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String-net condensation: A physical mechanism for topological phases
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We show that quantum systems of extended objects naturally give rise to a large class of exotic phases—
namely topological phases. These phases occur when extended objects, called “string-nets,” become highly
fluctuating and condense. We construct a large class of exactly soluble 2D spin Hamiltonians whose ground
states are string-net condensed. Each ground state corresponds to a different parity invariant topological phase.
The models reveal the mathematical framework underlying topological phases: tensor category theory. One of
the Hamiltonians—a spin-1/2 system on the honeycomb lattice—is a simple theoretical realization of a uni-
versal fault tolerant quantum computer. The higher dimensional case also yields an interesting result: we find
that 3D string-net condensation naturally gives rise to both emergent gauge bosons and emergent fermions.
Thus, string-net condensation provides a mechanism for unifying gauge bosons and fermions in 3 and higher

dimensions.
DOI: 10.1103/PhysRevB.71.045110 PACS nunt®er71.10~w, 11.15-q
[. INTRODUCTION are gapped and are described by topological quantum field

ftheories(TQFT’s).25 The problem of physically characteriz-

For many years, it was thought that Landau’s theory of: :
symmetry breakingcould describe essentially all phases andN9 topological phases has also been addressed. Reference 2

phase transitions. It appeared that all continuous phase traffvestigated the “topological ordefanalogous to long range
sitions were associated with a broken symmetry. HoweverOrde) that occurs in topological phases. The author showed

after the discovery of the fractional quantum H&HQH) that topological order is characterized by robust ground state

effect, it was realized that FQH states contain a new type of €9eneracy, nontrivial particle statistics, and gapless edge

order—topological order—that is beyond the scope of Lan£XCitations?*#2¢ These properties can be used to partially

dau theory(for a review, see Ref.)2Since then the study of El(?nsssl(f)):‘ :ggg:gg:gg: BﬂgzgzhFalcglgéé?wea%l;?;zlgzr?ﬁlga%gIlﬁZ
top_ologlcal phases in Condensed. matter systems has bgen ses. Unlike the symmetry breaking case, the emergent par-
active area of research. Topological phases have been inves: ; '

ticated | oty of th tical and . al ¢ les in topologically orderedor more generally, quantum
Igated in a variety o eore6|ca anad experimenta Syi)emsordered states include(deconfinedl gauge bosori$?® as
ranging from FQH systems® quantum dimer models;

! T ,,  well as fermions(in three dimension$®3° and anyons(in
and quantum spin modet$,*° to quantum computers,; two dimensions3! Fermions and anyons can emerge as col-
and superconducting stat€s?® This work has revealed a |gctive excitations of purely bosonic models.
host of interesting theoretical phenomena and applications, vet, the theory of topological phases is still incomplete.
including fractionalization, anyonic quasiparticles, and faultThe theory lacks two important components: a physical pic-
tolerant quantum computation. Yet, a general theory of topoture (analogous to particle condensatidhat clarifies how
logical phases is lacking. topological phases emerge from microscopic degrees of free-
One way to reveal the gaps in our understanding is talom, and a mathematical framewot&nalogous to group
compare with Landau’s theory of symmetry breaking phasesheory) for characterizing and classifying these phases.
Landau theory is based dn) the physical concepts of long In this paper, we address these two issues for a large class
range order, symmetry breaking, and order parameters, araf topological phases which we call “doubled” topological
(b) the mathematical framework of group theory. These toolgphases. On a formal level, “doubled” topological phases are
allow us to solve three important problems in the study ofphases that are described by a sum of two TQFT’s with op-
ordered phases. First, they provide low energy effective thegaosite chiralities. Physically, they are characterized by parity
ries for general ordered phases: Ginzburg-Landau fielénd time reversal invariance. Examples include all discrete
theories** Second, they lead to a classification of symmetry-lattice gauge theories, and all doubled Chern-Simons theo-
breaking states. For example, we know that there are onlyies. It is unclear to what extent our results generalize to
230 different crystal phases in three dimensions. Finally, theghiral topological phases—such as in the FQH effect.
allow us to determine the universal properties of the quasi- We first address the problem of the physical picture for
particle excitationge.g., whether they are gapped or gap-doubled topological phases. We argue that in these phases,
less. In addition, Landau theory provides a physical picturelocal energetic constraints cause the microscopic degrees of
for the emergence of ordered phases—namely particle corireedom to organize into effective extended objects called
densation. “string-nets.” At low energies, the microscopic Hamiltonian
Several components of Landau theory have been successffectively describes the dynamics of these extended objects.
fully reproduced in the theory of topological phases. For exdf the kinetic energy of the string-nets dominates the string-
ample, the low energy behavior of topological phases is relanet tension, the string-nets “condense.” large string-nets with
tively well understood on a formal level: topological phasesa typical size on the same order as the system size fill all of
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are closely connected to tensor categories and string-nets.
The contribution of this paper is our demonstration that these
elegant mathematical relations have a concrete realization in
condensed matter systems.

The paper is organized as follows. In Sec. Il and Ill, we
introduce the string-net picture, first in the case of decon-
fined gauge theories, and then in the general case. We argue
that all doubled topological phases are described by string-
net condensation.

The rest of the paper is devoted to developing a theory of
Normal String-net condensed string-net condensation. In Sec. IV, we consider the case of
(2+1) dimensions. In parts A and B, we construct string-net
YU 5> 1 wave functions and Hamiltonians for ea@+ 1)D string-net

condensed phase. Then, in part C, we use this mathematical

FIG. 1. A schematic phase diagram for the generic string-neframework to calculate the universal properties of the quasi-
Hamiltonian(3). Whent/U (the ratio of the kinetic energy to the particle excitations in each phase. In Sec. V, we discuss the
string tension is small the system is in the normal phase. The ganeralization to 3 and higher dimensions. In the last section,
ground state is essentially the vacuum with a few small string-netsq present several examples of string-net condensed states—

Whent/U is large the string-nets condense and large fluctuatinqncluding a spin-1/2 model theoretically capable of fault tol-
string-nets fill all of space. We expect a phase transition between th . : .

. . . rant ntum computation. The main mathematical calcula-
two states at somigU of order unity. We have omitted string labels Era quantuim comptiatio € ma atnematical calcula

and orientations for the sake of clarity. tions can be found in the Appendix.

tU << 1

space(see Fig. 1 The result is a doubled topological phase.

Thus, just as traditional ordered phases arise via particle con- Il. STRING-NETS AND GAUGE THEORIES
densation, topological phases originate from “string-net con- . . . . : .
densation.” In this section, we introduce the string-net picture in the

37,38 ; i
This physical picture naturally leads to a solution to theCONtext of gauge theoRy:*"*We point out that all decon

second problem—that of finding a mathematical frameworkin€d gauge theories can be understood as string-net conden-
for classifying and characterizing doubled topological sates where the strings are essentially electric flux lines. We
phases. We show that each topological phase is associatga_pe that this result provides intuition fGand motivatesthe

with a mathematical object known as a “tensor categéty.” Stfing-net picture in the general case. .
Here, we think of a tensor categorg a 6 index objecE/ We begin with the simplest gauge theory-lattice

Imn 9 . . .
which satisfies certain algebraic equatioi®. The math- 93u9€ theory? The Hamiltonian is

ematical object FjX ~ characterizes different topological __ X _ z
phases and determines the universal properties of the quasi- Hz, = U; o -2 1l i @)
particle excitations(e.g., statistics just as the symmetry
group does in Landau theory. We feel that the mathematicavherec*¥* are the Pauli matrices, andi, p label the sites,
framework of tensor categories, together with the physicalinks, and plaguettes of the lattice. The Hilbert space is
picture of string-net condensation provides a general theor§ormed by states satisfying
of (doubled topological phases.
Our approach has the additional advantage of providing I1 | ®) =), (2)
exactly soluble Hamiltonians and ground state wave func- legs of
tions for each of these phases. These exactly soluble Hamifer every sitel . For simplicity we will restrict our discussion
tonians are local bosonic modéisr spin models They re-  to trivalent lattices such as the honeycomb latticee
alize all discrete gauge theori¢im any dimensiopand all  Fig. 2).
doubled Chern-Simons theoriia (2+1) dimensiong One It is well known thatZ, lattice gauge theory is dual to the
of the Hamiltonians—a spin-1/2 model on the honeycombsing model in(2+1) dimensions® What is less well known
lattice—is a simple theoretical realization of a universal faultis that there is a more general dual descriptiorZofauge
tolerant quantum computétThe higher dimensional models theory that exists in any number of dimensidhJo obtain
also yield an interesting result: we find th@&+21)D string-  this dual picture, we view links witlr*=-1 as being occu-
net condensation naturally gives rise to both emerging gaugeied by a string and links with*=+1 as being unoccupied.
bosons and emerging fermions. Thus, string-net condens@he constrain(2) then implies that only closed strings are
tion provides a mechanism for unifying gauge bosons andllowed in the Hilbert spacé&Fig. 2).
fermions in(3+1) and higher dimensions. In this way, Z, gauge theory can be reformulated as a
We feel that this constructive approach is one of the mose¢losed string theory, and the Hamiltonian can be viewed as a
important features of this paper. Indeed, in the mathematicatlosed string Hamiltonian. The electric and magnetic energy
community it is well known that topological field theory, terms have a simple interpretation in this dual picture: the
tensor category theory and knot theory are all intimately‘electric energy” Uo7 is a string tension while the “mag-
related®~*6Thus it is not surprising that topological phases netic energy” +3,lleqyges op0; iS @ string kinetic energy. The

p edgesop
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FIG. 2. (Color onling The constraint ternilegs o o] and mag-
netic termllggges opU,-Z in Z, lattice gauge theory. In the dual picture,
we regard the links witlr*=-1 as being occupied by a string, and
the links with ¢*=+1 as being unoccupied. The constraint term
then requires the strings to be closed—as shown on the right.

physical picture for the confining and deconfined phases
also clear. The confining phase corresponds to a large elect
energy and hence a large string tensld&-t. The ground
state is therefore the vacuum configuration with a few sma

PHYSICAL REVIEW B 71, 045110(2005

-

.

j
FIG. 4. The orientation convention for the branching rules.

ried by the line. In addition, the flux lines need to be oriented
to indicate the direction of the flux. The final point is that the
flux lines do not necessarily form closed loops. It is possible
for three flux linesk;, E,, E; to meet at a point, as long as
Gauss’ law is obeyedE; +E,+E3;=0. Thus, the dual formu-
lation of U(1) gauge theory involves not strings, but more
general objects: networks of stringsr “string-nets’). The
strings in a string-net are labeled, oriented, and obey branch-
ing rules, given by Gauss’ laj\Fig. 3(b)].

This “string-net” picture exists for general gauge theories.
itn the general case, the stringdectric flux lines are labeled
1y representations of the gauge group. The branching rules
(Gauss’ law require that if three stringg;, E,, E; meet at a
Ipoint, then the product of the representatidise E, ® E;

strings. The deconfined phase corresponds to a large magrust contain the trivial representatigifror example, in the
netic energy and hence a large kinetic energy. The groundase ofSU(2), the strings are labeled by half-integefs
state is thus a superposition of many large string configura=1/2,1,3/2,.., and the branching rules are given by the

tions. In other words, the deconfined phase Zgf gauge
theory is a quantum liquid of large strings—a “string con-
densate’{Fig. 3a)].

A similar, but more complicated, picture exists for other
deconfined gauge theories. The next layer of complexity i

triangle inequality{E;,E,,E3} are allowed to meet at a point

if and only if E;<E,+E; E,<Ez+E;, Ez<E;+E,, and
E,+E,+E; is an integefFig. 3(c)]).3” These string-nets pro-
vide a general dual formulation of gauge theory. As in the
¢ase ofZ,, the deconfined phase of the gauge theory always

revealed when we consider other Abelian theories, such asorresponds to highly fluctuating string-nets—a string-net

U(1) gauge theory. As in the case @f, U(1) lattice gauge

condensate.

theory can be reformulated as a theory of electric flux lines.

However, unlikeZ,, there is more then one type of flux line.
The electric flux on a link can take any integral valudJi(i)

lattice gauge theory. Therefore, the electric flux lines need to

be labeled with integers to indicate the amount of flux car

O~ 0T

2

O

FIG. 3. Typical string-net configurations in the dual formulation
of (a) Z,, (b) U(1), and(c) SU(2) gauge theory. In the case @ Z,
gauge theory, the string-net configurations consist of clésedin-
tersecting loops. In(b) U(1) gauge theory, the string-nets are ori-
ented graphs with edges labeled by integers. The string-nets ob
the branching ruleg&; +E,+Ez=0 for any three edges meeting at a
point. In the case ofc) SU(2) gauge theory, the string-nets consist

of (unorientedl graphs with edges labeled by half-integers 1/2,1,
3/2.... The branching rules are given by the triangle inequality:

{E1,E5E3} are allowed to meet at a point if and only B, <E,
+E3, Ep<E3+E,, Eg<E;+E,, andE;+E,+Ej; is an integer.

Ill. GENERAL STRING-NET PICTURE

Given the large scope of gauge theory, it is natural to
‘wonder if string-nets can describe more general topological
phases. In this section we will discuss this more general
string-net picture.(Actually, we will not discuss the most
general string-net picture. We will focus on a special case for
the sake of simplicity. See Appendix A for a discussion of
the most general picture

We begin with a more detailed definition of
“string-nets.?253 As the name suggests, string-nets are net-
works of strings. We will focus on trivalent networks where
each node or branch point is attached to exactly 3 strings.
The strings in a string-net are oriented and come in various
“types.” Only certain combinations of string types are al-
lowed to meet at a node or branch point. To specify a par-
ticular string-net model, one needs to provide the following

ta.

(1) String typesThe number of different string types.
For simplicity, we will label the different string types with
the integers=1,...,N.

(2) Branching rulesThe set of all triplets of string-types
{{i,j,k}...} that are allowed to meet at a poiiee Fig. 4.
(3) String orientationsThe dual string typé&" associated
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FIG. 5.i andi” label strings with opposite orientations.
with each string typé. The duality must satisfyi")" =i. The
typed” string corresponds to the typestring with the oppo-
site orientation. Ifi=i", then the string is unorientedSee
Fig. 5)

This data describes the detailed structure of the string-
nets. The Hilbert space of the string-net model is then de-
fined in the natural way. The states in the Hilbert space are
simply linear superpositions of different spatial configura-
tions of string-nets.

R

2

FIG. 6. Three pairs of string-net configurations that differ only

Once the Hilbert space has been specified, we can ima(if-] the_lr short distance structure. We expec_t string-net wave fun_c-
ions in the same quantum phase to only differ by these short dis-

ine writing down a string-net Hamiltonian. The string-net tance details
Hamiltonian can be any local operator which acts on quan- '
tum string-net states. A typical Hamiltonian is a sum of po-
tential and kinetic energy pieces: Our approach, inspired by Refs. 35-37 and 42—44, is based
H = UH, +tH,. (3)  on the string-net wave function. We construct a special

o _ _ ) “fixed-point” wave function for each string-net condensed

The kinetic energyH; gives dynamics to the string-nets, phase. We believe that these “fixed-point” wave functions

while the potential energhly, is typically some kind of string  capture the universal properties of the corresponding phases.
tension. WhenU>t, the string tension dominates and we gach “fixed-point” wave function is associated with a six

expect the ground state to be the vacuum state with a feyygay objectFi that satisfies certain algebraic equations
small string-nets. On the other hand, wheaU, the kinetic o) " this way, we derive a one-to-one correspondence be-
energy dominates, and we expect the ground state to consigty ., o pled topological phases and tensor categbifes

of many large fluctuatmg.strlng-nets. We expect that there 'Jve would like to mention that a related result on the classi-
38”5:%2 oprzae?eo; rl?:if;t('ggebggveg nB;ZeziLE\évg Osft?;?aitals_orﬂ%ation of (2+1)D topological quantum field theories was
ogy with particle condensation. we say that the latge obtained independently in the mathematical commuity.

highly fluctuating string-net phase is “string-net condensed.” orl;génusseg);t;ew?é?)lllzeh tvr\'; EV;\Y: rfgtngg?irrle(g Srisr:n?r?é?g;n-
This notion of string-net condensation provides a naturaf ‘ 9 g

physical mechanism for the emergence of topological phase ensation ngorousl_y,_ we expect that a string-net condensed
ate is a superposition of many different string-net configu-

in real condensed matter systems. Local energetic constraint tions. Each string-net configuration h ize tvpically on
can cause the microscopic degrees of freedom to organi ons. Each string-net configuration has a siz€ typicatly o
e same order as the system size. The large size of the

into effective extended objects or string-nets. If the kinetic fina-nets implies that a strind-net condensed wave function
energy of these string-nets is large, then they can conden é 9 mp . 9 . : )
as a nontrivial long distance structure. It is this long dis-

iving ri logical phase. Th f logical o
ghasge issfjet?eram}ggg cl)a?/ctﬂepst?usciure if%f)ee s?crirtlcg);?r?e(:g Cjnt@nce structure that distinguishes the condensed state from
"~ the “normal” state.

the form of string-net condensation. In aeneral. we expect that the universal featur f
But how general is this picture? In the previous section, general, we expect that the universal features of a

we pointed out that all deconfined gauge theories can palring-net condensed phase are contained in the long distance

viewed as string-net condensates. In fact, mathematical r haracter of the wave functions. Imagine comparing two dif-

sults suggest that the string-net picture is even more gener ﬁrentt strln%—net c_lc_)kr:detnsed tsttates t.na;] belog% to trt1e same
In (2+1) dimensions, all so-called “doubled” topological quantum phase. 1he two stales will have dilierent wave

phases can be described by string-net condensationided functions. However, by the standard RG reasoning, we ex-

that we generalize the string-net picture as in AppenditéA pect that the two wave functions will look the same at long

Physically, this means that the string-net picture can be a distances. That is, the two wave functions will only differ in

. . . . . . short distance details—like those shown in Fig. 6.
plied to essentially all parity and time reversal invariant to- N . s . ‘
. ; . . . Continuing with this line of thought, we imagine perform-
pological phases if2+1) dimensions. Examples include all

. . ing an RG analysis on ground state functions. All the states
discrete gauge theories, and all doubled Chern-Simons theﬂiga string-net c)(/)ndensgd phase should flow to some special
ries. The situation for dimensiod>2 is less well under-

t00d. However we know that strina-net condensation it“fixed-point” state. We expect that the wave function of this
stood. HOWeVer, we Know that string-net condensation quite ;. captures the universal long distance features of the
generally describes all lattice gauge theories with or withou

. - hole quantum phasé¢See Fig. 7).
emergent Fermi statistiqsee Sec. ¥ In the following, we will construct these special fixed-

IV. STRING-NET CONDENSATION IN (2+1) DIMENSIONS ~ point wave functions. Supposk is some fixed-point wave
. ) ) function. We know thatD is the ground state of some fixed-
A. Fixed-point wave functions point HamiltonianH. Based on our experience with gauge
In this section, we attempt to capture the universal featheories, we expect that is a sum of string kinetic energy
tures of string-net condensed phaseqar1) dimensions. terms with no string tension terms:
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numerical constant that depends on 6 string typgsm, k, I,
andn. If one or more of the branchings,j,m}, {k,l_,_m*},
{i,n,1}, {j,k,n"} is illegal, the value of the symbdt/] is
unphysical. However, for simplicity, we will sét/7=0 in
this case.

The local ruleg4)—(7) are written using a new notational
convention. According to this convention, the indiée$, k
etc., can take on the valieO in addition to theN physical
string typesi=1,...,N. We think of thei=0 string as the
“empty string” or “null string.” It represents empty space—

FIG. 7. A schematic RG flow diagram for a string-net model the vacuum. Thus we can convert labeled string-nets to our
with 4 string-net condensed phases, ¢, andd. All the states in ~ 0ld convention by simply erasing all the=0 strings. The
each phase flow to fixed-points in the long distance limit. The corbranching rules and dualities associated witld are defined
responding fixed-point wave functiods,, ®,, ®., anddy capture  in the obvious way: 0=0, and{i,,0} is allowed if and only
the universal long distance features of the associated quantuifi i=j". Our convention serves two purposes: it simplifies
phases. Our ansatz is that the fixed-point wave functibnare  notation [each equation in Eq94)—(7) represents several
described by local constraints of the fof#)—(7). equations with the old conventifgrand it reveals the math-
ematical framework underlying string-net condensation.

We now briefly motivate these rules. The first r{®
constrains the wave functioh to be topologically invariant.

It requires the quantum mechanical amplitude for a string-net

In particular,H is unfrustrated, and the ground state waveConfiguration to only depend on the topology of the configu-
function minimizes the expectation values of all the kineticration: two configurations that can be continuously deformed
energy termgH,} simultaneously. Minimizing the expecta- INto one another must have the same amplitude. The motiva-
tion value of an individual kinetic energy terhh, is equiva-  tion for this constraint is our expectation that topological
lent to imposing a local constraint on the ground state wavé!ing-net phases have topologically invariant fixed-points.
function, namelyH, ;| ®)=E;|®) (whereE; is the smallest ei- The second rul€5) is motivated by the fundamental prop-
genvalue oM, ). We conclude thathe wave functiom can erty of RG fixed-points: scale invariance. The wave function
be specified u’niquely by local constraint equatioHse local P _shoul_d look the same at all distance scales. Since a cIo_sed
constraints are linear relations between several string-net an§ifing disappears at length scales larger than the string size,
plitudes ®(X,), P(X,), P(Xs)..., where the configurations the amplitude of an arbitrary string-net configuration with a
Xy, X5, Xs... only differ by local transformations. cIo_sed string s'hould' be proportional to the amplitude of the
To derive these local constraints from first principles isStfing-net configuration alone. . L
difficult, so we will use a more heuristic approach. We will The third rule(6) is similar. Since a “bubble” is irrelevant
first guess the form of the local constrairit®., guess the &t long length scales, we expect
form of the fixed-point wave function Then, in the next 3
section, we will construct the fixed-point Hamiltonian and
show that its ground state wave function does indeed satisfy
these local relations. Our ansatz is that the local constrain
can be put in the following graphical form:

H=tH =t Hy;.
i

tgut if i # ], the configuration

is not allowed:

(5 (8)

We conclude that the amplitude for the bubble configuration
vanishes whemn# j.
(6) The last rule is less well-motivated. The main point is that
the first three rules are not complete: another constraint is
needed to specify the ground state wave function uniquely.
(7

i | ..
o (W) = ZFS,T(I’ The last rule(7) is the simplest local constraint with this
n property. An alternative motivation for this rule is the fusion
algebra in conformal field theofy.
Here,i, j, k etc. are arbitrary string types and the shaded The local rules(4)—(7) uniquely specify the fixed-point
regions represent arbitrary string-net configurations. @he wave function®. The universal features of the string-net
are complex numbers. The 6 index symB#, is a complex condensed state are captured by these rules. Equivalently,

045110-5



M. A. LEVIN AND X.-G. WEN PHYSICAL REVIEW B 71, 045110(2005

they are captured by the six index obj&gf", and the num-  scribes the dynamics of certain geometric objéets., fiber

bersd,. ) bundles. The gauge group determines the structure of these
However, not every choice df )7, di) corresponds to a objects and is introduced by hand as part of the basic defi-
string-net condensed phase. In fact, a generic choi¢e{ nition of the theory. In contrast, according to the string-net

d;) will lead to constraint$4)—(7) that are not self-consistent. condensation picture, the geometrical character of gauge
The only(F)jn, d) that give rise to self-consistent rules and atheory is not fundamental. Gauge theories are fundamentally
well-defined wave functiorb are (up to a trivial rescaling  theories of extended objects. The gauge group and the geo-

those that satisfy metrical gauge structure emerge dynamically at low energies
and long distances. A string-net system “chooses” a particu-

pik, - &5_ lar gauge group, depending on the coupling constants in the

o Viv; ke underlying Hamiltonian: these parameters determine a

string-net condensed phase which in turn determines a solu-

tion to Eq.(9). The nature of this solution determines the
’ gauge group.

One advantage of this alternative picture is that it unifies
N two seemingly unrelated phenomena: gauge interactions and
S pmia piip JEiSn_piip erig’ (9) Fermi statistics. Indeed, as we will show in Sec. V, string-net
kp'n" mns” Ikr g kr'’ mis? : : : : .

n=0 condensation naturally gives rise to both gauge interactions
and Fermi statistic§or fractional statistics i(2+1)D]. In
addition, these structures always appear togéther.

ijm _ clkm' _ jim _ imj YmUn
Fan = Fjin = Flew = Feni
Uiy

wherev; =v;-=\d; (andv,=1). (See Appendix B.Here, we
have introduced a new objeé} defined by the branching

rules:
e B. Fixed-point Hamiltonians
1, if {i,j,k} is allowed . . . .
Sijk = . (10 In this section, we construct exactly soluble lattice spin
0, otherwise Hamiltonians with the fixed-point wave function® as

There is a one-to-one correspondence betw@nl)D  ground states. These Hamiltonians provide an explicit real-
string-net condensed phases and solutions of(&q.These ization of all(2+1)D string-net condensates and therefore all
solutions correspond to mathematical objects known as terf2+1)D doubled topological phaséprovided that we gen-
sor categorie®? Tensor category theory is the fundamental€ralize these models as discussed in AppendiXie would
mathematical framework for string-net condensation, just agke to mention that a related result was obtained indepen-
group theory is for particle condensation. We have jusdently by researchers in the quantum computation
shown that it gives a complete classification @+ 1)D community*®
string-net condensed phas@s equivalently doubled topo-  For every(Fi, d;) satisfying the self-consistency condi-
logical phases each phase is associated with a different soions(9) and the unitarity conditioil5), we can construct an
lution to Eq.(9). We will show later that it also provides a exactly soluble Hamiltonian. Let us first describe the Hilbert
convenient framework for deriving the physical properties ofsPace of the exactly soluble model. The model is a spin
quasiparticles. system on g2D) honeycomb lattice, with a spin located on

It is highly nontrivial to find solutions of Eq(9). How-  €ach link of the lattice. Each “spin” can be I 1 different
ever, it turns out each grou provides a solution. The so- States labeled by=0,1...,N. We assign each link an arbi-
lution is obtained by(@) letting the string-type indek run  trary orientation. When a spin is in statewe think of the
over the irreducible representations of the gro(p,letting  link as being occupied by a typestring oriented in the ap-
the numbersl, be the dimensions of the representations andropriate direction. We think of the type-O string or null
(c) letting the 6 index objecE™ be the 6 symbol of the String as the vacuurfi.e., no string on the link o
group. The low energy effective theory of the corresponding The exactly soluble Hamiltonian for our model is given
string-net condensed state turns out to be a deconfined gaug¥

theory with gauge grouf®. Another class of solutions can be N
obtained from ¢ symbols of quantum groups. It turns out H=->0Q->B, B,=> aps (12)
that in these cases, the low energy effective theories of the | b P P 0

corresponding string-net condensed states are doubled _

Chern-Simons gauge theories. These two classes of solutiol§'€re the sums run over verticesand plaquettep of the

are not necessarily exhaustive: H§) may have solutions Noneycomb lattice. The coefficiens satisfyas =a; but are

other than gauge theories or Chern-Simons theories. NevePiherwise arbitrary. _ _ _

theless, it is clear that gauge bosons and gauge groups Let us explain thg terms in EQ11). We think of the first

emerge from string-net condensation in a very natural way.l€"M Qi as an electric charge operator. It measures the “elec-
In fact, string-net condensation provides a new perspect-”c charge” Iat Sltd', and favors states with no charge. It acts

tive on gauge theory. Traditionally, we think of gauge theo-O" the 3 spins adjacent to the site

ries geometrically. The gauge field, is analogous to an ,o% 99&

affine connection, and the field strendih, is essentially a Qr | ] > = 6ijk 13 >

curvature tensor. From this point of view, gauge theory de- (12
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FIG. 8. (Color onling A picture of the lattice spin modélLl).
The electric charge operat@, acts on the three spins adjacent to
the vertexl, while the magnetic energy operat®g acts on the 12
spins adjacent to the hexagonal plaquett&he termQ, constrains
the string-nets to obey the branching rules, wijgprovides dy-
namics. A typical state satisfying the low-energy constraints i
shown on the right. The empty links have spins in th® state.

where & is the branching rule symbdll0). Clearly, this

term constrains the strings to obey the branching rules de

scribed by gj. With this constraint the low energy Hilbert

space is essentially the set of all allowed string-net configu-

rations on a honeycomb latticéSee Fig. 8.

We think of the second teri8, as a magnetic flux opera-
tor. It measures the “magnetic flux” though the plaguegtte
(or more precisely, the cosine of the magnetic ¥lard fa-

vors states with no flux. This term provides dynamics for the

string-net configurations.
The magnetic flux operatds, is a linear combination of
(N+1) termsBj, s=0,1,...,N. EachBj is an operator that

gon p. (See Fig. 8. Thus, theB, are essentially(N+1)*?
X (N+1)* matrices. However, the action (B; does not
change the spin states on the 6 outer linkp.ofherefore the
B; can be block diagonalized intdN+1)® blocks, each of

dimension(N+1)8 x (N+1)®. Let B;"%ﬁ}j/,i(;j/k/'/(abcdeﬁ, with

PHYSICAL REVIEW B 71, 045110(2005

= R
in addition to Eq.(9). Our model is only applicable to topo-
logical phases satisfying this additional constraint. We be-
lieve that this is true much more generally: only topological
phases satisfying the unitarity conditi¢h5) are physically
realizable.

The Hamiltonian(11) has a number of interesting proper-
ties, provided thatF)jn, d;) satisfy the self-consistency con-
ditions (9), as follows.

(1) The B; and Q,’s all commute with each other. Thus
the Hamiltonian(11) is exactly soluble.

(2) Depending on the choice of the coefficiersts the
system can be ilN+1 different quantum phases.

(3) The choiceas=d /=] ,d? corresponds to a topological

(15

gphase with a smooth continuum limit. The ground state wave

function for this parameter choice is topologically invariant,
and obeys the local rule@h)—(7). It is precisely the wave
function ®, defined on a honeycomb lattice. Furthermore,
i, By are projection operators in this case. Thus, the ground
State satisfie®,=B,=1 for all I, p, while the excited states
violate these constraints.

Thus, the Hamiltoniar{11) with the above choice o
provides an exactly soluble realization of the doubled topo-
logical phase described Hy). We can obtain some intu-
ition for this by considering the case whefg is the §
symbol of some grouf®. In this case, it turns out thg, and

B, are precisely the electric charge and magnetic flux opera-
tors in the standard lattice gauge theory with gr@prhus,

Eqg. (11) is the usual Hamiltonian of lattice gauge theory,
except with no electric field term. This is nothing more than

3he well-known exactly soluble Hamiltonian of lattice gauge

theory??:3%In this way, our construction can be viewed as a
natural generalization of lattice gauge theory.

In this paper, we will focus on the smooth topological
phase corresponding to the parameter chcaig;edslEi’\‘zodi2
(see Appendix € However, we would like to mention that

a,b,c...=0,1,...,N, denote the matrix elements of these the otherN quantum phases also have nontrivial topological

(N+1)® matrices:

b)_h_<c
g i
s ja . =d
BP .(I l>‘
f>’k'<e
b-hite
ISNSIIENETE g |
_ s,9'h'V 3Kl
- Z pahiji (abedef) 2%, j?'d
m,...,r k<o
(13
Then the operatorlsJ are defined by
Ihl'l'lklll
B‘S)"%hij"(ﬂ (abcde}
_pal'y bgh chi dij efk Kl
_Fs*g’l’*Fs*h’g’*Fs*i’h’*Fs*j’i’*Fs'k’j’*Fs'I’k’* (14)

(see Appendix C for a graphical representatiorB@)‘. One
can check that the Hamiltoniagidi1) is Hermitian if F satis-
fies

(or quantum order. However, in these phases, the ground
state wave function does not have a smooth continuum limit.
Thus these are new topological phases beyond those de-
scribed by continuum theories.

C. Quasiparticle excitations

In this section, we find the quasiparticle excitations of the
string-net Hamiltonian(11), and calculate their statistics
(e.g., the twists, and theS matrix s,z). We will only con-
sider the topological phase with smooth continuum limit.
That is, we will chooses=ds/=N,d? in our lattice model.

Recall that the ground state satisfigs=B,=1 for all ver-
tices |, and all plaquettep. The quasiparticle excitations
correspond to violations of these constraints for some local
collection of vertices and plaquettes. We are interested in the
topological propertiege.g., statisticsof these excitations.

We will focus on topologically nontrivial quasiparticles—
that is, particles with nontrivial statistics or mutual statistics.
By the analysis in Ref. 29, we know that these types of
particles are always created in pairs, and that their pair cre-
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k-1'k

N N
Wi Nese,...ey) = (H ij:k'ki%) (H wk) . (16
k=1 k=1

whereey, ...,ey are the spin states of th¢ “legs” of P (see

Fig. 9 and
p
Ui US o
;Lw:t if P turns right, left atl | ,,q,
I
k
wk=< VilUs_jr . 17
o wit’ if P turns left, right atl |, 1,1,
I
k
FIG.. 9. (Cplor onling Open and _closed string operators fo_r 1, otherwise.
the lattice spin model(11). Open string operators create quasi- \

particles at the two ends, as shown on the left. Closed stringHere,wi_, @ are two(complex two index objects that char-
operators, as shown on the right, commute with the Hamiltoniangcterize thé stringV.

The closed string operatW(_P) qnly acts _non-tr_ivially on the spins Note the similarity to the definition dBS. The major dif-
along the patfP=1y, ... (thick line), butits action depends on the o ace is the additional factdily,wy. We conjecture that
sptln Istat’[ets <.)n.the Ieg{!:m I|:69|. Tthet Té,mx ellerr\l\(;gté“k.)etween an |wf(vivslvj)|:1 for a types string, ?9HE:1wk i§ simply a
initial state Ip,jz,... and a final stately,iz... Is WiZ(€e1€...)  phase factor that depends on the initial and final spin states
= (F%221 pedialz ._)-((vi1v31/vii)a):i(vi3v%/vié)5:§...) for a types i1, ip,...IN, iq, 15,...i%. This phase vanishes for patRsthat

2 *

®liz Sl make only left or only right turns, such as plaquette bound-

simple  string and \A/;igé;jj(elez...)=2{Sk}(|:e*2i2_i1*l:e§i3_i2*...)

| 2 Syitiy " Syisih ariesdp. In that case, the definition &#(P) coincides with

.T.r((vilusl/vii)ﬂ'sllszi153233Id(vi3u%/vié)9'53354i3...) for a general B‘S)_ _ _
string. A straightforward calculation shows that the operator

. o , W(P) defined above commutes with the Hamiltonidd) if
ation operator has a stringlike structure, with the newly cre- i -

. , . . w;, w; satisfy

ated particles appearing at the entBee Fig. 9. The posi- 1
tion of this string operator is unobservable in the string-net N _ N .
condensed state—only the endpoints of the string are observ- ajmpi'.n'{wgglv—s => Fﬁ*nﬁ*wEF’k's,T;,
able. Thus the two ends of the string behave like independent : Um  n=0
particles.

If the two endpoints of the string coincide so that the N
string forms a loop, then the associated closed string operator wl=> =R (18)
commutes with the Hamiltonian. This follows from the fact "o

that the string is truly unobservable; the action of an open
string operator on the ground state depends only on its end-he solutions to these equations give all the tgpsimple
points. string operators.

Thus,each topologically nontrivial quasiparticle is asso-  For example, consider the case of Abelian gauge theory.
ciated with a (closed) string operator that commutes with theln this case, the solutions to E¢L8) can be divided into
Hamiltonian To find the quasiparticles, we need to find thesethree classes. The first class is given 0, !(vivs/v))
closed string operators. =wl{(vivs/v;)=1. These string operators create electric flux

An important class of string operators are what we willlines and the associated quasiparticles are electric charges.
call “simple” string operators. The defining property of In more traditional nomenclature, these are known as
simple string operators is their action on the vacuum state. IfWegnerjWilson loop operatord®4’ The second class of so-
we apply a types simple string operatoM(P) to the vacuum  lutions is given bys=0, andw!(vivs/v)) =[@!(vivs/v;)] # 1.
state, it creates a typestring along the path of the strin§, = These string operators create magnetic flux lines and the as-
We already have some examples of these operators, namedgciated quasiparticles are magnetic fluxes. The third class
the magnetic flux operato®. WhenB; acts on the vacuum hass#0 and o!(vivs/vj) =[®](vivs/vj)]" # 1. These strings
configuration|0), it creates a type-string along the bound- create both electric and magnetic flux and the associated qua-
ary of the plaquettg. Thus, we can think oBS as a short siparticles are electric charge/magnetic flux bound states.

type-s simple string operatof\V(dp). This accounts for all the quasiparticles (@2+1)D Abelian
We would like to construct simple string operatak§P)  gauge theory. Therefore, all the string operators are simple in
for arbitrary pathsP=1,,...,Iy on the honeycomb lattice. this case.

Using the definition oB} as a guide, we make the following However, this is not true for non-Abelian gauge theory or
ansatz. The string operatdf(P) only changes the spin states other(2+1)D topological phases. To compute the quasipar-
along the pathP. The matrix element of a general type- ticle spectrum of these more general theories, we need to
simple string operatofV(P) between an initial spin state generalize the expressiaid6) for W(P) to include string
i1,...iy and final spin staté/, ...iy is of the form operators that are not simple.
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One way to guess the more general expressiolMd?) is
to consider products of simple string operators. Clearly, if EQ?S‘] ﬁ:n'q Q'SU—J—S E F n'f QF {('mq
W;(P) and W,(P) commute with the Hamiltonian, then
W(P)=W,;(P)-W,(P) also commutes with the Hamiltonian.
Thus, we can obtain other string operators by taking products itk
of simple string operators. In general, the resulting operators stn = E an*F.*SJ (22)
are not simple. W, andW, are types; and types, simple

string operators, then the action of the product string on thehe squtlons(Qm,Qm) to these equations give all the differ-

vacuum state is ent closed string operatoi/,. However, not all of these
_ _ _ solutions are_really distinct. Notice that two solutions
W(P)|0) = Wy(P)W,(P)[0) = Wi (P)|s;) = % Ss55)l9) (Q1,9,), (Q3,0,) can be combined to form a new solution
Q’,Q:

where|s) denotes the string state with a typestring along
the pathP and the vacuum everywhere else. If we take prod- Q;U let, ® Qz st an Ql i © Qz i (23)
ucts of more than two simple string operators then the actio
of the product string on the vacuum is of the foWN{P)|0)
=3nJs) whereng are some non-negative integers.

We now generalize the expression féf(P) so that it
includes arbitrary products of simple strings. L\&t be a
product of simple string operators, and lgf be the non-
negative integers characterizing the action Wf on the
vacuum:W(P)|0)==ns). Then, one can show that the ma-
trix elements ofW(P) are always of the form

Yhis is not surprising: the string operatdf corresponding
to (Q',Q) is simply the sum of the two operators corre-
sponding to(Qy 5,4 o) W =W, +W.

Given this additivity property, it is natural to consider the
“irreducible” solutions(Q},,Q,) that cannot be written as a
sum of two other solutions. Only the “irreducible” string
operatorsW, create quasiparticle pairs in the usual sense.
Reducible string operatoh® create superpositions of differ-
ent strings—which correspond to superpositions of different

N quasiparticles?
V\/12 'N(ele2 =2 (H FeK: "‘Il )Tr(H Q%) To analyze a topological phase, one only needs to find the
{s¢ \k=1 et k=1 irreducible solutiong(2,,Q,) to Eq.(22). The numbeM of
(190  such solutions is always finite. In general, each solution cor-
responds to an irreducible representation of an algebraic ob-
ject. In the case of lattice gauge theory, there is one solution
vivs for every irreducible representation of the quantum double
sl YOV if P turns right, left aty, | .1, D(G) of the gauge groufs. Similarly, in the case of doubled
[ oK Chern-Simons theories there is one solution for each irreduc-
Q¥x={ vivs ible representation of a doubled quantum group.
Xk if P turns left, right aty, |1, The structure of these irreducible string operaisde-
re termines all the universal features of the topological phase.
; The numbeM of irreducible string operators is the number
\ Sl otherwise, of different kinds of quasiparticles. The fusion rudgW,

(200 =sM hY W, determine how bound states of typeand
typeB quasiparticles can be viewed as a superposition of
other types of quasiparticles.

The topological properties of the quasiparticles are also
easy to compute. As an example, we now derive two particu-

correspond to the special case Whe:reﬁ In this case, the larly fundamental objects that characterize the spins and sta-

P tistics of quasiparticles: th& twists 6, and theM XM
matricesQ,, reduce to complex numbers and we can ; 13,25,35.48
identify stj Stl S-matrix, s,z .~

where

and Qg Qy; are two 4 index objects that characterize
the strlng operatoW. For any quadruple of string types
i,,st, (Qst] s) are (compley rectangular matrices of di-
mensionng X n,. Note that types, simple string operators

The twists 6, are defined to be statistical angles of the

i i Q type-« quasiparticles. By the spin-statistics theorem they are
= )0y Loy =) 55%&50 20 closely connected to the quasiparticle spis € fa=g?msq,
As we mentioned above, products of simple string operator§Ve can calculated, by comparing the quantum mechanical
are always of the fornil9). In fact, we believe thadll string ~ amplitude for the following two processes. In the first pro-
operatorsare of this form. Thus, we will use Eq19) as an  cess, we create a pair of quasiparticie® (from the ground
ansatz for general string operators (2+1)D topological statg, exchange them, and then annihilate the pair. In the
phases. This ansatz is complicated algebraically, but like theecond process, we create and then annihilate the pair with-
definition of BS it has a simple graphical interpretaticgee  out any exchange. The ratio of the amplitudes for these two
Appendix D. processes is precised)’a.

A straightforward calculation shows that the closed string The amplitude for each process is given by the expecta-
W(P) commutes with the HamiltoniafLl) if Q andQ sat- tion value of the closed string operatdf, for a particular
isfy path P:
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\\
A = (2fbfe)
1 (] (24)

Ar = <@l ¢ ‘®> (25) A

Here, |®) denotes the ground state of the Hamiltonian
(12).

Let (Qa,ﬁa,na) be the irreducible solution corresponding
to the string operatoW,. The above two amplitudes can
be then be expressed in terms(6%,,Q,,n,) (see Appendix
D): FIG. 10. (Color online A three-dimensional trivalent lattice,

5 0 obtained by splitting the sites of the cubic lattice. We replace
A1=E dSTr(Qa’SSS*), (26) each vertex of the cubic lattice with 4 other vertices as shown
s above.

A= Sn, .. (27) ~Trivalent lattices can also be constructed in three and
s higher dimensions. For example, we can create a space-
filling trivalent lattice in three dimensions, by “splitting” the
Combining these results, we find that the twists are given byijtes of the cubic lattice(See Fig. 10. Consider the spin
5 0 Hamiltonian (11) for this lattice, wherd runs over all the
0 _ ﬂ _ EsdsTr(Qa,sss*) vertices of the lattice, ang runs over all the “plaquettes”
€= A, - 2 n d ' (28) (that is, the closed loops that correspond to plaquettes in the
s sTS original cubic lattice.

Just as the twistd, are related to the spin and statistics of . 11iS model is a natural candidate for string-net condensa-
individual particle typesr, the elements of th&-matrix, s, 5 tion in th_ree _dlmen5|ons. Unfortunately, it turns out t_hat
describe the mutual statistics of two particle typeg. Con- e Hamiltonian (11) is not exactly soluble on this
sider the following process: We create two pairs of quasipar'—att'ce- The magnetic flux operato@ do not commute in
ticles a, @, B, 8, braid & aroundg, and then annihilate the 9eneral.

two pairs. The elemens, is defined to be the quantum This lack of commutativity originates from two differ-
mechanical amplitudel of this process, divided by a pro- €Nces between the plaquettes in the honeycomb lattice and in
portionality factorD where D2=3(S.n,, )2 The ampli- higher dimensional trivalent lattices. The first difference is

tude A can be calculated from the expectation value 0fthat in the honeycomb lattice, neighboring plaquettes always

W,,, W for two “linked” pathsP: share precisely two vertices, while in higher dimensions the_
boundary between plaquettes can contain three or more ver

A= <<I>|B<§>L|<I>> tices. (See Fig. 11. The existence of these interior vertices
(29 has the following consequence. Imagine we choose orienta-

tion conventions for each vertex, so that we have a notion of
“left turns” and “right turns” for oriented paths on our lattice
A 1 . " (such an orientation convention can be obtained by project-
Sep= D 52 Tr(Qy ;) Tr(Qp ) did;. (30)  ing the 3D lattice onto a 2D plane—as in Fig.)1Then, no
ijk matter how we assign these orientations, some plaquette

boundaries will always make both left and right turns. Thus,
we cannot regard the boundaries of the 3D plaquettes as
small closed strings the way we did in two dimensi¢siace
small closed strings always make all left turns, or all right
turng. On the other hand, the magnetic flux operath;s

In this section, we generalize our results (®+1) and only commute if their boundaries are small closed strings. It
higher dimensions. We find that there is a one-to-one correis this inconsistency between the algebraic definitioerf
spondence betweei3+1) (and highey dimensional string- and the topology of the plaquettes that leads to the lack of
net condensates and mathematical objects known as “syngommutativity.
metric tensor categorie§?The low energy effective theories ~ To resolve this problem, we need to define a Hamiltonian
for these states are gauge theories coupled to bosonic or fetsing the general simple string operatdvdp) rather than
mionic charges. the small closed stringB;. Suppose(w'sj,a'sj), s=0,1...N

Our approach is based on the exactly soluble lattice spimre types solutions of Eq.(18). After picking some “left
Hamiltonian(11). In Sec. IV, we analyzed that model in the turn,” “right turn” orientation convention at each vertex, we
case of the honeycomb lattice. However, the choice of latticean define the corresponding typesimple string operators
was somewhat arbitrary: we could equally well have choseW(P) as in Eq.(16). Suppose, in addition, that we choose

any trivalent lattice in two dimensions. (wgj, @5) so that the string operators satisfyV, -Ws

Expressing4 in terms of(Q,,Q,,n,), we find

V. STRING-NET CONDENSATION IN (3+1) AND HIGHER
DIMENSIONS
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lution (Fum,w;k,a;k) of Egs.(9), (18), and(32). By analogy
with the two dimensional case, we conjecture that there is a
one-to-one correspondence between topological string-net
condensed phases {8+1) or higher dimensions, and these
solutions. The solutiongFyy, wj, j,) correspond to a spe-
cial class of tensor -categories—symmetric tensor
categories? Thus, just as tensor categories are the math-
ematical objects underlying string condensatioitZr 1) di-
mensions, symmetric tensor categories are fundamental to
string condensation in higher dimensions.

There are relatively few solutions to Eq®), (18), and
(32). Physically, this is a consequence of the restrictions
on quasiparticle statistics in 3 or higher dimensions. Unlike
in two dimensions, higher dimensional quasiparticles
FIG. 11. Three plaquettes demonstrating the two fundamenta‘ilecessarlly have trivial mutual statistics, and must be

. ; : : : . either bosonic or fermionic. From a more mathematical
differences between higher dimensional trivalent lattices and the

honeycomb lattice. The plaquettpg p, lie in the xz plane, while point of view, t.h.e scarcity of solutions IS a result of the
ps is oriented in thexy direction. Notice thap, andp, share three symmetry and't'or(32)' Doubled _topologlg:al phases’ such
vertices,l 1, |, | s—unlike neighboring plaquettes in the honeycomb as C_hem's'mons theories, typically fail to satisfy this
lattice, which share two vertices. Also, notice that the plaquettecond't'on' . . .
boundariess p; anda p; intersect only at the line segmeint,. The ~ However, gauge theories do satisfy the symmetry condi-
boundaryd p, makes a left turn alts, and a right turn at,. Thus, if ~ tion (32) and therefore do correspond to higher dimensional
we shrink the segmeritl , to a point, these two plaquette bound- String-net condensates. Recall that the gauge theory solution
aries intersect exactly once—unlike neighboring plaquettes in thé0 EQ.(9) is obtained by(@) letting the string-type indekrun
honeycomb lattice, which interseteingentiallywhen their common  over the irreducible representations of the gauge gréojp,
boundary is shrunk to a point. letting the numbers), be the dimensions of the representa-
tions, and(c) letting the 6 index objedt]n be the § symbol
=3, 8,W, [this property ensures thié,(dp) are analogous to  ©f the group. One can check thait this also provides a solution
BS]. Then, a natural higher dimensional generalization of thd® Eds-(18) and (32), if we setwj,(vjui/vi)=-1 whenj=k
Hamiltonian(12) is and the invariant tensor ik®k®i" is antisymmetric in the
first two indices, andv; (vjv,/v;) =1 otherwise. This result is
N to be expected, since the string-net picture of gauge theory
H=->Q-X Wo, W,= > aW(ap). (3D (Sec. 1) is valid in any number of dimensions. Thus, it is not
! P s0 surprising that gauge theories can emerge from higher di-

For a two dimensional lattice, the conditiofs) are suffi- ~ Mensional string-net condensation. _ _

cient to guarantee that the closed stringg(dp) commute There is another class of higher dimensional string-net
within the ground state subspace. The Hamiltonia) is condensed phases that is more interesting. The low energy
then an exactly soluble realization of a doubled topologicaffféctive theories for these phases are variants of gauge theo-
phase. However, in higher dimensions, one additional con”€S: Mathematically, they are obtained by twisting the usual
straint is necessary. gauge theory solution by

This constraint stems from the second, and perhaps more
fundamental, difference between 2D and higher dimensional
lattices. In two d|menS|on§, two cIoseq curves alwa_ys mter—Here P(i) is some assignment of paritfeven” or “odd”) to
sect an even number of times. For higher dimensional lat- - . .

. g . . each representatidnThe assignment must be self-consistent
tices, this is not the case. Small closed curves, in particular

plaguette boundaries, c4im a sensintersect exactly once. in the sense that the tensor product of two representations
(See Fig. 11.Because of this, the objectsjk must satisfy with the samddifferent parity, decomposes into purely even

the additional relation: (odd representations. If all the representations are assigned
’ an even parity—that iB(i) is trivial—then the twisted gauge

(32) theory reduces to standard gauge theory.

The major physical distinction between twisted gauge
One can show that if this additional constraint is satisfiedtheories and standard gauge theories is the quasiparticle
then (a) the higher dimensional Hamiltonia(31) is exactly  spectrum. In standard gauge theory, the fundamental quasi-
soluble, andb) the ground state wave functich is defined  particles are the electric charges created byNkel string
by local topological rules analogous to Eq&)—(7).  operatorsW,. These quasiparticles are all bosonic. In con-
This means that Eq(31) provides an exactly soluble trast, in twisted gauge theories, all the quasiparticles corre-
realization of topological phases i3+1) and higher sponding to “odd” representationsare fermionic.
dimensions. In this way, higher dimensional string-net condensation

Each exactly soluble Hamiltonian is associated with a so-
Iy

o=

@l = Wl (- HPOPW, (33)

i
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naturally gives rise toboth emerging gauge bosons and
emerging fermions. This feature suggests that gauge interac-
tions and Fermi statistics may be intimately connected. The
string-net picture may be the bridge between these two seem-
ingly unrelated phenomerfé.

In fact, it appears that gauge theories coupled to fermionic
or bosonic charged particles are tbaly possibilities for
higher dimensional string-net condensates: mathematical
work on symmetric tensor categories suggests that the only
solutions to Eqs(9), (18), and(32) are those corresponding
to gauge theories and twisted gauge thedfes.

We would like to point out thaf3 +1)-dimensional string-
net condensed states also exhibit membrane condensation.FIG. 12. (Color onling The Hamiltoniang39) and(40), realiz-
These membrane operators are entirely analogous to thed the twoN=1 string-condensed phases. Each circle denotes a
string operators. Just as open string operators create chargd¥n-1/2 spin. The links witl*=-1 are thought of as being occu-
at their two ends, open membrane operators create magnefi€d by a type-1 string, while the links widi*= +1 are regarded as
flux loops along their boundaries. Furthermore, just as Strin(?mpty' The electric cha_rge term acts on the three legs of the vertex
condensation makes the string unobservable, membrane cdnith ¢*- The magnetic energy term acts on the 6 edges of the

densation leads to the unobservability of the membrand?2duettep with o, and acts on the 6 legs pfwith an operator of

only the boundary of the membrane—the magnetic ﬂuXthe formf(o®). For theZ, phasef=1, while for the Chern-Simons

loop—is observable. phasef(x)=i(~0"

o

@‘%

VI. EXAMPLES D, (X) = (£1)%, (36)
A. N=1 string model
We begin with the simplest string-net model. In the nota-whereX; is the number of disconnected components in the

tion from Sec. Ill, this model is given byl) number of string configuratiorX.
string typesN=1; (2) branching rules® (no branching (3) The two fixed-point wave function®.. correspond to two
string orientations: 1=1. simple topological phases. As we will sek, corresponds to

In other words, the string-nets in this model contain oneZ, gauge theory, whileb_ is a U(1) X U(1) Chern-Simons
unoriented string type and have no branching. Thus they aréaeory. (Actually, other topological phases can emerge from
simply closed loops.See Fig. 8a).] closed loops - such as in Refs. 42—-44. However, we regard

We would like to find the different topological phases thatthese phases as emerging from more complicated string-nets.
can emerge from these closed loops. According to the disthe closed loops organize into these effective string-nets in
cussion in Sec. IV, each phase is captured by a fixed-poirthe infrared limit)
wave function, and each fixed-point wave function is speci-
fied by local rules(4)—(7) that satisfy the self-consistency
relations(9). It turns out that Eq(9) have only two solutions
in this casgup to rescaling

d=FilS= 21,

000_ =101 _ 011 _
FOOO_ FlOl_ FOll_ 1,

%= Fii0= Fifh=Fll= 1. 3

where the other elements Bfall vanish. The corresponding
local rules(4)—(7) are

¢(@c)-+o (W)
. FIG. 13. (Color onling A closed string operatoW(P) for the
® (l> <.> =+ o <.:.) (35) two models(39), (40). The pathP is drawn with a thick line, while
) ) the legs are drawn with thin lines. The action of the string operators
We have omitted those rules that can be derived from topot41), (44) on the legs is different for legs that branch to the right of

logical invariance(4). P, “R-legs,” and legs that branch to the left Bf “L-legs.” Simi-
The fixed-point wave function®.. satisfying these rules larly, we distinguish between “R-vertices” and “L-vertices” which
are given hy are ends of “R-leg” and “L-leg,” respectively.

045110-12



STRING-NET CONDENSATION: A PHYSICAL... PHYSICAL REVIEW B 71, 045110(2005

The exactly soluble model$ll) realizing these two W, =1d,
phases can be written as spin 1/2 systems with one spin on
each link of the honeycomb latticESee Fig. 12 We regard Wo= [ o
2~ i

a link with 0*=-1 as being occupied by a type-1 string, and
the states™=+1 as being unoccupig@r equivalently, occu-
pied by a type-0 or null string The Hamiltonians for the two
phases are of the form W= 11 T

R-legs
H,= _2 QI,t“Z Bp,:r-
I P

edges oP

w,= [[ o7 Il o, (41)
The electric charge term is the same for both phésiese it edgesoP  R-legs
only depends on the branching rules where the “R-legs’k are the legs that are to the right Bf
1 (See Fig. 13. Technically, we should multiply these string
Q.= —<1 + [1 0{)_ (37) operators by an additional projection operdthgsQ,, in or-
T2 legs of der to be consistent with the general reqdl®). However,

we will neglect this factor since it does not affect the physics.

The magnetic terms for the two phases are Once we have the string operators, we can easily calculate

1 the twists and th&matrix. We find
By.=-(BY.+B;.) _ _ . :
2" ’ gh=1dl=1¢dbk=1¢dl=-1, (42)
1 X
= §<1 = II of II (\"E)““’i)’z) P,, (38 11 1 1
d |
edges op egs ofp 1 1 -1 -1
whereP,, is the projection operatd?,=1I,<,Q,. The projec- S=7 (43)
, P ) P pl: . 1 -1 1 -1
tion operatoP, can be omitted without affecting the physics L1 -1 1

(or the exact solubility of the HamiltonianWe have in-
cluded it only to be consistent with E(L). If we omit this  This is in agreement with the twists ar@matrix for Z,

term, the Hamiltonian for the first phag®.,) reduces to the  45,,9e theoryW, creates trivial quasiparticlesl, creates
usual exactly soluble Hamiltonian & lattice gauge theory magnetic fluxes,W, creates electric chargedy, creates

(neglecting numerical factors electric/magnetic bound states.
In the second phaseb_), we find
H=-S 1 «-3 I &#. @9 Phaseb-)
I legsof P edgesop Mo=1, ny1=0, Qg,ooo: 1, Q%,om: 1,

The Hamiltonian for the second phase,

Ho=-3 11 af+2( 11 of)( [T o

- — 1 — 0 —
=0, Npi=1, 0511071, Q515=10,
I legs ofl p \edges ofp legs ofp )

— — — 0 _
N3 o=0, ng;=1, Q%,110— 1, Qz,95=-1,
(40)
. - . — - 0 — 1 —
is less familiar. However, one can check that in both cases, Ngo=1n31=0, Qyo00=1, Qpg01=-1.
the Hamiltonians are exactly soluble and the two groundy, e again, the other elements 6f vanish. Also, in

state wave functions are precisely. (in the o™ basis. all cases0=Q". The corresponding string operators for a
Next we find the quasiparticle excitations for the two path P are

phases, and the correspondi&gnatrix and twistsd,,.

In both cases, EQ(22) has 4 irreducible solutions W, =1d,
(Nasr 20 6 QA o), @=1,2,3,4—¢orresponding to 4 quasi-
partlcle types. For the first phagé,) these solutions are w,= [] sz IT j(1-0))2 T v,
given by edges ofP  R-legs L-vertices

— — 0 — 1 —
Iql,O_ 1! nl,l_ O' Ql,OOO_ 1' Ql,OOl_ 1’ W = H O'Z H (_ i)(l—O'J-X)/Z H (_ 1)S|
3~ i il
1 0 edges ofP ]R-Iegs L-vertices
N20=0,M2:=1,05450=1, Q3,1,=1,
w,= [I o, (44)

_ _ 0o _ 1 _
N3o=1,N3,=0, O3500= 1, Q300,=~ 1, R-legs

where the “L-vertices'l are the vertices dP adjacent to legs

B that are to the left ofP. The exponens, is defined bys

The other elements dR vanish. In all case§)=(). = 1/4(1—0)1‘)(1 +o{), wherei, j are the links just before and
The corresponding string operators for a pBtlre just after the vertex, along the pattP. (See Fig. 13.

Ny 0=0,Nn4:=1, Qz11,11o: 1, 991,1112 -1
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We find the twists an&-matrix are like the previous case, there is no closed form expression for
the wave function amplitude.

eh=1e%=idR=-id"=1, (45) Note that the second solutiody=(1-5/2) does not sat-
isfy the unitarity condition(15). Thus, only the first solution
11 1 1 corresponds to a physical topological phase. As we will see,
1 -1 1 -1 this phase is described by &0;(3) X SO;(3) Chern-Simons
S=3 1 1 -1 -1 (46) theory.
1 -1 -1 1 As before, the exactly soluble realization of this phase

(11) is a spin-1/2 model with spins on the links of the hon-

We see thatV, creates trivial quasiparticledy,, W create  €ycomb lattice. We regard a link wit*=~1 as being occu-
semions with opposite chiralities and trivial mutual statistics Pied by a type-1 string, and a link wi?=1 as being unoc-
and W, creates bosonic bound states of the semions. Thegaipied (or equivalently occupied by a type-0 string

results agree with the)(1) X U(1) Chern-Simons theory However, in this case we will not explicitly rewrite E(L1) _
in terms of Pauli matrices, since the resulting expression is

quite complicated.

We now find the quasiparticles. These correspond to irre-
ducible solutions of Eq22). For this model, there are 4 such
solutions, corresponding to 4 quasiparticles:

1
I—:_KIJa‘LuaVaJ)\eMV)\; IvJ: 1!21 (47)
A1

with K-matrix
2 2] ”
“\o -2/°

Thus the abové&(1) X U(1) Chern-Simons theory is the low
energy effective theory of the second exactly soluble model
(with d; #-1).

1np=1, ny1=0, Qg,ooo: 1, Q%,oof 1,

2in0=0, ny1=1, QF50=1,

Note that theZ, gauge theory from the first exactly 091117 = 7€ Q540,= %,
soluble model(with d;=1) can also be viewed as @(1)
X U(1) Chern-Simons theory witK-matrix?3 3inzp=0, nz;=1, Q%,no: 1,
K = (2 é) ' (49) Q3 = - '}’+ 7T|/5, Ql =, 1/2e 37T|/5

4ingp=1, n4.=1, Qg,oooz 1, Qzlt,no: 1,

B. N=1 string-net model Q[ll 001= — y;21 Q?; = vt Q‘l‘ = )/15/2,
The next simplest string-net model also contains only one

oriented string type—but with branching. Simple as it is, we 03 101= (QF 010" = %42 - €75 + ,e7%7) . (51)

will see that this model contains non-Abelian anyons and is

theoretically capable of universal fault tolerant quantumin all casesQ)=Q".

computatior?® Formally, the model is defined k) number We can calculate the twists and tBematrix. We find

of string typesN=1; (2) branching rules{{1,1,1}; (3) string

orientations: 1=1.

The string-nets are unoriented trivalent graphs. To find the ~ €”=1, €%2=e*"5 %k=¢e'5 %=1, (52
topological phases that can emerge from these objects, we
solve the self-consistency relatiof®. We find two sets of 1 v vy ¥
self-consistent rules: o 1 y =1 2 -y 53
@(D)Z%.@(.> 1+ v ¥ -1 -y
¥ -y -y 1

d (.> <’> :7;_1 -® (.:l) We conclude thaWV, creates trivial quasiparticle®\,, Wz

create (non-Abelian) anyons with opposite chiralities, and
4_%—:1/2 . P (m) W, creates bosonic bound states of the anyons. These results
agree withSOy(3) X SG;(3) Chern-Simons theory, the so-
—1/2 called doubled “Yang-Lee” theory.
(I) (M) ('> <'> Researchers in the field of quantum computing have
1 .j:. shown that the Yang-Lee theory can function as a universal
~Hy =B ( ) (50) quantum computer—via manipulation of non-Abelian
anyons®® Therefore, the spin-1/2 Hamiltoniafil) associ-
where 7, =(1%15/2). (Once again, we have omitted those ated with Eq.(50) is a theoretical realization of a universal
rules that can be derived from topological invariandgn-  quantum computer. While this Hamiltonian may be too com-
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plicated to be realized experimentally, the string-net picture
suggests that this problem can be overcome. Indeed, the
string-net picture suggests thgeneric spin Hamiltonians
with a trivalent graph structure will exhibit a Yang-Lee
phase. Thus, much simpler spin-1/2 Hamiltonians may be
capable of universal fault tolerant quantum computation.

C. N=2 string-net models

In this section, we discuss twN=2 string-net models.
The first model contains one oriented string and its dual. In
the notation from Sec. Ill, it is given b§l) number of string
types: N=2; (2) branching rules:{{1,1,%,{2,2,2}; (3)
string orientations: 1=2, 2'=1.

The string-nets are therefore oriented trivalent graphs
with Z3 branching rules. The string-net condensed phaseghered,=d,=1, d,=2, andF32" is the matrix
correspond to solutions of E€9). Solving these equations,

2T 2
2"2)

(56)

we find two sets of self-consistent local rules: 11 1
2 2 \JE
1 1 1
O) = - S
o (@) =2 ( Bl 2 T
<1><§> <.)=3C<I>( 11
V2 2

o (§> <l> =vEl- 2 If we construct the Hamiltoniail1), we find that it is
equivalent to the standard exactly lattice gauge theory

The corresponding fixed-point wave functiods are given ~Hamiltoniarf® with gauge grougS;—the permutation group
by on 3 objects. One can show that this theory contains 8 el-

ementary quasiparticldgorresponding to the 8 irreducible
- representations of the quantum doubl€S;)]. These quasi-
D, (X) = (V1) ZKXS2, (55  particles are combinations of the 3 electric charges and 3
magnetic fluxes.
whereX,, X,, are the number of connected components, and
vertices, respectively in the string-net configurati&nAs
before, we can construct an exactly soluble Hamiltonians,
find the quasiparticles for the two theories and compute the In this paper, we have shown that quantum systems of
twists and S-matrices. We find that the first thedby is  extended objects naturally give rise to topological phases.
described by &; gauge theory, while the second thedby =~ These phases occur when the extended objects, string-
is described by dJ(1) xU(1) Chern-Simons theory with net9 become highly fluctuating and condense. This physical
K-matrix picture provides a natural mechanism for the emergence of
parity invariant topological phases. Microscopic degrees of
freedoms(such as spins or dimersan organize into effec-
- (3 0 ) tive extended objects which can then condense. We hope that
0 -3/ this physical picture may help direct the search for topologi-
cal phases in real condensed matter systems. It would be
Both theories have %39 elementary quasiparticles. In the interesting to develop an analogous picture for chiral topo-
case ofZs, these quasiparticles are electric charge/magnetitogical phases.
flux bound states formed from the 3 types of electric charges We have also found the fundamental mathematical frame-
and 3 types of magnetic fluxes. In the case of the Chernwork for topological phases. We have shown that eéh
Simons theory, the quasiparticles are bound states of the twel)-dimensional doubled topological phase is associated
fundamental anyons with statistical angles/S. with a 6 index objecF )l and a set of real numbers sat-

The final example we will discuss contains two unori- isfying the algebraic relation€9). All the universal proper-
ented strings. Formally it is given byl) number of string ties of the topological phase are contained in these math-
types: N=2; (2) branching rules{{1,2,2, {2,2,2}; (3) ematical objectgknown as tensor categorjedn particular,
string orientations: 1=1, 2'=2. the tensor category directly determines the quasiparticle sta-

The string-nets are unoriented trivalent graphs, with edgesistics of the associated topological pha@8), (30). This
labeled with 1 or 2. We find that there is only one set ofmathematical framework may also have applications to
self-consistent local rules: phase transitions and critical phenomena. Tensor categories

VII. CONCLUSION
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may characterize transitions between topological phases justse of gauge theorys; is the number of copies of the

as symmetry groups characterize transitions between orderéidvial representation that appear in the tensor produci

phases. ®k. Thus we need the more general string-net picture to
We have constructed exactly soluliz+1)D lattice spin  describe gauge theories where the trivial representation ap-

Hamiltonians(11) realizing each of these doubled topologi- pears multiple times in® j ® k.

cal phases. These models uni®+1)D lattice gauge theory The Hilbert space of the string-net model is defined in the

and doubled Chern-Simons theory. One particulamatural way: the states in the string-net Hilbert space are

Hamiltonian—a realization of the doubled Yang-Lee linear superpositions of different spatial configurations of

theory—is a spin-1/2 model capable of fault tolerant quan-string-nets with different spin states at the nodes.

tum computation. One can analyze string-net condensed phases as before.
In higher dimensions, string-nets can also give rise to toThe universal properties of each phase are captured by a

pological phases. However, the physical and mathematicdixed-point ground state wave functidn The wave function

structure of these phases is more restricted. On a mathemak is specified by the local rulgg) and(5) and simple modi-

cal level, each higher dimensional string-net condensate ifications of(6) and(7):

associated with a special kind of tensor category—a symmet- o K
§ Lk [} (]
o (@) =00 (BA)

ric tensor category(18), (32). More physically, we have )
shown that higher dimensional string-net condensation natu- -
-z (8
nuv

rally gives rise toboth gauge interactions and Fermi statis-
tics. Viewed from this perspective, string-net condensation &
provides a mechanism for unifying gauge interactions and
Fermi statistics. It may have applications to high energy

physics30 The complex numerical constaR{ is now a complex ten-
From a more general point of view, all of the phases desor (F}1 Z; of dimensiondijm X Sqmt X G X Sjkn'-

scribed by Landau’s symmetry breaking theory can be under- One can proceed as before, with self-consistency condi-
stood in terms of particle condensation. These phases at@ns, fixed-point Hamiltonians, string operators, and the
classified using group theory and lead to emergent gaplesgeneralization to(3+1) dimensions. The exactly soluble
scalar boson®)>! such as phonons, spin waves, etc. In thismodels are similar to Eq(11). The main difference is the
paper, we have shown that there is a much richer class @xistence of an additional spin degree of freedom at each site
phases—arising from the condensation of extended objectsf the honeycomb lattice. These spins account for the de-

These phases are classified using tensor category theory aggkes of freedom at the nodes of the string-nets.
lead to emergence of Fermi statistics and gauge excitations.

Clearly, there is whole new world beyond the paradigm of
symmetry breaking and long range order. It is a virgin land ~ APPENDIX B: SELF-CONSISTENCY CONDITIONS

waiting to be explored. . . . . -
In this section, we derive the self-consistency conditions

(9). We begin with the last relation, the so-called “pentagon
ACKNOWLEDGMENTS identity,” since it is the most fundamental. To derive this

We would like to thank Pavel Etingof, Michael Freedman'condition, we use the fusion rul&) to relate the amplitude
and Zhenghan Wang for useful discussions of the mathemat®
cal aspects of topological field theory. This research is sup- Lo
ported by NSF Grant No. DMR-01-23156, NSF-MRSEC d ( N )
Grant No. DMR-02-13282, and NFSC No. 10228408. N Im

APPENDIX A: GENERAL STRING-NET MODELS to the amplitude

models. These models can describe all doubled topological >
phases, including all discrete gauge theories and doubled

Chem-Simons theories. in two distinct ways(See Fig. 1% On the one hand, we can
In these models, there is a “spin” degree of freedom aboyy the fusion ruld7) twice to obtain the relation
each branch point or node of a string-net, in addition to the
usual string-net degrees of freedom. The dimension of this i "q . iip WA
(D i m - Z Fq*kr* (D i' m
r

k
In this section, we discuss the most general string-net o (' ')

“spin” Hilbert space depends on the string types of the 3
strings incident on the node.

To specify a particular model one needs to provide a 3 LK
index tensors, which gives the dimension of the spin Hil- — Z Fjjz *Friq* d
bert space associated wifh,j,k} (in addition to the usual T i Tm

information). The string-net models discussed above corre-
spond to the special case whefg=0,1 for alli, j, k. Inthe  [Here, we neglected to draw a shaded region surrounding the
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FIG. 15. Four string-net configurations related by tetrahedral
symmetry. In diagranta), we show the tetrahedron correspondlng

to GI™. In diagrams(b), (c), (d), we show the tetrahedror@‘fr?‘ ,
Gf'k”r: G'kmri, obtained by reflectinga) in 3 different planes the
plane joiningn to the center ofn, the plane joiningn to the center
of n, and the plane joiningto the center ok. The four tetrahedrons

correspond to the four terms in the second relation of (BQ.

FIG. 14. The fusion rulé7) can be used to relate the amplitude
of (a) to the amplitude of(c) in two different ways. On the one
hand, we can apply the fusion ru{@) twice—along the links de-
noted by solid arrows—to relaté)—(b)—(c). But we can also Eq. (9) is simply a normalization convention fd¥ or ®
apply Eq.(7) three times—along the links denoted by dashed(except when, j, or k, vanishes; these cases require an ar-
arrows—to relatéa)—(d)—(e)—(c). Self-consistency requires that gument similar to the derivation of the pentagon identity
the two sequences of the operation lead to the same linear relations The second relation in Eq9) has more content. This
between the amplitudes ¢&) and(c). relation can be derived by computing the amplitude for a

whole diagram. Just as in the local rul@—(7) the ends of tetrahedral string-net configuration. We have

the stringsg, j, k, I, mare connected to some arbitrary string- N
net configuration.But we can also apply the fusion ru(@) ® ﬁ — Fimg i !
kin f n > [

k

three times to obtain a different relation:

! B kq ' ! i

® :E F1 { |
] kp*n 3 ijm rnk®j* i
v n neosm —Fkln Fk'n‘O dk@

n

mlq jip ¥ k*§* it
Z i Fnae @ | gy =T Fd Pt dudida®(0)
—pum
1 e =Fyi, vivjvpui2(0) (B2)
= Frl FIP.Field | V3 . o
kp*n® mns* = lkr i We define the above combination in the frontdfZ) as
n,r,s
ijm _
If the rules are self-consistent, then these two relations must Gy = Fiinviv oy (B3)
agree with each other. Thus, the two coefficientsbof Imagine that the above string-net configuration lies on a
Cx sphere. In that case, topological invariangegether with
] | . . . . ijm . .
d 3 parity invariance requires thaGy|] be invariant under all 24
i Tm symmetries of a regular tetrahedron. The second relation in

Eq. (9) is simply a statement of this tetrahedral symmetry
must be the same. This equality implies the pentagon identityequirement—uwritten in terms d¥/j;. (See Fig. 15.
(9). In this section, we have shown that the relatig@ps are

The first two relations in E¢(9) are less fundamental. In necessary for self-consistency. It turns out that these relations

fact, the first relation is not required by self-consistency atare also sufficient. One way of proving this is to use the
all; it is simply a useful convention. To see this, consider thejattice model(11). A straightforward algebraic calculation
fOIIOWIng rescallng transformation on wave functiods shows that the ground state ()I]_) Obeys the local rules
—®. Given a string-net wave functio®, we can obtain a (4)—(7), as long as Eq(9) is satisfied. This establishes that

new wave functiorb by multiplying the amplitudeb(X) for ~ the local rules are self-consistent.
a string-net configuratioK by an arbitrary factof(i, j,k) for
each verteXi,j,k} in X. As long asf(i, j,k) is symmetric in
i, ],k andf(0,i,i")=1, this operation preserves the topologi-
cal invariance ofb. The rescaled wave functioh satisfies ) ) ) ) .
the same set of local rules with rescafeff’: In this section, we provide an alternative, graphical, rep-
o . resentation of the lattice modgll). This graphical represen-
Fiim _, Fiim — Fijmf(I’J’m)f(k’l'm ) (B1) tation provides a simple visual technique for understanding
kin = T Kin RN £ 00 1) ()L kN properties(a)—(c) of the Hamiltonian(11).
We begin with the 2D honeycomb lattice. Imagine we
Sinced and® describe the same quantum phase, we regarghtten the links of the lattice into stripes of finite widilSee
F andF as equivalent local rules. Thus the first relation inFig. 16). Then, any string-net state in the fattened honey-

APPENDIX C: GRAPHICAL REPRESENTATION OF THE
HAMILTONIAN
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(@ f

) FIG. 17. The action oB; is equivalent to adding a loop of type-
(b) s string. The resulting string-net stata) is actually a linear com-
"""""""""""" bination of the string-net statdb). The coefficients in this linear

relation can be obtained by using the local rulés<(7) to reduce
FIG. 16. The fattened honeycomb lattice. The strings are forbld-i) ) to (b).

den in the shaded region. A string state in the fattened honeycom
lattice (a) can be viewed as a superposition of string states on the
links (b).

is equivalent to simply adding a loop of tyjsestring:

comb lattice[Fig. 16@)] can be viewed as a superposition of
string-net states in the original, unfattened lattideg.
16(b)]. This mapping is obtained via the local rulgg—(7).
Using these rules, we can relate the amplitdeleX) for a
string-net in the fattened lattice to a linear combination of
string-net amplitudes in the original latticed®(X)
=2a,®(X;). This provides a natural linear relation between
the states in the fattened lattice and those in the unfattene&ls we described above, we can use the local r@es(7) to
lattice: | X(==a|X;). This linear relation is independent of the rewrite '
particular way in which the local rulgg)—(7) are applied, as
long as the rules are self-consistent. n

In this way, the fattened honeycomb lattice provides an
alternative notation for representing the states in the Hilbert
space of(11). This notation is useful because the magnetic
energy operatorst; are simple in this representation.

Indeed, the action of the operatBf on the string-net state 45 a linear combination of the physical string-net states with

By, e strings only on the links, that is to reduce Fig.(d7o Fig.
9 i 17(b). This allows us to obtain the matrix elements

= : d> The following is a particular way to implement the above
LI procedure:

JJ kk*0 pll*0
F FS sk/:qu sllt

S’L'*

- 99™0 hh*0 ppid*
Y=Y FEOFMOFES
glhlilj/klll

. kk*0 pll*0 bg*h h*i di*j ej*k k*l al*
= §: B F e e a Fo e FEin F o Fily s T s B s B

s*s s*j'il* s
glhlilj/k/l'

j : bg*h *i di* i*k l*g
= F gh/ /*Fsc:i/;lmF : I,"I*Fegk/ /*Ffl/k/*Fa Ill*

glhliljlk/ll
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b b b oo Equation(C3) also sheds light on the spectrum of g
ay J\tr" I a\r'@ \‘rk@j v9 agd ITK "~@  operators. Let the simultaneous eigenvaluesBpfiwith p
r m r m r ’ m’ ; S ; ;
h g oo nLe hlavpLtoon e h)\q,Yp,)\o, A fixed) be{bq}. Then, by Eq(C3) these eigenvalues satisfy
P Py P Oy
@ 9 f () 9 f ) ¢ f

— S

% 8ics,5,Dly = DEZSL.

FIG. 18. The action oB;iBffZ on the string-net stat&) can be
represented by adding two loops of typeand types, strings as We can view this as an eigenvalue equation for (Ne-1)
shpwn in(b). The string-net gtgtéb) isa Iinea_r combina_tion of the X (N+1) matrix MSZ, defined byMisz,jzéj*szi- The simulta-
string-net state€c). The coefficients are obtained by using the rules nagus eigenvalud:%? are simply the simultaneous eigenval-
Egs. (4~(7) to reduce(b) to (c). ues of the matriced/. In particular, this means that the

index g ranges over a set of si2é+ 1.

Notice that Eq(C1) is exactly Eq.(14). Thus, the graphical Each value ofy corresponds to a different possible state
rgpresentation oB; agrees with the original algebraic defi- for the plaquettep. The magnetic energies of thedéer 1
nition. different states are given bg,=-=ab;. Depending on the

Using the graphical representation Bf we can easily parameter choices, all on the plaquettep will be in one of
show thatB}! and B2 commute. The derivation is much these states. In this way, the Hamiltoniar{11) can be in
simpler than the more straightforward algebraic calculationN+1 different quantum phase. This establishes propésity
First note that these operators will commutepif p, are  of the Hamiltonian(11).
well-separated. Thus, we only have to consider the case One particular statq is particularly interesting. This state
wherep; andp, are adjacent, or the case whexg p, coin-  corresponds to the simultaneous eigenvahfes],. It is not
cide. We begin with the nearest neighbor case. The action dfard to show that the parameter cho'm;ecdS/Ekdﬁ makes
ijllB;?z on the string-net state Fig. (& can be represented as this state energetically favorable. In fact, using E£3) one
Fig. 18b). Figure 18b) can then be related to a linear com- can show thaB,, is a projector for this parameter choice, and
bination of the string-net states shown in Fig.(@8The thatB,=1 for this state. _ _
coefficients in this relation are the matrix element8fB2. Furthermore, the ground state wave function for this pa-
But by the same argument, the actionBjI;lel can also be 'ameter choice obeys the local rul@s—(7). One way to see

represented by Fig. 18). We conclude thaB2B!, BB this is to compare

PP TP Py
have the same matrix elements. Thus, the two operators com- B i_/;\_i>
mute in this case. ¥
On the other hand, whem, =p,, we have .
..................... . J— Wlth
pepga| e > _ | By

For the first state, we find

_ Z 51570 |/
- Fs 352k* | 81

> B, iJ:Li> =S a, iJ@SLi>
= 5 i)
in

_ 31310 k*sps1 /
- § :Fsgszk*Fs;kO dSS
k
2
2k di

For the second state, we find the same result:

k ; w ;
)=y i)
s Ui >k i
Thus, -
It follows that
BZBS = rs s.BX. C3 : .
p Op zk‘f&kstlp (C3 0=<i_/';\_iBP(I)>_<|—\:/—-|‘BP@>

Since 8¢5 s is symmetric ins,, s;, we conclude thaB3B2 = <i—/;\—-i‘q)> = <"\1/_i"13>
=B?B}, so the operators commute in this case as well. This
establishes propertig) of the Hamiltonian(11). S0
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d (i—/:‘\——i) = (i—\f/_i> ,,,,,,,,,
This result means that the strings can be moved through the
forbidden regions at the center of the hexagons. Thus, the
local rules which were originally restricted to the fattened
honeycomb lattice can be extended throughout the entire 2D S
plane. The wave functio obeys these continuum local
rules and has a smooth continuum limit. We call such a state T T T
smooth topological state. This establishes propémtyf the e e T

Hamiltonian(11). FIG. 19. The action of the string operaidk,(P) is equivalent to

The wave functions of some smooth topological states argqging a typex string along the pattP. The resulting string-net
positive definite. So those wave functions can be viewed agiate can be reduced to a linear combination of states on the hon-

the statistical weights of certain statistical models in th€gycomp lattice, using the local ruléé)—(7), Eq. (D1).
same spatial dimensions. What is interesting is that those
statistical models are local models with short-ranged
interactiongt0:35:36 Here, o, 7 are the two indices of the matril,. (Until now,
APPENDI D GRAPHIGAL REPRESENTATON " eU® Segleelen 0 ve o e does sy
OF THE STRING OPERATORS ) . R . ;
the resulting string-nets. The “joining rule” for two string

In this section, we describe a graphical representation ofypess,, s, is as follows. Ifs, #s,, we do not join the two
the long string operator®/,(P). Just as in the previous sec- strings: we simply throw away the diagram.df=s,, then
tion, this representation involves the fattened honeycomb latwe join the two strings and contract the two corresponding
tice. The action of the string operatw,(P) on a general indiceso;, o,. That is, we multiply the twd) matrices to-
string stateX, is simply to create a string labeledalong the  gether in the usual way. Using the same approach as Eq.
path P (see Fig. 19 The resulting string-net state can then (C1), one can show that the graphical definition\Wf,(P)
be reduced to a linear combination of string-net states on thggrees with the algebraic definiti¢h9).
unfattened lattice. The coefficients in this linear combination |n the previous section, we used the graphical representa-

are the matrix elements &, (P). tion of Bf) to show that these operators commute. The string

However, none of the ruleg)—(7) involve strings labeled operatorsw,(P) can be analyzed in the same way. With a
@, nor do they allow for crossings. Thus the reduction tosimple graphical argument one can show that the string op-
string-net states on the unfattened lattice requires new loc@ratorsw,(P) commute with the magnetic operatds§ pro-
rules. These new local rules are defined by the 4 index obgided that Eqs(4)~7) and (D1) satisfy the conditions

jects Q! ., Q1 (. and the integers,, ;: N o
N I
) = |21

a,stir a,stir

|
_ Z”a c3> i (D2)
i .
. ijs N /'> _ ‘/>
= Y@ ador ) T ) = ©3
jst
Al i tyi
/}}\ > = Z(Qi,sti)ar >,_s<> These relations are precisely the commutativity conditions
jst (D1)  (22), written in graphical form.
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