent
in the sense that the tensor product of two representations
with the samesdifferentd parity, decomposes into purely even
soddd representations. If all the representations are assigned
an even parity—that isPsid is trivial—then the twisted gauge
theory reduces to standard gauge theory.

The major physical distinction between twisted gauge
theories and standard gauge theories is the quasiparticle
spectrum. In standard gauge theory, the fundamental quasi-
particles are the electric charges created by theN+1 string
operatorsWi. These quasiparticles are all bosonic. In con-
trast, in twisted gauge theories, all the quasiparticles corre-
sponding to “odd” representationsi are fermionic.

In this way, higher dimensional string-net condensation

FIG. 11. Three plaquettes demonstrating the two fundamental
differences between higher dimensional trivalent lattices and the
honeycomb lattice. The plaquettesp1, p2 lie in the xz plane, while
p3 is oriented in thexy direction. Notice thatp1 andp2 share three
vertices,I 1, I 2, I 3—unlike neighboring plaquettes in the honeycomb
lattice, which share two vertices. Also, notice that the plaquette
boundaries] p1 and] p3 intersect only at the line segmentI 3I 4. The
boundary] p1 makes a left turn atI 3, and a right turn atI 4. Thus, if
we shrink the segmentI 3I 4 to a point, these two plaquette bound-
aries intersect exactly once—unlike neighboring plaquettes in the
honeycomb lattice, which intersecttangentiallywhen their common
boundary is shrunk to a point.
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naturally gives rise toboth emerging gauge bosons and
emerging fermions. This feature suggests that gauge interac-
tions and Fermi statistics may be intimately connected. The
string-net picture may be the bridge between these two seem-
ingly unrelated phenomena.29

In fact, it appears that gauge theories coupled to fermionic
or bosonic charged particles are theonly possibilities for
higher dimensional string-net condensates: mathematical
work on symmetric tensor categories suggests that the only
solutions to Eqs.s9d, s18d, ands32d are those corresponding
to gauge theories and twisted gauge theories.49

We would like to point out thats3+1d-dimensional string-
net condensed states also exhibit membrane condensation.
These membrane operators are entirely analogous to the
string operators. Just as open string operators create charges
at their two ends, open membrane operators create magnetic
flux loops along their boundaries. Furthermore, just as string
condensation makes the string unobservable, membrane con-
densation leads to the unobservability of the membrane.
Only the boundary of the membrane—the magnetic flux
loop—is observable.

VI. EXAMPLES

A. N=1 string model

We begin with the simplest string-net model. In the nota-
tion from Sec. III, this model is given bys1d number of
string types:N=1; s2d branching rules:x sno branchingd; s3d
string orientations: 1* =1.

In other words, the string-nets in this model contain one
unoriented string type and have no branching. Thus they are
simply closed loops.fSee Fig. 3sad.g

We would like to find the different topological phases that
can emerge from these closed loops. According to the dis-
cussion in Sec. IV, each phase is captured by a fixed-point
wave function, and each fixed-point wave function is speci-
fied by local ruless4d–s7d that satisfy the self-consistency
relationss9d. It turns out that Eq.s9d have only two solutions
in this casesup to rescalingd:

d0 = 1,

d1 = F110
110= ± 1,

F000
000= F101

101= F011
011= 1,

F111
000= F001

110= F010
101= F100

011= 1, s34d

where the other elements ofF all vanish. The corresponding
local ruless4d–s7d are

s35d

We have omitted those rules that can be derived from topo-
logical invariances4d.

The fixed-point wave functionsF± satisfying these rules
are given by

F±sXd = s±1dXc, s36d

whereXc is the number of disconnected components in the
string configurationX.

The two fixed-point wave functionsF± correspond to two
simple topological phases. As we will see,F+ corresponds to
Z2 gauge theory, whileF− is a Us1d3Us1d Chern-Simons
theory.sActually, other topological phases can emerge from
closed loops - such as in Refs. 42–44. However, we regard
these phases as emerging from more complicated string-nets.
The closed loops organize into these effective string-nets in
the infrared limit.d

FIG. 12. sColor onlined The Hamiltonianss39d ands40d, realiz-
ing the two N=1 string-condensed phases. Each circle denotes a
spin-1/2 spin. The links withsx=−1 are thought of as being occu-
pied by a type-1 string, while the links withsx= +1 are regarded as
empty. The electric charge term acts on the three legs of the vertex
I with sx. The magnetic energy term acts on the 6 edges of the
plaquettep with sz, and acts on the 6 legs ofp with an operator of
the form fssxd. For theZ2 phase,f =1, while for the Chern-Simons
phase,fsxd= i s1−xd/2.

FIG. 13. sColor onlined A closed string operatorWsPd for the
two modelss39d, s40d. The pathP is drawn with a thick line, while
the legs are drawn with thin lines. The action of the string operators
s41d, s44d on the legs is different for legs that branch to the right of
P, “R-legs,” and legs that branch to the left ofP, “L-legs.” Simi-
larly, we distinguish between “R-vertices” and “L-vertices” which
are ends of “R-leg” and “L-leg,” respectively.
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The exactly soluble modelss11d realizing these two
phases can be written as spin 1/2 systems with one spin on
each link of the honeycomb lattice.sSee Fig. 12d. We regard
a link with sx=−1 as being occupied by a type-1 string, and
the statesx= +1 as being unoccupiedsor equivalently, occu-
pied by a type-0 or null stringd. The Hamiltonians for the two
phases are of the form

H± = − o
I

QI ,± − o
p

Bp,±.

The electric charge term is the same for both phasesssince it
only depends on the branching rulesd:

QI ,± =
1

2S1 + p
legs ofI

si
xD . s37d

The magnetic terms for the two phases are

Bp,± =
1

2
sBp,±

0 ± Bp,±
1 d

=
1

2S1 ± p
edges ofp

sj
z p
legs ofp

sÎ±1ds1−sj
xd/2DPp , s38d

wherePp is the projection operatorPp=pI[pQI . The projec-
tion operatorPp can be omitted without affecting the physics
sor the exact solubility of the Hamiltoniand. We have in-
cluded it only to be consistent with Eq.s11d. If we omit this
term, the Hamiltonian for the first phasesF+d reduces to the
usual exactly soluble Hamiltonian ofZ2 lattice gauge theory
sneglecting numerical factorsd:

H+ = − o
I

p
legs ofI

si
x − o

p
p

edges ofp
sj

z . s39d

The Hamiltonian for the second phase,

H− = − o
I

p
legs of I

si
x + o

p
S p

edges ofp
sj

zDS p
legs ofp

i s1−sj
xd2D

s40d

is less familiar. However, one can check that in both cases,
the Hamiltonians are exactly soluble and the two ground
state wave functions are preciselyF± sin the sx basisd.

Next we find the quasiparticle excitations for the two
phases, and the correspondingS-matrix and twistsua.

In both cases, Eq.s22d has 4 irreducible solutions
sna,s,Va,st

i j ,Va,st
i j d, a=1,2,3,4—corresponding to 4 quasi-

particle types. For the first phasesF+d these solutions are
given by

n1,0= 1, n1,1= 0, V1,000
0 = 1, V1,001

1 = 1,

n2,0= 0, n2,1= 1, V2,110
1 = 1, V2,111

0 = 1,

n3,0= 1, n3,1= 0, V3,000
0 = 1, V3,001

1 = − 1,

n4,0= 0, n4,1= 1, V4,110
1 = 1, V4,111

0 = − 1.

The other elements ofV vanish. In all casesV=V.
The corresponding string operators for a pathP are

W1 = Id,

W2 = p
edges ofP

sj
z,

W3 = p
R-legs

sk
x ,

W4 = p
edges ofP

sj
z p
R-legs

sk
x , s41d

where the “R-legs”k are the legs that are to the right ofP.
sSee Fig. 13.d Technically, we should multiply these string
operators by an additional projection operatorpI«PQI , in or-
der to be consistent with the general results19d. However,
we will neglect this factor since it does not affect the physics.

Once we have the string operators, we can easily calculate
the twists and theS-matrix. We find

eiu1 = 1,eiu2 = 1,eiu3 = 1,eiu4 = − 1, s42d

S=
1

21
1 1 1 1

1 1 − 1 − 1

1 − 1 1 − 1

1 − 1 − 1 1
2 . s43d

This is in agreement with the twists andS-matrix for Z2
gauge theory:W1 creates trivial quasiparticles,W2 creates
magnetic fluxes,W3 creates electric charges,W4 creates
electric/magnetic bound states.

In the second phasesF−d, we find

n1,0= 1, n1,1= 0, V1,000
0 = 1, V1,001

1 = 1,

n2,0= 0, n2,1= 1, V2,110
1 = 1, V2,111

0 = i ,

n3,0= 0, n3,1= 1, V3,110
1 = 1, V3,111

0 = − i ,

n4,0= 1,n4,1= 0, V4,000
0 = 1, V4,001

1 = − 1.

Once again, the other elements ofV vanish. Also, in
all cases,V=V* . The corresponding string operators for a
pathP are

W1 = Id,

W2 = p
edges ofP

sj
z p
R-legs

i s1−sj
xd/2 p

L-vertices
s− 1dsI ,

W3 = p
edges ofP

sj
z p
R-legs

s− ids1−sj
xd/2 p

L-vertices
s− 1dsI ,

W4 = p
R-legs

sj
x, s44d

where the “L-vertices”I are the vertices ofP adjacent to legs
that are to the left ofP. The exponentsI is defined bysI
= 1/4s1−sj

xds1+sj
xd, wherei, j are the links just before and

just after the vertexI , along the pathP. sSee Fig. 13.d
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We find the twists andS-matrix are

eiu1 = 1,eiu2 = i,eiu3 = − i,eiu4 = 1, s45d

S=
1

21
1 1 1 1

1 − 1 1 − 1

1 1 − 1 − 1

1 − 1 − 1 1
2 . s46d

We see thatW1 creates trivial quasiparticles,W2, W3 create
semions with opposite chiralities and trivial mutual statistics,
and W4 creates bosonic bound states of the semions. These
results agree with theUs1d3Us1d Chern-Simons theory

L =
1

4p
KIJaIm]naJlemnl, I,J = 1,2, s47d

with K-matrix

K = S2 0

0 − 2
D . s48d

Thus the aboveUs1d3Us1d Chern-Simons theory is the low
energy effective theory of the second exactly soluble model
swith d1Þ−1d.

Note that theZ2 gauge theory from the first exactly
soluble modelswith d1=1d can also be viewed as aUs1d
3Us1d Chern-Simons theory withK-matrix23

K = S0 2

2 0
D . s49d

B. N=1 string-net model

The next simplest string-net model also contains only one
oriented string type—but with branching. Simple as it is, we
will see that this model contains non-Abelian anyons and is
theoretically capable of universal fault tolerant quantum
computation.33 Formally, the model is defined bys1d number
of string types:N=1; s2d branching rules:hh1,1,1jj; s3d string
orientations: 1* =1.

The string-nets are unoriented trivalent graphs. To find the
topological phases that can emerge from these objects, we
solve the self-consistency relationss9d. We find two sets of
self-consistent rules:

s50d

where g±=s1±Î5/2d. sOnce again, we have omitted those
rules that can be derived from topological invariance.d Un-

like the previous case, there is no closed form expression for
the wave function amplitude.

Note that the second solution,d1=s1−Î5/2d does not sat-
isfy the unitarity conditions15d. Thus, only the first solution
corresponds to a physical topological phase. As we will see,
this phase is described by anSO3s3d3SO3s3d Chern-Simons
theory.

As before, the exactly soluble realization of this phase
s11d is a spin-1/2 model with spins on the links of the hon-
eycomb lattice. We regard a link withsx=−1 as being occu-
pied by a type-1 string, and a link withsx=1 as being unoc-
cupied sor equivalently occupied by a type-0 stringd.
However, in this case we will not explicitly rewrite Eq.s11d
in terms of Pauli matrices, since the resulting expression is
quite complicated.

We now find the quasiparticles. These correspond to irre-
ducible solutions of Eq.s22d. For this model, there are 4 such
solutions, corresponding to 4 quasiparticles:

1:n1,0= 1, n1,1= 0, V1,000
0 = 1, V1,001

1 = 1,

2:n2,0= 0, n2,1= 1, V2,110
1 = 1,

V2,111
0 = − g+

−1epi/5, V2,111
1 = g+

−1/2e3pi/5,

3:n3,0= 0, n3,1= 1, V3,110
1 = 1,

V3,111
0 = − g+

−1e−pi/5, V3,111
1 = g+

−1/2e−3pi/5,

4:n4,0= 1, n4,1= 1, V4,000
0 = 1, V4,110

1 = 1,

V4,001
1 = − g+

−2, V4,111
0 = g+

−1, V4,111
1 = g+

−5/2,

V4,101
1 = sV4,011

1 d* = g+
−11/4s2 − e3pi/5 + g+e−3pi/5d. s51d

In all cases,V=V* .
We can calculate the twists and theS-matrix. We find

eiu1 = 1, eiu2 = e−4pi/5, eiu3 = e4pi/5, eiu4 = 1, s52d

S=
1

1 + g21
1 g g g2

g − 1 g2 − g

g g2 − 1 − g

g2 − g − g 1
2 . s53d

We conclude thatW1 creates trivial quasiparticles,W2, W3
createsnon-Abeliand anyons with opposite chiralities, and
W4 creates bosonic bound states of the anyons. These results
agree withSO3s3d3SO3s3d Chern-Simons theory, the so-
called doubled “Yang-Lee” theory.

Researchers in the field of quantum computing have
shown that the Yang-Lee theory can function as a universal
quantum computer—via manipulation of non-Abelian
anyons.33 Therefore, the spin-1/2 Hamiltonians11d associ-
ated with Eq.s50d is a theoretical realization of a universal
quantum computer. While this Hamiltonian may be too com-
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plicated to be realized experimentally, the string-net picture
suggests that this problem can be overcome. Indeed, the
string-net picture suggests thatgeneric spin Hamiltonians
with a trivalent graph structure will exhibit a Yang-Lee
phase. Thus, much simpler spin-1/2 Hamiltonians may be
capable of universal fault tolerant quantum computation.

C. N=2 string-net models

In this section, we discuss twoN=2 string-net models.
The first model contains one oriented string and its dual. In
the notation from Sec. III, it is given bys1d number of string
types: N=2; s2d branching rules:hh1,1,1j ,h2,2,2jj; s3d
string orientations: 1* =2, 2* =1.

The string-nets are therefore oriented trivalent graphs
with Z3 branching rules. The string-net condensed phases
correspond to solutions of Eq.s9d. Solving these equations,
we find two sets of self-consistent local rules:

s54d

The corresponding fixed-point wave functionsF± are given
by

F±sXd = sÎ±1d2Xc−Xv/2, s55d

whereXc, Xv, are the number of connected components, and
vertices, respectively in the string-net configurationX. As
before, we can construct an exactly soluble Hamiltonians,
find the quasiparticles for the two theories and compute the
twists and S-matrices. We find that the first theoryF+ is
described by aZ3 gauge theory, while the second theoryF−
is described by aUs1d3Us1d Chern-Simons theory with
K-matrix

K = S3 0

0 − 3
D .

Both theories have 32=9 elementary quasiparticles. In the
case ofZ3, these quasiparticles are electric charge/magnetic
flux bound states formed from the 3 types of electric charges
and 3 types of magnetic fluxes. In the case of the Chern-
Simons theory, the quasiparticles are bound states of the two
fundamental anyons with statistical angles ±p /3.

The final example we will discuss contains two unori-
ented strings. Formally it is given by,s1d number of string
types: N=2; s2d branching rules:hh1,2,2j, h2,2,2jj; s3d
string orientations: 1* =1, 2* =2.

The string-nets are unoriented trivalent graphs, with edges
labeled with 1 or 2. We find that there is only one set of
self-consistent local rules:

s56d

whered0=d1=1, d2=2, andF22n
22m is the matrix

F22n
22m =1

1

2

1

2

1
Î2

1

2

1

2
−

1
Î2

1
Î2

−
1
Î2

0
2 .

If we construct the Hamiltonians11d, we find that it is
equivalent to the standard exactly lattice gauge theory
Hamiltonian20 with gauge groupS3—the permutation group
on 3 objects. One can show that this theory contains 8 el-
ementary quasiparticlesfcorresponding to the 8 irreducible
representations of the quantum doubleDsS3dg. These quasi-
particles are combinations of the 3 electric charges and 3
magnetic fluxes.

VII. CONCLUSION

In this paper, we have shown that quantum systems of
extended objects naturally give rise to topological phases.
These phases occur when the extended objectsse.g., string-
netsd become highly fluctuating and condense. This physical
picture provides a natural mechanism for the emergence of
parity invariant topological phases. Microscopic degrees of
freedomsssuch as spins or dimersd can organize into effec-
tive extended objects which can then condense. We hope that
this physical picture may help direct the search for topologi-
cal phases in real condensed matter systems. It would be
interesting to develop an analogous picture for chiral topo-
logical phases.

We have also found the fundamental mathematical frame-
work for topological phases. We have shown that eachs2
+1d-dimensional doubled topological phase is associated
with a 6 index objectFkln

ijm and a set of real numbersdi sat-
isfying the algebraic relationss9d. All the universal proper-
ties of the topological phase are contained in these math-
ematical objectssknown as tensor categoriesd. In particular,
the tensor category directly determines the quasiparticle sta-
tistics of the associated topological phases28d, s30d. This
mathematical framework may also have applications to
phase transitions and critical phenomena. Tensor categories
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may characterize transitions between topological phases just
as symmetry groups characterize transitions between ordered
phases.

We have constructed exactly solubles2+1dD lattice spin
Hamiltonianss11d realizing each of these doubled topologi-
cal phases. These models unifys2+1dD lattice gauge theory
and doubled Chern-Simons theory. One particular
Hamiltonian—a realization of the doubled Yang-Lee
theory—is a spin-1/2 model capable of fault tolerant quan-
tum computation.

In higher dimensions, string-nets can also give rise to to-
pological phases. However, the physical and mathematical
structure of these phases is more restricted. On a mathemati-
cal level, each higher dimensional string-net condensate is
associated with a special kind of tensor category—a symmet-
ric tensor categorys18d, s32d. More physically, we have
shown that higher dimensional string-net condensation natu-
rally gives rise toboth gauge interactions and Fermi statis-
tics. Viewed from this perspective, string-net condensation
provides a mechanism for unifying gauge interactions and
Fermi statistics. It may have applications to high energy
physics.30

From a more general point of view, all of the phases de-
scribed by Landau’s symmetry breaking theory can be under-
stood in terms of particle condensation. These phases are
classified using group theory and lead to emergent gapless
scalar bosons,50,51 such as phonons, spin waves, etc. In this
paper, we have shown that there is a much richer class of
phases—arising from the condensation of extended objects.
These phases are classified using tensor category theory and
lead to emergence of Fermi statistics and gauge excitations.
Clearly, there is whole new world beyond the paradigm of
symmetry breaking and long range order. It is a virgin land
waiting to be explored.

ACKNOWLEDGMENTS

We would like to thank Pavel Etingof, Michael Freedman,
and Zhenghan Wang for useful discussions of the mathemati-
cal aspects of topological field theory. This research is sup-
ported by NSF Grant No. DMR-01-23156, NSF-MRSEC
Grant No. DMR-02-13282, and NFSC No. 10228408.

APPENDIX A: GENERAL STRING-NET MODELS

In this section, we discuss the most general string-net
models. These models can describe all doubled topological
phases, including all discrete gauge theories and doubled
Chern-Simons theories.

In these models, there is a “spin” degree of freedom at
each branch point or node of a string-net, in addition to the
usual string-net degrees of freedom. The dimension of this
“spin” Hilbert space depends on the string types of the 3
strings incident on the node.

To specify a particular model one needs to provide a 3
index tensordijk which gives the dimension of the spin Hil-
bert space associated withhi , j ,kj sin addition to the usual
informationd. The string-net models discussed above corre-
spond to the special case wheredijk =0,1 for all i, j , k. In the

case of gauge theory,dijk is the number of copies of the
trivial representation that appear in the tensor producti ^ j
^ k. Thus we need the more general string-net picture to
describe gauge theories where the trivial representation ap-
pears multiple times ini ^ j ^ k.

The Hilbert space of the string-net model is defined in the
natural way: the states in the string-net Hilbert space are
linear superpositions of different spatial configurations of
string-nets with different spin states at the nodes.

One can analyze string-net condensed phases as before.
The universal properties of each phase are captured by a
fixed-point ground state wave functionF. The wave function
F is specified by the local ruless4d ands5d and simple modi-
fications ofs6d and s7d:

The complex numerical constantFkln
ijm is now a complex ten-

sor sFkln
ijmdmn

st of dimensiondijm3dklm* 3dinl 3d jkn* .
One can proceed as before, with self-consistency condi-

tions, fixed-point Hamiltonians, string operators, and the
generalization tos3+1d dimensions. The exactly soluble
models are similar to Eq.s11d. The main difference is the
existence of an additional spin degree of freedom at each site
of the honeycomb lattice. These spins account for the de-
grees of freedom at the nodes of the string-nets.

APPENDIX B: SELF-CONSISTENCY CONDITIONS

In this section, we derive the self-consistency conditions
s9d. We begin with the last relation, the so-called “pentagon
identity,” since it is the most fundamental. To derive this
condition, we use the fusion rules7d to relate the amplitude
F

to the amplitudeF

in two distinct ways.sSee Fig. 14d. On the one hand, we can
apply the fusion rules7d twice to obtain the relation

fHere, we neglected to draw a shaded region surrounding the
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whole diagram. Just as in the local ruless4d–s7d the ends of
the stringsi, j , k, l, m are connected to some arbitrary string-
net configuration.g But we can also apply the fusion rules7d
three times to obtain a different relation:

If the rules are self-consistent, then these two relations must
agree with each other. Thus, the two coefficients ofF

must be the same. This equality implies the pentagon identity
s9d.

The first two relations in Eq.s9d are less fundamental. In
fact, the first relation is not required by self-consistency at
all; it is simply a useful convention. To see this, consider the
following rescaling transformation on wave functionsF

→F̃. Given a string-net wave functionF, we can obtain a
new wave functionF̃ by multiplying the amplitudeFsXd for
a string-net configurationX by an arbitrary factorfsi , j ,kd for
each vertexhi , j ,kj in X. As long asfsi , j ,kd is symmetric in
i, j , k, andfs0,i , i*d=1, this operation preserves the topologi-

cal invariance ofF. The rescaled wave functionF̃ satisfies
the same set of local rules with rescaledFkln

ijm:

Fkln
ijm → F̃kln

ijm = Fkln
ijm fsi, j ,mdfsk,l,m*d

fsn,l,idfs j ,k,n*d
. sB1d

SinceF andF̃ describe the same quantum phase, we regard

F and F̃ as equivalent local rules. Thus the first relation in

Eq. s9d is simply a normalization convention forF or F
sexcept wheni, j , or k, vanishes; these cases require an ar-
gument similar to the derivation of the pentagon identityd.

The second relation in Eq.s9d has more content. This
relation can be derived by computing the amplitude for a
tetrahedral string-net configuration. We have

sB2d

We define the above combination in the front ofFsxd as

Gkln
ijm ; Fkln

ijmviv jvkvl . sB3d

Imagine that the above string-net configuration lies on a
sphere. In that case, topological invariancestogether with
parity invarianced requires thatGkln

ijm be invariant under all 24
symmetries of a regular tetrahedron. The second relation in
Eq. s9d is simply a statement of this tetrahedral symmetry
requirement—written in terms ofFkln

ijm. sSee Fig. 15.d
In this section, we have shown that the relationss9d are

necessary for self-consistency. It turns out that these relations
are also sufficient. One way of proving this is to use the
lattice models11d. A straightforward algebraic calculation
shows that the ground state ofs11d obeys the local rules
s4d–s7d, as long as Eq.s9d is satisfied. This establishes that
the local rules are self-consistent.

APPENDIX C: GRAPHICAL REPRESENTATION OF THE
HAMILTONIAN

In this section, we provide an alternative, graphical, rep-
resentation of the lattice models11d. This graphical represen-
tation provides a simple visual technique for understanding
propertiessad–scd of the Hamiltonians11d.

We begin with the 2D honeycomb lattice. Imagine we
fatten the links of the lattice into stripes of finite width.sSee
Fig. 16d. Then, any string-net state in the fattened honey-

FIG. 14. The fusion rules7d can be used to relate the amplitude
of sad to the amplitude ofscd in two different ways. On the one
hand, we can apply the fusion rules7d twice—along the links de-
noted by solid arrows—to relatesad→sbd→scd. But we can also
apply Eq. s7d three times—along the links denoted by dashed
arrows—to relatesad→sdd→sed→scd. Self-consistency requires that
the two sequences of the operation lead to the same linear relations
between the amplitudes ofsad and scd.

FIG. 15. Four string-net configurations related by tetrahedral
symmetry. In diagramsad, we show the tetrahedron corresponding

to Gkln
ijm. In diagramssbd, scd, sdd, we show the tetrahedronsGjin

lkm*
,

Glkn*
jim , Gk*nl

imj , obtained by reflectingsad in 3 different planes: the
plane joiningn to the center ofm, the plane joiningm to the center
of n, and the plane joiningi to the center ofk. The four tetrahedrons
correspond to the four terms in the second relation of Eq.s9d.
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comb latticefFig. 16sadg can be viewed as a superposition of
string-net states in the original, unfattened latticefFig.
16sbdg. This mapping is obtained via the local ruless4d–s7d.
Using these rules, we can relate the amplitudeFsXd for a
string-net in the fattened lattice to a linear combination of
string-net amplitudes in the original lattice:FsXd
=oaiFsXid. This provides a natural linear relation between
the states in the fattened lattice and those in the unfattened
lattice: uXk=oaiuXil. This linear relation is independent of the
particular way in which the local ruless4d–s7d are applied, as
long as the rules are self-consistent.

In this way, the fattened honeycomb lattice provides an
alternative notation for representing the states in the Hilbert
space ofs11d. This notation is useful because the magnetic
energy operatorsBp

s are simple in this representation.
Indeed, the action of the operatorBp

s on the string-net state

is equivalent to simply adding a loop of type-s string:

As we described above, we can use the local ruless4d–s7d to
rewrite

as a linear combination of the physical string-net states with
strings only on the links, that is to reduce Fig. 17sad to Fig.
17sbd. This allows us to obtain the matrix elements ofBp

s.
The following is a particular way to implement the above

procedure:

FIG. 16. The fattened honeycomb lattice. The strings are forbid-
den in the shaded region. A string state in the fattened honeycomb
lattice sad can be viewed as a superposition of string states on the
links sbd.

FIG. 17. The action ofBp
s is equivalent to adding a loop of type-

s string. The resulting string-net statesad is actually a linear com-
bination of the string-net statessbd. The coefficients in this linear
relation can be obtained by using the local ruless4d–s7d to reduce
sad to sbd.
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Notice that Eq.sC1d is exactly Eq.s14d. Thus, the graphical
representation ofBp

s agrees with the original algebraic defi-
nition.

Using the graphical representation ofBp
s we can easily

show thatBp1

s1 and Bp2

s2 commute. The derivation is much
simpler than the more straightforward algebraic calculation.
First note that these operators will commute ifp1, p2 are
well-separated. Thus, we only have to consider the case
wherep1 andp2 are adjacent, or the case wherep1, p2 coin-
cide. We begin with the nearest neighbor case. The action of
Bp1

s1Bp2

s2 on the string-net state Fig. 18sad can be represented as
Fig. 18sbd. Figure 18sbd can then be related to a linear com-
bination of the string-net states shown in Fig. 18scd. The
coefficients in this relation are the matrix elements ofBp1

s1Bp2

s2.
But by the same argument, the action ofBp2

s2Bp1

s1 can also be
represented by Fig. 18sbd. We conclude thatBp2

s2Bp1

s1, Bp1

s1Bp2

s2

have the same matrix elements. Thus, the two operators com-
mute in this case.

On the other hand, whenp1=p2, we have

sC2d

Thus,

Bp
s2Bp

s1 = o
k

dk*s2s1
Bp

k. sC3d

Sincedk*s2s1
is symmetric ins2, s1, we conclude thatBp

s1Bp
s2

=Bp
s2Bp

s1, so the operators commute in this case as well. This
establishes propertysad of the Hamiltonians11d.

EquationsC3d also sheds light on the spectrum of theBp
s

operators. Let the simultaneous eigenvalues ofBp
s swith p

fixedd be hbq
sj. Then, by Eq.sC3d these eigenvalues satisfy

o
k

dk*s2s1
bq

k = bq
s2bq

s1.

We can view this as an eigenvalue equation for thesN+1d
3 sN+1d matrix Ms2

, defined byMs2,j
i =d j*s2i. The simulta-

neous eigenvaluesbq
s2 are simply the simultaneous eigenval-

ues of the matricesMs2
. In particular, this means that the

index q ranges over a set of sizeN+1.
Each value ofq corresponds to a different possible state

for the plaquettep. The magnetic energies of theseN+1
different states are given by:Eq=−osasbq

s. Depending on the
parameter choiceas, all on the plaquettesp will be in one of
these statesq. In this way, the Hamiltonians11d can be in
N+1 different quantum phase. This establishes propertysbd
of the Hamiltonians11d.

One particular stateq is particularly interesting. This state
corresponds to the simultaneous eigenvaluesbs=ds. It is not
hard to show that the parameter choiceas=ds/okdk

2 makes
this state energetically favorable. In fact, using Eq.sC3d one
can show thatBp is a projector for this parameter choice, and
that Bp=1 for this state.

Furthermore, the ground state wave function for this pa-
rameter choice obeys the local ruless4d–s7d. One way to see
this is to compare

with

For the first state, we find

For the second state, we find the same result:

It follows that

so

FIG. 18. The action ofBp1

s1Bp2

s2 on the string-net statesad can be
represented by adding two loops of type-s1 and type-s2 strings as
shown insbd. The string-net statesbd is a linear combination of the
string-net statesscd. The coefficients are obtained by using the rules
Eqs.s4d–s7d to reducesbd to scd.
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This result means that the strings can be moved through the
forbidden regions at the center of the hexagons. Thus, the
local rules which were originally restricted to the fattened
honeycomb lattice can be extended throughout the entire 2D
plane. The wave functionF obeys these continuum local
rules and has a smooth continuum limit. We call such a state
smooth topological state. This establishes propertyscd of the
Hamiltonians11d.

The wave functions of some smooth topological states are
positive definite. So those wave functions can be viewed as
the statistical weights of certain statistical models in the
same spatial dimensions. What is interesting is that those
statistical models are local models with short-ranged
interactions.10,35,36

APPENDIX D: GRAPHICAL REPRESENTATION
OF THE STRING OPERATORS

In this section, we describe a graphical representation of
the long string operatorsWasPd. Just as in the previous sec-
tion, this representation involves the fattened honeycomb lat-
tice. The action of the string operatorWasPd on a general
string stateX, is simply to create a string labeleda along the
path P ssee Fig. 19d. The resulting string-net state can then
be reduced to a linear combination of string-net states on the
unfattened lattice. The coefficients in this linear combination
are the matrix elements ofWasPd.

However, none of the ruless4d–s7d involve strings labeled
a, nor do they allow for crossings. Thus the reduction to
string-net states on the unfattened lattice requires new local
rules. These new local rules are defined by the 4 index ob-
jectsVa,sti

j , Va,sti
j , and the integersna,i:

sD1d

Here,s, t are the two indices of the matrixVst
ij . sUntil now,

we have neglected to write out these indices explicitlyd.
After applying these rules, we then need to join together

the resulting string-nets. The “joining rule” for two string
typess1, s2 is as follows. Ifs1Þs2, we do not join the two
strings: we simply throw away the diagram. Ifs1=s2, then
we join the two strings and contract the two corresponding
indicess1, s2. That is, we multiply the twoV matrices to-
gether in the usual way. Using the same approach as Eq.
sC1d, one can show that the graphical definition ofWasPd
agrees with the algebraic definitions19d.

In the previous section, we used the graphical representa-
tion of Bp

s to show that these operators commute. The string
operatorsWasPd can be analyzed in the same way. With a
simple graphical argument one can show that the string op-
eratorsWasPd commute with the magnetic operatorsBp

s pro-
vided that Eqs.s4d–s7d and sD1d satisfy the conditions

sD2d

sD3d

These relations are precisely the commutativity conditions
s22d, written in graphical form.
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