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We propose a many-body method for band-structure calculations in strongly correlated electron systems and
apply it to NiO. The method may be viewed as a translationally invariant version of the cluster method of
Fujimori and Minami. Thereby the Coulomb interaction within thed-shells is treated by exact diagonalization
and thed-shells then are coupled to a solid by an extension of the cluster perturbation theory due to Senechal
et al. The method is computationally no more demanding than a conventional band structure calculation and
for NiO we find good agreement between the calculated single particle spectral function and the experimentally
measured band structure.
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I. INTRODUCTION

Band structure calculations based on the single-particle
picture have enjoyed considerable success in solid state
theory. Single-particle picture here is meant to imply that the
ground state is obtained by filling up according to the Pauli
principle the energy levels calculated for a single electron in
an “effective potential.” The effective potential thereby is
usually constructed within the framework of the local density
(LDA ) or local spin density approximation(LSDA) to den-
sity functional theory(DFT)1 and despite the well-known
fact that the eigenvalues of the Kohn-Sham equations should
not be identified with the single-particle excitation energies
of a system, the resulting band structures often give an al-
most quantitative description of angle-resolved photoemis-
sion spectroscopy(ARPES).

However, there are also some classes of solids which defy
such a description, most notably transition metal compounds
with partially filled d- and f-shells and strong Coulomb in-
teraction between the electrons in these. A frequently cited
example is NiO, where LSDA band structure calculations
correctly predict an antiferromagnetic and insulating ground
state, but only a small “Slater gap” of a fraction of an eV,2

whereas experimentally NiO is an insulator with a band gap
of 4.3 eV3 and stays so even above the magnetic ordering
temperature. While DFT thus gives reasonable answers
within its domain of validity—namely ground state
properties—the noncorrespondence between the Kohn-Sham
eigenvalues and the single-particle excitation energies of the
solid obviously has to be taken literal for this compound(if
the band gap is not read off from the LSDA band structure
but expressed as the difference of ground state energies it is
in fact possible to calculate it within the framework of DFT,
as shown by Norman and Freeman4). It is generally believed
that the reason for the discrepancy is the strong Coulomb
interaction between the electrons in the Ni 3d-shell, which
leads to a substantial energy splitting betweendn configura-
tions with differentn. This leads to a very pronounced “pin-
ning” of thed-shell occupation numbern, in the case of NiO
to the valuen=8. Final states for photoemission or inverse

photoemission then correspond to a singled-shell being in
either ad7, ad8, or ad9 configuration, in each case with very
small admixture of configurations with othern. The corre-
sponding “defect” then may be thought of propagating
through the crystal with definitek. This pinning of the elec-
tron number in both initial and final states cannot be repro-
duced by a wave function which takes the form of a simple
Slater-determinant, such as the ground state deduced from
the Kohn-Sham equations. The situation is improved some-
what in the selfinteraction corrected version of DFT,5,6 which
renders a certain fraction of thed-orbitals completely local-
ized, so that their occupation number in fact does become
pinned—for the remaining delocalizedd-orbitals, however,
the problem remains. Another way to achieve the pinning of
the d-shell occupancy is the use of an orbital-dependent po-
tential in the framework of the so-called LDA+U method.7,8

Speaking about gap values the calculations based on the GW
approximation9,10 also need to be mentioned, these giveab
initio gap values which are in good agreement with experi-
ment but do not seem to reproduce the high energy “satellite”
in the photoemisison spectrum.

In addition to the pinning of thed-shell occupancy, the
multiplet structure of the metal ion poses a problem for
single-particle theories as well. It is quite well established
that the multiplet structure(appropriately modified by the
crystal field splitting) of the isolated metal ion persists in the
solids. Clear evidence for this point of view comes from the
fact that angle integrated valence band photoemission
spectra11 as well as x-ray absorption spectra12 of many tran-
sition metal compounds can be reproduced in remarkable
detail by configuration interaction calculations solving ex-
actly the problem of a singled-shell hybridizing with a
“cage” of ligands. In these calculations it is crucial, however,
that the intrashell Coulomb repulsion is treated in full detail.
While the cluster method is spectacularly successful for
angle-integrated quantities its “impurity” character unfortu-
nately makes it impossible to extract the dispersion relations
of k-resolved single particle excitations.
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Actual dispersion relations in the presence of strong Cou-
lomb interaction were first studied by Hubbard,13 thereby
taking an entirely different point of view as compared to the
single-particle picture on which conventional band structure
calculations are based. Thereby thed-shells first are consid-
ered as isolated, and their affinity and ionization spectra ob-
tained, thereby treating the Coulomb repulsion exactly. In his
famous papers Hubbard used a much simplified model,
where the orbital degeneracy of thed-level was neglected
whence ionization and affinity spectrum of the “half-filled”
d-shell collapse to single peak each, with the two peaks sepa-
rated by the Coulomb energyU. Upon coupling the indi-
vidual atoms to the solid, the ionization and affinity states of
the individual atoms then are systematically broadened to
form the two “Hubbard bands.” The coupling to the solid
was achieved originally by the famous Hubbard I approxi-
mation, but in fact this may be interpreted as a particularly
simple form of the cluster perturbation theory(CPT), pro-
posed by Senechalet al.,14,15 where the individual “clusters”
consist of just a singled-shell. This suggests immediately to
relax Hubbard’s simplifications and take into account the full
complexity of a transition metal oxide including the orbital
degeneracy of thed-shell, the full Coulomb interaction be-
tweend-electrons in these and the sublattice of ligands. This
is essentially the purpose of the present paper.

An important complication is due to the sublattice of
ligands. It has been shown by Fujimori and Minami11 that in
discarding altogether the sublattice of ligands(in the case of
NiO: the oxygen atoms), Hubbard actually went one step to
far in his simplification of the model. Namely Fujimori and
Minami showed that the top of the valence band in NiO is
composed of states, where a hole is predominantly in an
oxygen atom, but somehow “associated” with an
n-conserving excitation of a neighboringd-shell, i.e., a mag-
non or ad−d exciton. This type of state might be viewed as
a generalization of a Zhang-Rice singlet16 in the CuO2 planes
of cuprate superconductors. It was then found by Zaanen,
Sawatzky, and Allen17 that there is a crossover between this
so-called charge-transfer insulator and a more conventional
Mott-Hubbard insulator as a function of two key parameters,
the Coulomb repulsionU between electrons in thed-shell
and the charge transfer energyD, which are defined as

Esdn → dn+1LI d = U − D,

EsdnLI → dn−1d = D.

Strong experimental support for the picture proposed by
Fujimori and Minami is provided by the resonance behavior
of the photoemission intensity as seen in photoemission with
photon energies near the 2p→3d absorption threshold.18–20

Adopting this point of view and using a simplified
“Kondo-Heisenberg” model, in which the charge degrees of
freedom on Ni where projected out, Balaet al.21 then ob-
tained dispersion relations of quasiparticles in NiO which in
fact do contain the key feature seen in ARPES:22,23 the co-
existence of strongly dispersive oxygen bands on one hand
and a complex of practically dispersionless(i.e., massively
renormalized) bands which form the top of the valence band
on the other hand.

In the present theory no reduction of the Hamiltonian to a
t-J-type model is performed. Rather we use the same basic
idea as in the treatment of the Kondo lattice in Ref. 24: the
system is divided into subunits which are treated exactly and
the hybridization between the subunits is treated approxi-
mately. To do so, we define the ground state for vanishing
hybridization as the “vacuum state” and treat the charge fluc-
tuations created by the hybridization as “effective Fermions,”
for which an approximate Hamiltonian can be derived and
solved. It has been shown in Ref. 25 that the Hubbard-I
approximation for the single-band Hubbard model can be
rederived in this fashion if the subunits are taken to be only
a single site—including more complex “composite particles”
which extend over several unit cells then improves the agree-
ment with numerical results. The generalized Zhang-Rice
singlets discussed above may be viewed as such composite
particles. It is shown in Appendix I of Ref. 26 that this treat-
ment is in fact equivalent to the original cluster perturbation
theory of Senechalet al.14,15 provided the subunits into
which the system is divided are nonoverlapping. This last
requirement poses a substantial problem for transition metal
oxides because the rocksalt lattice of NiO cannot be easily
divided into nonoverlapping subunits which are still ame-
nable to exact diagonalization without artificially breaking a
symmetry of the lattice(which would lead to artificial sym-
metry breaking in the band structure). We therefore need to
adjust the concept of cluster perturbation theory to this situ-
ation, which also is an objective of the present work. The
remainder of the paper is organized as follows: in Sec. II we
discuss a simplified one-dimensional(1D) model, in Sec. III
we present the general theory, in Sec. IV we apply the theory
to the 1D model and compare the obtained single particle
spectra with results from exact diagonalization, in Sec. V we
discuss the ARPES spectra of NiO and section VI gives the
conclusions.

II. A SIMPLIFIED MODEL

For a start we consider the following minimal version of a
1D charge-transfer model(see Fig. 1):

H = − Do
i,s

di,s
† di,s + Uo

i

di,↑
† di,↑di,↓

† di,↓ − tpdo
i,s

fdi,s
† spi+1/2,s

− pi−1/2,sd + H . c .g + tppo
j ,s

spj ,s
† pj+1,s + H . c.d . s1d

This model describes a 1D chain consisting of strongly cor-
related metalsdd orbitals and uncorrelated ligandspd orbitals.

FIG. 1. (Color online) Schematic representation of the Hamil-
tonian (1) and its parameters.
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Henceforth we choosetpd as the unit of energy and unless
otherwise stated settpp=0. The relevant filling(which we
will consider henceforth) of the model is three electrons(or
one hole) per unit cell. While our goal ultimately is to study
realistic models for compounds such as NiO, our motivation
for studying this highly oversimplified model is as follows: it
is simple enough so that reasonably large clusters(up to six
unit cells) can be treated by exact diagonalization(ED) and
the obtained exact results for the single-particle spectral
function then can serve as a benchmark for the analytical
theory. The very simple nature of the model thereby is highly
desirable because it results in a small number of “bands” so
that the comparison with theory is more significant than, e.g.,
in the case of NiO.

The quantity of main interest is the photoemission and
inverse photoemission spectrum, defined as

Ad
s−dsk,vd = o

a
o
m

ukCm
sn−1duda,k,suC0

sndlu2

3dfv + sEm
sn−1d − E0

snddg ,

Ad
s+dsk,vd = o

a
o

n

ukCn
sn+1duda,k,s

† uC0
sndlu2dfv − sEn

sn+1d − E0
snddg

s2d

wherea[ hxy,xz,yz,…j denotes the type ofd-orbital, and
Cn

snd sEn
sndd denote thenth eigenstate(eigenenergy) with n

electrons, therebyn=0 corresponds to the ground state. The
spectral function forp-electrons is defined in an analogous
way.

To get an idea how to construct an adequate theory it is
useful to compare the paramagnetic mean-field solution of
the model(i.e., with D→DMF=D+knslU) and the results of
an ED calculation, see Fig. 2. The mean-field solution gives
two bands

E±skd =
DMF

2
±ÎSDMF

2
D2

+ 4tpd sin2S k

2
D .

The lower (fully occupied) one of these has predominant
p-character, the upper(half-occupied) one has predominant
d-character. In the spectra obtained by exact diagonalization,
the p-like bands persist with an almost unchanged disper-
sion. This is not really surprising, because an electron in the
respective state moves predominantly on thep-sublattice and
thus will not feel the strong Coulomb interaction on the
d-sites very much. The band with predominantd-character,
on the other hand, disappears completely in the exact spectra.
There is a diffuse band somewhat below −D=−3tpd and a
second one at the energy −D+U=5tpd. Clearly, these two
resemble the “Hubbard bands” expected for a strongly cor-
related system and the respective final states have the char-
acter of an empty or doubly occupiedd-orbital. In addition to
these Hubbard bands, however, there is a third group of
peaks at energies<+ tpd which energetically is close to the
p-like band, has a mixedp-d character, and which does in
fact form the first ionization states of the system. Its close-
ness to thep-band would seem to suggest that the final states
have a hole predominantly on thep-sites, but it also has a

significant admixture ofd-weight and moreover is closer to
the Fermi energy than thep-like band. In the charge transfer
system under consideration, thed-like band thus actually
splits up intothree bands, rather than the two Hubbard bands
which one might expect.

Despite the highly oversimplified nature of the 1D model,
there is actually already a clear analogy to NiO: LDA band-
structure calculations23 produce two well-separated band
complexes, the lower one(i.e., the one more distant from the
Fermi energy) with predominant oxygen character, the upper
one with Ni character. This is quite similar to the mean-field
solution in Fig. 2. The actual photoemission spectra, how-
ever, show first of all a broad structure at binding energies
.8 eV below the top of the valence band. Resonant photo-
emission experiments18,19 show that the final states observed
in this energy range have predominantlyd7 character, clearly
they should be identified with thed-like band at −4tpd in our
model. Next, at binding energies26 and 24 eV ARPES
experiments23 find a group of strongly dispersive bands
which closely resemble the oxygenlike bands obtained from
an LDA band structure calculation—they obviously corre-
spond to the dispersivep-like “remnant” of the free-electron
band in our model. Finally, the top of the valence band in
NiO is formed by a group of almost dispersionless bands,
whereby the mixed Nid7 andd8L character of these states is
established by resonant photoemission,18,19 these states then

FIG. 2. (Color online) Single particle spectral functions
As−dsk,vd and As+dsk,vd obtained by mean-field solution of the
model and by exact diagonalization of a system with six unit cells.
The wave vectork increases from the lowermost to the uppermost
panel in steps ofp6 . d-functions have been replaced by Lorentzians
of width 0.03tpd. The part to the left(right) of the vertical dashed
line showsAs−dsk,vdfAs+dsk,vdg.
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would correspond to the low intensity band which forms the
top of the electron annihilation spectrum. The cluster calcu-
lation of Fujimori and Minami11 suggests that these states
should be viewed as holelike “compound objects” where a
hole on oxygen is bound to an excited state ofd8, a type of
state that might be viewed as a generalization of the Zhang-
Rice singlet in the CuO2 planes of cuprate superconductors.
As already conjectured by Fujimori and Minami their “com-
pound nature” would make these quasiholes very heavy,
which immediately would explain the lack of dispersion seen
in the ARPES spectra.23 Finally, inverse photoemission
shows the presence of an upper Hubbard band in NiO which
is also present in the spectra of the 1D model.

The above comparison shows that in addition top-like
holes we will need three types of “effective particles” to
reproduce the correlated band structure of the model. The
two standard Hubbard bands, which correspond todn±1-like
final states are not sufficient here. To get an idea what these
states should be, let us start from the ionic limit,tpp= tpd=0.
The ground state then corresponds to a constant number of
electrons,n, in each metald-shell and completely filled
ligand p-shells, see Fig. 3(a). Switching on the hybridization
integral tpd then will produce charge fluctuations: in a first
step, a hole is transferred into ap orbital, thus producing a
dn+1 state ind-orbital numberi, see Fig. 3(b). Thedn+1 state
has an energy ofU−D relative to the originaldn state, and
will become our first “effective particle,” these “particles”
form the unoccupied Hubbard band. In a second step, the
p-like hole can be transferred into ad-orbital i8Þ i, thus
producing adn−1 state, see Fig. 3(c). The latter has an energy
of +D relative to thedn state and provides the second type of
“effective particle,” actually the one that forms the “satellite”
in the spectral function. Finally, the hole ini8 can be trans-
ferred back into a neighboringp-level, thereby leaving the
orbital i8 in a statedn* , i.e., an eigenstate ofdn other than the
orginal one, see Fig. 3(d). The “compound object” consisting
of dn* and a hole in a neighboringp-orbital will be the third
type of effective particle, its energy relative to the originaldn

state is<0, i.e., appropriate to give the top of the valence
band. These states might be viewed as generalizations of a
Zhang-Rice singlet, or an extreme case of an(either spin- or
orbital-like) “Kondo object.” Level repulsion due to hybrid-
ization between thedn−1 and thedn*LI states will push the
latter up to higher energies relative to thep-like bands, in
this way, these states become the first ionization states. In the
following, we will try to give the above considerations a

more solid theoretical foundation and apply them to the cal-
culation of “correlated band structures.”

III. GENERAL THEORY

We consider a typical transition metal oxide and restrict
our basis to the oxygen 2p-orbitals and transition metal
d-orbitals. Taking the energy of thep-level as the zero of
energy the single-particle terms in the Hamiltonian then take
the form

Hpp = o
i,k,j ,k8

o
s

sti,k
j ,k8pi,k,s

† pj ,k8,s + H.c.d,

Hpd = o
i,a,j ,k

o
s

sti,a
j ,kdi,a,s

† pj ,k,s + H.c.d,

Hdd = o
i,a,j ,a8

o
s

sti,a
j ,a8di,a,s

† dj ,a8,s + H.c.d,

Hd = o
i,a,b

o
s

sVa,bdi,a,s
† di,b,s + H.c.d, s3d

where di,a,s
† creates a spin-s electron in the d-orbital

a[ hxy,xz,yz,…j on metal sitei and pj ,k,s
† creates an elec-

tron in thep-orbital k[ hx,y,zj on oxygen sitej . The Va,b

combine charge-transfer energy and crystalline electric field.
The Coulomb interaction between thed-electrons is

HC = o
z1,z2,z3,z4

Vz1,z2

z3,z4dz1

† dz2

† dz3
dz4

, s4d

where we have suppressed the site labeli, z=sm,sd and
m[ h−2,… ,2j denotes thez-component of the orbital angu-
lar momentum. The matrix-elementsVz1,z2

z3,z4 can be expressed
in terms of the three Racah-parameters,A, B, andC.

For a start we take all the hybridization matrix elementst
to be zero. In this limit each oxygen is in a 2p6 configuration,
and each transition metal ion in one of the ground states of
Hintra=Hd+HC with n electrons. In general, this ground state
is degenerate, and we deal with this by choosing one of these
ground states, which we calluFi,0l, for each metal ion. For
example, in the case of NiO we would choose the direction
of the spinS=1 of thed-shell to oscillate between the two
sublattices, so as to describe the antiferromagnetic order in
the system. We calluFi,0l the corresponding “reference state”
on transition metal sitei, it obeysHintrauFi,0l=E0

snduFi,0l. In
the following, we consider the product state of theuFi,0l and
the completely filled oxygen-p sublattice as the “vacuum” of
our theory. For the 1D model(1) we introduce two
d-sublatticesA andB and choose

uFi,0l = di,↑
† u0,il, i [ A;

uFi,0l = di,↓
† u0,il, i [ B;

whereu0,il denotes the emptyd-orbital i. This choice models
the antiferromagnetic spin correlations in the system.

FIG. 3. (Color online) Charge fluctuation processes relative to
the purely ionic configuration.
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Next, we assume that the hybridization between the sub-
systems is switched on. This will create charge fluctuations
in the vacuum: in a first step an electron from ap-shell will
be transferred into one of thed-orbitals of the neighboring
metal ioni, a process frequently denoted asdn→dn+1LI. Due
to the many-body character of the Hamiltonian, the resulting
state,di,a,s

† uFi,0l, in general is not an eigenstate ofHintra,
rather, we can express it as a superposition of eigenstates:

di,a,s
† uFi,0l = o

n

Ci,a,s,nunl, s5d

where unl ,n=0,1,… ,nmax are the eigenstates of thed-shell
with n+1 electrons. Since we are dealing with a single
d-shell these can be obtained by exact diagonalization, which
gives us the eigenenergiesEn

sn+1d of the statesunl as well as
the coefficientsCi,a,s,n. If the unl are chosen to be eigenstates
of Sz (as we will assume in all that follows) only a small
fraction of theCi,a,s,n is different from zero. We now repre-
sent the state where the metal ioni is in the stateunl by the
presence of a “book keeping Fermion,” created byei,n,s

† , at
the sitei. The spin indexs thereby gives the difference in
z-spin between the stateunl and the reference stateuFi,0l , in
principle this is redundant, but we add it so as to make the
analogy with a free-particle Hamiltonian more obvious. An
important technical point is that in case theunl are not eigen-
states ofSz this labeling is not possible—there may exist
statesunl which can be reached by transferring an electron of
either spin direction into thed-shell i. All in all, the charge
fluctuation process then can be described by the Hamiltonian

H1 = o
i,n,s

ei,nei,n,s
† ei,n,s + o

i,n
o
j ,k,s

sVj ,k,s
i,n ei,n,s

† pj ,k,s + H.c.d,

ei,n = En
sn+1d − E0

snd,

Vj ,k,s
i,n = o

a

ti,a
j ,kknudi,a,s

† uFi,0l = o
a

ti,a
j ,kCi,a,s,n. s6d

It is understood that statesunl which haveCi,a,s,n=0 for both
directions of s should be omitted from this Hamiltonian.
One can see that the “bare” hopping integralsti,a

j ,k are multi-
plied by the coefficientsCi,a,s,n, which have a modulus,1.
The effective Fermionsei,n

† thus in general have a weaker
hybridization with thep-orbitals than the original electrons,
which will naturally lead to some kind of “correlation nar-
rowing” of all bands of appreciabled-character.

In the 1D model(1) there is only one state withn+1
electrons, namely the statedi↑

† di↓
† u0l. This has an energy of

U−2D, whenceei =U−D. For a sitei on theA sublattice we
thus identifyei↓

† uvacl=di↓
† di↑

† u0l and the partH1 becomes

H1 = sU − Ddo
i[A

ei↓
† ei↓ − tpdo

i[A
fei↓

† spi+1/2,↓ − pi−1/2,↓d + H.c.g

s7d

plus an analogous term which describes the charge fluctua-
tions on the sites of theB-sublattice.

We proceed to the next type of state which is admixed by
the hybridization. First, an electron from the metal-ion with
n+1 electrons may be transferred back to the oxygen atom

with the hole, i.e.,dn+1LI→dn. If the metal ion i thereby
returns to the reference stateuFi,0l this process is described
by the term “H.c.” in Eq.(6). If the metal ion returns to an
n-electron stateull other thanuFi,0l we should model this by
a bosonic excitationbi,l

† . Here we will neglect these latter
processes—this is presumably the strongest and least justi-
fied approximation in the present theory. It implies, for ex-
ample, that we are neglecting(in the case of NiO) the cou-
pling to d−d excitons and the influence of the quantum spin
fluctuations(spin waves) in the 3DS=1 Heisenberg antifer-
romagnet formed by the Ni moments.

A second type of state can be generated by filling the hole
in the oxygen shellj with an electron from ad-shell i8Þ i,
that meansdnLI→dn−1. This leaves thed-shell on i8 in an
eigenstateuml of n−1 electrons, the net effect is the transfer
of an electron between thed-shellsi8→ i8, i.e., precisely the
process considered originally by Hubbard. We write

di,a,suFi,0l = o
m

C̃i,a,s,muml s8d

and model the shelli8 being in themth ionization state by the
presence of a holelike book-keeping Fermion, created by
hi8,m,s

† . In an analogous way as above we arrive at the fol-
lowing effective Hamiltonian to describe the second type of
charge fluctuation:

H2 = o
i,m,s

ẽi,mhi,m,s
† hi,m,s + o

i,m
o
j ,k,s

sṼj ,k,s
i,m pj ,k,s

† hi,m,s
† + H.c.d,

ẽi,m = Em
sn−1d − E0

snd,

Ṽj ,k,s
i,m = o

a

sti,a
j ,kd*kmudi,a,suFi,0l = o

a

sti,a
j ,kd*C̃i,a,s,m. s9d

Sincehi,m
† creates a holelike particle, the presence of terms

like h†p† is not unusual—these terms describe particle-hole
correlations, not particle-particle correlations as in BCS
theory. In the 1D model, the only state withn−1 electrons is
the empty siteu0l, which has the energyE=0, whenceẽ
=D. We identify, for a sitei on the B sublattice:hi↑

† uvacl
= u0l and the termH2 reads

H2 = Do
i[B

hi↑
† hi↑ − tpdo

i[B
fspi+1/2,↓

† − pi−1/2,↓
† dhi↑

† + H.c.g

s10d

plus an analogous term describing theA sublattice.
As already stated, the second type of charge transfer ex-

citation describes the transfer of an electron between two
d-shells via an intermediate state with a hole in an oxygen
p-shell. If there are directd−d transfer integrals, this process
can also occur in one step. The respective part of the effec-
tive Hamiltonian can be constructed in an entirely analogous
fashion as the parts above, since it is lengthy, we do not write
it down in detail.

We proceed to the last type of “effective particle” that we
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will consider. If thed-shell on atomi is in an eigenstate of
n−1 electrons (which would be described by the
hi,m

† -particle) it is possible that an electron from a neighbor-
ing p-shell is transferred to thed-shell, thereby leaving the
d-shell i in an eigenstateull of n electrons other than the
reference stateuFi,0l. We will consider the “compound ob-
ject” consisting of the “excited”dn stateull on site i and a
hole in a linear combinationca,s

† of p-orbitals on the nearest
neighbors of i as a further effective particle, created by
zi,l,a,s

† . Herea[ hxy,xz,yz,…j denotes the symmetry of the
linear combination ofp-orbitals, which is such as to hybrid-
ize with exactly one of thedi,a,s

† on sitei. For an ideal tetra-
hedral cage of oxygen atoms around each metal ion there is
exactly one combinationca,s

† for eacha. The creation and
annihilation of thez-particles can be described by the term

H3 = o
i,l,a,s

ei,l,azi,l,a,s
† zi,l,a,s

+ o
i,m,l,a

sVi,l,a,s
m zi,l,a,s

† hi,m,s + H.c.d,

ei,l,a = El
snd − E0

snd − za,

Vi,l,a,s
m = − Takluda,s

† uml. s11d

Here za=k0uca,sfHpp,ca,s
† gu0l denotes the kinetic energy of

the combinationca,s
† , it can be expressed in terms of the

integralssppsd and spppd. Also, Ta=k0udi,a,sfHpd,ci,a,s
† gu0l

is the hybridization matrix element betweenca,s
† and di,a,s

†

and can be written in terms ofspdsd and spdpd.
In the 1D model, the only “excited” state on theA sublat-

tice is the statedi,↓
† u0l. The only possible combination ofp

orbitals which hybridizes with a d-orbital is ci,1,s
†

= 1/Î2spi+1/2,s
† −pi−1/2,s

† d, which hasz1=−tpp. There is there-
fore just onez†-like particle on theA-sublattice, which cor-
responds to sitei being in the statedi,↓

† u0l and having an extra
hole in the combinationci,1,s

† . The total energy isE=−D
+ tpp whencee= tpp and the corresponding Hamiltonian reads

H3 = tppo
ieA

zi↑
† zi↑ − Î2tpdo

ieA

szi↑
† hi↑ + H.c.d s12d

and, again, a corresponding term for theB-sublattice. This
concludes the types of state which we take into account. We
are thus assuming that the hole always is on a nearest neigh-
bor of thedn* state, this means that we truncate the “Kondo
cloud” which is not exactly true. In principle this approxima-
tion could be relaxed by including more complex composite
particles but here we do not include these.

In order for the mapping between the actual system and
the “book-keeping Fermions” to be a faithful one, we must
require that the occupation of anyd-site is either 0 or 1,
otherwise, the state of the respectived-shell is not unique.
This implies that the book-keeping Fermionse†, h†, andz†

have to obey a hard-core constraint, in exactly the same way
as, e.g., the magnons in spin-wave theory for the Heisenberg
antiferromagnet(HAF). It is well known, however, that lin-
ear spin-wave theory for the HAF, which neglects this hard-
core constraint alltogether and treats the magnons as free
Bosons, gives an excellent description of the antiferromag-

netic phase, even in the case ofS=1/2 andd=2, where
quantum fluctuations are strong. The reason is that the den-
sity n of magnons/site obtained self-consistently from linear
spin wave theory is still relatively small, whence the prob-
ability that two magnons occupy the same site and thus vio-
late the constraint is~n2!1. For the same reason we expect
that relaxing the constraint in the present case and treating
the book-keeping Fermions as free Fermions will be a very
good approximation, its physical content is the assumption
that the probability of charge fluctuations is small, which is
certainly justified in a Mott- or charge-transfer-insulator. For
completeness we note that there is also a certain interference
between thez† particle and the holes on oxygen in the sense
that the respective creation and annihilation operators do not
exactly anticommute. Again, we neglect this, with the justi-
fication again being the very low density of thez† and p†

particles.
Adding the various terms in the Hamiltonian and the di-

rect p−p hoppingHpp we obtain a Hamiltonian which de-
scribes the lowest order charge fluctuation processes while
still being readily solvable by Fourier and Bogoliubov trans-
form with the result:

H = o
k,z,s

Ek,z,sgk,z,s
† gk,z,s, s13d

wherez is a band index. Quantities of physical interest now
can be readily calculated. Let us first discuss the electron
count. We assume that the reference states for thed-shell
haven electrons each. Then, the total number of electrons/
unit cell is ne=n·nd+6·no wherendsnod denote the number
of metal (oxygen) atoms in the unit cell. On the other hand
we have

ne = n ·nd +
1

N
o
k,s

So
j ,k

pk,j ,k,s
† pk,j ,k,s + o

i,m
ek,i,m,s

† ek,i,m,s

− o
i,n

hk,i,n,s
† hk,i,n,s − o

i,a,l
zk,i,a,l,s

† zk,i,a,l,sD . s14d

Here the sums overj and i run over thep- and d-shells in
one unit cell and the equation follows readily from the
electron/hole-like character of the various effective Fermi-
ons. This can be rewritten as

ne = n ·nd +
1

N
o

k,z,s
gk,z,s

† gk,z,s − o
s

smtot,s + ltot,sd;

s15d

wheremtot,s denotes the total number of ionization states in
the unit cell which can be reached by extracting a spins
electron from one of theuFi,0l, andltot,s the total number of
z†-particles in the unit cell which couple to one of these
ionization states. If we assume that the band structure is spin
independent(which is the case for NiO) these numbers must
be independent ofs and we obtain the following requirement
for the electron number:
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o
k,s

gk,a,s
† gk,a,s = Nf6no + 2smtot + ltotdg. s16d

The number of occupied bands in the system thus isnocc
=3no+mtot+ltot. Since the total number of bands produced
by our formalism is 3no+ntot+mtot+ltot, we find that the
chemical potential falls exactly into the gap between the
3no+mtot+ltot bands which correspond(in the limit of van-
ishing hybridization) to the oxygen 2p states, the ionization
states of thed-shell and thed8LI-type states on one hand and
the ntot bands, which correspond to the affinity states of the
d-shells on the other hand. Obviously, this is the physically
correct position of the chemical potential.

The quantity of main interest to us, the single-particle
spectral functionAask ,vd can be obtained from the eigen-
vectors of the Hamilton matrix once the resolution of the
d-electron creation/annihilation operator is known. Were it
not for the presence of thez†-like particles, we could write

dk,a,s
† = o

n

Ci,a,s,mek,m,s
† + o

n

C̃i,a,s,n
* h−k,n,s , s17d

which is easily verified by taking matrix-elements between
the right-and left-hand side. However, the presence of the
z†-like “particle” complicates this. Due to their “compound
nature” the processes by which the electron annihilation op-
erator couples to az†-particle are rather complicated. For
example, one might envisage a process in which an electron
in a dn+1 configuration on sitei is annihilated, leaving the
d-shell in adn* state(i.e., an eigenstate ofdn other than the
reference stateuFi,0l on sitei). Then, if simultaneously a hole
happens to be present in ap-orbital next to sitei, this process
would create az†-like particle on sitei, leading to an opera-
tor product of the typezi

†hicia to describe this process. Simi-
larly, if a dn* state is somehow created on a sitei (this is not
possible in the framework of the Hamiltonian which we
wrote down above—it would necessitate terms including the
bosonic excitationsbi,l

† discussed above) and a hole is cre-
ated in ap-orbital next to this site, this would result in the
creation of az†-like particle on sitei. This process could be
described by a product of the typezi

†ciabi. Due to the fact
that these processes all involve products of three operators
one might expect that they lead predominantly to an incoher-
ent continuum in the spectral function. All in all, we may
thus expect that this type of process will not contribute sub-
stantially to the photoemission intensity for the dominant
peaks. Clearly, the problem in calculating the spectral weight
is a drawback of the theory—it should be noted, however,
that there is a very clear physical reason for this problem,
namely the “compound nature” of thezi

† particles and this
should be reflected in any theoretical description.

Finally we comment on the relationship with the CPT
proposed by Senechalet al.14,15 Following Appendix I of
Ref. 26 it can be shown that the present theory is equivalent
to CPT provided thez† particles are omitted. Eachd-shell
thereby would form a “cluster” of its own whereas the ligand
sublattice as a whole forms one additional cluster. This
“ligand cluster” therefore has an infinite size but this is irrel-
evant for CPT because being a noninteracting system its
Green’s functions still can be calculated exactly. An obvious

advantage of our subdivision is that there is no supercell
structure and hence no artificial gaps in the band structure.
One might worry that the size of the “clusters” is too small,
however, in Ref. 24 it was shown for the periodic Anderson
model that clusters comprising only a single unit cell give
quite satisfactory results for the quasiparticle dispersion. In
the next section this will be seen to be true also for the
charge transfer model(1). In Ref. 15 Senechalet al. treated a
two-band model for CuO2 planes of cuprate superconductors
by CPT thereby coupling clusters of size 232 unit cells with
three orbitals/unit cell, in the present case, however, no clus-
ter comprising more than oned-shell can be treated by exact
diagonalization because of the prohibitively large dimension
of the Hilbert space.

A highly desirable approach would be to couple via CPT
clusters of the type used by Fujimori and Minami11—that
means a singled-shell together with the octahedron formed
by its six nearest oxygen neighbors. Unfortunately any two
of these octahedra centered on neighboring Ni sites share one
oxygen atom—this approach would therefore necessitate a
version of CPT which uses site-sharing clusters. At present,
it is unclear if it is possible to construct such a theory.

IV. COMPARISON WITH EXACT DIAGONALIZATION

Our theory involves a number of strong approximations
which need to be checked in some way. Here we present a
comparison of results obtained for the 1D model(1) and
exact diagonalization of finite clusters. For the 1D model,
systems with six unit cells easily can be solved exactly on a
computer and we use these results as a benchmark to check
our theory. The simplicity of the model actually makes the
comparison more significant than, e.g., in the case of a real-
istic model for NiO because we expect only a small number
of “bands” whence any disagreement will be more obvious.

Before we discuss results for physical quantities let us
address one of the key approximations of our theory, namely
the neglect of the hard-core constraint which in principle
should be obeyed by the book-keeping Fermions. Solving the
1D model withD=3, U=6 gives the GS expectation values
kei

†eil=0.151,khi
†hil=0.004, andkzi

†zil=0.0007. This implies
that the probability for a violation of the constraint on any
given d-site is<0.03, i.e., entirely negligible. Simply relax-
ing the constraint thus is probably an excellent approxima-
tion.

Next, Fig. 4 compares the total energy/site and the
d-occupancy, which is a measure for the charge-transfer form
p→d, as obtained by exact diagonalization and from the
theory. Obviously, there is good agreement. Fig. 5 shows a
comparison between the single particle spectral function ob-
tained from the theory and by exact diagonalization of a
system with six unit cells. To obtain a denser mesh of
k-points, spectra for a system with periodic and antiperiodic
boundary conditions have been used for the exact diagonal-
ization part, that meansk=0,p/3 , 2p/3, andp have been
calculated with PBC, the ones fork= p/6 ,p/2, and 5p/6
have been obtained with ABC. Although there is no rigorous
proof for this, experience shows that combining spectra with
PBC and ABC gives quite “smooth” dispersion relations, as
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can also be seen in the present case. In order to suppress the
Luttinger-liquid behavior expected for 1D systems, a stag-
gered magnetic field of 0.1tpd was applied. The agreement
between theory and exact diagonalization then is obviously
quite good. The dispersion and spectral character of the main
“bands” in the numerical spectra is reproduced quite well.
The main difference concerns the very strong damping of the
lower Hubbard band atE<−4tpd, which actually forms a
broad continuum rather than a well-defined band in the nu-
merical spectra. Moreover, the upper Hubbard band atE
<4tpd has some “fine structure” in the numerical spectra,
which is not reproduced by the theory. On the other hand,
our theory does not include any damping mechanism such as
the coupling to spin excitations, so one cannot expect it to
reproduce such details. Another slight discrepancy concerns
the bandwidth of the oxygen band atE<0, which is some-
what underestimated by theory. Apart from that and a few
low-intensity peaks in the numerical spectra, however, there
is a rather obvious one-to-one correspondence between the
bands in the theoretical spectra and the exact ones. Next, we
consider the spectra for a nonvanishingp-p hopping, tpp
=−1, see Fig. 6. Again, there is good agreement between
theory and numerics, with the main discrepancy being again
the damping of the satellite and the fine structure of the up-
per Hubbard band. Still, there is a clear one-to-one corre-
spondence between theory and exact spectra. An interesting
check is provided by inverting the sign oftpp. One might
expect at first sight that the only effect is to invert the dis-
persion of thep-like band. Inspection of the Hamiltonian
(12) shows, however, that inverting the sign oftpp also af-
fects the energy of thez†-particle, and hence should lead to a
shift of the corresponding band. The actual spectra in Fig. 7
then show that this is indeed the case in the numerical spec-
tra. The z-like band is shifted to higher energies by very

FIG. 4. (Color online) Ground state energy andd-occupation as
a function ofU for D=3, tpd=1 as obtained by exact diagonaliza-
tion of a system with six unit cells and from the present theory. The
trivial contribution of −D has been subtracted off from the ground
state energy.

FIG. 5. (Color online) Single particle spectral functions
As−dsk,vd andAs+dsk,vd obtained by the present theory and by exact
diagonalization of a system with six unit cells. The wave vectork
increases from the lowermost to the uppermost panel in steps of
p / 6, to that end the figure combines spectra obtained with periodic
and antiperiodic boundary conditions. The part to the left(right) of
the vertical dashed line showsAs−dsk,vd fAs+dsk,vdg.

FIG. 6. (Color online) Same as Fig. 5 but with different param-
eter values.
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nearly the amount of 2tpd expected from theory, so that the
lowest hole-addition states now belong to thep-like band.
The fact that the inversion of the sign oftpp has precisely the
effect predicted by theory is a strong indication that this is
indeed the correct interpretation of the low energy peaks in
the spectra.

V. THE BAND STRUCTURE OF NIO

Summarizing the results of the preceeding section we may
say that the theory reproduces the numerical spectra and the
trends under a change of parameters remarkably well, an
indication that despite its simplicity the theory really cap-
tures the essential physics of the two-band model. This is
encouraging to apply it to a real material, NiO. In applying
the above procedure to NiO we first performed a standard
LDA band-structure calculation in the framework of the
LMTO-method27 for NiO (thereby assuming a paramagnetic
ground state) and obtained the LCAO parameters by a fit.
For simplicity no overlap integrals were taken into account.
A comparison between the LDA band structure and the
LCAO fit is shown in Fig. 8(the LDA result is essentially
identical to that of Ref. 23), the hybridization integrals and
site energies obtained by the fit are given in Table I. We have
also obtained LCAO parameters for an antiferromagnetic
LSDA band structure, and those parameters which can be
compared(such as the hybridization integrals) do not differ
significantly. All in all this procedure gives quite reliable
estimates for the values of the various hopping integrals. The
LDA band structure broadly can be divided into two com-
plexes of bands: the lower one at energies between28 and
23 eV has almost pure oxygenp-character. In other words, a
hole in this band would move almost exclusively on the oxy-

gen sublattice and have only a very small probability to be
on a Ni ion. One may thus expect that these states persist
essentially unchanged in the correlated ground state. Next,
the complex between23 and11 eV has almost exclusively
Ni 3d character. The LDA band structure thus would seem to
suggest that there are states where a hole is moving essen-
tially from one Ni site to another, which have a less negative
binding energy, i.e., which are closer to the Fermi energy
than the states where the hole is moving in the oxygen sub-
lattice. Clearly, in view of the value of the charge transfer
energyD.0, which is consistently suggested by a variety of
methods,4,11,12 this is a quite wrong picture of the electronic
structure. Next, we consider the Racah parametersB andC.
These differ only slightly from their values for free ions and
we took the values from Fujimori and Minami11 B
=0.127 eV, C=0.601 eV for d8 and B=0.138 eV, C
=0.676 eV ford9. In general, these parameters are screened
by covalency betweend-orbitals and ligands28 but for sim-
plicity we keep the “bare” values.

This leaves us with two parameters, which require a spe-
cial treatment, namely the Racah parameterA, which is sub-
ject to substantial solid-state screening, and the difference of
site energies between the Ni 3d-level and the oxygen
2p-level. The Racah parameterA is related to the Coulomb
energyU, which can be obtained from “pured-quantities”
according toU=E0

n+1+E0
n−1−2E0

n. Here we used the values
U=8.7 eV andD=1.5 eV. Similar values forU have been
obatined by Fujimori and Minami11 from a cluster fit of the

TABLE I. Hybridization integrals and site-energies(in eV) ob-
tained by a LCAO fit to the paramagnetic LDA band structure of
NiO.

Ni–O O–O Ni–Ni e

ssssd 0.023

sspsd e2s=−10

sppsd 0.665

spppd 20.104 e2p=−4.8

ssdsd 20.720

spdsd 21.310 e3d=−1.13

spdpd 0.382

sdsd 20.201

FIG. 7. (Color online) Same as Fig. 5 but with different param-
eter values.

FIG. 8. (Color online) LDA band structure for paramagnetic
NiO and LCAO fit. The Fermi energy is taken to be zero.
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valence band photoemission spectrum, by van Elpet al.12

from a cluster fit to the x-ray absorption spectrum and by
Norman and Freeman4 from density functional calculations.
The value ofD is somewhat small compared to others, which
are around 2.5 eV.

Then, the problem of a singled-shell was solved by exact
diagonalization in the 7, 8, and 9 electron subspaces. The
maximum dimension of the Hilbert space was 120 forn=7.
A nonvanishing CEF parameter 10Dq=0.05 eV was applied
in order to stabilize the correctt2g

6 eg
23A2g ground state ford8

in Oh-symmetry. To account for the antiferromagnetic nature
of the GS of NiO, we chose the reference stateuFi,0l to be
theSz=1 member of the3A2g multiplet on the Ni-sites of one
sublattice, and theSz=−1 member on the other one. Since we
neglect spin-orbit coupling the direction of the spin quanti-
zation axis is arbitrary and has no influence on the spectral
function. The kinetic energies of thet2g and eg-like combi-
nations ofp-orbitals, which enter the energy of thez-like
particles, areet2g

=sppsd−spppd andeeg
=spppd−sppsd, the

respective hybridization integrals areTt2g
=2spdpd and Teg

=Î3spdsd. All in all, the rank of the effective Hamilton ma-
trix to be diagonalized was<250, i.e., quite moderate. To
improve the agreement with experiment, the following minor
adjustments of parameters were made: thep−p hybridization
integrals were reduced by a factor of 0.8, and thed−p hy-
bridization integrals were increased by a factor of 1.1.

The full single-particle spectral functions obtained along
the (100) direction for antiferromagnetic NiO then is shown
in Fig. 9 It differs quite significantly from what one would
expect on the basis of the LDA band structure(see Fig. 8)

but instead shows the same overall structure as in the 1D
model, compare to Fig. 2. As was the case for the 1D model
one can broadly speaking distinguish four complexes of
bands. At binding energies,−8 eV , there is a broad con-
tinuum of bands with strongd-weight. Analysis of the wave
functions shows that the respective states have(mainly) h†

(i.e., d7) character, with some admixture ofz† (i.e., d8LI) and
(less) admixture of O2p character. Clearly these bands
should be identified with the “satellite” in the experimental
NiO spectra. By analogy with the 1D model we may expect
that these high energy states undergo substantial broadening
as is indeed seen in experiment. In Fig. 9 the satellite by and
large disperses upwards as one goes away fromG—Shenet
al.23 interpreted their data as showing a downward dispersion
of the satellite. On the other hand this feature is rather broad
and composed of many “subpeaks” so that it may be difficult
to make really conclusive statements about the dispersion of
the spectral weight without a full calculation of the spectral
weight, including the “radiation characteristics” of the indi-
vidual d-orbitals, final states effects, etc.

Next, there is a group of strongly dispersive bands of
predominant O2p character, which closely resembles the
lower complex of bands in the LDA calculation, see Fig. 8.
In view of their almost pure oxygen character it is no sur-
prise that these bands are hardly influenced by whatever hap-
pens on the Ni sites. Next comes a group of practically dis-
persionless bands which form the top of the valence band.
They have mainlyz† (i.e., d8LI) character with some admix-
ture of h† (i.e., d7). Due to their strongz†-character these
bands probably are influenced most strongly by our approxi-
mation to omit any terms involvingz†-operators in the spec-
tral weight operator(17). We may expect that taking the
prcocesses discussed there will probably enhance the weight
of these states and also add some morep-like weight to these
peaks.

The topmost peak is rather intense and actually composed
of several “subpeaks”—it is in fact the only feature in this
energy range which shows significant dispersion. Below this
broad peak, there are several bands with lower intensity and
practically no dispersion—all of this exactly as seen in the
ARPES experiment by Shenet al.23 Figure 10 shows a more
detailed comparison of the dispersion of “significant peaks”
in the photoemission part of the theoretical spectra with the
experimental peak dispersions as reported by Shenet al. It
can be seen that the agreement is quite good. Along both
(100) and(110) the main discrepancy is the position of bands
C andD [or D1 along (110)] which are somewhat higher in
energy in the theory, still, the discrepancy is only 0.7 eV. In
view of the fact that we have used the simplemost set of
parameters this is quite good agreement. The band portion
Ea which is unusual due to its downward curvature has ac-
tually been observed by Shenet al. in normal emission(see
Fig. 6 of Ref. 23). The partEb seems to correspond to the
experimental bandE itself—it has rather low spectral weight
for momenta close toG.

Finally, Fig. 11 gives the dispersion of the “sub-bands” of
the broad structureA at the valence band edge. This fine
structure has not been resolved experimentally as yet, how-
ever, Shenet al. found evidence for at least three “subpeaks”
and also for a quite substantial dispersion, although this

FIG. 9. (Color online) Single particle spectral densities[see Eq.
(2) for a definition] for antiferromagentic NiO obtained by the
present theory. The momenta are along the(100) direction, the top
of the valence band is the zero of energy.d-functions are replaced
by Lorentzians of width 0.075 eV, thed-like spectral density is
multiplied by a factor of 4.
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made itself felt only as a dispersion of the line shape of the
broad peak. Looking at Fig. 9 and 10 of Ref. 23 it would
appear that along(100) there is an overall “upward” disper-
sion of the topmost peakA as one moves fromG→X with
two local maxima of the upper edge ofA just afterG and just
beforeX with the whole band complex being most narrow
approximately halfway betweenG andX. It can be seen al-
ready from Fig. 10 that this dispersion of the peak-shape ofA
is reproduced quite well by theory. Similarly, along(110) the
broad band complex seems to have its minimum width half-
way betweenG and X. At least these qualitative results are
quite consistent with the dispersion in Fig. 11. Clearly a
more detailed study of the fine structure of featureA would
provide an interesting check of the present and other theories
for the band structure of NiO. Another stringent check for
theory would be to unravel the orbital character of the indi-
vidual flat bands such asC andD by studying their intensity
as a function of photon polarization and energy.

Finally, we mention the upper Hubbard band, with the
corresponding final states having predominantlye†-character.
The insulating gap has a magnitude of 4.3 eV, which is con-
sistent with experiment.3 Figure 12 shows the angle inte-
grated(i.e., k-integrated) photoemission and inverse photo-
emission spectrum. By and large there is reasonable
agreement with experiment. The fact that theory puts the
dispersionless bandsC and D too close to the top of the
valence bands leads to a too weak shoulder on the negative
binding energy side of the “main peak” at the top of the
valence bands.

VI. CONCLUSION

In summary, we have presented a theory for the single-
particle excitations of charge-transfer insulators. The basic
idea is to interpret the charge fluctuations out of the purely
ionic configuration as “effective Fermions” and derive and
solve an effective Hamiltonian for these. This is the same
physical idea which is underlying both the Hubbard I ap-

FIG. 10. (Color online) Comparison between the experimental
peak dispersions determined by ARPES in non-normal emission
(taken from Fig. 12 of Ref. 23) and the position of “significant
peaks” in the theroretical spectra. The labels on the “bands” indicate
a possible correspondence between experiment and theory.

FIG. 11. (Color online) Fine
structure of the broad peak which
forms the top of the valence band
structure in antiferromagnetic
NiO. The symbols give the posi-
tions of peaks with appreciable
weight.
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proximation and the cluster perturbation theory and, as
demonstrated above, when applied to a realistic model of a
charge-transfer insulator these methods, which so far have
been restricted to more “model-type” systems, give indeed
quite satisfactory agreement with experiment. The key ap-
proximation, namely to treat the Hubbard-like operators de-
scribing the charge fluctuations as free Fermions, thereby is
well justified because of the low density of these effective
Fermions, which renders their(strong) interaction largely ir-
relevant. A systematical way to relax this approximation
would be theT-matrix approach, as demonstrated by Kotov
et al.29 It should be noted that the calculation is computation-
ally no more demanding than a conventional band-structure
calculation and can be “automated” almost completely. The
weakest link in the chain thereby is the necessity to perform
an LCAO-fit to an LDA band structure.

One important conceptual problem is the necessity to
break the symmetry which originates from the degeneracy of
the ground state multiplet of a single transition metal ion and
choose the “reference states”uFi,0l “by hand.” However, one
might as well consider choosing anansatzfor these reference
states which takes the form of a linear combinationuFi,0l
=onainunl,where the sum extends over the GS multiplet, and
determine the coefficientsain from the requirement of mini-
mum total energy. In this way spin and orbital ordering could
be studied in much the same way as lattice parameters are
optimized in conventional LDA calculations and since all
“ingredients” for the Goodenough-Kanamori rules30 are
taken into account, this may be a quite promising method.
Since spin-orbit coupling also can be trivially included in the
exact diagonalization of the isolatedd-shells one might even
hope to address magnetic anisotropies and/or anisotropic ex-
change interactions. A procedure for the improvement of
CPT calculations on model Hamiltonians which is similar in
spirit has been proposed by Potthoffet al.31

One major drawback of the theory clearly is the approxi-
mate nature of the calculation of the spectral weight. It
should be noted, however, that there is a very clear physical
reason for this problem, namely the “compound nature” of
the ZRS-like states which form the top of the valence band.
If the present interpretation of these states is the correct one,
basically any theory will face similar problems. One possible
way out would be to derive a version of the original CPT
which can work with site-sharing clusters.

Finally, we would like to discuss the relationship between
our theory and previous workers in the field. Manghiet al.32

and Takahashi and Igarashi33 have calculated the quasiparti-
cle band structure of NiO more along the lines of conven-
tional many-body theory. Starting from a paramagnetic LDA
band structure(Ref. 32) or an antiferromagnetic Hartree-
Fock band structure(Ref. 33) these authors added a self-
energy constructed within the local approximation to three-
body scattering theory. The obtained band structures show
the same “large scale features” as the one obtained here, but
there are also significant differences, particularly so near the
top of the valence band. More detailed comparison with ex-
periment seems necessary to discuss the merits of the various
theories.

Next, there is a clear analogy between the present theory
and the cluster method of Fujimori and Minami11 and va Elp
et al.12 With the exception ofd9LI2 states in the photoemis-
sions spectrum the present theory employs the same type of
basis states as the cluster calculations. The only difference is
that we designate one of the degenerate ground states ofdn

as a “vacuum state” and interpret the other states as “devia-
tions” from this vacuum state. Those deviations which carry
the quantum number of an electron then are considered as
effective free Fermions. As discussed above, the low density
of these effective Fermions probably make this a very good
approximation.

There is also an obvious relationship between the present
theory and the work of Unger and Fulde.34 Using the projec-
tion technique developed by Becker and Fulde35 these au-
thors constructed an equation of motion for single-particle
spectral functions of the CuO2 plane, which is very similar to
the ones which would be obtained from our effective Hamil-
tonians. Finally we address the work of Balaet al.,21 which
is very similar in spirit to the present theory. These authors
derived a “Kondo-Heisenberg”-like model operating in the
subspace ofd8LI type states by eliminating, via canconical
transformation, the charge fluctuations between states of the
type s3A2gd

8dLI and states of the typed7 (their theory was
concerned with the motion of a single hole in an O2p or-
bital). Accordingly, their theory produced(in addition to the
free-electron-like O2p bands) two weakly dispersive bands,
one for each of the “flavors”eg and t2g whereby the flavor
stands for the symmetry of the linear combination of O2p
orbitals around a given Ni site. Thereby Balaet al. actually
went one step beyond the present theory by taking into ac-
count the coupling of O2p-like holes to the antiferromag-
netic magnons, which is omitted in the present theory. In the
present theory, no canonical transformation is performed, so
that also the high energy features(satellite and upper Hub-
bard band) are reproduced. Moreover, we also take the ex-
cited multiplets ofd8 and their covalent mixing with thed7

multiplets into account, whence we obtain a larger number of
ZRS-like bands, consistent with experiment. Experimentally
the impact of the coupling to magnons which is ignored in
the present theory but treated accurately in the work of Bala
et al. could be studied only by considering the “fine struc-
ture” of the broad peak at the valence band top. These states
seem to have an appreciable dispersion which might or might
not be influenced by the coupling to magnons.

FIG. 12. (Color online) Momentum integrated spectral weight
for antiferromagnetic NiO. To simulate a photoemisison spectrum
the Lorentzian broadening has been taken energy dependent accord-
ing to d=0.4 eV+sv−1 eVd ·0.1.
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