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The interplay between different types of disorder and electron-electron interactions in graphene planes is
studied by means of renormalization group techniques. The low-temperature properties of the system are
determined by fixed points where the strength of the interactions remains finite, as in one-dimensional Lut-
tinger liquids. These fixed points can be either stable, when the disorder is associated to topological defects in
the lattice or to a random mass term, or unstable when the disorder is induced by impurities outside the
graphene planes.
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I. INTRODUCTION

Graphite is a widely studied material, which has attracted
recent interest due to the observation of many anomalous
transport properties1–8 and, most exciting, the report of mag-
netism at room temperatures.9

The conduction band of graphite is well described by
tight-binding models which include only thep orbitals
which are perpendicular to the graphite planes at each C
atom.10 If the interplane hopping is neglected, this model
describes a semimetal, with zero density of states at the
Fermi energy, and where the Fermi surface is reduced to two
inequivalent points in the Brillouin zone. The states near
these Fermi points can be described by a continuum model
which reduces to the Dirac equation in two dimensions. Due
to the vanishing of the density of states at the Fermi level,
the long-range Coulomb interaction is imperfectly screened.
This implies that a standard perturbative treatment leads to
logarithmic divergences, and to nontrivial deviations from
Fermi-liquid theory.11–13Short-range interactions responsible
for ferromagnetic effects are irrelevant in this context due to
the vanishing density of states at the Fermi level. In the
strong coupling regime, the model can exhibit a phase tran-
sition which leads to a rearrangement of the charges and
spins within the unit cell, and which is similar to the chiral
symmetry breaking transition found in field theories.14,15The
experimental findings are hard to explain within this expo-
nentially weak nonperturbative effect.

It is known that disorder significantly changes the states
described by the two-dimensional Dirac equation,16–18 and,
usually, the density of states at low energies is increased.
Lattice defects, such as pentagons and heptagons, or disloca-
tions, can be included in the continuunm model by means of
a non-Abelian gauge field.19,20 In general, disorder enhances
the short-range interactions. In addition, a graphene plane
can show states localized at interfaces,21,22 which, in the ab-
sence of other types of disorder, lie at the Fermi energy.
Changes in the local coordination can also lead to localized
states.23

The present work studies the inteplay of long-range inter-
actions and disorder in the two-dimensional graphene plane
aiming to open a way for describing the experimental find-
ings. This problem has already been studied in the context of
critical points between integer and fractional fillings in the

quantum Hall effect,24–26 and we will be able to translate
some of the results there to the problem at hand. We find, as
in Ref. 26 a rich phase diagram, with different fixed points.
The stability of these fixed points depends on the nature of
the disorder.

II. THE MODEL: COULOMB INTERACTION AND
DISORDER

We describe the electronic states within each graphene
plane by two two-component spinors associated to the two
inequivalent Fermi points in the Brillouin zone. They are
combined to a four-componentsDiracd spinor. These spinors
obey the massless Dirac equation. The Hamiltonian of the
free system is

H0 = ivFE d2xC̄sxWdgW ·¹W CsxWd, s1d

whereC̄;C†g0 with the 434 matrix g0;s3 ^ s3. We fur-
ther havegW ;sg1,g2d=s−is2, is1d ^ s3. The sm denote the
usual Pauli matrices such thathgm ,gnj=2gm,n1434, gm,n de-
noting the Minkowski tensor, whereg0,0=1, gi,i =−1 with i
=1,2, andzero otherwise.

The long-range Coulomb interaction in terms of the Dirac
spinors reads

Hee=
vF

4p
E d2xd2x8C̄sxWdg0CsxWd

g

uxW − xW8u
C̄sxW8dg0CsxW8d,

s2d

whereg=e2/vF is the dimensionless coupling constant.
In order to describe disorder effects, the Dirac spinors are

coupled to a gauge fieldAsxWd,

Hdisorder=
vG

4
E d2xC̄sxWdGCsxWdAsxWd, s3d

wherevG characterizes the strength and the 434 matrix G
the type of the vertex. In general,AsxWd is a quenched, Gauss-
ian variable with the dimensionless varianceD, i.e.,

kAsxWdl = 0 kAsxWdAsxW8dl = Dd2sxW − xW8d. s4d

We will discuss five different types of disorder which are
associated to the five mutually anticommuting 434 matrices
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plus the unity matrix:sid For a random chemical potential,
the 434 matrix G is given byG=g0. The long-range com-
ponents of this type of disorder do not induce transitions
between the two inequivalent Fermi points. This type of dis-
order will yield an unstable fixed line.sii d A random gauge
potential involves the 434 matricesG= ig1 andG= ig2. This
type of disorder will yield a stable fixed line which is linear
in the sg,Dd-plane. siii d sad A fluctuating mass term is de-
scribed byG=1434. sbd Topological disorder is given byG
= ig5 with g5=1232 ^ s2. This type of disorder is associated
to the existence of pentagons and heptagons, or, more gen-
erally, to local distortions of the lattice axes.19,20 This term
can thus be represented by a gauge potential which induces
transitions between the two Fermi points.scd To complete the
discussion, we also mentionG= ig̃5, where g̃5=1232 ^ s1.
This vertex type can be related to an imaginary mass that
couples the two inequivalent Fermi points. All these types of
disorder will yield a stable fixed line which is cubic in the
sg,Dd-plane.

III. RENORMALIZATION OF THE EFFECTIVE
COUPLINGS

To discuss the renormalizability of the theory, we will first
treat the disorder gauge field as an external potential and do
not consider the average over different realizations of this
field. The free, massless Dirac propagator is given by12

G0sv,pWd = − i E dv

2p

d2p

s2pd2eivt−ipWxWkTCst,xWdC̄s0,0dl

=
− 1

g0v − vFgW · pW + i0
. s5d

Within one loop and without averaging over the disorder
potential, only two diagrams need to be considered, i.e., the
self-energy of the fermion propagator due to electron-
electron interaction and the vertex correction of the “exter-

nal” gauge field that couples to the Dirac bilinearC̄GC.
Both diagrams are shown on the left-hand side of Fig. 1.

The Fermi velocity is renormalized by the top left dia-
gram of Fig. 1 asvF=ZvF

ṽF with ZvF
=1−g/ s16p«d, using

dimensional regularization with«→0.12 Notice that the ver-
tex of the Coulomb interaction is not renormalized within
one-loop order.

Whether or notvG needs to be renormalized depends on
the type of the disorder:sid For a random chemical potential
with G=g0, the right diagram at the top of Fig. 1 is nondi-
vergent. This statement is equivalent to the one that there is
no vertex correction of the Coulomb interaction. We thus set
vG=v1 with the flow-invariant velocityv1. sii d For a random
gauge potentialsG= ig1, ig2d, the vertex is renormalized by
the same factor as the Fermi velocity, i.e.,ZG=1−g/ s16p«d.
This fact is related to the conservation of the current. We can
thus setvG=vF. siii d For a random mass termG=1434, topo-
logical disorderG= ig5, andG= ig̃5, the vertex strengthvG is
renormalized byZG=1−g/ s8p«d which follows fromsid and
sii d. Within one loop-level, we can thus setvG=vF

2 /v3 with
the flow-invariant velocityv3.

IV. AVERAGING OVER DISORDER

As it was discussed in Ref. 12, there is no wave function
renormalizationZC to leading order ing. Including self-
energy corrections due to averaging over an ensemble of
various realizations of the gauge fieldAsxWd, the wave func-
tion gets renormalized.20 The self-energy due to disorder is
shown at the top right of Fig. 1 and reads

SGsvd = D
vG

2

16
E d2p

s2pd2GG0sv,pWdG. s6d

The wave function renormalization is independent of the ver-
tex type and yieldsZC=1−DvG

2 / s32pvF
2«d, where again we

use dimensional regularization with«→0.
The wave function renormalizationZC also changes the

renormalization factor of the Fermi velocity as we keep
G0,Z

−1 −S invariant with

G0,Z
−1 sv,pWd ; − ZCsg0v − ZvF

vFgW · pWd. s7d

We also need to discuss the vertex corrections due to av-
eraging over the disorder. The diagram which renormalizes
the vertex of the external gauge field is shown at the bottom
of Fig. 1. Also the vertex of the Coulomb interaction is being
renormalizedsnot shownd. The vertex correction toG due to
averaging over the disorder typeG8 is given by

VGsv,kWd = D
vG8

2

16
E d2p

s2pd2G8G0sv,pWdGG0sv,pW + kWdG8.

s8d

This expression depends on the given combination of verti-
ces. The electric charge is not renormalized. If there is only
one type of disorder, the vertex correction exactly compen-
sates the effect ofZc on ZvF

so that the identification of the
vertex of the external potential and the Fermi velocity re-
mains valid, i.e.,sid vG=v1, sii d vG=vF, and siii d vG=vF

2 /v3
with v1, v3 constant.

FIG. 1. Top, self-energy corrections. Dashed line, Coulomb in-
teraction. Dotted line, external disorder. Bottom: renormalization of
the vertex for the external disorder.
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V. PHASE DIAGRAMS

Disorder thus only changes the flow of the Fermi velocity
due to wave function renormalization, i.e.,ZvF

→ZvF
/ZC.

From theb-function bvF
=L]LZvF

ṽF, we obtain the follow-
ing flow equation for the effective Fermi velocityvF

ef f s,
=ln L /L0,1/«d:

d

d,

vF
ef f

ṽF

=
1

16p
F e2

vF
ef f −

D

2
SvG

ef f

vF
ef fD2G . s9d

We can now discuss the phase diagram for the various
types of disorder:sid For a random chemical potentialsG
=g0d, vG=v1 remains constant under renormalization group
transformation. There is thus an unstable fixed line atvF

*

=v1
2D / s2e2d. In the sg,Dd-plane, the strong-coupling and the

weak-coupling phases are separated by a hyperbola, with the
critical electron interactiong* =e2/vF

* =2e4/ sv1
2Dd. sii d A ran-

dom gauge potential involves the verticesG= ig1, ig2. The
vertex strength renormalizes asvG=vF. There is thus an at-
tractive Luttinger-like fixed point for each disorder correla-
tion strengthD given by vF

* =2e2/D or g* =D /2. siii d For a
random mass termG=1434, topological disorderG= ig5, and
G= ig̃5, we havevG=vF

2 /v3. There is thus again an attractive
Luttinger-like fixed point for each disorder correlation
strengthD given byvF

* =Î32v3
2e2/D or g* =Î3 De4/ s2v3

2d.
To make connection to previous work,26 we define D̃

;sD /2dsvG
ef f/vF

ef fd2. This yields the linear fixed lineg* =D̃

with sid D̃~g2, sii d D̃~const, andsiii d D̃~g−2. For each dis-
order type, our results agree with those in Ref. 26.

VI. VARIOUS DISORDER TYPES

Various disorder types cause the renormalization flow to
become unstable which was first noticed by Ludwiget al. for
the system without electron-electron interaction.24 Still, we
expect that the generic flow of the phase diagram with one
disorder type remains valid as long as one is far enough
away from the fixed line. To support this assumption, we will
discuss the system with two disorder types present.

Let us, e.g., consider the potential disorderDV and the
gauge potential disorderDA. Then, the disorder strengthvG

with G=g0 still does not flow under the renormalization
group sRGd transformation, but the identification of the dis-
order strengthvG with G= ig1, ig2 with the Fermi velocity is
not valid anymore.

Let us parametrize the velocity of the disorderG
= ig1, ig2 as vG=vF+dv, where dv is the deviation of the
Fermi velocity due to the presence of the potential disorder
DV. The flow equation of the effective deviationdvef f then
reads

d

d,

dvef f

ṽF

=
1

32p

DV

svF
ef fd2 . s10d

There is thus a monotonic increase of the deviationdvef f

which in return causes the Fermi velocity to decrease. All
together, we expect that the phase diagram in the middle of

Fig. 2 remains valid for points for away from the attractive
fixed line. Close the the attractor, the former fixed line be-
comes unstable and there is a flow towards the strong cou-
pling regime in the direction of the former fixed line.

For a general combination of disorder types, we expect a
similar behavior, i.e., close to the phase separation there will
be a flow towards the strong coupling regime where our one-
loop renormalization analysis breaks down.

FIG. 2. sColor onlined One-loop phase diagram for two-
dimensional massless Dirac spinors including long-ranged electron-
electron interactiong and disorderD. Top, random chemical poten-
tial sG=g0d. Center, random gauge potentialsG= ig1, ig2d. Bottom,
random mass termsG=1434d, topological disordersG= ig5d, andG
= ig̃5.
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VII. CONCLUSIONS

In this work, we explored the phase diagram of a micro-
scopic model for two-dimensional graphene sheets in the
presence of long-ranged electron-electron interaction and
disorder. Disorder is modeled as in the quantum Hall transi-
tions, by five different vertices which lead—within a one-
loop level—to a very rich phase diagram. A random gauge
potential as well as a random mass term and topological
disorder drive the system towards a new stable, Luttinger-
like fixed point. This phase is characterized by a vanishing
quasiparticle residue, leading to anomalous one-particle
properties. The Luttinger liquid features associated to this
fixed line are notoriously difficult to observe, although they
can be probed in tunneling experiments, or by measuring the
peak width in ARPES. They will also influence the interlayer
transport properties.27,28 Small perturbations by other types
of disorder, such as a random local potential induce a flow
along this fixed line, as in the absence of interactions.24 The
strong coupling fixed point describes, most likely, a disor-
dered insulating system.

Being a weak coupling RG calculation, the phase dia-
grams discussed here can only give a qualitative picture of
the variety of phases which can be induced by the interplay
of interactions and disorder. In the absence of disorder the
electronic charge flows towards weak coupling even when a

high-order resummation of diagrams is performed, valid in
the strong coupling case,13 so that our results should be gen-
erally valid when the disorder is weak. We can estimate the
strength of the types of defect considered here by noting that
randomness in the chemical potential, due to local defects,
such as impurities or vacancies, lead toD,sV/"vFd2c,
where V is the strength of the local potential andc is the
concentration, so thatD,ca2 for vacancies, wherea is the
lattice constant. Lattice defects, such as dislocations, induce
an effective gauge potential withD,cb2,20 whereb is the
Burgers vector of the dislocation andc is the concentration.
These defects can be induced by irradiation.9 Note that the
presence of disorder at intermediate scales will suppress the
chiral symmetry breaking transition expected for pure
graphene14,15 leaving disorder as the most probable effect for
describing the phenomena.
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