
Dependence of information entropy of uniform Fermi systems on correlations and thermal effects

Ch. C. Moustakidis and S. E. Massen
Department of Theoretical Physics, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece

(Received 7 April 2004; revised manuscript received 12 August 2004; published 4 January 2005)

The influence of correlations of uniform Fermi systems(nuclear matter, electron gas, and liquid3He) on
Shannon’s information entropy,S, is studied.S is the sum of the information entropies in position and mo-
mentum spaces. It is found that, for three different Fermi systems with different particle interactions, the
correlated part ofS sScord depends on the correlation parameter of the systems or on the discontinuity gap of
the momentum distribution through two parameter expressions. The values of the parameters characterize the
strength of the correlations. A two parameter expression also holds betweenScor and the mean kinetic energy
sKd of the Fermi system. The study of thermal effects on the uncorrelated electron gas leads to a relation
between the thermal part ofS sSthermald and the fundamental quantities of temperature, thermodynamical
entropy, and the mean kinetic energy. It is found that, in the case of low temperature limit, the expression
connectingSthermal with K is the same to the one which connectsScor with K. There are only some small
differences on the values of the parameters. Thus, regardless of the reason(correlations or thermal) that
changesK, S takes almost the same value.
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I. INTRODUCTION

Information theoretical methods have in recent years
played an important role in the study of quantum mechanical
systems1–8 in two cases: first in the clarification of funda-
mental concepts of quantum mechanics and second in the
synthesis of probability densities in position and momentum
space. An important step was the discovery of an entropic
uncertainty relation1 which for a three-dimensional nonuni-
form quantum system has the form

S= Sr + Sk ù 3s1 + ln pd . 6.434, s1d

where

Sr = −E rsr dln rsr ddr , Sk = −E nskdln nskddk s2d

are Shannon’s information entropies(IE) in position- and
momentum-space andrsr d, nskd are the density distribution
(DD) and momentum distribution(MD), respectively, nor-
malized to unity.

The physical meaning ofSr andSk is that it is a measure
of quantum-mechanical uncertainty and represents the infor-
mation content of a probability distribution, in our case of
various fermionic systems density and momentum distribu-
tions. Inequality(1) provides a lower bound forS which is
attained for Gaussian wave functions.1 It is mentioned that
the sumS=Sr +Sk is invariant to uniform scaling of coordi-
nates, while the individual entropiesSr andSk are not.

Ziesche9 mentions in his paper that March refers to the
information entropy with the following words: “Further work
is called for before the importance ofSr and Sk in atomic
theory can be assessed.”10 We could extend that statement for
fermionic and correlated bosonic systems as well.

The motivation of the present work, which is in the spirit
of the above statement, is to extend our previous study of IE
in nuclei, atomic clusters and correlated bosonic systems to
the direction of various uniform fermionic systems and to

connect it with the interaction of the particles and the tem-
perature. In uniform systems the densityr=N/V is a con-
stant and the interaction of the particles is reflected to MD
which deviates from thetheta function form of the ideal
Fermi-gas model. It is important to study how the interaction
affects the MD as well as the IE. An attempt is also made to
relate the IE with fundamental quantities such as the tem-
perature, the thermodynamical entropy and the mean kinetic
energy of the fermionic system(electron gas).

The quantum systems which are examined in the present
work are nuclear matter, electron gas and liquid3He. The
interparticle interactions of these systems generally differ by
many orders of magnitude in their strengths and ranges. If
the potentials are scaled with suitable energy and length
measures for the different systems, i.e., Fermi energy and
inverse Fermi momentum, the potentials still differ by orders
of magnitude. The helium system is the most strongly inter-
acting at short distances, with an almost-hard-core interac-
tion, the electron gas is the most weakly interacting, and the
nuclear case lies somewhere between. The helium and the
nuclear potentials have relatively weak attractive tails. The
electronic potential is quite deferent. While its core is very
weak in comparison with3He and nuclear cases, it falls off
slowly at larger. That is at large distances the electronic
potential becomes stronger.11 Historically, the helium prob-
lem has proved to be the hardest to be solved, because of the
hard core interaction. On the other hand, the nuclear problem
presents a singular frustration and a special challenge be-
cause of the strong state dependence(dependence on spin,
isospin, angular momentum) and noncentral character of the
bare two-nucleon interaction, and also because of ambigu-
ities in the determination of the interaction from first
principles.12 Moreover, the judgment about strong versus
weak interaction depends on the density being studied. This
fact is vividly illustrated by the electron gas, which is distin-
guished from the other examples by the long-range nature of
the Coulomb interaction. Consequently, strong coupling pre-
vails in the electron gas in the limit of low density, whereas
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the helium and the nuclear systems become more strongly
interacting as the density increases. In all these cases the
strength of the interaction may be gauged by the depletion of
the Fermi sea. Quantitatively, one examines the deviation of
ZF from unity, whereZF is the discontinuity gap of the mo-
mentum distributionnskd at k=kF in an uniform Fermi
system.12

The paper is organized as follows. The method leading to
the expression of Shannon’s information entropy sum in fi-
nite Fermi systems is presented in Sec. II. Applications of
that expression to nuclear matter, electron gas, and liquid
3He are made in the three subsections of Sec. II. In the same
subsections numerical results are also reported and dis-
cussed. In Sec. III the study of the influence of thermal ef-
fects on the information entropy sum is made. Finally, the
concluding remarks and the summary of the present work are
given in Sec. IV.

II. INFORMATION ENTROPY FOR AN INFINITE
FERMI SYSTEM

The key quantity for the description of the MD both in
infinite and finite quantum systems is the one-body density
matrix (OBDM). The OBDM is defined as

rsr 1,r 18d =E C*sr 1,r 2,…,r NdCsr 18,r 2,…,r Nddr 2…dr N.

s3d

The diagonal elementsrsr 1,r 1d of the OBDM yields the lo-
cal density distribution, which is just a constantr in the
uniform infinite system. Homogenity and isotropy of the sys-
tem require thatrsr 1,r 18d=rsur 1−r 18ud;rsrd. In the case of
noninteractive Fermi systems the associated OBDM is

rsrd = rlskFur 1 − r 18ud,

where

lsxd = 3x−3ssinx − x cosxd

and r=N/V is the constant density of the uniform Fermi
system.

The density, normalized to 1ser0dr =1d, is given by the
relation

ro =
1

NVo
=

1

N 4
3pro

3 , s4d

where the volumeVo= 4
3pro

3 corresponds to the effective vol-
ume of the Fermi particle andN is the number of fermions.

The MD for fermions, having single-particle level degen-
eracyn, is defined by

nskd = n−1E rsrdeik·rdr . s5d

The MD, normalized to 1fenskddk =1g, is given by the re-
lation

nskd =
1

Vk
ñskd =

1

Vk
Hñ−skd, k , kF,

ñ+skd, k . kF,
s6d

whereVk= 4
3pkF

3. The Fermi wave numberkF is related with
the constant densityr=Nr0=3/s4pr0

3d as follows

kF = S6p2r

n
D1/3

= S9p

2n

1

r0
3D1/3

, s7d

where n=2 for electron gas and liquid3He and n=4 for
nuclear matter. In the case of an ideal Fermi gas the MD has
the form

n0skd =
1

Vk
uskF − kd. s8d

The information entropy in coordinate space(for density
r0 normalized to 1) for a correlated or uncorrelated Fermi
system is given by the relation

Sr = −E ro ln rodr = ln V. s9d

Considering thatV=NVo, Sr becomes

Sr = lns 4
3pro

3d + ln N. s10d

The information entropy in momentum space[for nskd
normalized to 1] is given by the relation

Sk = −E nskdln nskddk . s11d

Sk for an ideal Fermi gas, using Eq.(8), becomes

Sk = ln Vk = lnS6p2

n

1

r0
3D . s12d

From Eqs.(10) and (12) the information entropy sumS=Sr
+Sk for an uncorrelated infinite Fermi system becomes

S0 = Sr + Sk = lnS8p3

n
D + ln N. s13d

It turns out that the functional form

S0 = a + b ln N

for the entropy sum as a function of the number of particles
N holds for the ideal infinite Fermi systems. The same func-
tion has been found in Ref. 2 for atoms and in Ref. 8 for
nuclei and atomic clusters. That expression has been found
also in Ref. 13 for the ideal electron gas. It is well known
that relation (1) fSr +Skù3s1+ln pdg holds always. We
found that forN large relation(13) holds. Relation(13) for
N=1 violates relation(1), but this is hardly a problem be-
cause(13) holds only for largeN and we do not expect to
agree with Eq.(1), e.g., relations holding for nuclear matter
cannot lead to relations holding for finite nuclei with a few
nucleons.

In the case of correlated Fermi systems, the IE in coordi-
nate space is given again by Eq.(10) while the IE in mo-
mentum space can be found from Eq.(11) replacingnskd
from Eq. (6). Sk is written now
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Sk = ln Vk −
4p

Vk
SE

0

kF
−

k2ñ−skdln ñ−skddk

+E
kF
+

`

k2ñ+skdln ñ+skddkD . s14d

The correlated entropy sum has the form

S= Sr + Sk = S0 + Scor, s15d

whereS0 is the uncorrelated entropy sum of Eq.(13) andScor
is the contribution of the particles correlations to the entropy
sum. That contribution can be found from the expression

Scor = − 3SE
0

1−

x2ñ−sxdln ñ−sxddx+E
1+

`

x2ñ+sxdln ñ+sxddxD ,

s16d

wherex=k/kF.
Another quantity expected to be related with the IE is the

mean kinetic energyK, defined by

K =
"2

2m
E nskdk2dk = 3eFE

0

`

x4ñsxddx

= 3eFSE
0

1−

x4ñ−sxddx+E
1+

`

x4ñ+sxddxD , s17d

whereeF="2kF
2 / s2md is the Fermi energy.

From the above analysis it is clear that in order to calcu-
late the IE sum in uniform Fermi systems, the knowledge of
the MD is required. In dealing with various fermionic sys-
tems, we are necessarily driven to computational methods,
since a pure analytical treatment is intractable. Computa-
tional many-body methods may be classified in several dif-
ferent ways: they may be based on wave functions or on field
theory. They may be variational or perturbative. In any case
the singular, or near-singular character of the basic forces
involved precludes a simple, stepwise perturbative calcula-
tion within an independent-particle(plane-wave) basis.

In the present work we apply the low order approximation
(LOA) for the calculation of the MD in nuclear matter.14–16

For liquid 3He we use the results of Moroniet al.,17 while the
MD for the electron gas is taken from a work of Gori-Giorgi
et al.18 Of course there are a lot of data for the MD, for the
two cases, in the literature. In our work we try to use the
modern ones that exist up to now. It is worthwhile to point
out also that our primary purpose is not the detailed analysis
of the MD but the accurate calculation of the correlated part
of the information entropy in various cases, using reliable
data for the MD.

A. Nuclear matter

The model we study is based on the Jastrow ansatz for the
ground state wave function of nuclear matter

Csr 1,r 2,…,r Nd = p
1øiø jøN

fsr ijdFsr 1,r 2,…,r Nd, s18d

wherer ij = ur i −r ju, F is a Slater determinant(here, of plane
waves with appropriate spin-isospin factors, filling the Fermi

sea) and fsrd is a state-independent two-body correlation
function. In the present work the correlation function is taken
to be the Jastrow function19

fsrd = 1 − expf− b2r2g, s19d

whereb is the correlation parameter. A cluster expansion for
the one-body density matrixrsr 1,r 18d has been derived by
Gaudin, Gillespie and Ripka14–16 for the Jastrow trial func-
tion (18).

In the LOA the momentum distribution is constructed as16

nLOAskd = uskF − kdf1 − kdir + Ysk,8dg

+ 8†kdirYsk,2d − fYsk,4dg2
‡ , s20d

where

cm
−1Ysk,md =

e−k̃+
2
− e−k̃−

2

2k̃
+E

0

k̃+
e−y2

dy+ sgnsk̃−dE
0

uk̃−u
e−y2

dy

s21d

and

cm =
1

8Îp
Sm

2
D3/2

, k̃ =
k

bÎm
, k̃± =

kF ± k

bÎm
, m = 2,4,8,

s22d

and sgnsxd=x/ uxu. The normalization condition for the mo-
mentum distribution is

E
0

`

nLOAskdk2dk=
1

3
kF

3 . s23d

A rough measure of correlations and of the rate of con-
vergence of the cluster expansion is given by the dimension-
less Jastrow wound parameter

kdir = rE ffsrd − 1g2dr , s24d

where r=2kF
3 / s3p2d is the density of the uniform nucleon

matter. Equation(24) gives the following relation between
the wound parameterkdir and the correlation parameterb

kdir =
1

3Î2p
SkF

b
D3

. s25d

It is clear that largekdir implies strong correlations and poor
convergence of the cluster expansion. In the numerical cal-
culations the correlation parameterb was in the interval:
1.01øbø2.482. That range corresponds to 0.3ùkdir
ù0.02 and is a reasonable interval in the case of nuclear
matter.16

The calculated values ofScor for nuclear matter versus the
wound parameterkdir are displayed by points in Fig. 1(a). It
is seen thatScor is an increasing function ofkdir. The function
Scorskdird is equal to zero forkdir =0 (no correlations) and the
dependence ofScor on kdir is not very far from a linear de-
pendence. Thus we fitted the numerical values ofScor with
the two parameters formula
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Scorskdird = skdir
l . s26d

That simple formula, with the best fit values of the param-
eters

s= 2.0575, l = 0.6364

reproduces the numerical values ofScor very well.
Another characteristic quantity which is used as a mea-

sure of the strength of correlations of the uniform Fermi
systems is the discontinuity,ZF, of the MD atk/kF=1. It is
defined as

ZF = ns1−d − ns1+d.

For ideal Fermi systemsZF=1, while for interacting ones
ZF,1. In the limit of very strong interactionZF=0 there is
no discontinuity on the MD of the system. The quantitys1
−ZFd measures the ability of correlations to deplete the
Fermi sea by exciting particles from states below it(hole
states) to states above it(particle states).16

The dependence ofScor on the quantitys1−ZFd is shown
in Fig. 2. It is seen thatScor is an increasing function ofs1
−ZFd. For the same reasons mentioned before we fitted the
numerical values ofScor to the two parameters formula

ScorsZFd = ss1 − ZFdl. s27d

As before, the above simple formula, with the best fit values
of the parameters

s= 2.2766, l = 0.6164,

reproduces the numerical values ofScor very well.
From the above analysis we can conclude that the corre-

lated part of the information entropy sum can be used as a
measure of the strength of correlations in the same way the
wound parameter and the discontinuity parameter are used.

An explanation of the above behavior ofScor is the fol-
lowing: The effect of nucleon correlations is the departure
from the step function form of the MD(ideal Fermi gas) to
the one with long tail behavior fork.kF. The diffusion of
the MD leads to a decrease of the order of the system(in

FIG. 1. The correlated part of
the information entropy,Scor, for
nuclear matter(a), electron gas
(b), and liquid 3He (c) versus the
wound parameterkdir, the effec-
tive radius rs, and the densityr,
respectively. The lines in the tree
cases correspond to the fitted ex-
pressionsScorskdird=skdir

l , Scorsrsd
=srs

l and Scorsrd=srl, respec-
tively. For the values of the pa-
rameterss andl, see text.
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comparison to the ordered step function MD), thus it leads to
an increase of the information content of the system.

Concluding we should state that, the increase of informa-
tion entropy sum of the nuclear matter is due to the increase
of the number of nucleons of the system, as it is seen from
Eq. (13) and also to the increase of correlations.

Finally, the dependence of the IE on the kinetic energyK,
which is given by Eq.(17), is also examined. The calculated
values of the correlated part of IE,Scor, versusK is shown in
Fig. 3.Scor is an increasing function ofK. It should be noted
thatScor is equal to 0 forK= 3

5eF. For that reason we fitted the
numerical values ofScor to the formula

ScorsKd = sS K

eF
− 0.6Dl

. s28d

That simple formula, with the best fit values of the param-
eters

s= 3.7413, l = 1.5911,

reproduces the numerical values ofScor very well.
Summarizing, we can conclude thatScor in nuclear matter

is an increasing function of the wound parameter and the
discontinuity parameters1−ZFd. It is also an increasing func-
tion of the mean kinetic energy of the system. The depen-
dence ofScor on those quantities is given by simple two
parameter formulas.

B. Electron gas

We consider the electron gas as a system of fermions
interacting via a Coulomb potential. The electron gas is a
model of the conduction electrons in a metal where the pe-
riodic positive potential due to the ions is replaced by a

uniform charge distribution. The density of the uniform elec-
tron gas(Jellium) is r=3/s4pro

3d and the momentum distri-
bution is nsx,rsd, where x=k/kF and rs=ro/aB (with aB

="2/me2, the Bohr radius).
The momentum distribution of the unpolarized uniform

electron gas in its Fermi-liquid regime,nsx,rsd is constructed
with the help of the convex Kulik functionGsxd.18 It is as-
sumed thatns0,rsd, ns1± ,rsd, the on-top pair densitygs0,rsd,
and the kinetic energyKsrsd are known(respectively, from
accurate calculations forrs=1,… ,5, from the solution of the
Overhauser model, and from quantum Monte Carlo calcula-
tions via the virial theorem).18

The qualitative behavior ofnsx,rsd is the following. It
starts atx=0 with a valuens0,rsdø1, and decreases with
increasingx. For x,1, it is concave. Then in the Fermi
liquid regime atx=1, there is a finite jump(Fermi gap) from
ns1−,rsd to a lower valuens1+,rsd=ns1−,rsd−ZFsrsd with
logarithmic slopes at both sides ofx=1. Forx.1, (correla-
tion tail) nsx,rsd is convex and vanishes forx→`. For rs

=0 (ideal Fermi gas), nsx,rsd has the well known step func-
tion form nsx,0d=us1−xd. Thus, the discontinuityZFsrsd,
starts withZFs0d=1 and decreases with increasing interaction
strengthrs. The discontinuityZF of nskd at the Fermi surface
narrows as the density decreases, which implies that the sys-
tem is becoming more strongly coupled. That behavior is due
to the fact that the screening of the long-range Coulomb
interaction between the electrons becomes less effective at
lower density. The inverse behavior appears in nuclear mat-
ter cases and the atomic3He, where the basic interactions are
of short range andZF decreases as the density increases.

At large rs, the electrons form a Wigner crystal with a
smoothnsx,rsd. rs!1 and rs@1 are the weak- and strong-
correlation limits, respectively. For intermediate values ofrs,
a non-Fermi liquid regime may exist withZF=0. In such a

FIG. 2. The correlated part of the information entropy for
nuclear matter, electron gas, and liquid3He versus the discontinuity
parameter 1−ZF. The lines in nuclear matter and electron gas cor-
respond to the fitted expressionScorsZFd=ss1−ZFdl while in 3He
liquid to the fitted expressionScorsZFd=ss1−ZF

ld. For the values of
the parameterss andl, see text.

FIG. 3. The correlated part of the information entropy for vari-
ous Fermi systems and its thermal part for electron gas versus the
mean kinetic energy in units of Fermi energy. The lines in the vari-
ous cases correspond to the fitted expressionScorsKd=ssK /eF

−0.6dl. For the values of the parameterss andl, see text.
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case,nsx,rsd would be continuous versusx, with a nonana-
lytical behavior atx=1.18

We examined the dependence of the correlated part of the
IE for the electron gas on the correlation parameterrs [or r
=3/s4pro

3d], the discontinuity parameters1−ZFd and the
mean kinetic energyK. The dependence ofScor on those
parameters are shown in Figs. 1(b), 2, and 3. It is seen that,
as in the case of nuclear matter,Scor depends on those quan-
tities through two parameter expressions of the form

Scorsrsd = srs
l, s29d

with

s= 0.1312, l = 0.8648,

ScorsZFd = ss1 − ZFdl, s30d

with

s= 2.0381, l = 1.6899

and

ScorsKd = sS K

eF
− 0.6Dl

, s31d

with

s= 2.0786, l = 0.6601.

The values of the parameterss andl have been found by
least squares fit of the above expressions to the calculated
values ofScor.

C. Liquid 3He

The helium interaction potential is very strong at small
distances, its core repulsion being very hard(but not infi-
nite). As a consequence there is a Fermi-surface discontinu-
ity of roughly ZF,0.3. This small value supports the view
that liquid 3He is the most strongly interacting Fermi system
we have considered.

In the case of liquid3He the calculation of the momentum
distribution is performed from diffusion Monte Carlo(DMC)
simulations using trial functions, optimized via the Euler
Monte Carlo (EMC) method.17 The EMC wave functions
have pair and triplet correlations fully optimized, and pro-
vide the lowest available energy bounds. Moreover, their use
in DMC calculations has led to results of unprecedented ac-
curacy for the energy, pair function, and static structure func-
tion. For 3He, backflow correlations have been included, in
the usual way, by replacing the plane waves expsik ir jd in the
Slater determinant with expsik ix jd, where x j =r j

+okÞ jh(r ijsr j −r kd). The functionhsrd can be taken either
short range, or long range. The3He results, presented below,
were obtained with short-range backflow.

As in the cases of nuclear matter and electron gas, we
examined the dependence of the correlated part of the IE for
the liquid 3He on the densityr=3/s4pro

3d, the discontinuity
parameters1−ZFd and the mean kinetic energyK. The de-
pendence of those parameters are shown in Figs. 1(c), 2, and

3, respectively. As in the previous two cases,Scor depends on
those parameters through simple two parameter formulas of
the form

Scorsrd = srl, s32d

with

s= 2032.56, l = 1.4757,

ScorsZFd = ss1 − ZF
ld, s33d

with

s= 13.0640, l = 0.2070

and

ScorsKd = sS K

eF
− 0.6Dl

, s34d

with

s= 3.0993, l = 0.5236.

The values of the parameterss and l have been found by
least squares fit of the above expressions to the calculated
values ofScor. The values of the parameters of expressions
(32) and (33) indicate the strong character of the interaction
of liquid 3He. That character is also indicated by the expres-
sion of ScorsZFd [Eq. (33)]. That expression differs from the
corresponding expressions of the electron gas and nuclear
matter.

III. THERMAL EFFECTS IN ELECTRON GAS

The electrons of the electron gas, at temperatureT=0,
occupy all the lower available states up to a highest one, the
Fermi level. As the temperature increases the electrons of the
gas tend to become excited into states of energy of orderkT
higher than the Fermi energy. However, the electrons with
the lower energy cannot be excited as there are not available
states for them to be excited. Only a small fraction of the gas,
of order T/TF, with energy aboutkT lower than the Fermi
energy have any chance to be excited. The rest remain unaf-
fected in their zero-degree situation. The net result is that the
mean occupation number becomes slightly blurred compared
to its sharp, step function form atT=0.20 In general the oc-
cupation number of the electron gas is given by the Fermi-
Dirac formula

nsed =
1

expF 1

kBT
se − mdG + 1

, s35d

wheree=p2/2msp="kd, kB is the Boltzmann’s constant and
m is the chemical potential. The chemical potential of a gas
at absolute zerosT=0d coincides with the Fermi energyeF.
This is the characteristic energy for a Fermi gas and is by
definition the energy of the highest single-particle level oc-
cupied atT=0. The Fermi energy is given by the relation
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eF =
"2

2m
s3p2rd2/3, s36d

while the Fermi temperature is defined by

eF = kBTF. s37d

We will examine how the IE sum of the electron gas is af-
fected when the temperature starts to increase above zero.
Our study will include the cases of low temperature and high
temperature limit, separately.

A. Thermal effects in electron gas forT™TF

Since there is only one characteristic temperature, the
Fermi temperature, by the term low energy we will mean the
limit T!TF. It is easy to see that for electron gas, i.e., in
copper,TF,8.53104 K, while the melting point is of the
order of 103 K. Thus, at all temperatures at which copper is
a solid, the conditionT!TF is satisfied; the electron gas is in
its low-temperature limit. ForT!TF the chemical potential,
in a first approximation, is20–22

m = eFF1 −
p2

12
S T

TF
D2G s38d

and so Eq.(35) becomes

nsxd =
1

expF1

j
Sx2 − 1 +

p2

12
j2DG + 1

, s39d

where x=se /eFd1/2=k/kF and j=T/TF!1. The normaliza-
tion of nsxd is e0

`x2nsxddx=1/3.
Following the same steps as in Sec. II, the information

entropy sum of the electron gas at temperatureT!TF is
written

S= S0 + Sthermal, s40d

whereS0 is given by Eq.(13) and

Sthermal= − 3E
0

`

x2nsxdln nsxddx. s41d

It is worthwhile to notice that the correlations between the
Fermi particles invoke discontinuity to the MD atk=kF
while the thermal effect causes just a slight deviation from
the sharp step function form atT=0. That is shown in Fig.
4(a), where the MD for a correlated electron gas withrs=5
and for an ideal electron gas at temperatureT=0 andT/TF
=0.2 have been plotted versusk/kF. The two cases of the
figure (rs=5 andT/TF=0.2) give the same value for the in-
formation entropy. Thus, even though the origin of the two
effects (correlations and temperature) is different and they
influence in a different way the MD, the two information
entropiesScor andSthermal are almost the same.

The calculated values ofSthermal for various values of the
temperature(for T!TF) are shown in Fig. 4(b). It is seen
that Sthermal is an increasing function of the temperature and
depends linearly on it. The line

Sthermal= aS T

TF
D, a = 2.5466 s42d

reproduces very well all the calculated values ofSthermal. That
expression of the information entropy is similar to the ex-
pression which gives the thermodynamical entropy,STE, for
T!TF. STE in the low temperature limit has the form20,22

STE =
p2

2
NkB

T

TF
. s43d

Comparing Eqs.(42) and (43), a relation between the two
entropies could be found in the caseT!TF. That relation has
the form

FIG. 4. (a) The momentum distribution for correlated electron
gas with effective radiusrs=5 and the uncorrelated one for tem-
peratureT=0 andT=0.2TF versus the ratiox=k/kF. (b) The ther-
mal part of the information entropy versus the temperatureT in
units of TF.
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Sthermal=
2a

p2

STE

NkB
, a = 2.5466, s44d

while the information entropy sum is written

SIE = ln N + ln 4p3 +
2a

p2

STE

NkB
. s45d

Thus the information entropy of a Fermi gas, which is a
measure of the information content of the system, depends
on the number of fermions as well as on the thermodynami-
cal entropy of the system.

The increase of the temperature changes also the mean
kinetic energyK of the ideal electron gas. ForT!TF, K is
given by22

K =
3

5
eFF1 +

5

12
p2S T

TF
D2G . s46d

In the examined range ofT, K changes about 15%. AsK
appears both in correlated and uncorrelated Fermi systems,
and a relation of the formScor=ScorsKd was already found in
Sec. II, it is of interest to examine the existence of a relation
betweenSthermal andK.

That relation can be easily found writing Eq.(46) in the
form

T

TF
=

2

p
S K

eF
− 0.6D1/2

and replacingT/TF into Eq.(42). The expression connecting
Sthermal andK is

Sthermal= sS K

eF
− 0.6Dl

, s47d

with

s=
2a

p
= 1.6212, l = 0.5.

Expression(47) is the same with the corresponding ex-
pression ofScorsKd which is given by Eq.(31). The values of
the parameters andl (s=2.0786 andl=0.6601) of Eq. (31)
are close to the constantss=1.6212 andl=0.5 of Eq.(47).
For that reason we should expect that the same values ofK
corresponding either to the temperature or to the electron
correlation lead to similar values for the two entropies
Sthermal and Scor. The calculated values ofSthermal, for the
uncorrelated Fermi gas, versusK are shown in Fig. 3. From
that figure, it is seen that for the same values ofK, Sthermal
and Scor take similar values, as expected. From the above
analysis it is seen that the information entropy sum and the
thermal part of it are related with fundamental quantities,
such as, the temperature, the thermodynamical entropy and
the mean kinetic energy of the system.

B. Thermal effects in electron gas forTšTF

A relation can also be established between the IE and the
thermodynamical entropy in the classical case when it is as-
sumed thatnskd!1. That condition is valid when the density

is low and/or the temperature is high. In that case the MD
has the Gaussian form21

nskd = S a

p
D3/2

e−ak2
, a =

"2

2mkBT
s48d

and is normalized asenskddk =1. The thermodynamical en-
tropy of the system is given by the relation20,21

STE

NkB
= ln V − ln N +

5

2
+

3

2
ln

mkBT

2p"2 . s49d

Following the steps of Sec. II, the information entropy sum
for the above system is written

SIE = ln V +
3

2
+ 3 ln 2p +

3

2
ln

mkBT

2p"2 . s50d

Comparing Eqs.(50) and (49) and using Eq.(13) a rela-
tion betweenSTE and SIE can also be found in the caseT
@TF. That relation has the form

SIE = S0 + sln 2 − 1d +
STE

NkB
= ln N + s3 ln 2p − 1d +

STE

NkB
,

s51d

while the thermal part of the information entropy depends on
STE through the relation

Sthermal= sln 2 − 1d +
STE

NkB
. s52d

Thus the information entropy sum as well the thermal part of
it, in the limit T@TF depends also on the number of elec-
trons as well as on the thernodynamical entropy of the sys-
tem. Those relations are similar to the ones which have been
found in the limit caseT!TF, only the two constants are
different.

From Eqs.(52) and(49) a relation connectingSthermalwith
the temperature can be found. That relation has the form

Sthermal=
3

2
+ ln

3p1/2

4
+

3

2
ln

T

TF
. s53d

Finally, from the well known result

K =
"2

2m
E nskdk2dk =

3

2
kBT s54d

and Eq. (53) a relation connectingSthermal and K can be
found. That relation has the form

Sthermal=
3

2
+

1

2
ln

p

6
+

3

2
lnS K

eF
D . 1.1765 +

3

2
lnS K

eF
D .

s55d

We can conclude that, at the classical limit, the IE as well
as its thermal part is related toSTE, T and K, as in the low
temperature limit.

IV. CONCLUDING REMARKS AND SUMMARY

A study of Shannon’s information entropies in position
sSrd and momentumsSkd spaces for three correlated Fermi
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systems, i.e., nuclear matter, electron gas and liquid3He, was
made. The analysis was performed applying the LOA for the
calculation of the MD in nuclear matter, and using the results
of Refs. 18 and 17 for the electron gas and liquid3He, re-
spectively. The strength of the fermion correlations in
nuclear matter is measured by the wound parameter,kdir,
while for the electron gas and liquid3He by the value of the
constant density of the uniform systems. That strength can be
measured also in the same way, in the three systems, by the
discontinuity gap,ZF (or 1−ZF), of the MD atk=kF.

It was found that the information entropy sum,S=Sr +Sk,
depends linearly on the logarithm of the number of fermions.
There is also a dependence ofS on the strength of correla-
tions. It is remarkable that for the three different Fermi sys-
tems with different particle interactions, the same or similar
two parameters formulas exist connecting the correlated part,
Scor, of the IE of the system with the various kind of the
parameters of the system which measure the strength of the
interactions. For nuclear matter, electron gas and liquid3He
the corresponding expressions areScor=skdir

l , Scor=srs
l, and

Scor=srl. Our results for electron gas are in agreement with
the ones of Ziesche.9 For nuclear matter and electron gas the
dependence ofScor on ZF is of the form Scor=ss1−ZFdl,
while for liquid 3He is of the formScor=ss1−ZFdl. The dif-
ference in that expression ofScor comes from the strong char-
acter of the particle interaction in liquid3He. From the above
dependence ofScor on the various parameters it should be-
come clear that the values of the IE could be used as a
common measure of the particle correlations of Fermi sys-
tems. This is also supported by the fact that there is the same
formula, in the three systems, which relatesScor with the
mean kinetic energy of the system of the formScor=ssK /eF

−0.6dl. The increase of the IE(throughScor) with the param-
eter 1−ZF or with the other correlation parameters(kdir or r
or rs) is due to the fact that the effect of the particle correla-

tions is to diffuse the MD from the step functional form
(ideal Fermi gas) creating a long tail behavior fork.kF.
That diffusion of the MD leads to a decrease of the order of
the system(in comparison to the order step function MD),
thus, it leads to an increase of the information content of the
system.

We studied, also, how the thermal effects affect the infor-
mation entropy sum of the uncorrelated electron gas. The
study was made for two cases, the low temperature limit and
the high one. It was found that, in both cases, there are rela-
tions which connect the thermal part of the IE with the fun-
damental quantities such as the temperature, the thermody-
namical entropy and the mean kinetic energy. The
dependence ofSthermal on T and STE is linear with a larger
slope in the low temperature limit than in the high one.
Sthermal depends on the logarithm ofK in the high tempera-
ture limit, while in the low one is of the formSthermal
=s2a /pdsK /eF−0.6dl, wherea is the slope of the linear ex-
pression which relatesSthermal with T. That expression is al-
most the same with the one which holds for the correlated
electron gas,Scor=ssK /eF−0.6dl. The values of the param-
eterss andl are very close to the constants 2a /p and 0.5,
respectively. Thus, independent of the reason that causes the
increase ofK the information entropy increases almost by the
same amount either in the correlated electron gas or in the
uncorrelated one.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Paola Gori-Giorgi for
providing the data for the correlated electron gas and Dr.
Saverio Moroni for providing the data for the liquid3He.
They would like also to thank Dr. C.P. Panos for fruitful
discussions.

1I. Bialynicki-Birula and J. Mycielski, Commun. Math. Phys.44,
129 (1975).

2S. R. Gadre, Phys. Rev. A30, 620 (1984); S. R. Gadre, S. B.
Sears, S. J. Chakravorty, and R. D. Bendale,ibid. 32, 2602
(1985); S. R. Gadre, and R. D. Bendale,ibid. 36, 1932(1987).

3M. Ohya, and P. Petz,Quantum Entropy and Its Use(Springer,
Berlin, 1993).

4V. Zelevinsky, M. Horoi, and B. A. Brown, Phys. Lett. B350,
141 (1995); V. V. Sokolov, B. A. Brown, and V. Zelevinsky,
Phys. Rev. E58, 56 (1998).

5A. Nagy and R. G. Parr, Int. J. Quantum Chem.58, 323 (1996).
6V. Majernic and T. Opatrny, J. Appl. Phys.29, 2187(1996).
7C. P. Panos and S. E. Massen, Int. J. Mod. Phys. E6, 497(1997);

G. A. Lalazissis, S. E. Massen, C. P. Panos, and S. S. Dimitrova,
ibid. 7, 485 (1998).

8S. E. Massen and C. P. Panos, Phys. Lett. A246, 530 (1998);
280, 65 (2001); S. E. Massen, Ch. C. Moustakidis, and C. P.
Panos,ibid. 289, 131(2002); C. P. Panos,ibid. 289, 287(2001).

9P. Ziesche, Int. J. Quantum Chem.56, 363 (1995).
10N. H. March, Electron Density Theory of Atoms and Molecules

(Academic, London, 1992), p. 34.

11P. E. Sokol, R. N. Silver, and J. W. Clark, inMomentum Distri-
bution, edited by R. N. Silver and P. E. Sokol(Plenum, New
York, 1989), pp. 1–35.

12J. W. Clark and M. L. Ristig, inMomentum Distribution, edited
by R. N. Silver and P. E. Sokol(Plenum, New York, 1989), pp.
39–58.

13C. P. Panos, N. K. Spyrou, and K. Ch. Chatzisavvas(unpub-
lished).

14M. Gaudin, J. Gillespie, and G. Ripka, Nucl. Phys. A176, 237
(1971).

15M. Dal Ri, S. Stringari, and O. Bohigas, Nucl. Phys. A376, 81
(1982).

16M. F. Flynn, J. W. Clark, R. M. Panoff, O. Bohigas, and S. Strin-
gari, Nucl. Phys. A427, 253 (1984).

17S. Moroni, G. Senatore, and S. Fantoni, Phys. Rev. B55, 1040
(1997).

18P. Gori-Giorgi and P. Ziesche, Phys. Rev. B66, 235116(2002).
19R. Jastrow, Phys. Rev.98, 1479(1955).
20D. L. Goodstein,States of Matter(Dover, New York, 1985).
21F. Mandl,Statistical Physics(Wiley, New York, 1978).
22K. Huang,Statistical Mechanics(Wiley, New York, 1987).

DEPENDENCE OF INFORMATION ENTROPY OF… PHYSICAL REVIEW B 71, 045102(2005)

045102-9


