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The interplay between different types of disorder and electron-electron interactions in graphene planes is
studied by means of renormalization group techniques. The low-temperature properties of the system are
determined by fixed points where the strength of the interactions remains finite, as in one-dimensional Lut-
tinger liquids. These fixed points can be either stable, when the disorder is associated to topological defects in
the lattice or to a random mass term, or unstable when the disorder is induced by impurities outside the
graphene planes.

DOI: 10.1103/PhysRevB.71.041406 PACS nuni®er81.05.Uw, 75.10.Jm, 75.10.Lp, 75.30.Ds

I. INTRODUCTION quantum Hall effect*—26 and we will be able to translate

Graphite is a widely studied material, which has attractecf®Me Of the results there to the problem at hand. We find, as
recent interest due to the observation of many anomalou Ref. 26 a rich phase diagram, with different fixed points.
transport propertiés® and, most exciting, the report of mag- The stability of these fixed points depends on the nature of
netism at room temperaturds. the disorder.

The conduction band of graphite is well described b
tight-binding models which gi]ncilz)ude only ther orbitals Y Il THE MODEL: COULOMB INTERACTION AND
which are perpendicular to the graphite planes at each C DISORDER
atom10 If the interplane hopping is neglected, this model We describe the electronic states within each graphene
describes a semimetal, with zero density of states at thplane by two two-component spinors associated to the two
Fermi energy, and where the Fermi surface is reduced to twimequivalent Fermi points in the Brillouin zone. They are
inequivalent points in the Brillouin zone. The states nearcombined to a four-componetdirac) spinor. These spinors
these Fermi points can be described by a continuum modelbey the massless Dirac equation. The Hamiltonian of the
which reduces to the Dirac equation in two dimensions. Dudree system is
to the vanishing of the density of states at the Fermi level,
the long-range Coulomb interaction is imperfectly screened. Ho= iva dlel_l()_(’)f;,.6\ll()'(’), (1)

This implies that a standard perturbative treatment leads to

logarithmic divergences, and to nontrivial deviations from — . .
Fgrmi-liquid theo?y&l‘BShort-range interactions responsible Where‘I’E:l’Tyo with the 4X 4 matrix yo=03® o3. We fur-

for ferromagnetic effects are irrelevant in this context due tder havey=(y1,7,)=(-ioy,ig)) ® g5 The o, denote the
the vanishing density of states at the Fermi level. In the/Sual Pauli matrices such the,,v,}=20,,,14x4 Gy, de-
strong coupling regime, the model can exhibit a phase tran20ting the Minkowski tensor, whergo,c=1, g;j=-1 with i
sition which leads to a rearrangement of the charges andl,2, andzero otherwise. o _
spins within the unit cell, and which is similar to the chiral The long-range Coulomb interaction in terms of the Dirac
symmetry breaking transition found in field theoriéd5The ~ Spinors reads

experimental findings are hard to explain within this expo- Ve _ g —.

nentially weak nonperturbative effect. Hee= —— | dXdX P (X) oW (X) ——— P(X) ¥ (X),

It is known that disorder significantly changes the states & [X=x|
described by the two-dimensional Dirac equafiéri® and, 2

usually, the density of states at low energies is 'ncrease%vhereg:ezlv,: is the dimensionless coupling constant.

L_attice defect_s, such as pentagons and heptagons, or disloca-ln order to describe disorder effects, the Dirac spinors are
tions, can be included in the continuunm model by means oI:oupIed to a gauge field(x),

a non-Abelian gauge fief??°In general, disorder enhances
the short-range interactions. In addition, a graphene plane Uy 0

can show states localized at interfaé&% which, in the ab- Haisorder= n f dX¥ T Y (DAX), 3)
sence of other types of disorder, lie at the Fermi energy.

Changes in the local coordination can also lead to localizetvherevy characterizes the strength and the 4 matrix I

states3 the type of the vertex. In gener#(X) is a quenched, Gauss-
The present work studies the inteplay of long-range interian variable with the dimensionless variantei.e.,
actions and disorder in the two-dimensional graphene plane (AR =0 (ARAR))=ARE-5). (4)

aiming to open a way for describing the experimental find-
ings. This problem has already been studied in the context dlVe will discuss five different types of disorder which are
critical points between integer and fractional fillings in the associated to the five mutually anticommuting 4 matrices
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plus the unity matrix:(i) For a random chemical potential, X,
the 4x 4 matrix I" is given byI'=vy,. The long-range com- c0
ponents of this type of disorder do not induce transitions
between the two inequivalent Fermi points. This type of dis-
order will yield an unstable fixed lingii) A random gauge
potential involves the X 4 matriced =iy, andIl"=iy,. This
type of disorder will yield a stable fixed line which is linear
in the (g,A)-plane. (iii) (a) A fluctuating mass term is de-
scribed byl'=1,.,. (b) Topological disorder is given by
=iys with y5=1,4,® o,. This type of disorder is associated | !
to the existence of pentagons and heptagons, or, more gen N o

erally, to local distortions of the lattice ax&€%20 This term

can thus be represented by a gauge potential which induce:

transitions between the two Fermi points). To complete the o

discussion, we also mentiohi=iys, where y5=1,.,® 0. \></

This vertex type can be related to an imaginary mass that

couples the two inequivalent Fermi points. All these types of FIG. 1. Top, self-energy corrections. Dashed line, Coulomb in-
disorder will yield a stable fixed line which is cubic in the teraction. Dotted line, external disorder. Bottom: renormalization of
(g,A)-plane. the vertex for the external disorder.

IV. AVERAGING OVER DISORDER
IIl. RENORMALIZATION OF THE EFFECTIVE

COUPLINGS As it was discussed in Ref. 12, there is no wave function
: N . ... renormalizationZy, to leading order ing. Including self-

To discuss the renormalizability of the theory, we will first energy correctiogs due to gveraging %ver an egsemble of
treat the disorder gauge field as an external potential and C{?arious realizations of the gauge fiekdX), the wave func-

?glt dcg'rr]\i,ldf?éethri;svs?{aigqur\z/air c:gfegeg'iorre%llzaté%f) of thi ion gets renormalizetf. The self-energy due to disorder is
1eld. ' Irac propag IS gIv y shown at the top right of Fig. 1 and reads

>N d_w d2p i wt—ipX, - 2 2
Go(w,p) = i f o (zw)ze' P{TW(t,X)¥(0,0) Er(w):Ali_g d perO(w,ﬁ)F, (6)
i (2m)

= m (5 The wave function renormalization is independent of the ver-
tex type and yieldZ,=1-Av2/(32mv2s), where again we

Within one loop and without averaging over the disorderyse dimensional regularization with— 0.
potential, only two diagrams need to be considered, i.e., the The wave function renormalizatioBy also changes the
self-energy of the fermion propagator due to electronrenormalization factor of the Fermi velocity as we keep
electron interaction and the vertex correction of the “extereaé_z invariant with
nal” gauge field that couples to the Dirac bilinedi V.

Both diagrams are shown on the left-hand side of Fig. 1. Gox(®,P) = = Zy(yow = Z, ey - P). (7

The Fermi velocity is renormalized by the top left dia-
gram of Fig. 1 awg=Z, v¢ with Z, =1-g/(16me), using
dimensional regularization with— 0.12 Notice that the ver-
tex of the Coulomb interaction is not renormalized within
one-loop order.

Whether or now needs to be renormalized depends on
the type of the disordefi) For a random chemical potential
with I"=+,, the right diagram at the top of Fig. 1 is nondi- v 5
vergent. This statement is equivalent to the one that there is \/ (4, k) = A d’p
no vertex correction of the Coulomb interaction. We thus set ' 16 ) (2m)?
vr=v; with the flow-invariant velocity;. (ii) For a random (8)
gauge potentiall’=iy,,ivy,), the vertex is renormalized by
the same factor as the Fermi velocity, iZ=1-g/(16m7¢).  This expression depends on the given combination of verti-
This fact is related to the conservation of the current. We cages. The electric charge is not renormalized. If there is only
thus setr=vg. (i) For a random mass terin=1,.,, topo-  one type of disorder, the vertex correction exactly compen-
logical disorded"=ivys, andI'=i"s, the vertex strengthr is  sates the effect oZ,, on Z,_ so that the identification of the
renormalized by=1-g/(8me) which follows from(i) and  vertex of the external potential and the Fermi velocity re-
(ii). Within one loop-level, we can thus sells:vﬁ/v3 with mains valid, i.e.(i) vr=vy, (i) vr=vg, and(iii) UF:U|2:/U3
the flow-invariant velocitys. with vy, v3 constant.

We also need to discuss the vertex corrections due to av-
eraging over the disorder. The diagram which renormalizes
the vertex of the external gauge field is shown at the bottom
of Fig. 1. Also the vertex of the Coulomb interaction is being
renormalizednot shown. The vertex correction td' due to
averaging over the disorder ty& is given by

I Go(w,p)T Go(w,p+ K.
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V. PHASE DIAGRAMS

Disorder thus only changes the flow of the Fermi velocity
due to wave function renormalization, i.&Z, —Z, /Zy.
From the 8-function B, =Adp\Z, v,:, we obtaln the foIIow-
ing flow equation for the effectlve Fermi velocmﬁ

=InA/Ag~1/e):
2
1677{ (v ) }

d veff
de UE

We can now discuss the phase diagram for the various
types of disorder(i) For a random chemical potential’
=9p), ur=v; remains constant under renormalization group
transformation. There is thus an unstable fixed linevat
=v2A/(2€?). In the (g, A)-plane, the strong-coupling and the
weak-coupling phases are separated by a hyperbola, with the
critical electron interaction’ =€?/v-=2€*/ (v7A). (ii) A ran-
dom gauge potential involves the verticEsiy,,iy,. The
vertex strength renormalizes ag=vg. There is thus an at-
tractive Luttinger-like fixed point for each disorder correla-
tion strengthA given byv-=2€?/A or g"=A/2. (iii) For a
random mass terfi=1,,,, topological disordef’=ivys, and
I'=i%s, we havevr=vZ/vs. There is thus again an attractive
Luttinger-like fixed p0|nt for each dlsorder correlation
strengthA given byv-=3202€%/A or g" = JAe?/(20)).

To make connection to previous wotk,we define A
=(A/2)(vEM"vEM2 This yields the linear fixed ling =A

with (i) Aeg?, (i) Aecconst, andiii) Axg2 For each dis-
order type, our results agree with those in Ref. 26.

eff

& A

eff o

5 ©)

eff
E

VI. VARIOUS DISORDER TYPES

Various disorder types cause the renormalization flow to
become unstable which was first noticed by Ludeial. for
the system without electron-electron interactférstill, we
expect that the generic flow of the phase diagram with one
disorder type remains valid as long as one is far enough
away from the fixed line. To support this assumption, we will
discuss the system with two disorder types present.

Let us, e.g., consider the potential disordgy and the
gauge potential disordeX,. Then, the disorder strengih
with T'=v, still does not flow under the renormalization
group (RG) transformation, but the identification of the dis-
order strengthy; with I'=ivy,,iy, with the Fermi velocity is
not valid anymore.

Let us parametrize the velocity of the disordér
=iyq,iy, asvr=vg+dv, where v is the deviation of the

ele
tial
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FIG. 2. (Color onlin@ One-loop phase diagram for two-

dimensional massless Dirac spinors including long-ranged electron-

ctron interactiory and disorder\. Top, random chemical poten-
(I'=1p). Center, random gauge potent{&l=iyy,iy,). Bottom,

random mass terril’=14,), topological disordefI'=iys), andT’

Fermi velocity due to the presence of the potential disordeFi7s.

Ay. The flow equation of the effective deviatiaw®' then
reads

Fig. 2 remains valid for points for away from the attractive

fixed line. Close the the attractor, the former fixed line be-

d sve'f
dt e

There is thus a monotonic increase of the deviatiff
which in return causes the Fermi velocity to decrease. Albe

1A
S 327 (vﬁff)z'

(10)

comes unstable and there is a flow towards the strong cou-
pling regime in the direction of the former fixed line.

For a general combination of disorder types, we expect a

similar behavior, i.e., close to the phase separation there will

a flow towards the strong coupling regime where our one-

together, we expect that the phase diagram in the middle dbop renormalization analysis breaks down.
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VII. CONCLUSIONS high-order resummation of diagrams is performed, valid in
the strong coupling casé,so that our results should be gen-
In this work, we explored the phase diagram of a micro-era|ly valid when the disorder is weak. We can estimate the
scopic model for two-dimensional graphene sheets in thgtrength of the types of defect considered here by noting that
presence of long-ranged electron-electron interaction anghndomness in the chemical potential, due to local defects,
disorder. Disorder is modeled as in the quantum Hall transisych as impurities or vacancies, lead 4o~ (V/#vg)%c,
tions, by five different vertices which lead—within a one- \yhereV is the strength of the local potential awdis the
loop level—to a very rich phase diagram. A random gaug&:oncentration, so thak ~ ca? for vacancies, whera is the
potential as well as a random mass term and topologicahttice constant. Lattice defects, such as dislocations, induce
disorder drive the system towards a new stable, Luttingers, effective gauge potential with ~ck?2° whereb is the
like fixed point. This phase is characterized by a vanishingzrgers vector of the dislocation ards the concentration.
quasiparticle residue, leading to anomalous one-particlghese defects can be induced by irradiafiddote that the
properties. The Luttinger liquid features associated to thigyresence of disorder at intermediate scales will suppress the
fixed line are notoriously difficult to observe, although they :piral symmetry breaking transition expected for pure

can be probed in tunneling experiments, or by measuring thgraphen& 15leaving disorder as the most probable effect for
peak width in ARPES. They will also influence the interlayer gescribing the phenomena.

transport propertie¥’?® Small perturbations by other types

of dlsor(jer,' such as a r_andom local potentlal induce a flow ACKNOWLEDGMENTS

along this fixed line, as in the absence of interactidriEhe

strong coupling fixed point describes, most likely, a disor- T.S. was financially supported by DAAD. Funding from

dered insulating system. MCyT (Spain through Grant No. MAT2002-0495-C02-01
Being a weak coupling RG calculation, the phase diawas also acknowledged. M.A.H.V. thanks A. Ludwig and C.

grams discussed here can only give a qualitative picture dfiudry for very useful conversations on disordered systems,

the variety of phases which can be induced by the interplayand the Aspen Institute of Physics where these issues were

of interactions and disorder. In the absence of disorder thdiscussed for its hospitality. We also thank P. Esquinazi for

electronic charge flows towards weak coupling even when anany illuminating discussions.

*Present address: Departamento de Matematicas, Universidad Car- 424 [FS] 595 (1994).

los, Il de Madrid, E-28911 Leganés, Madrid, Spain 13). Gonzélez, F. Guinea, and M. A. H. Vozmediano, Phys. Rev. B
1Y. Kopelevich, P. Esquinazi, J. H. S. Torres, and S. Moehlecke, J. 59, R2474(1999.
Low Temp. Phys.119, 691 (2000. 14p. V. Khveshchenko, Phys. Rev. Le®7, 246802(2001).

2P. EsquinaZi, A. Setzer, R. Héhne, C. Semmelhack, Y. KO'lSD_ V. Khveshchenko Phys Rev. Le®7 206401(200])
pelevich, D. Spemann, T. Butz, B. Kohlstrunk, and M. Ldsche, 1 ’ B ’
Phys. Rev. B66, 024429(2002. Cﬁggsg&lcg:ggmon, C. Mudry, and X.-G. Wen, Phys. Re\68

3H, Kempa, P. Esquinazi, and Y. Kopelevich, Phys. Rev6® 17 ;i .
241101(2002. H. E. Castillo, C. de C. Chamon, E. Fradkin, P. M. Goldbart, and

4Y. Kopelevich, P. Esquinazi, J. H. S. Torres, R. R. da Silva, and18 C. Mudr'y, Phys. Rev. B56, 10668(1997.
H. Kempa, inStudies of High Temperature Supercondugtors B+ Horovitz and P. Le Doussal, Phys. Rev.d5, 125323(2002.

edited by A. Narlikar(Nova Science, Hauppauge, NY, 2003 193, Gonzélez, F. Guinea, and M. A. H. Vozmediano, Nucl. Phys. B

\Vol. 45, p. 59. 406 [FS] 771(1993.

5S. Moehlecke, P.-C. Ho, and M. B. Maple, Philos. Mag. L&®, 20J. Gonzélez, F. Guinea, and M. A. H. Vozmediano, Phys. Rev. B
1335(2002. 63, 134421(20017).

6J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald, A. P. Douvalis, 2!K. Wakabayashi and M. Sigrist, Phys. Rev. L&t 3390(2000.
and I. S. Sanders, Natufeondon 420, 156 (2002. 22K . Wakabayashi, Phys. Rev. B4, 125428(2001).

7Y, Kopelevich, J. H. S. Torres, R. R. da Silva, F. Mrowka, H. 22A. A. Ovchinnikov and I. L. Shamovsky, J. Mol. Struct.:
Kempa, and P. Esquinazi, Phys. Rev. L&, 156402(2003. THEOCHEM 251, 133(1991).

8H. Kempa, H. C. Semmelhack, P. Esquinazi, and Y. Kopelevich,24A. W. W. Ludwig, M. P. A. Fisher, R. Shankar, and G. Grinstein,
Solid State Commun125, 1 (2003. Phys. Rev. B50, 7526(1994).

9P, Esquinazi, D. Spemann, R. Hohne, A. Setzer, K.-H. Han, and®J. Ye and S. Sachdev, Phys. Rev. L&i@, 5409(1998.
T. Butz, Phys. Rev. Lett91, 227201(2003. 26]. Ye, Phys. Rev. B30, 8290(1999.

103, C. Slonczewski and P. R. Weiss, Phys. REQ9, 272(1958. 2TM. A. H. Vozmediano, M. P. L6pez-Sancho, and F. Guinea, Phys.
113. Gonzélez, F. Guinea, and M. A. H. Vozmediano, Mod. Phys. Rev. Lett. 89, 166401(2002.

Lett. B 7, 1593(1993. 28M. A. H. Vozmediano, M. P. Lépez-Sancho, and F. Guinea, Phys.
123, Gonzélez, F. Guinea, and M. A. H. Vozmediano, Nucl. Phys. B Rev. B 68, 195122(2003.

041406-4



