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Dependence of information entropy of uniform Fermi systems on correlations and thermal effects
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The influence of correlations of uniform Fermi systemsiclear matter, electron gas, and quﬁ’lde) on
Shannon’s information entrops, is studied.S is the sum of the information entropies in position and mo-
mentum spaces. It is found that, for three different Fermi systems with different particle interactions, the
correlated part o (S.,;) depends on the correlation parameter of the systems or on the discontinuity gap of
the momentum distribution through two parameter expressions. The values of the parameters characterize the
strength of the correlations. A two parameter expression also holds beSygemd the mean kinetic energy
(K) of the Fermi system. The study of thermal effects on the uncorrelated electron gas leads to a relation
between the thermal part & (Sherma) @nd the fundamental quantities of temperature, thermodynamical
entropy, and the mean kinetic energy. It is found that, in the case of low temperature limit, the expression
connectingSyerma With K is the same to the one which conne&g, with K. There are only some small
differences on the values of the parameters. Thus, regardless of the (eas@tations or thermalthat
change«, Stakes almost the same value.
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[. INTRODUCTION connect it with the interaction of the particles and the tem-
ﬁerature. In uniform systems the densitgN/V is a con-

Informapon theoretlcql methods have in recent YealSiant and the interaction of the particles is reflected to MD
played an important role in the study of quantum mechanicaf,hich deviates from theheta function form of the ideal

system§® in two cases: first in the clarification of funda- Fermi-gas model. It is important to study how the interaction
mental concepts of quantum mechanics and second in thgfects the MD as well as the IE. An attempt is also made to
synthesis of probability densities in position and momentunyg|ate the IE with fundamental quantities such as the tem-
space. An important step was the discovery of an entropigerature, the thermodynamical entropy and the mean kinetic
uncertainty relatiohwhich for a three-dimensional nonuni- energy of the fermionic systexelectron gap
form quantum system has the form The quantum systems which are examined :?Ir:ditehe present
work are nuclear matter, electron gas and liqtkte. The
S=§+5=3(1+Inm) ~6.434, 1) interparticle interactions of these sy%tems gen?arally differ by
where many orders of magnitude in their strengths and ranges. If
the potentials are scaled with suitable energy and length
measures for the different systems, i.e., Fermi energy and
S=- J p(r)in p(rydr, - S= _j n(oin nkjdk - (2) inverse Fermi momentum, thg potentials still differ by c?r)éiers
. ] . ) . of magnitude. The helium system is the most strongly inter-
are Shannon’s information entropi€kS) in position- and  acting at short distances, with an almost-hard-core interac-
momentum-space anglr), n(k) are the density distribution tjon, the electron gas is the most weakly interacting, and the
(DD) and momentum distributiogMD), respectively, nor- nuclear case lies somewhere between. The helium and the
malized to unity. nuclear potentials have relatively weak attractive tails. The
The physical meaning d& and S is that it is a measure electronic potential is quite deferent. While its core is very
of quantum-mechanical uncertainty and represents the infoweak in comparison witfiHe and nuclear cases, it falls off
mation content of a probability distribution, in our case of slowly at larger. That is at large distances the electronic
various fermionic systems density and momentum distribupotential becomes strong€rHistorically, the helium prob-
tions. Inequality(1) provides a lower bound fo® which is  lem has proved to be the hardest to be solved, because of the
attained for Gaussian wave functiohtt is mentioned that hard core interaction. On the other hand, the nuclear problem
the sumS=S +S, is invariant to uniform scaling of coordi- presents a singular frustration and a special challenge be-
nates, while the individual entropi€$ and S, are not. cause of the strong state depende(aependence on spin,
Ziesch@ mentions in his paper that March refers to theisospin, angular momentuynand noncentral character of the
information entropy with the following words: “Further work bare two-nucleon interaction, and also because of ambigu-
is called for before the importance & and S, in atomic  ities in the determination of the interaction from first
theory can be assessed.We could extend that statement for principles’? Moreover, the judgment about strong versus
fermionic and correlated bosonic systems as well. weak interaction depends on the density being studied. This
The motivation of the present work, which is in the spirit fact is vividly illustrated by the electron gas, which is distin-
of the above statement, is to extend our previous study of IE§uished from the other examples by the long-range nature of
in nuclei, atomic clusters and correlated bosonic systems tthe Coulomb interaction. Consequently, strong coupling pre-
the direction of various uniform fermionic systems and tovails in the electron gas in the limit of low density, whereas

1098-0121/2005/1%)/0451029)/$23.00 045102-1 ©2005 The American Physical Society



CH. C. MOUSTAKIDIS AND S. E. MASSEN PHYSICAL REVIEW Br1, 045102(2009

(6)

the helium and the nuclear systems become more strongly 1. 17k, k<kg,
interacting as the density increases. In all these cases the n(k):\Tn(k):V 50 k>k

strength of the interaction may be gauged by the depletion of K (k). k> ke,

the Fermi sea. Quantitatively, one examines the deviation vaherevkzgwkﬁ. The Fermi wave numbék: is related with

Z from unity, whereZg is the discontinuity gap of the mo- the constant densiW:Npozg/mﬂ-rg) as follows
mentum distributionn(k) at k=kg in an uniform Fermi s s
system'? ke = (6_772;)) — (9_771) (7)

The paper is organized as follows. The method leading to F v 2v rg ’
the expression of Shannon’s information entropy sum in fi- o
nite Fermi systems is presented in Sec. II. Applications ofVhere »=2 for electron gas and liquidHe and =4 for
that expression to nuclear matter, electron gas, and ”quiauclear matter. In the case of an ideal Fermi gas the MD has
3He are made in the three subsections of Sec. II. In the sanfd€ form
subsections numerical results are also reported and dis- 1
cussed. In Sec. lll the study of the influence of thermal ef- No(k) = vﬂ(kF— k). (8)
fects on the information entropy sum is made. Finally, the K

py Y,
concluding remarks and the summary of the present work are The information entropy in coordinate spader density
given in Sec. IV. po normalized to } for a correlated or uncorrelated Fermi
system is given by the relation

Il. INFORMATION ENTROPY FOR AN INFINITE
FERMI SYSTEM S= —f o IN podr =N V. 9)

The key quantity for the description of the MD both in

infinite and finite quantum systems is the one-body density Considering that/=NVo, S becomes

matrix (OBDM). The OBDM is defined as S=In(3mrd) +InN. (10)
, . ’ The information entropy in momentum spaffer n(k)
p(ry,ry) :J‘I’ (Pl INW(r LI, ., rg)dr .. dry. normalized to 1is given by the relation

©) Se=- J n(k)In n(k)dk. (11)

The diagonal elemenis(r,,r;) of the OBDM yields the lo-
cal density distribution, which is just a constamtin the Sk for an ideal Fermi gas, using E(B), becomes
uniform infinite system. Homogenity and isotropy of the sys- 62 1
tem require thatp(ry,r;)=p(Jr;—ri))=p(r). In the case of S=In Vk:In<——3). (12
noninteractive Fermi systems the associated OBDM is v To

, From Egs.(10) and(12) the information entropy surB=S
p(r) = pl(kelry = 1)), +S, for an uncorrelated infinite Fermi system becomes

3

where 8
$=S5+S=Inl— | +InN. (13
[(x) = 3x~3(sinx — X COSX) v
It turns out that the functional form
and p=N/V is the constant density of the uniform Fermi

system. S=a+binN
The density, normalized to W pedr =1), is given by the  for the entropy sum as a function of the number of particles
relation N holds for the ideal infinite Fermi systems. The same func-
tion has been found in Ref. 2 for atoms and in Ref. 8 for
o= 1 - 1 , (4) nuclei and atomic clusters. That expression has been found
NV, Ngwrg also in Ref. 13 for the ideal electron gas. It is well known

that relation (1) [S+S=3(1+Inw)] holds always. We

where the volume/,=37r3 corresponds to the effective vol- found that forN large relation(13) holds. Relation(13) for
ume of the Fermi particle and is the number of fermions. N=1 violates relation(1), but this is hardly a problem be-
The MD for fermions, having single-particle level degen- cause(13) holds only for largeN and we do not expect to

eracyv, is defined by agree with Eq(1), e.g., relations holding for nuclear matter
cannot lead to relations holding for finite nuclei with a few
_ 1 ikr nucleons.
(k) =v fp(r)e dr. ®) In the case of correlated Fermi systems, the IE in coordi-

nate space is given again by HdO) while the IE in mo-
The MD, normalized to I/n(k)dk=1], is given by the re- mentum space can be found from EA1) replacingn(k)
lation from Eqg.(6). S is written now

045102-2



DEPENDENCE OF INFORMATION ENTROPY OF.. PHYSICAL REVIEW B 71, 045102(2005

4 (% . ~ seg and f(r) is a state-independent two-body correlation
Sc=In V- Vi f k_(K)InA_(k)dk function. In the present work the correlation function is taken
kAJo to be the Jastrow functidh
+ f k2R, (k)In ﬁ+(k)dk) : (14) f(r) =1-exi- 77, (19
* whereg is the correlation parameter. A cluster expansion for
The correlated entropy sum has the form the one-body density matrip(r1,r;) has been derived by
S=S+S=%+ S, (15) t?Oanu?liré;.Gillespie and RipR& 1 for the Jastrow trial func-
whereS; is the uncorrelated entropy sum of Ef3) and S, In the LOA the momentum distribution is constructedfas
is the contribution of the particles correlations to the entropy B
sum. That contribution can be found from the expression NLoa(K) = (ke = K)[1 = Kgir + Y(k,8)]
- o + 8kai Y(k,2) = [Y(k AT], (20)
- _ 2= = 2 =
Sor= 3( Jo XN_(X)In A_(x)dx+ ffx n.(x)In n+(x)dx>, where
(16) e—INé _ e—ng K ‘E |
—1 — + _y2 ~ — _y2
wherex=Kk/k. c, Y(kw) —2T< + fo eV dy+ sgr(lc)fo e Y dy
Another quantity expected to be related with the IE is the
mean kinetic energ¥, defined by (21)
72 * and
K= —f n(k)k?dk = SEFJ xTi(x)dx
2m 0 1 (u\¥? ~ k  ~ kexk
C’u,:7 ~ ] kz#l ki: ! ,LL:2,4,8,
r . 8w\ 2 Bu B
= 3er XA_()dx+ | xR, (x)dx], (17)
0 1* (22
where ez =%%k2/(2m) is the Fermi energy. and sgiix)=x/|x|. The normalization condition for the mo-
From the above analysis it is clear that in order to calcumentum distribution is
late the IE sum in uniform Fermi systems, the knowledge of o 1
the MD is required. In dealing with various fermionic sys- f N oa(Kk2dk= Zk2. (23)
tems, we are necessarily driven to computational methods, 0 3

since a pure analytical treatment is intractable. Computa-
tional many-body methods may be classified in several dif-
ferent ways: they may be based on wave functions or on fiel
theory. They may be variational or perturbative. In any cas
the singular, or near-singular character of the basic forces

involved precludes a simple, stepwise perturbative calcula- kdir:pf [f(r) - 1]?dr, (29
tion within an independent-participlane-wave basis.

In the present work we apply the low order approximationwherep=2kg/(3772) is the density of the uniform nucleon

- : 16
(LOA) for the calculation of the MD in nuclear matfeér. matter. Equation(24) gives the following relation between

For liquid ®He we use the results of Moroat al,'” while the the wound parameteg;, and the correlation parametgr
MD for the electron gas is taken from a work of Gori-Giorgi "

et al!® Of course there are a lot of data for the MD, for the 1 (ke)®

two cases, in the literature. In our work we try to use the Kair = b\ g)"
. . . . 327\ B

modern ones that exist up to now. It is worthwhile to point

out also that our primary purpose is not the detailed analysif is clear that largeky;, implies strong correlations and poor

of the MD but the accurate calculation of the correlated partonvergence of the cluster expansion. In the numerical cal-

of the information entropy in various cases, using reliableculations the correlation parametgrwas in the interval:

A rough measure of correlations and of the rate of con-
ergence of the cluster expansion is given by the dimension-
ess Jastrow wound parameter

(25

data for the MD. 1.01=<B=<2.482. That range corresponds to B.R;,
=0.02 and is a reasonable interval in the case of nuclear
A. Nuclear matter matterl6
The model we study is based on the Jastrow ansatz for the The calculated values &, for nuclear matter versus the
ground state wave function of nuclear matter wound parameteky;, are displayed by points in Fig(d). It

is seen thag,,, is an increasing function d;,. The function
W(ryrp....ry) = H f(ri)@(ry,ra.0rn), (18) g (k) is equal to zero fokg, =0 (no correlationsand the
=N dependence 0§, on ky;; is not very far from a linear de-
whererij:|ri—rj|, ® is a Slater determinarghere, of plane pendence. Thus we fitted the numerical valuesSgf with
waves with appropriate spin-isospin factors, filling the Fermithe two parameters formula
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FIG. 1. The correlated part of
the information entropyS.o,, for
0.0 , ) . \ . . , 0.0 \ ) . . nuclear matter(a), electron gas
0.0 0.1 0.2 0.3 0 3 6 9 12 (b), and quuid3He (c) versus the
(a) k,, (b) r, wound parameteky,, the effec-

tive radiusrg, and the densityp,
respectively. The lines in the tree
cases correspond to the fitted ex-
pressionsSuo(Keir) =K Stor(rs)
=srt and S(p)=sp", respec-
tively. For the values of the pa-
rameterss and\, see text.

Liquid helium

5
o
4
3
0.012 0.016 0.020
{c) P
Seor(Kgir) = SKy, . (26) The dependence &, on the quantity1-Z¢) is shown

_ _ _ in Fig. 2. It is seen thag., is an increasing function afl
That simple formula, with the best fit values of the param--z.). For the same reasons mentioned before we fitted the
eters numerical values 0§, to the two parameters formula

s=2.0575, \=0.6364 Seor(Zp) =s(1 = Zp)*. (27)

reproduces the numerical values i, very well. As before, the above simple formula, with the best fit values
of the parameters

Another characteristic quantity which is used as a mea-

sure of the strength of correlations of the uniform Fermi $=2.2766, A=0.6164,
systems is the discontinuit{g, of the MD atk/ke=1. It is .
defined as reproduces the numerical valuesSf, very well.
From the above analysis we can conclude that the corre-
Ze=n(1) - n(1%). lated part of the information entropy sum can be used as a

measure of the strength of correlations in the same way the
For ideal Fermi system&:=1, while for interacting ones wound parameter and the discontinuity parameter are used.
Z-<1. In the limit of very strong interactio@-=0 there is An explanation of the above behavior &f,, is the fol-
no discontinuity on the MD of the system. The quantily  |owing: The effect of nucleon correlations is the departure
-Z;) measures the ability of correlations to deplete thefrom the step function form of the MDideal Fermi gasto
Fermi sea by exciting particles from states belowhble the one with long tail behavior fok>kg. The diffusion of
state$ to states above ffparticle states'® the MD leads to a decrease of the order of the sysfiem
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FIG. 2. The correlated part of the information entropy for
nuclear matter, electron gas, and liqdide versus the discontinuity
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FIG. 3. The correlated part of the information entropy for vari-
ous Fermi systems and its thermal part for electron gas versus the

parameter 1Z¢. The lines in nuclear matter and electron gas cor-mean kinetic energy in units of Fermi energy. The lines in the vari-

respond to the fitted expressi®,(Z¢)=s(1-Z¢)* while in *He
liquid to the fitted expressioB,y(Zg) =s(1-Z}). For the values of
the parameters and\, see text.

comparison to the ordered step function MEhus it leads to
an increase of the information content of the system.

Concluding we should state that, the increase of informa-

tion entropy sum of the nuclear matter is due to the increase - St , -
pglectron gas in its Fermi-liquid regime(x,ry) is constructed

of the number of nucleons of the system, as it is seen fro
Eqg. (13) and also to the increase of correlations.

Finally, the dependence of the IE on the kinetic endfgy
which is given by Eq(17), is also examined. The calculated
values of the correlated part of I5,,, versusK is shown in
Fig. 3. S, is an increasing function df. It should be noted
thatS., is equal to O forK:EeF. For that reason we fitted the
numerical values o0&, to the formula

K A
— - 0.6) .
€F

aam:{ (28)

That simple formula, with the best fit values of the param-

eters
§=3.7413, A=1.5911,

reproduces the numerical values®f, very well.
Summarizing, we can conclude thy, in nuclear matter

is an increasing function of the wound parameter and th

discontinuity parametdil —Zg). It is also an increasing func-

tion of the mean kinetic energy of the system. The depen

dence ofS,,, on those quantities is given by simple two
parameter formulas.

B. Electron gas

ous cases correspond to the fitted expressBg(K)=s(K/ex
-0.6). For the values of the parameterand\, see text.

uniform charge distribution. The density of the uniform elec-
tron gas(Jellium) is p=3/(47-rr§) and the momentum distri-
bution is n(x,rg), where x=k/kg and rs=r,/ag (with ag
#2/mé, the Bohr radiup

The momentum distribution of the unpolarized uniform

with the help of the convex Kulik functioG(y).8 It is as-
sumed than(0,ry), n(1*,ry), the on-top pair densitg(0,ry),
and the kinetic energ(ry) are known(respectively, from
accurate calculations fog=1,...,5, from the solution of the
Overhauser model, and from quantum Monte Carlo calcula-
tions via the virial theorem!8

The qualitative behavior ofi(x,rg) is the following. It
starts atx=0 with a valuen(0,rg <1, and decreases with
increasingx. For x<<1, it is concave. Then in the Fermi
liquid regime atx=1, there is a finite jumpFermi gap from
n(1-,ry to a lower valuen(1*,rg=n(1",rg—Zg(ry with
logarithmic slopes at both sides »f1. Forx>1, (correla-
tion tail) n(x,rg) is convex and vanishes for—co. For rg
=0 (ideal Fermi gak n(x,r¢) has the well known step func-
tion form n(x,0)=6(1-x). Thus, the discontinuityZg(ry),
starts withZ-(0)=1 and decreases with increasing interaction
g,trengthrs. The discontinuityZg of n(k) at the Fermi surface
narrows as the density decreases, which implies that the sys-
tem is becoming more strongly coupled. That behavior is due
to the fact that the screening of the long-range Coulomb
interaction between the electrons becomes less effective at
lower density. The inverse behavior appears in nuclear mat-
ter cases and the atomile, where the basic interactions are
of short range and; decreases as the density increases.

We consider the electron gas as a system of fermions At large rg, the electrons form a Wigner crystal with a
interacting via a Coulomb potential. The electron gas is esmoothn(x,rg). r¢<1 andrg>1 are the weak- and strong-
model of the conduction electrons in a metal where the peeorrelation limits, respectively. For intermediate valuespf
riodic positive potential due to the ions is replaced by aa non-Fermi liquid regime may exist with-=0. In such a
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case,n(x,rg) would be continuous versus with a nonana- 3, respectively. As in the previous two cas8s, depends on

lytical behavior atx=1.18 those parameters through simple two parameter formulas of
We examined the dependence of the correlated part of thédae form

I[E for the electron gas on the correlation parametdor p \

=3/(4mrd)], the discontinuity parametefl-Z) and the Seorlp) =sp™, (32)

mean kinetic energK. The dependence db,, on those i

parameters are shown in Figgby, 2, and 3. It is seen that,

as in the case of nuclear matt&,, depends on those quan- s=2032.56, \=1.4757,
tities through two parameter expressions of the form
Solrd = st (29) SeorlZe) =s(1-2}), (33
with with
$=0.1312, A =0.8648, $=13.0640, A =0.2070
Sor(Z6) =S(1-Z)", (39 2
. K N
with Sor(K) = s(e— - 0.6) , (34)
$=2.0381, \=1.6899 F
and with
K N $=3.0993, A=0.5236.
Seor(K) :s(——O.G) , (31
€F The values of the parametessand A have been found by
with least squares fit of the above expressions to the calculated

values ofS.,,. The values of the parameters of expressions
s=2.0786, A =0.6601. (32) and(33) indicate the strong character of the interaction
of liquid *He. That character is also indicated by the expres-
The values of the parametessaind\ have been found by  ¢jon of So(Ze) [EQ. (33)]. That expression differs from the

least squares fit of the above expressions to the Calc“lat%rresponding expressions of the electron gas and nuclear
values ofS.,,. matter.

C. Liquid °He IIl. THERMAL EFFECTS IN ELECTRON GAS

The helium interaction potential is very strong at small The electrons of the electron gas, at temperafisx®,
distances, its core repulsion being very hagbdt not infi-  occupy all the lower available states up to a highest one, the
nite). As a consequence there is a Fermi-surface discontinuFermi level. As the temperature increases the electrons of the
ity of roughly Ze~0.3. This small value supports the view gas tend to become excited into states of energy of de@er
that liquid ®He is the most strongly interacting Fermi system higher than the Fermi energy. However, the electrons with
we have considered. the lower energy cannot be excited as there are not available

In the case of liquidHe the calculation of the momentum  states for them to be excited. Only a small fraction of the gas,
distribution is performed from diffusion Monte CafldDMC)  of order T/Tg, with energy aboukT lower than the Fermi
simulations using trial functions, optimized via the Euler energy have any chance to be excited. The rest remain unaf-
Monte Carlo(EMC) method!’” The EMC wave functions fected in their zero-degree situation. The net result is that the
have pair and triplet correlations fully optimized, and pro- mean occupation number becomes slightly blurred compared
vide the lowest available energy bounds. Moreover, their use its sharp, step function form d@=0.2° In general the oc-
in DMC calculations has led to results of unprecedented aceupation number of the electron gas is given by the Fermi-
curacy for the energy, pair function, and static structure funcbirac formula
tion. For *He, backflow correlations have been included, in
the usual way, by replacing the plane waves(gkp;) in the _ 1

; . : n(e) = , (35
Slater determinant with exik;x;), where x;=r; 1
+34,i7(ri;(rj=ry). The function 7(r) can be taken either exp[@(e—,u)J +1
short range, or long range. Thele results, presented below,
were obtained with short-range backflow. where e=p?/2m(p=7k), kg is the Boltzmann’s constant and

As in the cases of nuclear matter and electron gas, wg is the chemical potential. The chemical potential of a gas
examined the dependence of the correlated part of the IE fait absolute zer¢T=0) coincides with the Fermi energst.
the liquid *He on the density=3/(4ar?), the discontinuity  This is the characteristic energy for a Fermi gas and is by
paramete(1-Zg) and the mean kinetic enerdy. The de-  definition the energy of the highest single-particle level oc-
pendence of those parameters are shown in F{g$. 24, and  cupied atT=0. The Fermi energy is given by the relation
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hZ
&= ——(37%p)%", 36
F 2m( p) (36) R —
=
while the Fermi temperature is defined by osl T-0
- =keTr. (37) I M =5
F BIF 1 [RUO T/TF=O.2
We will examine how the IE sum of the electron gas is af- 06
fected when the temperature starts to increase above zero. §
Our study will include the cases of low temperature and high 04l
temperature limit, separately. '
A. Thermal effects in electron gas forT<Tg 0.2} 1
Since there is only one characteristic temperature, the \
Fermi temperature, by the term low energy we will mean the 0.0 . - [nrgroay |
limit T<Tg. It is easy to see that for electron gas, i.e., in 0.0 04 08 12 16 20
copper, T ~8.5x 10* K, while the melting point is of the (@) x=k/k,
order of 1G K. Thus, at all temperatures at which copper is 0.6+

a solid, the conditio < T is satisfied; the electron gas is in
its low-temperature limit. Foll < T the chemical potential,
in a first approximation, #&8-22

71_2 T 2
ML= € l—E T_F (39) 04r

and so Eq(35) becomes

S Electron gas)

thermal (

Sthermal

1
n(x) = 1 - : (39) ook
exp[—(xz—1+—§2)J+1 '
£ 12

where x=(e/ eg)"?=k/ ke and é&=T/Te<1. The normaliza-
tion of n(x) is [ox?n(x)dx=1/3.

Following the same steps as in Sec. Il, the information
entropy sum of the electron gas at temperatlire Tg is

0-0 1 1 1 1
0.00 0.05 0.10 0.15 0.20

written (b) 7T
S=%+Sy \ (40) FIG. 4. (a) The momentum distribution for correlated electron
ermar gas with effective radiuss=5 and the uncorrelated one for tem-
whereS, is given by Eq.(13) and peratureT=0 andT=0.2T¢ versus the ratik=k/kg. (b) The ther-
mal part of the information entropy versus the temperaflria
- units of Tg.
Shermai =~ 3 f X°n()In n(x)dx. (41) ]
0
It is worthwhile to notice that the correlations between the Shermal= a(_l_—) a=2.5466 (42
F

Fermi particles invoke discontinuity to the MD &t=kg
while the thermal effect causes just a slight deviation from

the sharp step function form a=0. That is shown in Fig. reproduces very well all the calculated valuesSgf,mz; That
4(a), where the MD for a correlated electron gas With5  expression of the information entropy is similar to the ex-

=0.2 have been plotted verskske. The two cases of the T<T. S in the low temperature limit has the fofAr?
figure (r¢=5 andT/Tz=0.2) give the same value for the in-

formation entropy. Thus, even though the origin of the two
effects (correlations and temperatyres different and they ? T
influence in a different way the MD, the two information Sre= ?NkBT_' (43
entropiesS.y; and Syermal are almost the same. F

The calculated values @,ema for various values of the
temperaturgfor T<Tg) are shown in Fig. éb). It is seen Comparing Eqs(42) and (43), a relation between the two
that Syermal IS @n increasing function of the temperature andentropies could be found in the caBe& Tg. That relation has
depends linearly on it. The line the form
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2ua is low and/or the temperature is high. In that case the MD
_2a Sre _ .
Shermal= 2Nk ¢ 2.5466, (44 has the Gaussian fofh
312 2
while the information entropy sum is written n(k) = <E) e g= Zr:kBT (48)
200 Sp
Se=INN+In47+ ?WE (45  and is normalized agn(k)dk =1. The thermodynamical en-

tropy of the system is given by the relatf§i*
Thus the information entropy of a Fermi gas, which is a
measure of the information content of the system, depends Sre =InV-=InN+ 3 + §In kaT_ (49)
on the number of fermions as well as on the thermodynami- Nkg 2 2 2mwh?
cal entropy of the system.
The increase of the temperature changes also the me
kinetic energyK of the ideal electron gas. FAr<Tg, K is

Fr?llowing the steps of Sec. I, the information entropy sum
0r the above system is written

iven by?? 3 3 T
given by Se=INV+2+3In2m+ o Tl (50)
K==—e|1+—7| —]| |. (46) _ .
5 12 \Tg Comparing Eqs(50) and (49) and using Eq(13) a rela-

. tion betweenS;g and Sg can also be found in the cade
0,
In the examined range of, K changes about 15%. A< >T,. That relation has the for

appears both in correlated and uncorrelated Fermi systems,

and a relation of the forng.,,=S.(K) was already found in Sre Sie
Sec. II, it is of interest to examine the existence of a relation SE=S*(N2-1)+ Nkg INN+(31n27-1)+ Nk’
betweenS;erma and K.
That relation can be easily found writing E@6) in the (51)
form while the thermal part of the information entropy depends on
T 2/K 12 Sre through the relation
e2{los ST
TF TeF S(hermaI: (In 2~ 1) + N_E (52)
and replacingl'/ Tg into Eq.(42). The expression connecting ke
Sherma 2NdK is Thus the information entropy sum as well the thermal part of
K N it, in the limit T>Tg depends also on the number of elec-
Sherma= s(— - 0.6) , (47) trons as well as on the thernodynamical entropy of the sys-
€F tem. Those relations are similar to the ones which have been
with found in the limit caseT <Tg, only the two constants are
different.
_2a _ From Eqgs(52) and(49) a relation connectinGerma With
SEF 16212, A =0.5. the temperature can be found. That relation has the form
Expression(47) is the same with the corresponding ex- S 3. In3771/2+ 3, (53)
pression ofS,(K) which is given by Eq(31). The values of hermal™ 5 4 2 TE

the parametes and\ (s=2.0786 anch=0.660) of Eq. (31)
are close to the constargs 1.6212 and\=0.5 of Eq.(47).
For that reason we should expect that the same valué&s of ;2 3

corresponding either to the temperature or to the electron K:EJ n(k)k’dk ZEkBT (54)
correlation lead to similar values for the two entropies

Sherma @and S The calculated values d§ema for the  and Eq.(53) a relation connectindSpema and K can be
uncorrelated Fermi gas, versisare shown in Fig. 3. From found. That relation has the form

that figure, it is seen that for the same valueKofSyermal

and S, take similar values, as expected. From the above g = 3 + lmf + §In(5> ~1.1765 J%m(ﬁ)'

Finally, from the well known result

analysis it is seen that the information entropy sum and the 2 2 2 \e €F

thermal part of it are related with fundamental quantities, (55)
such as, the temperature, the thermodynamical entropy and ) o

the mean kinetic energy of the system. We can conclude that, at the classical limit, the IE as well

as its thermal part is related @&, T andK, as in the low

) temperature limit.
B. Thermal effects in electron gas forT>Tg

A relation can also be established between the IE and the IV. CONCLUDING REMARKS AND SUMMARY

thermodynamical entropy in the classical case when it is as- A study of Shannon’s information entropies in position
sumed thah(k) <1. That condition is valid when the density (S) and momentun(S,) spaces for three correlated Fermi
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systems, i.e., nuclear matter, electron gas and litfdel was  tions is to diffuse the MD from the step functional form
made. The analysis was performed applying the LOA for thgideal Fermi gap creating a long tail behavior fok> k.
calculation of the MD in nuclear matter, and using the resultsThat diffusion of the MD leads to a decrease of the order of
of Refs. 18 and 17 for the electron gas and liqtite, re-  the system(in comparison to the order step function WD
spectively. The strength of the fermion correlations inthus, it leads to an increase of the information content of the
nuclear matter is measured by the wound paramétgr,  system.
while for the electron gas and liquitHe by the value of the e studied, also, how the thermal effects affect the infor-
constant density of the uniform systems. That strength can b ation entropy sum of the uncorrelated electron gas. The
measured also in the same way, in the three systems, by th&,dy was made for two cases, the low temperature limit and
discontinuity gapZ (or 1-Zg), of the MD atk=kg. the high one. It was found that, in both cases, there are rela-
It was found that the information entropy SUBFS+S,  i5ng which connect the thermal part of the IE with the fun-

?.ﬁgfen?ss gnse)agy doen tehnzleongcaerg‘é?] ?L;hit?gr:n?ﬁro?fggrrg;g_ns'damental quantities such as the temperature, the thermody-
b g namical entropy and the mean Kkinetic energy. The

tions. It is remarkable that for the three different Fermi sys-d nden 0T and is linear with a laraer
tems with different particle interactions, the same or similar Iepe 1€ ﬁe ?ﬂherma' onta SI.TE.S h ear h ah_ahge
two parameters formulas exist connecting the correlated parEOpe In the low temperature limit than in the high one.
S.on, Of the IE of the system with the various kind of the “tnermai d&pends on the logarithm & in the high tempera-
parameters of the system which measure the strength of t{gre limit, while n the low one is of the formGpemma
interactions. For nuclear matter, electron gas and ligid =2/ m(K/e=0.6", wherea is the slope of the linear ex-
the corresponding expressions @%r:slﬂir, Scor:Sr;\y and pression which re!ateShe,ma, with _T. That expression is al-

the ones of Ziesch&For nuclear matter and electron gas the€lectron gasS,=s(K/e-~0.6. The values of the param-
dependence 0B, on Zg is of the form S, =s(1-Zp)*, eterss and\ are very close to the constanta/2r and 0.5,

while for liquid ®He is of the formS.,=s(1-Z)*. The dif- _respectively. Thns, independent of tne reason that causes the
ference in that expression 8f,, comes from the strong char- Increase oK the '|nf0rrnat|on entropy increases almost by the
acter of the particle interaction in liquite. From the above S28me amount either in the correlated electron gas or in the
dependence 08, on the various parameters it should be- Uncorrelated one.

come clear that the values of the IE could be used as a
common measure of the particle correlations of Fermi sys-
tems. This is also supported by the fact that there is the same
formula, in the three systems, which relatgg, with the The authors would like to thank Dr. Paola Gori-Giorgi for
mean kinetic energy of the system of the fo8xn,=s(K/er providing the data for the correlated electron gas and Dr.
-0.6". The increase of the IBhroughS,,,) with the param-  Saverio Moroni for providing the data for the liquitHe.
eter 1-Z¢ or with the other correlation parametdks;, orp  They would like also to thank Dr. C.P. Panos for fruitful
or ry) is due to the fact that the effect of the particle correla-discussions.
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